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Executive Summary

The research described in this report was conducted in support of Strategic Environmental Research and De-
velopment Program (SERDP) SEED Broad Agency Announcement (BAA), Statement of Need UXSEED-05-02,
“Innovative Approaches to Unexploded Ordnance (UXO) Cleanup.” A SERDP SEED research and development
project UX-1446 entitled “A Unified Approach to UXO Discrimination Using the Method of Auxiliary Sources”
was proposed in response to the above BAA.

The main emphasis of this research was to explore the fundamental characteristics of the Surface Magnetic
Charge (SMC) and Standard Excitation Approach (SEA) methods when applied to UXO discrimination problems.
Both methods were derived from the Method of Auxiliary Sources (MAS), and thus represent the secondary
magnetic fields from a compact metallic target with a surfaceof magnetic charge. The SEA and SMC are relatively
new modeling techniques for UXO discrimination. Therefore, we investigated some fundamental, as well as
practical, characteristics of the forward model. These include the accuracy with which the methods can model
sensor data, the speed to carry out the forward modeling, andthe type of discrimination algorithms amenable to
each of the forward modeling methods. For the SEA, we wanted to determine the ease with which the sources can
be derived for a particular target. For the SMC, we wanted to determine if the surface magnetic charge distribution
is a good discriminant, and, if so, what algorithm is required to obtain a stable estimate of the magnetic charge.

Several data sets were analyzed as part of this investigation. Geonics EM63 data were collected on the Engi-
neer Research and Development Center (ERDC) test stand in Vicksburg, MS by Sky Research Inc., University of
British Columbia personnel, and Cliff Morgan and Morgan Field of the U.S. Army Corps of Engineers (USACE)-
ERDC from March 16-April 11, 2006. Geophex GEM3 data were collected on the ERDC test stand in Vicksburg
MS by Sky Research Inc., and Cliff Morgan and Morgan Field of the USACE-ERDC from February 2-10, 2006.
Geophex GEM3 data and Geonics EM63 data collected during themonth of July, 2005 on the Sky Research Inc.
UXO testplot in Ashland, OR were also processed for this project. In this report, we do not estimate location
and orientation from the data. Instead, we assume that the location and orientation estimates can be provided by
alternative means.
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Chapter 1

Introduction

The research described in this report was conducted in support of SERDP SEED Broad Agency Announcement,
Statement of Need UXSEED-05-02, “Innovative Approaches toUXO Cleanup.” A SERDP SEED research and
development project UX-1446 entitled “A Unified Approach toUXO Discrimination Using the Method of Auxil-
iary Sources” was proposed in response to the above BAA.

Several data processing techniques for geophysical surveydata have been developed for discriminating be-
tween UXO and non-UXO items. Current Electromagnetic Induction (EMI) data processing practices involve
inverting sensor data for dipole parameters, and then applying statistical classification techniques to the recovered
parameters. The dipole model is an attractive modeling technique for UXO discrimination because: (1) it is very
fast, (2) sensor data collected over UXO are nearly dipolar if we are not measuring the field at a close distance to
the target (relative to target size), and (3) the parametersof the dipole model have a good physical basis and we
have an understanding of how material properties, size, andshape affect the dipole model parameters. However,
the secondary field for complex, heterogeneous targets willoften appear non-dipolar, particularly if we are close
to the target. Figure 1.1 compares the time domain electromagnetic response for a horizontal 105 mm projectile
that is aligned parallel to the y-axis. The data were measured 1 m above the target, using a Geonics EM63 time
domain electromagnetic sensor. Even though the data are collected 1 m from the target, there are still non-dipolar
components in the signal. If the response was truly dipolar,we would expect a dipole whose axial excitation was
horizontal and the response would have symmetry with respect to both x and y axes.

Typical EMI data processing steps are to invert sensor data for dipole parameters, and then to apply statistical
classification techniques to the recovered parameters. A dipole parameter inversion method minimizes a data
misfit function, and therefore attempts to fit both the dipolar and non-dipolar components of the signal. In the
context of a dipole inversion, the non-dipolar components of the secondary field are essentially data noise. As
a result this data noise is propagated through the inversionto produce inaccuracies in the recovered parameters.
The model parameters (i.e., the position, orientation and polarization tensor components) will adjust to fit the
non-dipolar components of the data. For example, the dipoleinversion applied to Figure 1.1 predicts a target with
a 5.7 degree dip in order to compensate for the non-symmetry in the data.

The initial objective of this research project was to apply the MAS as a modeling technique for inversion of
UXO sensor data. The inputs, or model vector, for the MAS would be the target size, shape, and electromagnetic
material properties. The MAS can model the non-dipolar components of the secondary field. This suggests that the
spread of feature parameters for a MAS model would be relatively smaller than for dipole parameters. The overall
objective of the project was to develop a general inversion methodology based on the MAS that could be used to
invert any combination and configuration of magnetic, Transient Electromagnetic Method (time domain) (TEM)
and Finite Element Method (frequency domain) (FEM) induction data. Specific objectives included (1) determine
the feasibility of using the MAS forward model as the basis for the inversion of total-field magnetics, TEM and
FEM induction data; (2) investigate the feasibility of using the MAS forward model as the basis for joint and/or
cooperative inversion of any combination of magnetic, TEM and FEM induction data; and (3) determine the
discrimination capability of the physical parameters recovered by our inversion for different combinations and
configurations of sensors.

Through numerous comparisons between measured data, analytical solutions, and data modeled by the MAS,
we found that the MAS is able to accurately model compact metallic objects, such as UXO. The MAS accurately

3



Figure 1.1: Results from inverting Geonics EM63 data collected over an 105 mm projectile.

modeled the EMI response over a large frequency range that extended to the static case (Figure 1.2, from Beran,
2005, Chapter 2). The ability to model over such a large rangemade the MAS an attractive modeling technique
for joint inversion of multiple data sets. However, the computational time required by the MAS to calculate sensor
data prevented us from applying the MAS for inversion purposes. Considering the accuracy of the MAS method,
we revised the objective of this study to evaluate the potential of two modeling techniques derived from the MAS
approach: the Standardized Excitation Approach and the Surface Magnetic Charge approach. Although the SEA
and SMC are both surface magnetic charge distribution techniques, they represent two fundamentally different
approaches to UXO discrimination. The SEA is used as part of alibrary or hypothesis testing technique, and the
SMC is part of a parameter estimation/statistical classification technique.

The SEA approach involves determining a set of sources that are a function of target properties (i.e., shape,
size, conductivity, and magnetic permeability) only. These sources are determined numerically through the ap-
plication of MAS combined with a Thin Skin Approximation (TSA). The sources can then be forward modeled
to generate either frequency or time domain sensor data. TheSMC models the field with a magnetic charge dis-
tribution on a fictitious surface that encloses the target. The forward modeling is fast and, therefore, sensor data
can quickly be inverted for the charge distribution. For a given location and orientation, the determination of the
charge distribution is a linear inverse problem. The sum of the charge distribution, i.e., the total surface magnetic
charge, can be used for discrimination.

This report is organized in the following manner. Chapter Two outlines our research and development of
the SEA approach. The SEA approach involves determining a set of sources that represent target parameters
that can be forward modeled to generate sensor data. These sources can be calculated for a number of targets in
order to generate a source library. Discrimination is achieved by determining which target within the library has
the greatest likelihood of producing the anomaly. Chapter Three outlines our research into the SMC modeling
technique. The SMC approach models sensor data with the fieldfrom a magnetic charge distribution on a fictitious
surface that encloses the target. The forward modeling is very fast and, therefore, sensor data can be inverted for
the charge distribution. The sum of the charge distribution, i.e., the total surface magnetic charge, can be used
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Figure 1.2: Modeling magnetostatic data with the Method of Auxiliary Sources method. A spheroid is modelled
using the Earth’s magnetic field at Yuma, Arizona. The analytical solution for a spheroid is used. The Method of
Auxiliary Sources solution was obtained by assuming a frequency of10−6 Hz.

for discrimination. Additional work studying the iso-sphere surfaces and a single horizontal charge layer is not
presented here, as we chose to focus on the properties of the total magnetic charge applied to spheroidal surfaces.
Chapter Four summarizes this report and suggests future research directions.
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Chapter 2

Investigation of EMI Sensing for Metallic
Objects: a Unified and Versatile
Standardized Excitation Approach in
Frequency- and Time- domain

2.1 Abstract

This chapter investigates the SEA combined with the MAS/TSA. This approach is a numerical technique for
computing the EMI response from a three-dimensional, electromagnetically heterogeneous object in both near
and far fields. The objective of the SEA is to determine a set ofcharacteristic sources, called the Reduced Set of
Sources (RSS), associated for each UXO. These sources can then be used for fast modeling of the EMI response.
The full EMI solution is obtained by the superposition of responses to the spheroidal excitation modes. In this
investigation, we determine the effective spheroidal modes by decomposing the primary field simulated for a
loop transmitter. It is shown that the spheroidal series canbe safely truncated at the maximum mode numbers
(M,N) = (3, 8) for the sensor target geometries encountered in the UXO problem. For this study, the frequency
domain RSS has been determined for a collection of UXO items.This library of sources has been extended to time
domain data through a convolution algorithm that can use an arbitrary current waveform in a TEM system. The
experiment-based results, which are in both real frequency-domain (GEM-3) and time-domain (EM63) system,
confirm its applicability to real-world sensors. As anotherillustration of using a RSS-library, we have conducted
an identification test of UXO based on test stand data. In thistest, we demonstrate that identifying a candidate
UXO can be achieved through a straightforward pattern matching procedure by identifying a best misfit value
below a threshold. We have also begun formulating the inverse problem of determining an object location and
orientation by deriving the analytical expressions of the sensitivity coefficients of the fields with respect to these
parameters. A simple example of location and orientation inversion is presented here.

2.2 Introduction

Improved cleanup of UXO requires data processing algorithms for discriminating objects of interest from clut-
ter and metallic scrap. Reliable discrimination minimizesexcavations and, therefore, reduces the cost and any
associated danger. Accurate modeling of EMI responses fromburied targets is an important component of a dis-
crimination algorithm. Several forward modeling techniques have been proposed. The most common approach is
to approximate a target’s EMI response with a point dipole forward model. The dipole approximation is appropri-
ate for modeling fields in the far-field regime, and has been successfully employed in UXO discrimination (Geng
et al., 1999; Gao et al., 2000; Carin et al., 2001; Miller et al., 2001; Zhang et al., 2003; Pasion and Oldenburg,
2001). However, the near field EMI response often contains non-dipolar components. In particular, the EMI
response near a heterogeneous UXO (consisting of multiple,different sections such as head, body, tail and fins,
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and rotation copper band) depend strongly on which parts of the object are closer to the sensor and on the degree
of coupling between different parts. In such a case the target would be poorly modeled with a point dipole. The
importance of interaction effects when simulating target responses was investigated in Shubitidze et al. (2003);
Shubitidze, O’Neill, Shamatava, Sun and Paulsen (2004); Shubitidze, O’Neill, Sun and Shamatava (2004). One
technique that explicitly models a target’s shape, volume,EM properties in modeling procedures of representative
techniques is the MAS (Shubitidze et al., 2002; Shubitidze,O’Neill, Sun and Paulsen, 2004), later improved with
the incorporation of the TSA (Sun et al., 2002, 2004). The hybrid MAS/TSA technique (Shubitidze, O’Neill,
Sun, Shamatava and Paulsen, 2004) does not need fine mesh discretization within a target or on its surface, as
stressed in the other numerical schemes like the Surface Impedance Boundary Condition (SIBC)-based three di-
mensional Methods of Moments (MoM) (Sebak et al., 1991) and the finite difference and finite element methods
(FDM/FEM) when dealing with the situation of very small skindepth. These mesh-dependent techniques can be
slow and even inaccurate, thus making them impractical in this context. In contrast, the MAS/TSA technique has
demonstrated an ability to accurately solve the Three-dimensional (3D) full EMI response for a highly conducting
and/or ferrous object in a relatively short time.

A class of SEA (Braunisch et al., 2001; Ao et al., 2002; Barrows et al., 2004; Chen et al., 2004; Sun et al.,
2005; Shubitidze et al., 2005b) has been recently proposed to synthesize the full EMI solutions by the superpo-
sition of responses to the fundamental excitation modes. Importantly, these responses are unique for each UXO
and can be stored as a library that is used to rapidly produce the complete EMI solutions for any location and
orientation of the target. Chen et al. (2004) and Sun et al. (2005) applied the SEA to UXO discrimination by a
pattern matching scheme using the library for some UXO. In their approach, an inverse problem was solved in
which a source library is determined from high quality sensor data collected over each candidate UXO at different
distances and orientations. The accuracy, reliability, and frequency band of the established library is limited by
the measurement noise and numerical errors arising from theinherent ill-conditioning of the problem. Shubitidze
et al. (2005b) presented an alternative way to implement theSEA based on the hybrid MAS/TSA technique. In
this scheme, the modal response coefficients (or RSS) are distributed on a fictitious spheroid enclosing an object.
The RSS is determined by employing a physically complete numerical simulation of an object’s response to each
fundamental mode. Determining the RSS using simulations allows us to avoid the non-uniqueness and ill-posed
nature of fitting noisy sensor data. In principle, the RSS canbe obtained very accurately for any excitation mode.

