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1 - INTRODUCTION

This report summarizes the results of the SERDP SEED Project UX-1284, Application of
Wavelets for Detection and Discrimination of UXO. This project addressed the
Statement of Need (SON) for SERDP's SEEDSON-02-04, which calls for improved
signal processing and or sensors to aid in discrimination of clutter from ordnance in
contaminated areas where overlapping signatures are common. We investigated the
effectiveness of signal processing techniques based on wavelets (1) to improve the signal
to noise ratio and extract additional information from the signals and (2) as part of a
probability-based approach for discriminating between ordnance and clutter.

Previous work with wavelet-based signal processing has shown the ability of wavelet-
based filtering techniques to significantly increase the signal to noise ratio, allowing
weak, but real, signals to be extracted from noisy backgrounds. The increase in the signal
to noise ratio is also expected to result in a more accurate and detailed description of
magnetic anomalies that are currently detectable. This increase in available detail may
make it easier to distinguish between multiple overlapping anomalies.

Improved methods for detection and discrimination of UXO are desirable because the
size of the ordnance contaminated areas are large - estimated by the U.S. DoD to be
approximately 11 million acres (roughly equal to the combined areas of the states of
Vermont and New Hampshire). If successful, this demonstration will make the accuracy
of reconnaissance of unexploded ordnance using airborne methods more comparable to
ground-based detection methods, and provide a method for improving the detection and
discrimination capabilities of ground-based methods.

This report is organized as follows: Section 2 presents background information on
wavelets, wavelet decomposition using dyadic wavelets and wavelet packets, and
describes the application of probabilistic methods for classification. Section 3 describes
the project activities associated with applying wavelet filtering to airborne magnetic data.
The selection of the wavelet-filtering scheme is described and results from wavelet
filtering are presented and compared to standard filtering results. Section 4 describes the
project activities associated with discrimination of ordnance from clutter using
probabilistic methods. The main focus of this effort was limited to wavelet-based
descriptor selection. Section 5 presents conclusions and recommendations based on the
project results.



2 - BACKGROUND INFORMATION
2.1 Wavelet Transform Description

In wavelet decomposition, the signal is expandéd in a set of orthonormal, compactly
supported basis functions. This property allows wavelets to preserve both time (spatial)
and frequency information. The ability to preserve time information makes the wavelet
transform particularly useful for describing transient or non-stationary data and for
describing data sets containing discontinuities.

The orthonormal basis used in the wavelet decomposition is based on a single function
w(f) that is defined recursively by dilation and scaling
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where a specifies the wavelet scale and b specifies the wavelet translation. The
continuous wavelet transform of a signal x(7) is defined as

x(ab)= [y, (t)x(t)dt. )

The continuous wavelet transform can be extended to a discretely sampled data set x(¢) of
N samples defined as :

x(t)=x,=%x(ts), tn =nAt,n=12...N, (3)

where At is the sampling interval. It can be shown that if the scale a and the shift b are
discretized by using
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where j and k are integers, an orthonormal basis function ¥ can be derived;
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The discrete wavelet transform is then given by the summation
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where the wavelet transform coefficients are denoted by dj;. The wavelet function is
defined by a set of quadrature mirror filter coefficients. Furthermore, Daubechies has




shown that these filter coefficients can be selected such that the resulting wavelet has M
vanishing moments, that is

fw(x)xmdx=0m=01..M-17 (7

Wavelet functions with compact support and vanishing moments result in local events
affecting only a limited number of wavelet coefficients and in smooth portions of the
signal being accurately represented by few coefficients. These properties are useful for
data compression and for denoising signals because virtually all the significant
information is contained in relatively few wavelet coefficients. The remaining
coefficients contain noise and can be set equal to zero, effectively eliminating the noise.

The application of the wavelet decomposition (or wavelet filter) results in two subbands,

each with half the bandwidth of the original signal. The high-frequency subband is

generally referred to as "signal details"; if the highest frequency contained in the original

signal is @y, the frequency range in this subband extends from @, /2 to w,;. The low-
frequency subband is referred to as the
"signal approximation" and has a

: :; i 'Tf*e’*?"bédémp"?m;"’."_" e _ frequency range of 0 to @,, /2. Each
SR SR SRR subband has half the number of samples as
@ . |  theoriginal signal.