Our study of the SEA involves three major issues. First, it isknown that the spheroidal approach theoretically
involves an infinite series of fundamental spheroid modes for synthesizing fields. However it has to be truncated
in practice. The determination of the effective spheroid modes in fact is fundamental for achieving computational
efficiency while maintaining accuracy. We study this issue using simulated primary fields from loop transmitters
with geometries typical for UXO surveys. Second, we illustrate that the modal response coefficients of a target
can be used to accurately model both frequency and time domain sensor data by presenting the tests against the
measurements collected by a GEM-3, a wideband frequency-domain sensor developed by Geophex Ltd., and
EM63, a time-domain instrument developed by Geonics Ltd. These tests are used to demonstrate the capability of
the MAS/TSA-based spheroidal approach as a unified EMI modeling tool in both frequency and time domain. A
convolution algorithm is used to model the time domain response from an arbitrary transmitter waveform. Third,
we have started to build a RSS-library for several UXO utilizing the MAS/TSA-based SEA. To demonstrate
the use of a RSS-library at this stage, we apply a straightforward pattern matching procedure to carry out the
identification tests of UXO by inspecting a minimum misfit value between the measured and calculated patterns
of secondary fields.

2.3 The Standardized Excitation Approach Method

This section briefly describes the standardized (spheroidal) excitation approach detailed in Shubitidze et al.
(2005b).

2.3.1 Decomposing a Primary Field

Under the quasi-magnetostatic approximation, a magnetic field outside of an object is irrotational. It follows
that the corresponding scalar magnetic potential satisfiesthe Laplace equation and can be expanded in a Fourier-
Legendre series (Arfken, 1995) in a prolate spheroidal coordinates. The prolate spheroid is chosen since it can
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Figure 2.1: The prolate spheroidal coordinate system(η, ξ, φ) with major and minor semi-axes ofa andb, the
interfocal distance ofd = 2

√
a2 − b2, andξ = ξ0 = 2a/d.

conform to an elongated body of revolution, a typical geometry of UXO. Let us denote(η, ξ, φ) as the standard
prolate spheroidal coordinates with−1 ≤ η ≤ 1, 1 ≤ ξ ≤ ∞, 0 ≤ φ ≤ 2π and the inter-focal distance ofd, as
shown in Figure 2.1. On a fictitious spheroidξ = ξ0 surrounding an object, a primary potential fieldψpr can be
expressed as:

ψpr(η, ξ0, φ) =
H0d

2

M
∑

m=0

N
∑

n=m

1
∑

p=0

bpmnP
m
n (η)Pm

n (ξ)Tpm(φ), (2.1)

wherePm
n are associated Legendre functions of the first kind with degreen and orderm (Arfken, 1995), and

Tpm(φ) is cos(mφ) for p = 0 and issin(mφ) for p = 1, bpmn the spheroidal expansion coefficients. Eq. (2.1) is a
decomposition of a primary magnetic potential into a numberof fundamental excitationsPm

n (η)Pm
n (ξ)Tpm(φ) =

ψpr
pmn(η, ξ0, φ) with the maximum numbers ofM andN , being infinity in theory. Taking a gradient operation

of Eq. (2.1), one namely obtains the decomposition of the primary magnetic fieldHpr. Its normal component
Hpr

ξ (η, ξ, φ) on the spheroid can be written as

Hpr
ξ (η, ξ, φ) = −H0d

2

1

hξ

M
∑

m=0

N
∑

n=m

1
∑

p=0

bpmnP
m
n (η)P ′m

n (ξ)Tpm(φ) (2.2)

whereP ′m
n is the first-order derivative of the associated Legendre function with respect toξ, hξ is the metrical

coefficient. By the orthogonality of the associated Legendre functions, the spheroidal expansion coefficientsbpmn

can be derived as

bpmn = − 2n+ 1

γπH0dP ′m
n (ξ0)

(n−m)!

(n+m)!

∫ 1

−1

Pm
n (η)hξ

∫ 2π

0

Hpr
ξ (η, ξ0, φ)Tpm(φ)dφdη, (2.3)

whereγ = 2 form = p = 0 andγ = 1 otherwise. The integration in (2.3) is evaluated by a numerical integration.
This completes the decomposition of a primary field quantityunder quasi-static approximation.
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pmn outside
of the object.

2.3.2 Synthesizing the Secondary Fields

We are interested in dealing with a Body of Revolution (BOR) that has rotational symmetry about thez-axis of a
Cartesian coordinate in Figure 2.1. The symmetry property implies that the primary fields behave in a azimuthal
dependence ofTpm(φ) as a Fourier series (as seen in Eqs. (2.1) and (2.2), and each primary azimuthal mode in the
series is orthogonal. As a result, the secondary fields also preserve this angular dependence and can be expressed
similarly in a Fourier series (Andreasen, 1965). Let us consider the object’s response to each unit excitationHpr

pmn

orψpr
pmn. We can introduce the equivalent induced magnetic charges distributed along theith ring on the fictitious

(or inside) spheroidal surface in light of the rotational symmetry in Fig. 2.2. The secondary fieldHsc(r) due to
an object can be written as a linear superposition of the object’s response for eachpmn excitation mode (Chen
et al., 2004; Sun et al., 2005), i.e.,

Hsc(r) =

M
∑

m=0

N
∑

n=m

1
∑

p=0

bpmn

Nq
∑

i=1

qpmn
i G(r, r′i), (2.4)

wherer is the position vector of an observation point outside of theobject (the spheroid), ther′i is the position
vector of theqpmn

i along theith ring, andG(r, r′i) is the modal Green’s function for the magnetic field and is
given by

G(r, r′i)
1

4πµ0

∫ 2π

0

r − r′i
|r − r′i|3

ρiTpm(φ′)dφ′, (2.5)

whereρi is the radius of theith ring. The modal Green’s function can be understood physically as the vectorial
field radiated by a unit scalar ring source harmonically varying in strength along the ring. By decomposing the
primary fields in spheroidal coordinates, we solve the scattering problem on a mode-by-mode basis and then
synthesize the scattered field by applying the superposition principle, as indicated in Eq. (2.4).

The pattern of the scattered field depends on intrinsic attributes of the scattering object (i.e., an object’s
geometry and physics), as well as extrinsic attributes of the object, such as object location, orientation and an
excitation field. One way to look at UXO discrimination is as aprocedure in which we try to separate the
intrinsic and extrinsic attributes. From Eqs. (2.3) and (2.4), extrinsic attributes are characterized by the spheroidal
expansion coefficientsbpmn and intrinsic attributes are characterized by the modal response amplitudesqpmn

i .
This is the essence of the SEA. Therefore once such response amplitudes are found for an object, they can be
stored in a library for subsequent rapid computation of the response required in a prospective survey.
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2.3.3 Solving for the Modal Response Coefficients: Reduced Set of Sources

Equation (2.4) suggests that a straightforward way to determine the RSS is to form an inverse problem and solve
qpmn
i for each mode corresponding to each ring, from the measured data. The success of this procedure would

require numerous independent measurements of an object to physically reduce the degree of ill-posedness which
can degrade the solution. Recently, Sun et al. (2005) applied such a data-derived approach to extracting the
modal response coefficients for each candidate by carefullydesigning the measurements at different distances and
orientations. However, the accuracy and reliability of themodel parameters determined in this way is dependent
on the measurement noise and numerical errors arising from the inherent ill-conditioning of the problem. In
addition, a library generated using this approach is limited to the bandwidth of the sensor.

Shubitidze et al. (2005b) proposed a procedure in which the RSS are determined by employing a numerical
simulation of an object’s response to each fundamental excitation mode. For a unit excitationψpr

pmn (Fig. 2.2), the
scattered potential field outside the target is irrotational and can be written as

ψsc
pmn(r) =

Nq
∑

i=1

qpmn
i g(r, r′i), (2.6)

where

g(r, r′i) =
1

4π

1

|r − r′i|
, (2.7)

is the potential at ther observation point produced by theith ring source atr′i on the spheroid surface where the
qpmn
i are located. Eq. (2.6) assumes that the fieldψsc

pmn(r) can be quite accurately expressed for observation
points outside an enclosing fictitious spheroid usingqpmn

i . For a given candidate target, the MAS can be used
to compute the scattered fields. As an example, let us consider a cylindrical object enclosed by a spheroid (Fig-
ure 2.2). The MAS distributes a set of auxiliary charge with amplitudes ofQpmn

k , k = 1, · · · , NQ, corresponding
to unit excitation mode, on an auxiliary surface inside the scattering object. These auxiliary sources are obtained
by enforcing the EM boundary conditions on the physical surface and these sources are responsible for the exter-
nal fields (Shubitidze et al., 2002; Shubitidze, O’Neill, Sun and Paulsen, 2004). Thus with the known auxiliary
chargesQpmn

k , the scattered potential field for thepmn mode can be written as

ψsc
pmn(r) =

NQ
∑

i=1

Qpmn
k g(r, r′k), (2.8)

wherer′k is the position vector of thekth auxiliary magnetic chargeQpmn
k , located inside the object. The

MAS (Shubitidze et al., 2002; Shubitidze, O’Neill, Sun and Paulsen, 2004) is used to produce the synthetic
observed scattered potentials on the right-hand-side of Eq. (2.6). The modal response coefficients for each mode
pmn can be solved via a linear system of equationsAq = ψ , whereA is J × Nq a matrix whosejith el-
ements given by Eq. (2.7), andq = [qpmn

1 , qpmn
2 , · · · , qpmn

Nq
]T , aNq-dimensional column model vector and

ψ = [ψsc
pmn(r1), ψ

sc
pmn(r2), · · · , ψsc

pmn(rJ ), ]T , a J-dimensional column data vector. Note that the modal re-
sponse coefficients are collectively called areducedset of sources because its number is substantially less than
the number of the auxiliary sourcesQpmn

k required in the MAS (Shubitidze et al., 2005b).
This model-based approach has the advantage over data-based approaches, because the corresponding in-

verse problem is more well-posed and the RSS can be more accurately obtained for any excitation mode and in
an ultra-wide band with noise-free synthetic observed data.

2.4 Determination of Effective Spheroidal Modes

As described in section 2.3, the expressions (2.1) and (2.2)for the primary and secondary fields involve infinitely
many terms in theory. In practice, it has to be truncated for computational efficiency. Therefore, to implement
the SEA it is important to find the suitable maximum mode number M andN that can be used to accurately
represent fields. This can be done sufficiently by examining the decomposition of primary fields; modes that
have a negligible contribution to the primary field will havea negligible effect on the secondary fields. Mode
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truncation requires correct determination of the corresponding spheroidal expansion coefficientsbpmn for each
possible mode. In this investigation, we chose to decomposeuniform and non-uniform fields from a simulated
GEM-3.

2.4.1 Uniform Primary Field

Let us consider a uniform illuminating fieldH = ẑ and decompose the field on a spheroid with semi-major and
-minor axes ofa = 11 cm andb = 5 cm. The orientation of the spheroid is described by the azimuthal and polar
angles(α, θ), as shown in Fig. 2.3. Due to rotational symmetry, we can illustrate the mode expansion to represent
Hpr

ξ along a generating arc defined by an arbitrarily chosen spheroidal azimuthal coordinate ofφ = π/4.
Fig. 2.4 shows the comparison between the exact values and mode expansions. When(α, θ) = (00, 00) ,

i.e., the rotational axis of the spheroid is parallel to the direction of the uniform primary field, only one mode
(0, 0, 1) is necessary to exactly represent the field as shown in Fig. 2.4(a) and the use of extra terms(p, 1, 1) in
Fig. 2.4(b) or even higher (not shown here) has no contribution to this decomposition where the values ofbpmn

are all identically zero. When the spheroid is oriented in(α, θ) = (00, 450), the two modes(0, 0, 1) and(0, 1, 1)
are needed to exactly synthesize the fieldHpr

ξ . In this case, the primary field equivalently is decomposed into
the axial and transverse excitations in the body coordinate-system. The field behaves like a two-dipole model.
For the spheroid oriented horizontally alongx-axis, i.e,(α, θ) = (00, 900), this is a configuration of transverse
excitation. Correspondingly, we see that in Figs. 2.4(c) and (d) the contribution is exactly zero from the mode
(0, 0, 1) and only the mode(0, 1, 1) plays a role in the decomposition. The primary field modes(0, 0, 1) and
(0, 1, 1) correspond to axial andx-transverse excitations, respectively. Similarly, the mode (1, 1, 1) corresponds
to y-transverse excitation.

With a uniform field, we examine its decomposition on the spheroid oriented in different angles, The exam-
ples are simple but provide some physical insight into the mode expansion and serve to check the stability and
correctness of the algorithm to determine thebpmn.
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Figure 2.5: Spheroidal expansion of a non-uniform field fromGEM-3 transmitter on the spheroid with semi-major
and minor axesa = 11 cm andb = 5 cm. The vertical distance between the transmitter and the center of the
spheroid is 29.2 cm. The orientation of the spheroid is (a)θ = 00, (b) θ = 450, and (c)θ = 900.

2.4.2 Non-uniform Primary Field

We now consider the expansion of a spatially non-uniform field produced by a simulated GEM-3 instrument. The
GEM-3 consists of two concentric circular transmitter coils connected in series but with opposite current-flow
direction. By properly choosing the radius of the two coils and the number of turns of the coils the primary
magnetic flux vanishes in the receiver loop. Therefore, the small receiving coil placed within this magnetic cavity
senses only the secondary signal returned from the earth andnearby metallic objects.

In the first case, we consider an example where the vertical distance between the transmitter loops and the
center of the spheroid is 29.2 cm. Their centers are aligned in the same vertical line. Fig. 2.5 presents the mode
decomposition for the spheroid oriented in the three different polar angles. More terms for the non-uniform field
are necessary to accurately express the field than the case for the uniform field. For the vertically oriented spheroid
(θ = 00), the accurate expansion requires(M,N) = (0, 3). For the spheroid oriented in other two directions
(θ = 450),(θ = 900), we need the maximum number(M,N) = (1, 6) and(M,N) = (4, 8) to almost identically
represent the field, respectively. For the transverse case,the relative error is around0.33% when(M,N) = (3, 8).

When the vertical distance between the loop and the center of the spheroid is reduced to 17 cm (thereby being
the same scale as the outer loop), the degree of non-uniformity is increased. We see in Fig. 2.6 that more modes
in this near field case are required to properly represent thenon-uniformity of the near field pattern produced by
the GEM-3 transmitter. For a transverse excitation, the synthesized fields with(M,N) = (5, 8) are identical with
the modeled transmit field and the relative error is around0.40% when(M,N) = (3, 8). The results show that
moreN modes are necessary to represent a non-uniform field, especially for a transverse-like excitation. In the
following application, we truncated the series in the aboveequations at(M,N) = (3, 8).
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Figure 2.6: Spheroidal expansion of a non-uniform field fromGEM-3 transmitter on the spheroid with semi-major
and minor axesa = 11 cm andb = 5 cm. The vertical distance between the transmitter and the center of the
spheroid is 17 cm. The orientation of the spheroid is (a)θ = 00, (b) θ = 450, and (c)θ = 900.

2.5 An Example of SEA Modeling

Once the surface sources are available for an interested target, the SEA modeling of the EMI response involves
determining the spheroidal modal expansion coefficientsbpmn for the excitation due to a target-sensor configura-
tion. We demonstrate this by modeling the RSS for a solid steel cylinder with length ofL = 30.48 cm and the
diameter ofd = 7.5 cm. The aspect ratio isL/d ≈ 4.06.

We consider data from a GEM3 frequency-domain sensor manufactured by Geophex Ltd., and time-domain
data collected using the Geonics Ltd. EM63. The GEM3 data were collected at the Sky Research Test Plot and
the EM63 data were collected on the ERDC test stand.

2.5.1 Frequency-domain Response

In the frequency-domain measurements, the cylinder was excited transversely and axially. For both transverse and
axial excitations, the vertical distance between the sensor and the center of the cylinder ish = 42.75 cm andh =
45.24 cm, respectively. Figs. 2.7(a) and (b) show the comparison between the measured and modeled data with
frequency range of 90 Hz to 45 kHz for both excitations. The SEA modeling was very successful in modeling the
measured EMI responses. The features of these responses conform to the previous studies (Shubitidze et al., 2002;
Shubitidze, O’Neill, Sun and Paulsen, 2004). The crossoverfrequencies remain essentially fixed in Figs. 2.7(a)
and (b). But the quadrature peak in the transverse excitation shifts to higher frequency, as compared to that in
the axial excitation. In addition, by observing the quadrature peak frequenciesft andfa in transverse and axial
excitation, we can estimate the aspect ratio as

√

ft/fa =
√

1470/90 ≈ 4.04, being quite close to the actual value
of 4.06.
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(a) Transverse excitation,h = 42.75 cm
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(b) Axial excitation,h = 45.24 cm.

Figure 2.7: Frequency-domain response from GEM-3.h is the distance between the center of the cylinder (L =
30.48 cm,d = 7.5 cm) and the center of the GEM-3 receiver.

2.5.2 Transient EM Responses

We used a three step approach to modeling the TEM response: (1) calculate the response in the frequency domain,
(2) use a Fourier transform to convert the frequency domain response to a time domain response and, (3) convolve
the impulse response with the transmitter waveform.

The step-off and impulse responses in the time domain can be evaluated by applying the digital filter tech-
nique (Anderson, 1982) to the inverse cosine and sine transform (Newman et al., 1986) as follows

A(t) = − 2

π

∫

∞

0

ImB(ω)
1

ω
cosωtdω, (2.9)

whereA(t) represents a step-off response corresponding to a magneticflux B(ω) in frequency domain and

A′(t) =
2

π

∫

∞

0

ImB(ω) sinωtdω, (2.10)

whereImB(ω) represents an imaginary part of the magnetic flux and the prime indicates a derivative with respect
to timet.

By using the convolution theorem (Arfken, 1995), the voltage in the time-domain is

dB(t)

dt
= −

∫ t

0

A′(t− τ)I ′(τ)dτ −A(0)I ′(t) −A′(t)I(0). (2.11)

This equation represents the response of a system to a general input functionI(t) in terms of the response to a
unit step function or delta function. The integration in Eq.(2.11) is numerically evaluated.

The transmitter waveform of the EM63 consists of an exponential current increase followed by a linear ramp
off. The cylinder was oriented at polar angles ofθ = 00, 450, 900. For each of the three excitations, the vertical
distances between the sensor and the center of the cylinder areh = 60.00 cm. Because we obtained the RSS in
a wide frequency range, the transient responses were produced by an inverse Fourier transform of the associated
frequency-domain signal using the above formulas. The comparison in Figs. 2.8(a) - (c) shows that the measured
and modeled TEM responses agree well for these measured data.

2.6 Development of a Reduced Source Library

Once we determined that the SEA would be successful in modeling the sensor response, we established an RSS-
library for 9 candidate UXO, as listed in Table 2.1 and Fig.2.9. These items include UXO from the Aberdeen Test
Center (ATC) UXO test set and items provided to us by the Montana Army National Guard (MTANG). The targets
represent a mix of different sized ordnance with different material compositions (steel, aluminum, copper), and
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(c) Cylinder with a dip of 45 degrees

Figure 2.8: Transient response for the same solid steel cylinder in Fig. 2.7. For each measurement the cylinder is
60 cm from the measurement loop.

include projectiles, submunitions and mortars. Within this target set, UXO (i.e. a 2.75 inch rocket (labeled C7)
and an 81 mm mortar (C8)) consisting of steel and aluminum sections would be challenging to model accurately
in the near field with a single dipole model.

Candidate No. Reference Material Total length (mm)
C1 M55 20 mm steel with thin cooper band 75
C2 M42 40 mm hollow steel 62
C3 M385 40 mm aluminium 75
C4 M86 57 mm projectile, thin cooper band near base 170
C5 M49A3 60 mm steel 130
C6 Montana 76 mm steel, Armor Piercing with Tracer (APT) 220
C7 M230 2.75” rocket, aluminium nose, steel body 400
C8 M374 81 mm steel body, aluminium nose and tail 460
C9 Montana 90 mm projectile, Target Practice with Tracer (TPT) 250

Table 2.1: RSS-library targets

Each target was photographed and digitized, such that each ordnance could be modeled as a body of revolu-
tion using the MAS. Each section of the target was represented by a cylinder. Target C7 and C8 were represented
with 4 and 5 cylindrical sections, respectively. The conductivity and magnetic permeability of each section were
determined by fitting data from a GEM-3 sensor collected at the Sky Research Test plot in Ashland, July 2005
(Figure 2.10). Each target was place horizontally beneath the GEM-3 sensor, and the frequency domain response
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(a) C1: 20 mm M55 (b) C2: M42 Submunition (c) C3: 40 mm M385

(d) C4: 57mm M86 (e) C5: 60 mm M49A3 (f) C6: 76 mm from Montana Army National
Guard

(g) C7: 2.75 inch Rocket, M230 (h) C8: 81 mm M374 (i) C9: 90 mm from Montana Army National
Guard

Figure 2.9: Items for which RSS were computed.
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Figure 2.10: Apparatus for acquiring data for determining the RSS.

was measured at operating frequencies of 90, 450, 930, 2010,5970, 10050, 15450, 23010, 32010, and 44010
Hz. Although data were collected along a line over the target, only the frequency spectra measured directly over
the center of the target was used for the fitting. Fitting these data was achieved through ”trial and error”. The
off-center data were used as a check to determine the suitability of the selected permeability and susceptibility for
modeling. Clearly, this procedure needs to be refined to ensure greater accuracy and repeatability.

The RSS library was built using three different sizes of spheroids witha = 11.0 cm, b = 5.0 cm for small
objects,a = 22.0 cm, b = 7.5 cm for medium ones, anda = 30.0 cm, b = 7.5 cm for the largest items. On
the surface of these spheroids, 12 rings of charge were used.Sun et al. (2005) used 6 rings in their analysis.
Figures 2.11 and 2.12 contain the RSS models as a function of length along the spheroidal coordinateη, for
targets C3 (40 mm aluminum submution) and C5 (60 mm steel mortar body) respectively.

Figure 2.13 compares the response of an 40 mm (C3) predicted using the RSS as depicted in Figure 2.11
assuming a GEM3 sensor, with data collected on the ERDC test stand. The target depth was 30 cm from the plane
on which the GEM3 head moves. This target represents the moststraightforward object from our library to model.
It does not contain a number of different sections and is non-magnetic. The plan view images of Figure 2.13(a)
and (b) show the real and imaginary parts for 3 of the 10 frequencies. The line plot at the bottom of each panel
plots the frequency response measured and modeled directlyabove the center of the target (i.e.(X,Y ) = (0, 0).
This target response was very accurately modeled using the RSS from our library.

Figure 2.14 compares the response of an 81 mm (C8) modeled with the RSS and GEM3 sensor data. The
target depth was 50 cm from the plane on which the GEM3 moves. This target represents a much more challenging
item to model. The ATC 81 mm contained several different sections; both ferrous and non-ferrous.

The crossover of the real and imaginary parts is slightly different between measured response and modeled
response. However, as is seen in the plan data, at the higher and lower frequencies the plan view images, and
therefore the data, match closely. The slight inaccuracy ofthe crossover suggests more care should be made
when calculating the RSS for the larger, more complex targets. Regardless, the comparison between predicted
and measured data is quite good, and we proceed with testing discrimination using our RSS library.
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Figure 2.11: The distribution of RSS for C3 along a spheroidal coordinateη.
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Figure 2.12: The distribution of RSS for C5 along a spheroidal coordinateη.
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Figure 2.13: Modeled and measured GEM3 response for a horizontal ATC 40 mm (C3).
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Figure 2.14: Modeled and measured GEM3 response for a horizontally ATC 81mm (C8).
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2.7 UXO Identification Tests

The above examples illustrate the applicability of the MAS/TSA-based SEA for the fast and accurate EMI mod-
eling. This modeling technique is readily inserted into ”fingerprinting” or template matching type discrimina-
tion/classification algorithms. The objective of our template matching analysis is to determine, from a list ofM
targets, the target that is most likely to have generated theobserved datadobs. Each target in our list is charac-
terized by its RSS, which is represented by the vectorpi. For each RSS in our library, we determine the location
ri and orientation anglesθi andφi, at which we can best fit the observed datadobs by obtaining the maximum
likelihood solution. The data predicted by this recovered model,dpred

i = F [ri, θi, φi,pi] = F [mi], is referred
to as the template for targeti. The target templatedpred

i most similar to the observed datadobs is selected as the
most likely target.

There are a number of measures that compare the target templates with the observed data. Intuitively, these
include measures of maximum correlation or minimum error. There are also several ways with which to define
the minimum error. Riggs et al. (2001) outline the derivation of the minimum least squares from a generalized
likelihood ratio test (GLRT) with Gaussian data statistics. The likelihood ratio test for two targets

p (dobs|p1)

p (dobs|p2)

target1

≶
target2

p (p2) (C01 − C11)

p (p1) (C12 − C22)
≡ η (2.12)

whereCij is the cost of classifying the target aspi when the target ispj , andp (pi) is the prior probability
for the ith class. The GLRT is obtained by substituting the maximum likelihood estimate into equation 2.12.
If we consider two targets with equal prior probability of producing the anomaly, and assuming that an incorrect
classification produces the same cost, thenη = 1. By taking the logarithm of the resulting expression, our decision
criterion is to simply select the target that has the smallest least squares error:

‖V −1/2

d

(

dobs − F [r1, θ1, φ1,p1]
)

‖2
target1

≶
target2

‖V −1/2

d

(

dobs − F [r2, θ2, φ2,p2)]
)

‖2 (2.13)

whereri is the position, andθi, andφi are the orientation angles that produces the best fit to the observed data for
the modelpi. For multiple candidate targets we simply choose the targetwith smallest least squares misfit.

Application of the above algorithm to survey data requires establishing two thresholds. First, a minimum
level of data quality must be established, since our confidence in identifying the correct target decreases as the data
quality degrades. For data sets acquired with the same survey parameters (such as station density) for the entire
data set, the critical measure of data quality is the signal to noise ratio (SNR). A second threshold is a maximum
misfit at which an anomaly can be labeled as a target within ourlibrary. Since the ability to distinguish differences
between the observed data and the template data will depend on the quality of data, the minimum correlation
threshold will also be dependent on the Signal-to-Noise Ratio (SNR) ratio of the target. These thresholds can be
established with training data or, if the survey noise can beaccurately modeled, through simulations.

2.7.1 A simple discrimination example using a single sounding

For a first test, we consider a very simplified example. For this test we use the 9 candidate patterns of the scattered
fields measured at different levels ranging from 15 cm to 30 cmabove the objects, being positioned at (0, 0, 0)
cm and oriented at(α, θ) = (00, 900). This example does not represent a realistic discrimination test, but rather
serves as a simple test of the variations in soundings that are generated by the different members of the library
and illustrates the basic idea of the pattern matching. To beconsistent with Sun et al. (2005), we characterize the
difference between the trial and candidate patterns with the following misfit function

F (Ci, Cj) =

∑

f |Hobs(f, Ci) −Htrial(f, Ci)|
∑

f |Hobs(f, Ci)|
(2.14)

whereHobs(f, Ci) are the measured candidate pattern of the scattered fields for unknown candidateCi to be
identified, andHtrial(f, Cj) are the trial pattern of the secondary fields for UXOCj on the basis of the RSS-
library.