In the dyadic wavelet transform, the
wavelet decomposition is recursively
applied to the signal approximation a
specified number of times. Each
application of the wavelet decomposition
results in formation of a wavelet level,
with each level composed of a detail
subband and an approximation subband.
The approximation subband is then
operated on again by the wavelet
decomposition, forming the next wavelet
level.

Figﬁre 1 shows a 3-level dyadic wavelet
transform tree. If the original signal has N
samples, the first level detail subband,

identified as d1, contains N/2 elements,
the second level detail subband, 42,
contains N/4 elements, and the third level
detail subband, d3, and third level approximation subband, a3, each contain

N/8 elements. If the original signal has time increment of At between samples, dl has a

Figuré 1. Three-level dyadic tree.




time increment of 24t between samples, 42 has a time increment of 44¢ between samples,
and &3 and a3 have a time increment of 8¢ between samples. In an m-element dyadic
wavelet transform, the wavelet decomposition is applied m times and each detail subband
contains half as many elements as the previous detail subband. Table 1 shows the
number of elements, the frequency range, and the time between elements for each of the
subbands in the 3-level dyadic wavelet transform.

2.2 Wavelet Packet Description

time increment
subband number of frequency range | between elements
elements
original signal N 0- w, At
dl N2 o, [2 - o, 24
d2 N/4 o, [4 - w,, [2 44t
d3 N/8 a)hi/g - whi/4 84t
a3 N/8 0- ,/8 8At

Table 1. Number of elements, frequency range, and time increment for the
subbands of the 3-element dyadic wavelet transform.

The wavelet packet is much like the dyadic wavelet transform, except the wavelet
decomposition is applied to the detail subbands as well as to the approximation subbands.
Figure 2 shows a 3-level wavelet packet tree. The result of the wavelet packet
decomposition is the subbands a3, d31, d32, d33, d34, d35, d36, and 437. In an m-
element wavelet packet transform, the wavelet decomposition is applied 2" times and all
subbands contain the same number of elements, have the same time increment between
elements, and have equal bandwidths. Table 2 shows the number of elements, the

frequency range, and the time increment between elements for each wavelet packet
subband.

Comparison of the dyadic wavelet transform and the wavelet packet transform shows that
the wavelet packet transform requires considerably more computations and results ina
finer frequency decomposition and a coarser time decomposition.

The choice of using either the dyadic wavelet transform or the wavelet packet transform
will obviously be problem-dependent. Wavelet filtering of magnetometer data requires a
relatively fine frequency decomposition in order to remove helicopter rotor noise without
seriously affecting the frequency range containing UXO anomaly information. For this
reason, we have selected the wavelet packet transform for wavelet filtering. '



~ Trée Decomposition .

ey @) (3! 5) (36 (37|

Figure 2. Three level wavelet packet tree. -

time increment
subband number of frequency range between elements
elements
original signal N 0- w, At
d31 N/8 a)hl./8 - whi/4 84
d32 N/8 o, [4 - 30, /8 : 84t
d33 N/8 3w,,/8 - @,;[2 84t
d34 N/8 w,,[2 - 50,,/8 8At
da3s N/8 5w,,/8 - 3m,, /4 84t
d36 N/8 3w,,/4 - 10,,[8 84t
d37 N8 Tw, /8 - o, 84t
al N/8 0-w,/8 8At

Table 2. Number of elements, frequency range, and time increment for the subbands
of the three-element wavelet packet transform.



2.3 Application of Probabilistic Methods for Classification

Applying probabilistic methods for classification involves several steps. First, a set of
descriptors that adequately distinguish between classes must be identified. Next, the
statistical properties of the descriptor set for each class must be determined, usually by
measuring the descriptors for samples taken from members of each class and calculating
the usual statistical quantities such as the average and standard deviation. Finally, a
statistical test is developed using the descriptor statistical properties to determine class
membership of an unknown sample.