Given a candidate pattern, for instance, we can quickly scanthe trial patterns with it and produce the misfit
values as shown in Fig. 2.15. It can be observed that the minimum misfit value occurs for candidate C4. In fact

22



0 2 4 6 8 10
10

0

10
1

10
2

10
3

Canadiate No.

M
is

fit
 (

%
)

Figure 2.15: Misfit values for a trial identification test.

the value ofF (Ci, C4) is only 2.2%; this is far smaller than other misfit values ofF (Ci, Cj), j 6= 4. Assuming
an error threshold of10%, we are able to identify this unknown object as UXO C4 corresponding to the given
candidate pattern. This identification result is confirmed by visually inspecting the patterns of the secondary fields
between the calculated and the candidate in Fig. 2.16.

In another trial test, we sweep the other candidate pattern using the same RSS-library. The misfit values are
presented in Fig. 2.17. Again, one can readily locate a minimum value ofF (Ci, C8) , being3.4% below the error
threshold value. The other values ofF (Ci, Cj), j 6= 8 are much larger. Based on this, we can make a decision to
identify this unknown object as UXO C8. Fig. 2.18 illustrates that UXO C8 is the only item with a good match
between the trial and the measured data.
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(a) C1: 20 mm M55
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(b) C2: M42 Submunition
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(c) C3: 40 mm M385
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(d) C4: 57mm M86
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(e) C5: 60 mm M49A3
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(f) C6: 76 mm from Montana Army National
Guard
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(g) C7: 2.75 inch Rocket, M230
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(h) C8: 81 mm M374
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(i) C9: 90 mm from Montana Army National
Guard

Figure 2.16: Pattern matching tests. (a)-(i): C1-C9. UXO C4identified
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Figure 2.17: Misfit values for another trial identification test.
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(a) C1: 20 mm M55
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(b) C2: M42 Submunition
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(c) C3: 40 mm M385
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(d) C4: 57mm M86
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(e) C5: 60 mm M49A3
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(f) C6: 76 mm from Montana Army National
Guard
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(g) C7: 2.75 inch Rocket, M230
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(h) C8: 81 mm M374
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(i) C9: 90 mm from Montana Army National
Guard

Figure 2.18: Pattern matching tests. UXO C8 identified
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2.7.2 A discrimination example using GEM3 data collected on the ERDC Test Stand

The example presented in the previous section is not realistic, since location and orientation are not generally
known prior to processing data. Althougha priori information on position and orientation can sometimes be
obtained from prior surveys, often the information is inaccurate. The initial plan was to implement the same
library based identification techniques as in Pasion et al. (2006). In that approach, a library of polarization tensors
was created from time domain electromagnetic data collected on a test stand. For each target in our library a
non-linear inverse problem was solved for the position and orientation that minimized the least-squares difference
between the observed data anomaly and the data predicted from each target. Our code for inverting for location
and orientation is being developed and is not mature enough to implement the non-linear inversion approach.
On the other hand, our initially optimized RSS forward modeling code is able to rapidly yield the response with
around2.86 seconds per sounding of 13 frequencies. Therefore, we developed a template matching technique to
determine depth and orientation by searching a library of data pre-modeled at several depths and dip angles and
used image registration to find the location and azimuth angle of the target. The main objective of implementing
this style of template matching is to determine if it is possible to identify targets using an RSS library withouta
priori information. We emphasize that we do not claim the algorithmpresented here is the best choice for target
identification, and we plan to implement the non-linear inverse problem approach in Pasion et al. (2006) at a later
date.

The first step of the algorithm is to generate a library of UXO responses. The generation of a library of
UXO responses meant that all the forward modeling using the RSS only needed to be performed once, thereby
increasing the speed of the analysis. Target responses for items C1 to C9 were calculated for target distances from
the GEM3 sensor head varying, at 10 cm intervals, from 20 cm to80 cm. At each depth the target was measured
at dip angles from 0 degrees (horizontal) to 90 degrees (vertical), at 15 degree intervals. Data were modeled on 1
m square area and on a uniform grid with 10 cm spacing.

UXO identification is achieved by determining the data template from our library that best matches the
sensor data by cycling through each of the data templates. However, the target location and azimuthal orientation
is unknown. Determining the target location and azimuthal orientation is equivalent to determining the translation
and rotation of the data templates. This operation represents a simple problem in image registration, since we do
not have to consider scaling the template. Figure 2.19 showsan example of determining the correct translation,
and therefore an estimate of location. The upper left panel shows sensor data collected on a test stand. The
upper right panel shows the 1 m square area of the template. Both the data and the template are gridded to 2.5
cm pixels. The lower left panel plots the correlation coefficient as a function of position. Not surprisingly, the
optimal location is directly over the center. In the examples that follow, we do not implement an image registration
technique and we assume that we know the azimuthal orientation and location. We note that while implementing
an image registration algorithm is straightforward, we would like to focus on our ability to correctly determine
depth and dip.

To demonstrate the above procedure, we used GEM3 data collected on the USACE-ERDC Test Stand. The
data were collected from January 31, 2006 to February 10, 2006. For a first example we compare data from a
vertical 40 mm projectile located 30 cm from the GEM3 sensor head. Figure 2.20 compares images of measured
sensor data with the best fit template for 3 of the 10 GEM3 frequencies. Figure 2.21(a) compares the sounding
directly over the center of the target. Figure 2.21(b) compares the misfit values for the different items in the RSS
library. It is clear that C3 is the most likely target. The ease with which the algorithm picked C3 is, in part, due to
C3 being the only non-ferrous (aluminum) item in the library.

Figures 2.22 and 2.23 plots the results when the data from an 81 mm (M374) is fit. Although the correct
target (C8) has the minimum misfit, several other targets have relatively similar misfit values, indicating that
several targets appear quite similar when viewed by a GEM3 sensor 50 cm from the target.
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Figure 2.19: Examples of finding the optimal location by translating a template generated by the RSS.
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Figure 2.20: Modeled and measured GEM3 response for a vertically oriented ATC 40 mm (C3).
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Figure 2.21: Template example for C3.
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Figure 2.22: Modeled and measured GEM3 response for a horizontally oriented ATC 81 mm (C8).
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Figure 2.23: Template example for C8.

2.8 Inversion for Optimal Orientation and Location of an Object

The above identification tests were conducted assuming an object location and orientation asa priori information.
When such information is unavailable such as in a usual discrimination scenario, we need to estimate them from
sensor measurements. This section reports such a preliminary test to invert the optimal location and orientation of
a known object by using a gradient-type method.

Denote the parameter vectorm = (rc, α, θ), whererc denotes the position vector of an object center,α
andθ are the azimuthal and polar angles of the object relative to the user coordinate. Based on the Eq. (2.4)
of the secondary magnetic field, we can derive the analyticalexpression for the sensitivities ofHsc to the 5
parameters. For this nonlinear inverse problem, a optimization approach is implemented iteratively to correct the
model parameters via minimizing the objective functional

F (rc, α, θ) = ||Hpre
sc (rc, α, θ) − Hobs

sc ||2, (2.15)

whereHpre
sc are the predicted fields at a trial model,Hobs

sc are the observed ones.
The cylinder in section 4 is chosen as an object, being positioned at(0, 0,−42.5) cm and oriented atθ = π/4

andα = π/4. For this inversion, the7 × 7 simulated GEM-3 measurement points are distributed on a plane grid
with the interval of 20 cm and a single frequency of41010 Hz is used in the inversion. In the inversion test, we put
the lower and upper bound vectorsml = [−30 cm −30 cm−70 cm 0 0] andmu = [30 cm 30 cm−30 cm 2π π].
Fig. 2.24 (a) - (f) illustrates the convergence of the inverted results versus the iteration number. It is observed
that the after 10 iterations, the model parameters are recovered very well. The values of data misfit monotonically
decrease with the iteration and have no significant variations after 10 iterations, as shown in Fig. 2.24 (f).

In another test, the cylinder takes the same position as before but oriented atθ = 00 andα = 00. Fig.
2.25 shows inverted results that are fairly good. The convergence behavior in Fig. 2.25 (f) is similar to that of
the previous test. Note that the recovered value ofθ finally approaches toπ not 0 because both values have no
difference for a homogeneous cylinder. In this case the value of the azimuthal angleα could be arbitrary as the
object is oriented vertically.

2.9 Conclusions

We have investigated the MAS/TSA-based implementation of the standardized (spheroidal) excitation approach
for a full 3D electromagnetic induction sensing of metallicobjects. The approach, by decomposing excitation
fields into fundamental spheroidal modes, synthesizes the secondary fields through a linear superposition of each
modal response to a target. We quantitatively studied the fundamental issue of determining the effective spheroids
in decomposition. It was found that for a non-uniform primary field excited by a GEM3-like loop, the infinite
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Figure 2.24: Inversion test I. Recovered model parameters versus iteration number.

series can be truncated at the maximum mode number(M,N) = (3, 8), which is used to accurately represent the
fields for various orientations of small/medium objects in anear field zone.

The key feature in this approach is that the extrinsic and intrinsic attributes characterizing the pattern of
secondary fields are automatically separated out in the spheroidal mode expansion coefficients and the modal
response amplitudes or the RSS, respectively. Based on the RSS for interested objects, the related full 3D EMI
modeling can be carried out rapidly by merely determining primary field expansion coefficients for any excitation-
object geometry. These were illustrated by the tests against the experimental data in both frequency-domain
(GEM-3) and time-domain (EM63) systems. We extended the existing SEA to simulate a transient EM response
by developing a convolution algorithm that applies to an arbitrary current waveform used in a TEM system.
These experiment-based results are important not only to confirm the soundness of the approach but also indicate
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Figure 2.25: Inversion test II. Recovered model parametersversus iteration number.

its promise in real-world applications.
Since the MAS/TSA-based SEA is a physically complete numerical technique, as stated previously, it can

be used to accurately build up a RSS-library in an ultra wide band - ranging from resistive to inductive limit. With
such an ultra wide band RSS-library, it is convenient to compute EMI response in either the time or frequency
domain.

As another direct application of a RSS-library, we have conducted identification test of UXO based on the
test stand data. In this test, we successfully showed that identifying a candidate UXO can be quickly done through
a straightforward pattern matching procedure by inspecting a best misfit values below an error threshold. In our
follow-up research we will proceed to do a blind test of the approach combined with the robust inversion algorithm
determining an optimal object location and orientation.
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To conclude, the MAS/TSA-based SEA is a promising full 3D EMImodeling technique that provides a
platform on which to develop discrimination and identification algorithms.

35



Chapter 3

Regularization of the Surface Charge
Model for the Inversion of
Electromagnetic Data

3.1 Abstract

Detection of buried unexploded ordnance with electromagnetic sensors requires robust predictive models to cor-
rectly interpret data recorded at the surface. Shubitidze et al. (2005a) have recently suggested a physics-based
representation of the scattered electromagnetic field using surface magnetic charges. One such representation
is the Normalized Surface Magnetic Charge (NSMC) model, which idealizes a compact metallic target with
magnetic charges distributed on a spheroidal surface that encloses the target. The Total Normalized Magnetic
Charge (TNMC), as a function of frequency or as a function of time, can be used to identify the object. At a
theoretical level, however, the inference of the TNMC, is anill-determined problem. Some form of regularization
of the problem is required. In order to help develop the NSMC model into a robust practical tool for UXO discrim-
ination, we conducted a theoretical study on the behavior ofthese magnetic surface charges and formulated the
calculation of the total normalized charge as an inverse problem. Extensive use was made of Geophex GEM3 and
Geonics EM63 test stand data collected at the USACE-ERDC test stand in Vicksburg, MS. Results are presented
for both test stand data and data collected on the Sky Research UXO Test Site in Ashland, Oregon.

3.2 Introduction

In this chapter we consider the Surface Magnetic Charge (SMC) model of Shubitidze et al. (2005a). The SMC
model approximates a target’s secondary electromagnetic field at each frequency or time with the field from a
magnetic charge distribution on a fictitious surface that encloses the target (Figure 3.1). Shubitidze et al. (2005a)
claims that normalizing the charge distribution by the normal component of the primary field produces a surface
distribution that is a property of the target, and not the excitation of the target. Furthermore, the surface integral
of the normalized charge distribution was suggested as a discriminant for UXO.

Unlike the SEA model of the previous chapter, the nature of SMC and its computational speed make it a
candidate for data inversion for the charge distribution. In this work, we study some of the properties of the
magnetic charge model and some of the properties of the SMC inverse problem. The objective of this work was
to determine if a stable discriminant derived from the surface magnetic charge model could be determined.
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(a) The dipole model, showing axial and transverse polarizations (b) The Surface Magnetic Charge (SMC) model

Figure 3.1: Representation of the response of a target using(a) a dipole and (b) a surface magnetic charge.

3.3 Model description and implementation

3.3.1 The Surface Magnetic Charge Model

The following description of the SMC model follows Shubitidze et al. (2005a). They assume a highly conducting,
magnetically permeable, heterogeneous metallic target buried in soil where conductivity is low enough to be
considered as free space. In a quasi-magneto-static regime, displacement currents are negligible, conduction
currents are weak outside the target, the magnetic field is irrotational and can be written as the gradient of a scalar
potentialψ:

Hsc (r, ξ) = −∇Ψsc (r, ξ) (3.1)

where the variableξ can represent either timet or frequencyω. Assuming Gauss’ Law for magnetic field yields

∇ · µoH = ∇2Ψsc = ρm (3.2)

whereρm represents a fictitious volumetric magnetic charge densitythat produces a scattered field outside a
metallic body. The scalar potential satisfies an equation ofthe type

Ψsc (r, ξ) =
1

4πµo

∫

V

ρm (r′, ξ)
1

|r − r′|dV
′ (3.3)

wherer is the observation point,r′ the source point,V the volume of the scatterer,µ0 the magnetic permeability
of free space. Assuming surface chargesσm only, the magnetic field is given by

Hsc (r, ξ) =
1

4πµo

∫

S

σm (r′, ξ)
r − r′

|r − r′|3 dS
′ (3.4)

The charge distributionσm is a function of the field at the surfaceS which is, in turn, a function of the target
properties and primary field.

The surface charge is assumed to be proportional to the normal component of the incident primary magnetic
field:

σm (r′, ξ) = qm (r′, ξ) [Hpr (r′) · n̂ (r′)] (3.5)

whereqm is the NSMC density that we try to calculate. Considering that UXO are bodies of revolution with
symmetry along their main axis, Shubitidze et al. (2005b) assume that (1) the electromagnetic response of a UXO
can be equivalently represented by surface charges locatedon a prolate spheroid enclosing the ordnance with same
main axis, and (2) thatqm on this spheroid is uniform on rings perpendicular to the main axis. The TNMC of an
object at a given time or frequency is defined as

Q (ξ) ≡
∫

S

qm (r′, ξ) dS′ (3.6)

Shubitidze et al. (2005a) suggested that the TNMC is unique for each target so it can be used to discriminate
between different targets.
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3.3.2 Numerical Implementation of the SMC Model

For this report, we only consider fields measured by induction loop receivers. For a frequency domain system, the
voltage induced in a receiver loop is

V (ω) = iωnRΦ (3.7)

wherenR is the number of turns in the receiver,Φ is the flux through the receiver. The corresponding expression
in the time domain is

V (t) = nR
∂Φ

∂t
(3.8)

The flux through a receiver loop in air is

Φ(r, ξ) = µo

∫

SR

(

Hsc (ξ) · nR
)

dSR (3.9)

wherenR is the normal of the loop surface, and we again defineξ as being eithert or ω. Assuming a horizontal
loop:

Φ(r, ξ) =

∫

SR

(
∫

S

1

4π

(z − z′)

|r − r′|3 q (r′, ξ)
[

HP · n̂ (r′)
]

dS′

)

dSR

=
1

4π

∫

S′

I (r, r′) (z − z′) q (r′, ξ)
[

HP · n̂ (r′)
]

dS′

(3.10)

where

I (r, r′) =

∫

SR

1

|r − r′|3 dS
R (3.11)

depends on the shape of the loop. We solve this integral analytically for a horizontal, rectangular loop. For a
horizontal circular loop, we solve the integral in polar coordinates, with an analytic integration over the radial
coordinate, and a numerical integration over the azimuthalcoordinate.

Equation 3.10 shows that, once the charge surface is determined, the fluxΦ, and therefore the induced
voltageV is a linear function of the charge distributionq. To numerically solve the SMC integral, we discretize
the surfaceS intoN sub-surfaces, with area∆Si, and assume that the amplitude of the surface magnetic charge
qi is constant in∆si. Substitution in Equation 3.10 yields

Φ(r, ξ) =
1

4π

N
∑

k

I (r, rk) (z − zk) q (rk, ξ)
[

HP (rk) · n̂ (rk)
]

∆Sk (3.12)

The forward model data collected atN stations at a frequencyωi can be written as

Z m = d (3.13)

where

[Z]mn =
1

4π
I (rm, rn) (zm − zn)

[

HP (rn) · n̂ (rn)
]

∆Sn (3.14)

m = [q (r1, ωi) , q (r2, ωi) , . . . , q (rN , ωi)]
T (3.15)

and an element of the data vectord is the integrated secondary field flux over the receiver loop.

For time domain data,

m =

[

∂q (r1, ti)

∂t
,
∂q (r1, ti)

∂t
, . . . ,

∂q (r1, ti)

∂t

]T

(3.16)

d = [V (r1, ti) , V (r2, ti) , . . . , V (rN , ti)]
T
. (3.17)
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The modeling matrixZ is a function of the shape of the charge surface. For a spheroid that contains the
axi-symmetric target,Z is then a function of the location and orientation. In the case of a sphereZ is a function
of position only.

3.3.3 Discretization of the charge surface

In order to solve for a representative charge distribution,a surface must be defined and discretized. In this study
we chose spherical and spheroidal surfaces to enclose axi-symmetric targets. Figure 3.2 illustrates a discretization
on a spheroid. Patches are defined by uniformly discretizingin the azimuthal coordinate (longitude) and in the
local axial (z) coordinate (or in the latitude angle). Rings are defined by assuming that the surface charge density
remains an invariant of the azimuth.
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Figure 3.2: An example of discretizing a spheroid.

Discretization along longitudinal and latitudinal directions samples the surface of a spheroid in a non-
uniform manner, resulting in high density of surface patches at the poles. To circumvent that potential source
of error we tested the SMC method on a sphere by using a geodesic discretization derived from refinements of an
icosahedron (polyhedron with 12 vertices, 20 triangular surfaces of equal area, 30 edges), illustrated in Figure 3.3,
where red lines show the projection of the original icosahedron onto its surrounding sphere. This configuration is
almost isotropic and every patch has the exact same dimensions, thus avoiding any area-induced bias in the charge
density.

3.4 Inverting for a Surface Charge Distribution

In order for the SMC formulation to be part of a successful discrimination algorithm, the recovered surface
magnetic charge model (or some property of the SMC) must be a function of the target characteristics only, and
independent of the survey parameters. We studied the sensitivity of the SMC solution to different modeling
parameters such as depth, orientation and noise by using test stand data and synthetic data obtained with a dipole
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Figure 3.3: Discretization of a sphere derived from an icosahedron

model. We find that for the type of objects of interest, and forthe type of data that are collected, the problem
of solving the equationZm = d is often ill-posed, even in over-determined cases where there are more data
than parameters, as is the situation with the SMC method of rings. In the more general under-determined case,
where patches cover the spheroid, there are more parametersthan data and the inverse problem is severely ill-
posed. Thus there are infinitely many solutions for the matrix system and some additional information needs to
be incorporated to solve the problem. The instability of theinverse problem, and the non-uniqueness of solution,
is exemplified by the condition number ofZ, cond (Z), the ratio of the largest and smallest non-zero singular
values ofZ. The condition number grows rapidly with the resolution of the model, for instance with 10 rings
cond (Z) = 108, with 40 ringscond (Z) = 1017 and with 200 patchescond (Z) = 1013.

We obtained a least squares solution to the matrix equation by using the pinv command in Matlab, which
computes the Moore-Penrose pseudo-inverse of a matrix, effectively solvingZT Zm = ZT d and performing a
truncated singular value decomposition ofZT Z. The level of truncation was chosen such that singular values
less than the floating point precision of MatLab were omitted. Figure 3.4 contains the results of fitting a single
channel of TEM data (Geonics EM-63 sensor) recorded on a teststand over a 40 mm projectile using both the
patch model (Figure 3.4(a)) and the ring model (Figure 3.4(b)). The projectile was oriented at a 45 degrees dip
and its center located 60 cm below the sensor. Both models produce excellent fit to the data (as is indicated by
correlation coefficients close to unity and small misfit). The model with patches fits the data particularly closely;
misfits are five orders of magnitude less than the data. This exceptional fit raises the issue of over-fitting the data
by fitting the noise. Although noise levels remain low withinthe well-controlled environment of the test stand,
a close look at the low left panel of Figure 3.4(a) suggests the presence of noise. Indeed, the recorded anomaly
exhibits more shape features than expected for a simple-geometry 40 mm projectile, a clear effect of noise adding
high frequency variability to the observation. In Figure 3.4(b), discretizing the spheroid surface with rings of
constant charge density predicts a smooth response (low center panel); this might be considered to be a better
solution since it is simpler and does not have extreme structure. The choices of rings over patches and the number
of rings are first steps toward a regularization of the surface charge model imposed by discretization. Shubitidze
et al. (2005b) restricted the number of rings to 9. We tested the feasibility and effect of using more or less rings.

In Figure 3.4(b) the resulting distribution in rings remains characterized by extreme variations between
positive and negative values that are several orders of magnitude greater than the magnitude of charge, especially
for bottom rings. This also seems to create additional energy outside of the domain used for the inversion (see
higher misfit in the lowest part of the low right panel of Figure 3.4(b)). Additional tests with both test stand and
synthetic data show that solutions for charge distributionand total magnetic charge are sensitive to variations in
target positioning and orientation, as well as data noise. Higher levels of regularization are therefore warranted
for the use of either rings or patches.
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Figure 3.4: 40 mm projectile (45 degrees inclination, 60 cm below sensor). Both solutions of charge distribution
produce large oscillations.
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Additional characteristics of the problem include:

1. As the number of model parameters (rings, patches, Fourier coefficients) increases, data are better fit
but the amplitude variations in the charge density of adjacent patches or rings increases. Also, there is enhanced
sensitivity due to the noise.

2. The total magnetic charge, the correlation coefficient and the misfit depend on the size and shape of
the spheroid used in the calculation. For instance, large elongated items like a 105 mm High Explosive Anti
Tank (HEAT) round would be better represented with a long spheroid. This suggests that a judicious choice
of spheroid should be made before carrying on the inversion.Practically, this would imply that a predefined
and limited (3-5) set of spheroids be chosen to test possibleforward models. The spheroid should not be too
small because this has a negative effect on the condition number of Z: physically, a smaller spheroid tries to
accommodate all the features of the target, yielding large contrast among surface charges.

3.5 Properties of the Normalized Surface Magnetic Charge

The previous section showed that direct inversion of EM datadoes not allow recovering of a stable surface charge
distribution and that a regularization of inversion is needed. In order to guide the regularization process with
physical considerations, we now re-examine the assumptionthat surface magnetic charges can be normalized to
produce a surface distribution that depends on the object only and is independent of excitation (relative position
and orientation of object and illuminating field).

3.5.1 Field on a surface with charges

The field on the surface of a charge distribution can be calculated by integrating equation 3.2 by using a Gaussian
pillbox on a charge surface (Figure 3.5). The integration over the volume gives

(a) Gaussian pill box on a charge distrib-
tion σm.

(b) Integrating the singularity by distorting
the charge surface with a semihemispheri-
cal surface.

Figure 3.5: Geometries for determining the field on a charge surface.

∫

V

∇ · µoHdV =

∫

V

σmdV (3.18)

The divergence theorem leads to surface integrals, and the following expression
∫

top

µoH · ẑdS −
∫

top

µoH · ẑdS +

∫

side

µoH · ρ̂dS = σmdA (3.19)

By symmetry, we can write

H · n̂ =
1

2µo
σm (3.20)

Hence the charge distribution is proportional to the normalcomponent of the field at the surface.
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3.5.2 The normalized surface magnetic charge on a spherical surface for a dipole field

To understand the properties of the normalized surface magnetic charge, it is instructive to investigate the nor-
malized charge distribution behavior for a dipolar field. The analytic solution for the secondary field of a sphere
in a uniform field is a dipole. Consider a permeable and conducting sphere of radiusa illuminated by a uniform
primary fieldHP. At a timet = 0 the primary field is terminated, and eddy currents are induced in the sphere;
they subsequently decay because of the finite conductivity of the sphere. The secondary fieldHsc generated by
the decaying currents is dipolar:

Hsc (t) =
1

4πr3
m (t) ·

(

3r̂r̂ − ¯̄I
)

(3.21)

wherem (t) is the dipole moment induced at the center of the sphere at time t, r is the distance between the
observation point and the sphere center,r̂ is the unit vector pointing from the sphere center to the observation
pointP , and¯̄I is the identity dyadic. The dipole moment is

m (t) =
2π

µo
HP L (t) (3.22)

where

L (t) = 6a3µ

∞
∑

s=1

exp (−t/τ)
q2s + (µr − 1) (µr + 2)

(3.23)

with τ = σµa2/q2s (Kaufman and Keller, 1985). The valuesqs are roots to the transcendental equation

tan qs =
(µr − 1) qs
q2s + (µr − 1)

. (3.24)

Equation 3.21 reveals that the secondary field of a sphere in auniform primary field is equivalent to the field of a
single magnetic dipole located at the center of the sphere and oriented parallel to the primary field. The size and
material properties (i.e. conductivity and magnetic permeability) are contained within the functionL (t). Now let
us enclose the sphere with a spherical charge surfaceS that has a radiusaS (Figure 3.6(a)). On the surfaceS, the

(a) Sphere example (b) Spheroid example

Figure 3.6: Sphere surface.

secondary field produced by the sphere will be

H (t, r ∈ S) =
1

2πa3
S

m (t)

=
1

µoa3
S

HPL (t)

(3.25)
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The surface charge distribution can be expressed as a function of the primary field by taking the normal ofH from
equation 3.25, and substituting into equation 3.20

σm = 2µo H · n̂

= 2
1

a3
S

L (t)
[

HP · n̂
] (3.26)

The NSMC is then

qm = 2
1

a3
S

L (t) (3.27)

and, from equation 3.6, the TNMC is the surface integral ofqm onS

Q =
8π

aS
L (t) (3.28)

Equation 3.28 shows that, for the case of a sphere in a uniformfield, the NSMC is uniform on the surfaceS.
The normalized magnetic charge is proportional toL (t) and, therefore, the normalized charge for a sphere is
a measure of the size and material properties of the sphere. However, the total normalized magnetic charge is
inversely proportional toaS and is thus dependent on how we choose our charge surfaceS.