Our original intention in this project was to perform all three steps for a limited number
of samples of both ordnance and clutter. Unfortunately, because of unexpected difficulty
in the performance of the wavelet filtering portion of the project, we were forced to focus
only on the identification of the descriptor set. It has been our experience that if an
adequate descriptor set can be identified, that is, one that can distinguish between the
classes, then the other two steps involved in applying probabilistic classification methods
will present little difficulty. By focusing our effort on the key step in the process, we feel
we can most effectively evaluate the potential for applying probabilistic methods for
classification of ordnance and clutter, given the project constraints.

3 - WAVELET FILTERING OF AIRBORNE MAGNETOMETER DATA
3.1 Approach

The wavelet filtering should retain signal features containing magnetic anomaly
information while removing noise and signal features describing other phenomena such
as rotor noise, large-scale magnetic effects, etc. The approach used to determine the
optimum wavelet-filtering scheme was as follows:

1) Generate synthetic data for several magnetic anomalies using the MAGMOD
computer code. Three different ordnance types buried at three different depths were
used, resulting in 9 synthetic magnetic anomalies.

2) Extract a pure noise signal from the measured magnetometer data. A portion of the
magnetometer signal collected at an altitude greater than 10 meters was used as the noise
signal. Experience shows that magnetic anomalies indicative of UXO are not detectable
at altitudes greater than 10 meters, thus the magnetometer measurements at altitudes
greater than 10 meters contains only effects such as rotor noise and large-scale magnetic
anomalies.

3) Apply the wavelet packet decomposition to each signal and calculate the energy
contained in each subband. Ideally, we would find no overlap in subband signal energy
between the two signals.



4) The optimum wavelet-filtering scheme would retain the subbands containing high
synthetic signal energy and discard subbands containing high noise signal energy. The
filtered signal is formed by inverse wavelet transforming the retained subbands.

5) The effectiveness of the wavelet-filtering scheme can be evaluated by comparing the
wavelet filtering results to standard filtering results. Although wavelet filtering will be
performed using profile data, the comparison can also be performed after converting the
signals to gridded data. The wavelet filtering would be considered superior to standard
filtering if

a) additional anomaly detail can be discerned in the wavelet filtered results,
b) additional anomalies can be detected in the wavelet filtered results,

c) the overall noise level is reduced in the wavelet filtered results, or

d) the application of wavelet filtering is significantly faster or requires
significantly less user intervention during the filtering process.

The wavelet analysis is described in the next section. Descriptions of the synthetic and
noise signals are given and the results of the wavelet packet analysis for each signal are
presented. The selection of the wavelet-filtering scheme is described and the results of
this scheme applied to the synthetic signal with added noise are shown. Section 3
describes the magnetometer data used in to compare the filtering and shows the results of

~ the wavelet-filtering scheme on the collected data. A comparison of the wavelet-filtered

and standard-filtered data is given for both profile and gridded data. Conclusions and a
summary of the analysis results are contained in the final section.

3.2 Wavelet Filtering Scheme Selection

The wavelet-filtering scheme was selected after examining the energy in the wavelet
subbands for the synthetic signal, which contains only anomaly signatures, and a pure
noise signal. For each signal, a four level wavelet packet decomposition was performed
on the synthetic data using a Daubechies-20 coefficient wavelet.

3.2.1 Synthetic Signal

The MAGMOD computer code was used to calculate the magnetometer responses of for
three different ordnance types buried at three different depths. The synthetic signal is
shown in Figure 3.

The sample number corresponds to the sensor traveling from south to north; that is, the
first data point represents the southernmost point. There are 9 different magnetic
anomalies from bodies centered every 50 m from x = 0, i.e. at x = (0,50,100,...400). The
he sample number corresponds to the sensor traveling from south to north; that is, the
first data point represents the southernmost point. There are 9 different magnetic
anomalies from bodies centered every 50 m from x = 0, i.e. at x = (0,50,100,...400). The
three southernmost anomalies are from 76-mm ordnance 1.5, 2.5, and 3.5 m from the
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Figure 3. The MAGMOD-calculated synthetic magnetic anomaly signal.

sensor. The next three anomalies are from 105-mm ordnance 1.5,2.5,and 3.5 m from the
sensor. The three northernmost anomalies are from 155-mm ordnance 1.5, 2.5, and 3.5 m
from the sensor. These depths correspond to a flight height of 1.5 m above ground level
and burial depths of 0, 1, and 2 m. Each object is angled 45 degrees below horizontal,
pointed north-south with the southernmost end of the ordnance nearest the surface. The
ambient magnetic field is 56000 nT, has a declination of 0 degrees, and an inclination of
70 degrees. The helicopter velocity was assumed to be 10 m/sec and the sample rate was
60 Hz.

The four-level wavelet packet tree representing the wavelet decomposition of the signal is
shown in Figure 4. Each branch point represents a time series obtained from wavelet
decomposition. For example, the original time series, represented by (0,0), is
decomposed into two subbands, (1,0) and (1,1). The (1,0) time series is then decomposed
into subbands (2,0) and (2,1). This process is repeated to form the wavelet packet tree

" shown in Figure 4. The time series at the end of each "branch" are the final subbands
used to represent the signal. For this simple tree, the original signal is broken up into the
five subbands (1,1), (2,1), (3,0), (4,2), and (4,3).

After the signal is decomposed, the energy in each subband is calculated. Table 3 shows
the approximate frequency range and the signal energy in each wavelet. The results of-
the energy analysis show that, besides the low frequency energy, the majority of the
signal energy is contained in subband (4,2). The majority of the signal energy would be
retained if subbands (3,0) and (4,2) are used to reconstruct the signal.
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Figure 4. The wavelet packet tree used in wavelet filtering.

Approximate frequency Subband Energy

Subband range (Hz) (% Total Energy)
(1,1) 15-30 0.003
2,1) 7.5-15 0.014
(3,0) 0-3.75 95.25
(4,2) 3.75-5.625 4.53
(4,3) 5.625-7.5 0.22

Table 3. Wavelet subband energy for synthetic anomaly signal.




3.2.2 Noise Signal

The noise signal was obtained from measured data taken at altitudes above 10 meters. At
these altitudes, ground magnetic anomalies have a minimal influence on the magnetic
measurements; the sensors respond primarily to the magnetic field of the helicopter and
to fluctuations in the earth's magnetic field. The pure noise signal is shown in Figure 5
The approximate frequency range and the signal energy in each of the wavelet subbands

e Noise Signal
5;2815'X1d T ¥ T T

signal magnitude (pico.T)
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Figure 5. The pure noise signal.

are shown in Table 4. The results of the energy analysis show that, besides the low
frequency energy, the majority of the signal energy is contained in subbands (1,1), (2,1),
and (4,3). If these subbands are not included in the reconstructed signal, the majority of
the noise at frequencies greater than 3.75 Hz would eliminated. A standard regional
correction or possibly high pass filtering could remove the low frequency noise.

Approximate frequency Subband Energy
Subband range (Hz) (% Total Energy)
(1,1) 15-30 : 2.66
2,1) 7.5-15 1.27
(3,0) 0-3.75 94.22
4,2) 3.75-5.625 0.41
(4,3) 5.625-7.5 1.45

Table 4. Wavelet subband energy for measured noise signal.
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More can be said concerning neglecting the low frequency components to eliminate low
frequency noise. Originally, we had tried using a longer wavelet decomposition that
broke subband (3,0) and additional four levels. The lowest frequency subband contained
a significant amount of noise energy and was neglected during signal reconstruction. The
unexpected result was the appearance of a relatively large scale, low frequency artifact
that distorted the data to the point of making it useless. For this reason, the low
frequency subbands have been retained and this portion of the standard filtering (i.e., the
regional correction) was used to remove the low frequency noise. It should be possible to
develop a wavelet-based filtering scheme that will remove the low frequency noise
without adding unacceptable artifacts; this investigation will be need to wait until the
next phase of the follow-on project.

Additional insight into the performance of the wavelet decomposition can be obtained
from the information shown in Figure 6. In this figure, the magnitudes of the discrete
Fourier transform of each wavelet subband are shown. In addition to the obvious
frequency range of each subband, the results in the frequency domain show the rotor
noise at approximately 6.5 Hz and an unidentified frequency peak at 5 Hz.