The above calculations demonstrate that, for a fixedaS , the TNMC is a reasonable discriminant for modeling
spheres. This is due to the geometry of the problem which causes the induced dipole to be parallel to the primary
field. Let us consider a non-spherical target whose responseis generated by charges on a spherical surface (for
example, Figure 3.6(b)). The field of an compact metallic target, can be approximated by a dipole model. We can
write the induced dipole as

m = M · HP (3.29)

where, following the coordinate system of Figure 3.6(b),

M =
2π

µo





Lx (t) 0 0
0 Ly (t) 0
0 0 Lz (t)



 (3.30)

For a sphereL (t) = Lx (t) = Ly (t) = Lz (t). The charge distribution for the dipole model can be writtenas

σm = 2µo H · n̂
=

µo

πa3
S

[

M · HP
]

· n̂ (3.31)

and the NSMC is

qm =
µo

πa3
S

[

M · HP
]

· n̂
HP · n̂ (3.32)

It is clear from Equations 3.31 and 3.32 that charge distribution σm and normalized charge distributionqm
is dependent on the direction of excitationHP and the size of the charge surface. For example, for a unit vertical
primary fieldHP = ẑ the normalized charge distribution will be uniform:

qm =
2

a3
S

Lz (t) (3.33)

with a total normalized charge of

Q =
8π

aS
Lz (t) (3.34)
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If the primary field isHP = (x̂ + ŷ) /
√

2, then the normalized charge distribution will vary along the azimuthal
direction0 < λ < 2π:

qm (λ) =
2

a3
S

[

Lx (t) cos (λ) + Ly (t) sin (λ)

cos (λ) + sin (λ)

]

(3.35)

The TNMC is then

Q =
4π

aS
[Lx (t) + Ly (t)] (3.36)

Clearly, (1) the TNMC is dependent on the radius of the spherical charge surface, and (2) the TNMC is
dependent on the direction of the primary field that illuminates the target.

3.5.3 Investigating the normalized magnetic charge using the Method of Moments

In order to study the normalized magnetic charge on a spheroidal surface, we will solve the modeling integral
equations with the MoM.

Define integral equation

Let’s determine the field on the surfaceS. There is a singularity, therefore we use a principle value integral
and explicitly calculate the contribution of the singularity.

Hs (r) =

lim
ǫ→0

1

4πµo

∫

S−Sǫ

r − r′

|r − r′|3 σm (r′) dS′ + lim
ǫ→0

1

4πµo

∫

Sǫ

r − r′

|r − r′|3 σm (r) dS′ (3.37)

whereSǫ is the hemisphere in Figure 3.5(b). The singularity asr → r′ is integrable, and can be determined by
using the geometry of Figure 3.5(b) and lettingǫ→ 0. The value of the field at the surface is

Hs (r) = lim
ǫ→0

1

4πµo

∫

Sǫ

r − r′

|r − r′|3 σm (r′) dS′

= lim
ǫ→0

1

4πµo

∫

Sǫ

ǫn

ǫ3
σm (r′) dS′

1

2µo
n (r) σm (r)

(3.38)

Therefore, the field is

Hs (r) = lim
ǫ→0

1

4πµo

∫

S−Sǫ

r − r′

|r − r′|3 σ (r′) dS′ +
1

2µo
n (r) σm (r) (3.39)

wherer ∈ S. We want to match the normal components of the magnetic fluxB at the surface:

n (r) · Bs =
1

4π

∫ P.V.

S

n (r) · (r − r′)

|r − r′|3 σm (r′) dS′ +
1

2
σm (r) (3.40)

The equations for the normalized surface magnetic charge are then

n (r) · Bs =
1

4π

∫ P.V.

S

n (r) · (r − r′)

|r − r′|3 qm (r′)
[

HP (r′) · n (r′)
]

dS′+

1

2
qm (r)

[

HP (r) · n (r)
]

(3.41)
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Define Basis forqm

The first step to solving forqm is to partition the surface intoN patches of area∆Sn. We assume pulse
basis functions to representqm:

qm (r) =

N
∑

n=1

anfn (3.42)

where

fn =

{

1 for r ∈ ∆Sn

0 otherwise
(3.43)

Substitution gives

n (r) · Bs ≈ 1

4π

∫ P.V.

S

n (r) · (r − r′)

|r − r′|3

[

N
∑

n=1

anfn (r′)

]

[

HP (r′) · n (r′)
]

dS′+

1

2

[

N
∑

n=1

anfn (r)

]

[

HP (r) · n (r)
]

(3.44)

Since we have pulse basis functions, we can approximate the integral as

∫

S

=
N
∑

n=1

∫

Sn

(3.45)

which gives

n (r) · Bs ≈ 1

4π

N
∑

n=1

∫ P.V.

∆Sn

n (r) · (r − r′)

|r − r′|3

[

N
∑

k=1

akfk (r′)

]

[

HP (r′) · n (r′)
]

dS′+

1

2

[

N
∑

n=1

anfn (r)

]

[

HP (r) · n (r)
]

(3.46)

Note that we changed indices for the pulse basis, in the the first term on the right hand side. Now,fk (r′) will act
like a delta function, i.e. the integral will be zero unlessk = n. Therefore, we rewrite the integral as

n (r) · Bs ≈ 1

4π

N
∑

n=1

∫ P.V.

∆Sn

n (r) · (r − r′)

|r − r′|3 an

[

HP (r′) · n (r′)
]

dS′+

1

2

[

N
∑

n=1

anfn (r)

]

[

HP (r) · n (r)
]

(3.47)

Defining weighting functions

By defining a basis function forqm, Equation 3.47 represents an approximation to the linear operator defined
in 3.41. If we define the exact integral equation asLqm = g, then we have a non zero residual

R = Lq̃m − g = L

(

N
∑

n=1

anfn

)

− g =

(

N
∑

n=1

anLfn

)

− g (3.48)

Weighting functionsWm are used to make the residual zero at a finite number of points,i.e.,
∫

〈Wm,R〉 (3.49)
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N
∑

n=1

an〈Wm,L〉 = 〈Wm,g〉 (3.50)

This defines a new linear system to solve for the basis coefficientsan

G a = h (3.51)

We choose point matching weighting functions

Wm = δ (r − rm) wherem = 1, .., N (3.52)

and define an inner product

〈f, h〉 =

∫

S

f (r′)h (r′) dS′ (3.53)

Applying to the first term, gives

〈Wm,1st term〉 =
∫

S

δ (r − rm)

[

1

4π

N
∑

n=1

an

∫ P.V.

∆Sn

n (r) · (r − r′)

|r − r′|3
[

HP (r′) · n (r′)
]

dS′

]

dS

=
1

4π

N
∑

n=1

an

∫ P.V.

∆Sn

n (rm) · (rm − r′)

|rm − r′|3
[

HP (r′) · n (r′)
]

dS′

(3.54)

Applying the weighting to the second term, gives

〈Wm,2nd term〉 =

∫

S

δ (r − rm)

[

1

2

N
∑

n=1

anfn (r)
[

HP (r) · n (r)
]

]

dS

=
1

2

N
∑

n=1

anfn (rm)
[

HP (rm) · n (rm)
]

=
1

2
δmn

[

HP (rm) · n (rm)
]

(3.55)

We now have the elements ofG:

Gmn =
1

4π

∫ P.V.

∆Sn

n (rm) · (rm − r′)

|rm − r′|3
[

HP (r′) · n (r′)
]

dS′ +
1

2
δmn

[

HP (rm) · n (rm)
]

(3.56)

The surface integration in each patch∆S is approximated by assuming that all values are constant within each
patch∆Sn

Gmn =
1

4π

n (rm) · (rm − rn)

|rm − rn|3
[

HP (rn) · n (rn)
]

∆Sn (1 − δmn) +

1

2
δmn

[

HP (rm) · n (rm)
]

(3.57)

which can be rewritten as

Gmn











1

4π

n (rm) · (rm − rn)

|rm − rn|3
[

HP (rn) · n (rn)
]

∆Sn if m 6= n

1

2

[

HP (rm) · n (rm)
]

if m = n
(3.58)

Now for the right hand side.

hm = 〈Wm,n (r) · Bs (r)〉 =

∫

S

δ [(r − rm)n (r) · Bs (r)] dS

= n (rm) · Bs (rm)

(3.59)
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Examples of Method of Moments modeling

We apply the MoM modeling to the problem geometry of Figure 3.7. The field of the target is represented
by a dipole.

Figure 3.7: Geometry of example. We match boundary conditions on a surface and compare the data predicted by
the charge distribution on the surface with the data predicted by a dipole model.

For this test we will use the method of moments to determine the charge distributionσm and the normalized
charge distributionqm on a surface that encloses the dipole. A separate matrix equation is solved forσm andqm,
i.e., we do not solve for theqm (or σm) charge distribution and multiply (or divide) by the normalcomponent of
the primary field to obtainσm (or qm). We will assume that the primary fieldHP is uniform. The field predicted
by the charges obtained by method of moments and the field predicted by the dipole are compared on a surface 1
m above the dipole location.

Example 1: Solution on a spherical surface The first example is for a sphere in a uniform field. As was
outlined in the Section 3.5.2, the dipole moment is due to a sphere and is, therefore, parallel to the primary field.
For this example, we will try and use a spherical charge surface. The charge surface is discretized uniformly in
azimuth (φ) and dip (η) angles.

Figure 3.8(a) plots the recovered un-normalized (σm) and normalized (qm) charge distributions in the case
where the primary field is vertical. The radius of the charge surface is 0.15 m. As predicted by the analysis in
the previous section, the normalized charge is essentiallyuniform. The un-normalized charge is symmetric about
z = 0, and is consistent with a vertical magnetic dipole. The fieldpredicted by both the normalized and un-
normalized distributions are compared to the field predicted by a dipole at the center of the sphere. The forward
modeled charge and dipole model match very well, indicatingthat the charge and dipole models are equivalent
in this case. Table 3.1 summarizes our results for illuminating the sphere in different directions, and a couple
of different coarseness levels of discretization. The total unnormalized magnetic charge is zero (to numerical
precision), and the total normalized magnetic charge is similar in each case. This numerical result is consistent
with the analytic result presented earlier: the total normalized magnetic charge is stable to illumination direction
for targets with spherical symmetry.

Figure 3.9 has a band of normalized magnetic charge that is zero. This is due to the normal component of the
horizontally-directed primary field being zero at this point. The corresponding elements in the MoM modeling
matrix also go to zero at this point, making the determination of the normalized magnetic charge at those points
poorly determined. The coarser discretization of Figure 3.12 does not have surface patches that have normal
perpendicular to the primary field. Consequently, all the surface patches are well determined.
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Primary num num total unnormalized total normalized Figure
Field φ η L1 L2 magnetic charge magnetic charge Number

Vertical 30 30 1 1 -4.3e-014 20.6 3.8
Horizontal 30 30 1 1 -6.2e-015 19.3 3.9
Vertical 20 20 1 1 -1.4e-013 20.91 3.10
45 degrees 20 20 1 1 -9.7e-014 20.88 3.11
Horizontal 20 20 1 1 -4.2e-016 20.88 3.12

Table 3.1: Magnetic charge results for the sphere tests.

Primary num num total unnormalized total normalized Figure
Field φ η L1 L2 magnetic charge magnetic charge Number

Vertical 21 21 4 1 -8.9e-014 364.07 3.13
45 degrees 21 21 4 1 -6.1e-014 1052.86 3.14
Horizontal 21 21 4 1 -9.1e-015 22.00 3.15

Table 3.2: Magnetic charge results for the spheroid tests.

Example 2: Solution on a spheroidal surface Our second example is to determine the charge distribution for
an axi-symmetric target. The secondary field for the axi-symmetric target is modeled using a dipole field with
L1 = 4 andL2 = L3 = 1. For this example, we use a spheroidal charge surface. The spheroidal surface has a
length of 40 cm and a width of 20 cm. The spheroidal surface is oriented with the major axis parallel to theẑ-axis
for each of the examples of this section.

Figure 3.13(a) plots the recovered un-normalized (σm) and normalized (qm) charge distributions in the case
where the primary field is vertical. The un-normalized charge is symmetric aboutz = 0, and is consistent with a
vertical magnetic dipole. The field predicted by both the normalized and un-normalized distributions are compared
to the field predicted by the dipole at the center of the spheroid. The forward modeled charge and dipole model
match very well, indicating that the charge and dipole models are equivalent in this case.

Table 3.2 summarizes our results for illuminating the spheroid in different directions. As was the case with
the sphere examples, the total un-normalized magnetic charge is zero. In each case the charge distribution and
dipole fields match on a plane 1 m away from the center of the spheroid. In this case, the total normalized magnetic
charge is not independent of the primary field direction.
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Figure 3.10: Method of Moments solution for the surface magnetic charge distributions on a sphere with a vertical
primary field excitation. The surface was discretized with 400 patches.
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Figure 3.12: Method of Moments solution for the surface magnetic charge distributions on a sphere with a hori-
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Figure 3.13: Method of Moments solution for the surface magnetic charge distributions on a spheroid with a
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Figure 3.15: Method of Moments solution for the surface magnetic charge distributions on a spheroid with a
horizontal primary field excitation.
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3.5.4 Comparison to SEA modeled secondary fields

The previous section presented the distributions of surface charges

σm = 2µ0H
sc · n (3.60)

and normalized surface charges

qm = µ0

Hsc · n
Hp · n (3.61)

in the simplified case where the scattered fieldHsc could be represented by a dipole model and the primary field
Hp was uniform. Realistic conditions were tested for a cylinder for which the SEA library computed scattered
fields at the surface of a spheroid enclosing the cylinder andwith dimensions defined by the user. SEA was used
after verification that the computation-intensive MAS and simplified SEA codes produced the exact same result.
Realistic primary field was computed by modeling the effect of a frequency domain square transmitter of 1 x 1 m.