Based on the wavelet subband energy in the synthetic anomaly signal and the pure noise
signal, the wavelet filtering scheme selected is to use only subbands (3,0) and (4,2) in the
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Figure 6. Discrete Fourier transform magnitude of the wavelet subbands for the
pure noise signal. '
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signal reconstruction. Thus, the wavelet filtering will consist of decomposing the
magnetometer signal by using the wavelet tree structure shown in Figure 4 (Daubechies
20 coefficient wavelet is used), and then reconstructing the filtered time series from
subbands (3,0) and (4,2). This filtering scheme passes signals in the frequency range of 0
to 5.625 Hz, effectively eliminating the rotor noise.

3.3 Filtering Results

The wavelet filtering strategy was applied to data collected from the Badlands bombing
range in September 2000. The data was collected by using the Oak Ridge Airborne
Geophysical System — Hammerhead Array (ORAGS™-HA). Figure 7 shows the survey
helicopter with the mounted ORAGS™.HA system.

Figure 7. The ORAGSTM Hammerhead array for UXO detection.

This system deploys 8 magnetometers at 1.75m with three magnetometers located in each
of the lateral booms and two magnetometers located in the forward boom. The system
uses a PC-based data acquisition system that is capable of recording raw synchronous
Larmor frequency measurements from the magnetometers at 1200 Hz sample rate. The
ORAGS system can record raw data at 1200 Hz sample rate; For these tests, data were
downsampled to 60Hz in order to minimize the impact of power line interference.

Over 2200 acres of the BBR were surveyed with the ORAGS-HA system during a 10 day
period in September 2000. This included a test site, five large target areas, and numerous
transects. The test site and target areas were surveyed as part of an Environmental
Science and Technology Certification Program (ESTCP) demonstration project, while the
transects were surveyed to support ongoing Engineering Evaluation/Cost Analysis
(EE/CA) efforts by Parsons Engineering Science. The test grid was 100m x 150m and
included several pieces of ordnance that are not common at BBR, but frequently occur at
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other UXO sites. These include 105mm and 155mm artillery, 20mm rounds, mortars and
rockets. Figure 8 shows a portion of a typical magnetometer signal, in this case channel
0, as the helicopter passes over a magnetic anomaly. The presence of two magnetic
anomalies is clearly shown, but also a considerable amount of noise (primarily rotor
noise) can also be plainly seen. Three profiles are shown. The first shows the unfiltered
data sampled at 1200 Hz. These data have undergone the compensation correction, but
have had no additional signal processing. The second profile shows the data after
standard filtering. In this case, the data was downsampled to 60 Hz before filtering. The
results show a significant reduction in the noise level. The third profile shows the data
after wavelet filtering. Here, the filtered data was upsampled to the original 1200 Hz
sampling.
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(c) - Wavelet-filtered signal, displayed at 1200 Hz sample
rate.

Figure 8. Comparison of filter results on magnetic profile data.

13



A qualitative comparison of the filtered results shows that that both accurately preserve
the shape and amplitude of the peaks associated with the magnetic anomaly. However,
the wavelet-filtered data has significantly less noise than the standard-filtered data. Thus,
it appears that the wavelet filter is superior to the standard filter for removing noise.

Investigation of the filtered results in the frequency domain provides additional insight
into the performance of the two filters. Figure 9 shows the filtered results in the .
frequency domain. The unfiltered signal shows the signal energy to be primarily at low
frequencies with a prominent rotor noise peak at approximately 6.5 Hz and an
unidentified noise peak at approximately 5 Hz. Some additional signal energy is present
in the 13 to 15 Hz frequency range. After standard processing, the signal energy below
approximately 4 Hz is preserved; the signal content above 4 Hz has been completely
eliminated. The standard processing effectively removes the rotor noise, but also
removes any information describing the magnetic anomalies between 4 and 6 Hz. The
unidentified noise peak at 5 Hz is removed by the standard processing.

After wavelet-filtering, the signal energy is preserved up to a frequency of approximately
6 Hz. The rotor noise is effectively removed and additional information in the 4 to 6 Hz
frequency range is retained. This additional information should result in a more detailed
representation of magnetic anomalies in the wavelet-filtered data, compared to the
standard-filtered data. The unidentified noise peak at 5 Hz is preserved in the wavelet-
filtered data.

The filtered results can also be compared after gridding. The compensated data was
filtered using both the standard filtering and wavelet-filtering. The two results were
gridded by using GeoSoft software. The results are shown in Figures 10 and 11. Figure
10 shows a portion of the collected data for a relatively large area. Close examination of
the figure shows the wavelet-filtered results to represent the magnetic anomalies with
additional detail compared to the standard-filtered results. The region enclosed in the
circle is expanded in Figure 11. Here, the additional detail preserved by the wavelet
filtering is clearly evident. Not only are more anomalies shown, but the anomalies shown
when using standard filtering are shown with additional detail when wavelet filtering is
used. This additional detail can be attributed to the additional information in the 4 to 6
Hz frequency range that is preserved by wavelet filtering.
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A quantitative measure of the difference between standard filtering and wavelet filtering
can be obtained from analysis of high-altitude noise data. The measured signal, which 18
collected at altitudes greater than ten meters, can be filtered using each filtering method
and the filtered results quantitatively compared. Figure 12 shows the frequency domain
representation between 0 and 7 Hz of a sample of high altitude data after filtering using
both methods. The results show that both filtering methods are practically identical at
frequencies below 4 Hz. Between 4 and 6 Hz, the wavelet filtering preserves more of the
signal, a result previously shown in Figure 9. Between 6 and 7 Hz, the frequency band
containing rotor noise, it is seen that the wavelet filtering removes more of the signal.
Figure 13 shows the comparison of the two filtering method results in more detail over
the frequency range of 4 to 7 Hz.
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Figure 12. Frequency domain comparison of high altitude noise filtered using
standard and wavelet filtering — 0 to 7 Hz.

A measure of the relative energy in each filtered signal can be made by integrating the
filtered results over frequency. The ratio of the energies in each signal indicates the
relative magnitude of the energy content of the filtered signals. Table 5 shows the ratio of
the signal energy of the two filtering methods over the frequency ranges of 0to4 Hz, 4
to 6 Hz, and 6 to 7 Hz. The results show that the two filtering methods have nearly
identical energies over the frequency range of 0 to 4 Hz. Wavelet filtering retains
approximately 42% more signal energy over the frequency range of 4 to 6 Hz. Over the
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frequency range of 6 to 7Hz, wavelet filtering removes 34% more noise than standard
filtering. Thus, for this case (which we believe to be representative of noise in the
ORAGS™-HA system), wavelet filtering retains 42% more energy in the 4 to 6 Hz
frequency range while rejecting 34% more noise in the 6 to 7 Hz frequency range.
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Figure 13. Frequency domain comparison of high altitude noise filtered using
standard and wavelet filtering — 4 to 7 Hz.

Frequency Range - Signal Energy Ratio % Additional Energy in
(Hz) (wavelet energy/standard energy) Wavelet-Filtered Signal
0-4 1.004 0.42%
4-6 1.425 42.5%
6-7 0.66 -34%

Table 5. Comparison of energy content of the filtered signals.
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A comparison of the ease of application can be made between the two filtering methods.

' Figure 14 compares block diagrams of the filtering steps for the standard filtering, the
current wavelet filtering, and our expectation of the future wavelet-filtering processes.
Currently, standard filtering requires more steps then the wavelet filtering. Furthermore,
some of the filtering steps, such as comparing regional corrections and making the B-
Spline fit, require user intervention or input. This intervention may be relatively benign
when filtering small data sets, but can significantly increase the time and cost for filtering
large data sets and such intervention requires a highly skilled analyst.

Wavelet filtering greatly simplifies filtering by eliminating several of the current
processing steps, including some that require user intervention or input. Future wavelet

filtering, which would involve converting the wavelet filtering into a GeoSoft module,
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Figure 14. Block diagram comparing the filtering steps for standard filtering,
wavelet filtering, and the expected final wavelet filtering processes.
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would simplify filtering even further, possibly making it essentially a "turn-key"
operation that can be performed without user interaction. It is expected that the
application of wavelet filtering can significantly decrease the manpower, time, and
ultimately the cost required to filter large data sets. Such data sets will become common
as airborne data acquisition is used to survey more UXO sites.