In the following, only the real part of the scattered field measured at the first frequency (0.1 mHz) is dis-
played, as later frequencies and the imaginary part exhibitsimilar trends. Each figure presents on a spheroid
encapsulating the same cylinder the distribution of normalcomponent of the scattered and primary fields, as well
as the normalized charge taken as their direct ratio and thatobtained by resolution through the method of moment.
The effect of the sizes and shapes of the modeling spheroid (and sphere) and those of the relative orientations and
positions of transmitter and target were tested.

Reference test

As a reference test presented in Figure 3.16 the cylinder is placed vertically directly below the transmitter
at a 42.7 cm depth. The enclosing modeling spheroid has semi-axes of length 21 cm and 10 cm and a resolution
of 40 points in latitude and 39 in longitude, with longitude ranging from 0 to2π and latitude from 0 (North) toπ
(South). In each panel, quantities are shown on the spheroidby unwrapping its surface and using contours with a
special contour in magenta to indicate zero crossings for normalized charge density. The vertical position exactly
below the transmitter implies that all fields are longitudinally symmetric, contour lines therefore follow latitudes.
In the two left panels of Figure 3.16 the normal component of the scattered and primary fields approach zero at
different latitudes because the primary field is not uniform, their direct ratio therefore yields large values (infinite
value if discretization allowed) in the upper central panelwhile MoM gives large but well defined values (right
panels). Normalized charges computed by direct ratio or MoMshow similar but different values, their integral
over the surface of the spheroid, the TNMC differs by30%.

Changes of orientation

The same cylinder and its spheroid are rotated into a horizontal position in Figure 3.17. Although distri-
butions of normalized charges by field ratios and MoM appear qualitatively similar, with most of the spheroid
covered with negative charges, differences in charge amplitude are such that their respective Total Magnetic
Charge (TMC) obtained by numerical integration vary by a factor of two (with the resolution applied here). Com-
parison with the previous figure shows that rotation of the illuminating field by 90o stimulates a totally different
charge distribution at the surface of the spheroid and TMC. Dependency on the illuminating field is further illus-
trated in Figure 3.18 with a rotation of 45o and yet another normalized charge distribution characterized by large
regions of positive and negative charges and a different value for TMC.

Change of position

The transmitter was modeled at 30 cm to the left of the center of the cylinder and spheroid for the tests
presented in Figures 3.19–3.21. For each case the normalized charge distribution and TMC, derived by direct
ratio and MoM, show different patterns and values and confirmstrong dependency on the relative position and
orientation of transmitter and modeled target.
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Figure 3.20: Distribution of the normal component of the scattered and primary fields and their ratio at the surface
of a spheroid enclosing a horizontal cylinder located 30 cm off the center of the transmitter.
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Figure 3.21: Distribution of the normal component of the scattered and primary fields and their ratio at the surface
of a spheroid enclosing an oblique cylinder located 30 cm offthe center of the transmitter.
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Effect of resolution, size and shape

In order to check whether the observed trends are artifacts of the numerical implementation of the problem,
effect of resolution in discretization, size and shape of the spheroid were tested in Figures 3.22–3.24. In all cases
the charge distribution remains qualitatively similar. The total magnetic charge, however, varies by a factor 60
in the first case with lower resolution, by factor -3 in the second case with semi-axes increased by 50% and by a
factor 6 in the third case of a spherical surface.
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Figure 3.22: Distribution of the normal component of the scattered and primary fields and their ratio at the surface
of a spheroid enclosing a vertical cylinder using lower resolution.

Result

The normalized surface charge density distribution variesat the surface of a sphere or spheroid. Its sign
varies in a predictable manner that reflects the projectionsof the primary and secondary fields at the surface of the
spheroid. Moreover, singularities in the normalized charge distribution can occur when the normal component of
the primary field does to zero. The singularities are avoidedonly if the normal component of the secondary field
also vanishes at the exact same location. That distributionchanges when the relative position of the spheroid and
transmitter varies, therefore the normalized surface charge density distribution is not a characteristic of an object.
TMC changes with the position and orientation of the object,as well as with the shape, size and resolution used
for the spheroid, an effect of the aforementioned singularities. This result is in direct agreement with the previous
section, this time using spatially varying primary field anda physical model of the secondary field derived from
MAS.

3.5.5 Conclusion

The series of tests presented in this section has shown that the normalized magnetic chargeqm is a function
of the geometry of the measurement. In order for the total normalized magnetic chargeQ to be an effective
discriminant, we need to ensure high quality data is taken where the target is excited at numerous angles of
primary field excitation. The total magnetic charge for sucha measurement then reflects an “average” of the total
magnetic charges.
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Figure 3.23: Distribution of the normal component of the scattered and primary fields and their ratio at the surface
of a large elongated spheroid enclosing a vertical cylinder.
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Figure 3.24: Distribution of the normal component of the scattered and primary fields and their ratio at the surface
of a sphere enclosing a vertical cylinder.
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3.6 Regularized Inversion for a Surface Charge Distribution

Section 3.3.1 describes the numerical forward model that calculates the secondary field produced by a surface
charge distribution expanded by a pulse basis function. Fora given charge distribution surface, the forward model
is linear and can be written asZm = d. The objective of the inverse problem is to determine a charge distribution
m from a data setd. There are a number of challenges in determining an optimalm. First, the number of
parameters used to represent the charge distribution (i.e., the coefficients multiplying the basis functions) can be
greater than the number of data. In such a case the problem is under-determined. Second, data are noisy and
special care has to be taken to ensure that our model does not fit the noise. Third, the data may be insufficient to
constrain all the model parameters. For example, if the illuminating field is only in a single direction, then the
problem is ill-posed.

As demonstrated in Section 3.4, determining the charge distribution by minimizing a data misfit objective
function is ill-advised. Figures 3.4(a) and (b) demonstrated that minimizing the data misfit‖Zm − d‖ produces
large spikes in the charge distribution which, in turn, leadto very unstable estimates of the total normalized mag-
netic charge. In order to solve such an ill-posed inverse problem, the data fitting problem has to be reformulated
in order to introduce prior information of the model that we seek. There are several ways to do this reformulation.
A statistical framework (Tarantola, 1987; Scales and Tenorio, 2001) is appropriate when our notion of the charge
distribution’s characteristics can be represented by probabilities. The statistical approach can be used to determine
a single model by determining the maximuma posterioriprobability model, which can be determined by solving
an optimization problem.

In the previous section we saw that the surface integral of the un-normalized surface charge (σm) was zero.
For the remainder of this report, we will use the terms TMC andTNMC to represent the same quantity, i.e.,Q.

3.6.1 Formulation of the regularized inverse problem

We use an alternative approach where the prior information is introduced through the introduction of a regulariza-
tion functional, or model objective function (Parker, 1994; Menke, 1989). The regularization functional quantifies
model features (such as amplitude, smoothness, and curvature), and provides a quantitative means of choosing
models that are consistent with our preconceived notion of the characteristics of the model. We achieve this by
solving an optimization problem:

minimize Φ = Φd + λΦm (3.62)

whereΦd is the data misfit objective function,Φm is the model objective function, and0 < λ < ∞ is the
regularization parameter. The data misfit function measures the misfit between data predicted by a model and the
observed data that we seek to fit. The relationship between the modeled and observed data can be written as

dobs = Zm + noise (3.63)

Our goal is to fit the data without fitting ”noise”, where we define ”noise” as any component of the observed data
that should not be accounted for by the modeling. Therefore noise would include sensor measurement errors,
and modeling errors. For our work we will assume that the ”noise” is Gaussian and independent. With this
assumption, we can write the data misfit as

Φd = ‖Wd (Zm − d) ‖2
2 (3.64)

whereWd is the diagonal matrixWd = diag(1/ǫi) /
√

(N), with ǫi defined as the standard deviation of theith

datum andN the number of data points. With this definition ofWd the expectancy of data misfitE[Φd] = 1 if
the model is consistent with the standard deviation of data.

The model misfitΦm is defined as

Φm = ‖Wm (m − mo) ‖2
2 (3.65)
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whereWm is the regularization operator andmo a reference model.

Having observed in Section 3.5 that for a homogeneous spherethe normalized charge is uniform, we assume
at first order that the charge distribution would be uniform (i.e., similar to a sphere), and that additional structure
to the charge distribution would be allowed in order to fit thedata. Therefore we define the reference modelmo

to be the uniform charge distribution, where the charge density on each surface element of the discretization can
be defined as:

[mo] = quni = median



Hsc
i /

N
∑

j=1

[Z]ij



 (3.66)

Because un-regularized inversion of data such as in Figure 3.4(b) shows large oscillations of charge amplitude
between neighboring rings, we choose to impose a smoother model and defineWm as the first derivative operator.
We note that in that caseWmmo = 0; mo remains useful to define an approximation to the total magnetic charge
of the uniform distribution, while the true uniform distribution is identified after solving the optimization problem
of Equation 3.62 and taking the most regularized model, the smoothest model being a uniform one. This subtlety
arises from our finding that these two definitions of the uniform model can depart from one another when noise
levels are high, thus introducing a bias in Equation 3.66 through the dataHsc.

The parameterλ is chosen to balance the trade-off between the fit to the data and thea priori information
introduced through the regularization. There are several methods for determining the trade-off parameter (see
Farquharson and Oldenburg, 2004, and references therein).For this work we adopt the L-curve criterion for
determining the trade-off parameter. The L-curve technique involves generating anL− curve or Tikhonov curve
(Φd = f(Φm)), which are the values ofΦd andΦm for different values of the trade-off parameter. The optimal
λ is chosen to be at the corner of the ”L” in the Tikhonov curve, i.e., the point with maximum curvature. By
adopting this criterion, the data misfit is large enough to accommodate the presence of noise, while being small
enough to provide a satisfactory solution toZm = d.

We can now write the inverse problem as

minimize Φ = ‖Wd (Zm − d) ‖2
2 + λ‖Wm (m − mo) ‖2

2 (3.67)

The solution is obtained by taking the gradient of theΦ and setting∇Φ = 0:

mrec =
(

ZT WT
d WT

d Z + λWT
mWm

)−1 (

ZT WT
d WT

d Zd + λWT
mWmmo

)

(3.68)

where we definemrec to be the recovered model.

Figure 3.25 demonstrates the effect of a regularization on the ring model with the same noisy data as in
Figure 3.4(b). The regularized charge model shows a smooth distribution of charge density along the spheroid, in
sharp contrast with the large amplitudes observed in the un-regularized case. Additional experiments with 20, 40
and 60 rings show that the same regularization procedure yields the exact same distribution. For the remainder
of this study we use 40 rings to discretize the spheroidal surface, as we feel that this level of discretization
is sufficiently fine to model the charge distributions of relatively complex objects without requiring excessive
computational effort.

The low data misfit and high correlation coefficient between the observed data and the model prediction
are similar to those of the un-regularized model. However, the calculated total magnetic charge derived from the
different models differ by several orders of magnitude. Thepatch model, the unregularized ring model and the
regularized ring model have total magnetic charge values of38×103,−1.09×101 and−2.15×10−2, respectively.
For the total magnetic charge to be a stable discrimination criterion we must understand how discretization and
regularization affect the total magnetic charge.

Figure 3.26 demonstrates the effect of regularization on the amplitude of the charge density distribution.
At early stages of the regularization (smallλ), charges vary between104 and−104 (the top panel). At later
stages, larger values ofλ bring down the amplitude by a factor over105, shift the peaks of oscillations and force
convergence toward a flat uniform distribution near the value ofmo.
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Figure 3.25: Regularized ring solution for 40 mm projectile(45 degrees, 60 cm below sensor). In top central
panel, crosses show the 10-ring solution, the solid red linethe 40-ring solution using the exact same automated
regularization procedure (described in section 3.6.3). Misfit, expectancy, correlation and total magnetic charge
exactly coincide for 10-40 rings.

3.6.2 Total magnetic charge and regularization

The left panel of Figure 3.27 illustrates the concept of L-curve for the previously exposed case of a 40 mm
projectile at 45 degrees and 60 cm below an EM-63 sensor. A common method for choosing an appropriate
regularization is to pick the one that corresponds to the corner of the L-curve. As regularization becomes larger
the misfitΦd grows and the charge distribution becomes smoother. Conversely, for weak regularization the model
can fit the data so well that it also fits noise, and therefore becomes sensitive to noise. The corner of the L-curve is
shown with a star. The large dot represents an alternative pick explained in the next section. The right panel shows
L-curves for the same projectile at different depths and orientations. For instance, the dashed line corresponds
to a vertical orientation, where regularization plays an important role on model misfit, as reflected by the larger
variation ofΦd.

The previous sections showed that the total magnetic chargecan depend on discretization and regularization.
This first result is troubling because it contradicts the claim of Shubitidze that the total magnetic charge can be
used as a classification criterion among UXO, and therefore that it should remain independent of object position,
orientation and background noise. Focusing on the method ofrings, we study in Figure 3.28 the total magnetic
chargeQ during regularization (parameterλ) for the same 40 mm target as in Figure 3.27. In the left panel the
object is at 45 degrees. Its total charge, the blue solid dotted line, varies significantly asλ increases and seems
to converge at a later stage toward the horizontal dashed line, the total magnetic chargeQuni for the model with
uniform distribution of charge density. This is expected because the limit case of regularization by smoothing is
a flat uniform model. As in Figure 3.27, the star indicates themodel chosen for the corner of the L-curve (λreg),
the dot an alternative regularization. Neither of these points marks any particular position for the Q curve.