3.4 - Summary of Wavelet Filtering Results
The results of comparing standard filtering with wavelet filtering indicate the following:

1) Wavelet filtering removes more noise at frequencies above 6 Hz than standard
filtering. This result is qualitatively shown in Figures 8, 12, and 13. For the analyzed
noise sample it was found that wavelet filtering removed approximately 34% more noise
in the 6 to 7 Hz frequency range than did standard filtering.

2) Wavelet filtering preserves more useful information in the 4 to 6 Hz frequency range
than standard filtering. This result is shown in the comparison of the frequency content
of the two filtering methods shown in Figures 9, 12, and 13 and in the comparison of the
gridded data shown in Figures 10 and 11. For the analyzed noise signal it was found that
wavelet filtering preserved approximately 42% more signal in the 4 to 6Hz frequency
range than did standard filtering.

3) Wavelet filtering is simpler and requires less user intervention than current filtering. It
is expected that wavelet filtering can be further simplified by incorporating the filtering
into a GeoSoft module.

4 - DISCRIMINATION OF ORDNANCE AND CLUTTER

As described above, we were limited in this project to identifying a partial descriptor set
for use in determining if a magnetic anomaly represents ordnance or clutter. This
descriptor set identification was done with an extremely limited number of measured
samples of ordnance and clutter. The samples used in this evaluation were two practice
bombs, a barbed wire fragment, a bomb fin, and magnetically responsive soil. Two
channels of measured data were used in the evaluation of each sample.

4.1 Descriptor Selection and Evaluation

Our efforts focused on evaluating the potential of three algorithmically-derived
descriptors; wavelet subband energy, signal entropy, and the discrete Fourier transform
spectra. Wavelet subband energy measures the amount of signal energy in a particular
wavelet subband. This quantity indicates the frequency distribution of energy in a signal.
It is reasonable to expect that the energy distribution of relatively large, intact metallic
bodies such as ordnance will have different energy distributions than smaller, distributed
metallic bodies. Signal entropy is a measure of correlation or noise in a signal. Again, it
is expected that ordnance signals would have relatively highly correlated signals,
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resulting in relatively low entropy. Clutter signals should be less correlated, resulting in
relatively high entropy. The discrete Fourier transform is another measure of the
distribution of signal energy over frequency. ‘A comparison of the descriptor values for
each of the samples is presented in this section.

4.1.1 Wavelet Subband Energy

A four level dyadic wavelet decomposition was used on the sample signals. An 8-
coefficient Daubechies wavelet was used in the decomposition. The wavelet tree
structure describing the decomposition is shown in Figure 15. The energy of subband
(4,1) was used as the descriptor. This subband corresponds to an approximate frequency
range of 1.5 to 4 Hz. Figure 16 shows the subband energy as a percentage of the total
energy in the signal. The sample number corresponds to the two data channels for the
two practice bombs and the two data channels for the bomb fin, barbed wire sample, and
magnetically responsive soil. The results show that in general the practice bombs have a
much higher percentage of signal energy in subband (4,1) than the bomb fin, barbed wire
sample, or the magnetically responsive soil. The one exception is one barbed wire
sample that contains an energy equivalent to the practice bomb.

L Tree Decomposition < SRR TSR

Figure 15. Four-level dyadic wavelet tree structure used in
the wavelet decomposition
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Comparison of Signal Energies - Wavelet Subband (4-1)

subband energy (% total
energy)
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Figure 16. Signal energies for wavelet subband (4,1).

4.1.2 Signal Entropy

The signal entropy for the descriptor samples is shown in Figure 17. As expected the
entropy for the practice bombs are considerably less than that of the clutter objects.
Again, the one exception is one of the barbed wire samples, which has a similar entropy
value to the practice bombs.

Comparison of Signal Entropies
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Figure 17. Signal entropies.
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4.1.3 Discrete Fourier Transform

The discrete Fourier transform is another measure of the energy distribution of a signal.
Figure 18 shows the Fourier spectra of the descriptor samples. To generate the spectra
shown in this figure, each of the sample signals was first normalized to have a peak
response magnitude of + 1.0. is shown. Comparing the results, one sees that the spectra
of the ordnance and clutter examples are quite different. In general, the spectra of the
ordnance are relatively flat with no prominent peaks in the 0 to 4 Hz frequency range.
The spectra of the clutter samples show significant peaks in the 0 to 4 Hz frequency range
and contain less energy (as a percentage of total energy) in the 2 to 4 Hz frequency range.
Although not done in this investigation, it should be possible to select additional
descriptors from the discrete Fourier transform to distinguish between ordnance and
clutter.
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Figure 18. Discrete Fourier transforms spectra.
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5 .CONCLUSIONS AND RECOMMENDATIONS

Based on our results, we believe the following conclusions are justified:

1) Wavelet filtering removes more noise at frequencies above 6 Hz than standard
filtering. This result is qualitatively shown in Figures 8, 12, and 13. For the analyzed
noise sample it was found that wavelet filtering removed approximately 34% more noise
in the 6 to 7 Hz frequency range than did standard filtering.

2) Wavelet filtering preserves more useful information in the 4 to 6 Hz frequency range

than standard filtering. This result is shown in the comparison of the frequency content

of the two filtering methods shown in Figures 9, 12, and 13 and in the comparison of the

gridded data shown in Figures 10 and 11. For the analyzed noise signal it was found that

wavelet filtering preserved approximately 42% more signal in the 4 to 6Hz frequency
“range than did standard filtering.

3) Wavelet filtering is simpler and requires less user intervention than current filtering.
Figure 12 compares the application of the two methods. It is expected that wavelet
filtering can be further simplified by incorporating the filtering into a GeoSoft module.
This reduction in complexity would result in significant savings in both time and cost,
especially if large areas are to be surveyed.

4) The very preliminary work done during this study encourages us that a descriptor set
that can be used to distinguish between ordnance and clutter can be identified. This
descriptor set would most likely include the descriptors used in this study but would
probably include additional descriptors. If such a descriptor set can be identified, it
should be possible to use these descriptors with probabilistic methods to classify a
magnetic anomaly as being either ordnance or clutter.

We recognize that the number of ordnance and clutter samples prevents a statistically
valid determination on the ability of the descriptor set to distinguish between ordnance
and clutter. However, because the limited results are so unambiguous, we feel confident
in concluding that there is real potential for identifying a descriptor set that will
accurately distinguish between ordnance and clutter.

Based on our results, we believe that both wavelet filtering and the application of
probabilistic methods for distinguishing ordnance from clutter have potential for
improving the detection and identification of UXO. We recommend that a follow-on
project be initiated to '

1) Fully develop the wavelet filtering technique and incorporate the final wavelet filtering
into a GeoSoft module. This module would be made available to the UXO community
and should result in the extraction of more useful information from the measured data
than is currently being obtained. In addition to the improvement in filtering performance,
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we believe that the use of wavelet filtering will reduce the time, manpower, and cost of
filtering the large data sets typically collected by airborne UXO surveys.

2) Fully explore the potential of wavelet-based descriptors and probabilistic methods for
discriminating between ordnance and clutter. The preliminary work shown here appears
promising but is only a start in evaluating the potential of this approach. Evaluation
using larger data sets involving many more examples of ordnance and clutter objects is
needed to determine if an effective descriptor set can be identified. If successful, this
approach would form the basis for a screening of magnetic anomalies, allowing analysts
to focus on only the most promising anomalies. Again, a reduction in the time,
manpower, and cost of evaluating the survey results would be achieved.

REFERENCES

1. Akansu, A. N., and R. A. Haddad, Multiresolution Signal Decomposition, 1992, Academic
Press, Inc., San Diego, CA., pp. 292-313.

2. Daubechies, 1., Ten Lectures on Wavelets, 1992; Society for Industrial and Applied
Mathematics, Philadelphia, pp. 199-209.

25