We consider different orientations and depths of the same target in the right panel of Figure 3.28 to further
study the total magnetic charge of the 40 mm projectile. Eachline style corresponds to the same cases as in
Figure 3.27. Figure 3.28 shows that each configuration of depth and orientation generates different variations of
Q during the regularization process. These variations are larger when the inclination of the object is greater, as

66



−80 −60 −40 −20 0  20 40 60 80 
−1

−0.5

0

0.5

1

1.5
x 10

4

T
ot

. M
ag

. C
hg

.

Latitude

−80 −60 −40 −20 0  20 40 60 80 
−1.5

−1

−0.5

0

0.5 4
24
123
641
3350
17500+

Latitude

T
ot

. M
ag

. C
hg

.

Figure 3.26: Charge distribution on 40 rings along modelingspheroid for same 40 mm item (Latitude +90 for
the pole closest to the surface, 0 equator, -90 bottom). Top panel: all regularized models, least regularized with
largest amplitude,λ in log scale from10−10 to 105. Lower panel: sampled models for lambda = 4, 24, 123, 641,
3350, 17500 and above. The thick dashed line corresponds to the regularization applied for Figure 3.25.
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Figure 3.27: Example of L-curves (i.e.Φd vs. Φm curves) for a 40 mm projectile. Left panel: object at 45
degrees, 60 cm below sensor. Stars indicate maximum curvature, large dots alternative pick for regularization.
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illustrated by the red and cyan curves that span several orders of magnitude with change in sign, as opposed to the
more contained variations for a horizontal position (greencrosses and magenta plus signs). Furthermore, none of
these Q curves seems to share any common global or local extremum, whicha priori complicates the choice of
Q. Star markers show that choices of Q(λreg) from the corner of the L-curve do not provide a consistent value,
thus a traditional approach to regularization is not compatible with a unique and invariant total magnetic charge
of the 40 mm projectile.

Searching for common features among Q curves, we consider the total magnetic chargeQuni for the model
of uniform distribution of charge density. The dashed horizontal lines in the right panel of Figure 3.28 show
that its value remains similar for all these different positions and orientations, with mean –0.0231 and standard
deviation 0.0024. Could the uniform distribution provide an adequate forward model to predict data recorded at
the surface? Detailed analysis reveal that these models arelimited to predicting radial EMI responses, yielding
misfits that are generally too large to qualify them as acceptable solutions toZm = d. This is particularly
obvious for heterogeneous objects that lie in sub-horizontal position because their EMI response reflects their
spatial heterogeneity. This test and many more with real data (some of which are discussed in the next section)
and synthetic data show that the uniform distribution is a stable characteristic of an item but a poor forward model.
An alternative choice of regularization is thus warranted for the forward model.
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Figure 3.28: Total magnetic charge vs. regularization parameter, same legend and setting as previous figure. Left
panel shows large variations of total magnetic chargeQsmc during the regularization. The dashed horizontal line
showsQsmc(mo) (also calledQuni). Right panel showsQsmc andQuni for different orientations and depths.Quni

is similar for all cases.

3.6.3 Regularizing for a stable total magnetic charge

The previous section has shown that the corner of the L-curvedoes not guarantee an invariant total magnetic
charge whereas a uniform charge distribution provides a stable Q but a potentially deficient forward model, espe-
cially for sub-horizontal items. In that context, we consider the best solution to be one that satisfies both Q(λ) is
close-enough toQuni and the misfit is of the same order as the noise. Theory and extensive tests with real mea-
surements and synthetic data show that there is always a solution to the first condition because large regularization
imposes smoothness and eventually flatness to the charge distribution. Besides, there are often models whose total
magnetic charge approachQuni at early stages of regularization, as illustrated in Figure3.28 by crossings ofQuni

curves by Q curves for small values ofλ. These models are potential candidates because their misfitis low without
them fitting noise owing to some regularization. Other possible candidates appear as regularization increases and
Q gradually approachesQuni, before the charge distribution becomes uniform. Practically, quantitative values
must be assigned to properly define the notion of approachingQuni.
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Method 1

We propose to choose the regularization parameterλ such that

‖Q (λ) −Quni‖
‖Quni‖

< δ (3.69)

and

1

K1

< Φd < K2 (3.70)

with E (Φd) = 1 if the model fits data but not noise. We applied this method by first settingdelta = 20%,K1 = 2
andK2 = 1.5, allowing an error of 20 % onQ and 50% on noise estimate. If there is no solution we first relax δ
to 30% and setK1 = 4,K2 = 2, then relax further toδ = 50%,K1 = 8 andK2 = 3.

Method 2

Noise and errors from instruments, measurements and modeling are not necessarily straightforward to assess.
A priori error estimate can be inaccurate and misleading and cause the method above to fail, even though we find
it to perform well most of the time. When it fails we can either choose the model with Q closest toQuni, or pick
the corner of the L-curve. In either case we loose control on one of the criteria. To circumvent this difficulty one
can assume that the corner of the L-curve provides an acceptable misfit thanks to its balance position in fitting data
and noise, with expectancy ofΦd is E(Φd)Φd(λcorner). This is the classical justification for using the L-curve
(e.g Hansen, 1997; Farquharson and Oldenburg, 2004). Identifying the corner of the L-curve by its maximum
curvature, we search for a model near that corner and with a total magnetic charge close toQuni. Similarly with
the previous method, our search algorithm identifies the regularization parameterλ that simultaneously minimizes
the relative difference betweenQuni andQ on the one hand, and betweenE(Φd) andΦd on the other hand:

DQ = |max(Q(λ), Quni)/min(Q(λ), Quni)) − 1| < dQ (3.71)

DΦ = |max(Φd, E(Φd))/min(Φd, E(Φd)) − 1| < dE. (3.72)

After testing several methods for satisfying both conditions, we choose to search for the minimum ofP = [DQ ∗
DΦ](λ) within the tolerance defined bydQ anddE. Variation on the definition of the productP of the two
conditions do not offer any gain.

With this second method and estimation of noise through the L-curve we find that tighter constraints are
applicable. The method is validated by inversion of synthetic data (produced with dipole model) and real data
obtained from the USACE-ERDC test stand for 40 mm, 60 mm, 90 mmand M42 projectiles, for which two depths
(1 shallow, 1 deep) and three inclinations (0, 45, 90 degrees) were surveyed with a 26-time-channel Geonics EM-
63. In the case of real data, the corner of the L-curve proved to be an adequate solution in 19% of inversions
with DQ≤12.5%; for the remaining inversions, 38% of cases were within the bound dQ=dE=12.5%, 30% within
dQ=dE=25%, 12% within dQ=2dE=100% and the last 1% within dQ=200% and dE=75%.

Application of this method to the 40 mm projectile is illustrated in Figures 3.27 and 3.28 by the large dots
previously defined as alternative regularization. Extensive tests presented in the following section confirm the
robustness of the method in a wider setting. Figure 3.29 illustrates the effect of different regularizations for
the inversion of noisy data acquired over a 40 mm UXO at the SkyResearch test plot. Comparison between
observed data and predictions shows that all models except for the most regularized one yield acceptable fit with
the observed data. Differences between the models for the L-curve and the chosen regularization are negligible.

Conclusion

We have now established a procedure for regularized inversion of electromagnetic data with SMC that pro-
vides a forward model that closely predicts surface observations and a stable total magnetic charge derived from
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the uniform charge density. The total magnetic charge derived with this method is independent of the number
of rings used for discretization, would they be 10, 40 or 60. In the following applications 40 rings are used to
allow for the complexity of bodies with composite structure(geometry, material with different conductivity and
magnetic permeability), while regularization handles theredundancy of parameters.

Alternative avenues of regularization were also explored during our close examination of the surface mag-
netic charge model. We replaced, for instance, the search for a smooth model by one that exhibits the smallest
total magnetic charge (replacing the elements of the regularization matrixWm by the surface area of each ring).
The resulting regularization remained too weak to temper out the large oscillations in charge amplitudes. We also
testedWm as the second derivative operator,Wm becoming either a rank-2 deficient operator, or a full-rank
matrix when boundary conditions such as null charge beyond the spheroid were applied. These formulations lead
to similar results to those reported for the standard case. Black-box types of regularization procedures such as the
MatLab functions lsqnonneg (positivity constraint) and linprog (linear programming solutions) were found to be
less stable than the regularizations discussed above, bothfor rings and patches. Another possible way of control-
ling the charge distribution is decomposition through a given number of simple basis functions (sine-cosine). This
method was tested on a sphere (icosahedron) with two-dimensional Fourier series truncated to limited modes to
restrict the amount of features in the charge distribution.Results not presented here show that stability of the total
magnetic charge can be achieved with careful choice of truncation. A systematic procedure remains to be formu-
lated. Because modeling an ordnance with a sphere simplifiesthe inversion problem by removing the orientation
variables, further work is warranted to explore that possible avenue.

3.6.4 Stability of the regularization method

Adding controlled noise

Ability of the regularized inversion to produce a model withmisfit ‖Zm − d‖ comparable to noise can be
tested in an environment where noise is controlled. This canbe done by considering shallow measurements (Hsc)
with the 40 mm projectile where signal is high and noise remains low. Noise can then be arbitrarily added to the
instrument (ǫinst, %) and to the data (ǫdata, %) according to

- added instrument error:IE = R1 ∗ ǫinst

- added data error:DE = Hsc ∗ diag(R2) ∗ ǫdata

- total added noise∆E = IE +DE,

with R1 andR2 vectors of lengthM with random entries, chosen from a normal distribution withmean zero,
variance one and standard deviation one;diag(R2) is the matrix with diagonalR2 and zeros everywhere else.
Results are summarized in Table 3.3 and 3.4.

ǫinst, ǫdata Φd ‖1/Wd‖ ‖∆E‖ E(Φd) Q Quni Corr.
No noise 28 80 0 0.35 -0.0242 -0.0260 1
500, 10 100 84 95 1.0 -0.0248 -0.0265 0.99
2000, 30 323 73 315 3.8 -0.0252 -0.0253 0.92
2000, 50 419 73 496 5.2 -0.0259 -0.0273 0.87

Table 3.3: 40 mm object in horizontal position, 25 cm below sensor, 1st time channel.Φd is model misfit;
‖1/Wd‖ is the assigned error (from automated estimate of standard deviation of data and instrument error);
‖∆E‖ is noise added to noise-free data;E(Φd) is the expected noise as inWd, departure from 1 means that
automated guess on noise level was inaccurate. The method isdeemed successful ifΦd is close to‖∆E‖ andQ
toQuni.

Both tables confirm that even when data are largely corruptedby noise the proposed regularized inversion
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ǫinst, ǫdata Φd ‖1/Wd‖ ‖∆E‖ E(Φd) Q Quni Corr.
No noise 82 102 0 0.80 -0.0253 -0.0254 1.00
500, 10 153 92 158 1.5 -0.0237 -0.0239 0.98
2000, 30 442 99 403 4.1 -0.0242 -0.0246 0.89
2000, 50 715 134 807 4.84 -0.0413 -0.0277 0.87

Table 3.4: 40 mm object,45o inclination, 25 cm below sensor, 1st time channel.

method maintains (1) stable total magnetic charge, (2) misfit comparable with added noise‖∆E‖ and (3) large
correlation between data and prediction. The third columnsin both tables suggest that the method for assigning
expected errors in the weighting matrix Wd is not optimal, expected errors are generally over-estimated when
noise is low and under-estimated when noise is high. This shortcoming does not, however, affect the performance
of the proposed regularization method, which relies instead on the corner of the L-curve to identify eligible
models that strike the right balance between model complexity and misfit. This property is confirmed by the
general agreement between added noise and misfit with the chosen model. It is also confirmed that amongst those
eligible models it is possible to select some with total magnetic charge nearQuni. Results hold for large amounts
of noise: relative error forQ reaches62% for added noiseǫdata = 50% in Table 3.5.

Noise and regularization for different types of ordnance

Adaptability of the method to different size and shape of ordnance is tested on three additional standard
items: the 60 mm, 90 mm and M42 ordnance. Several orientations and depths are tried (Table 3.5) with the 1st
and 12th time channels of data collected with a Geonics EM-63sensor at the USACE-ERDC Vicksburg, MS test
stand. These items are chosen because the 40 mm, 60 mm and 90 mmhave distinct sizes, while the 40 mm and
M42 have similar size but different physical properties (40mm is made out of aluminum and copper, M42 of
steel). The 1st time channel is taken for its high SNR and the later 12th time channel to illustrate the effect of
high noise levels. Figure 3.30 and 3.31 show results of inversions for data processed with their original noise.
Table 3.6 gathers significant statistics for the total magnetic charge derived from the uniform distribution.

Object / Inclination Horiz. 45o Vert. Horiz., 45o, Vert.
Depth Shallow Shallow Shallow Deep
40 mm 25.4 cm 21 cm 24 cm 60 cm
60 mm 60 cm 60 cm 60 cm 100 cm
90 mm 60 cm 60 cm 60 cm 100 cm
M42 25.8 cm 21.8 cm 25 cm 60 cm

Table 3.5: Depth and inclination of measurements over test stand.

Figure 3.30 shows results for the 1st time channel. In all panels the total magnetic charge exhibits large
variations during regularization, except when the item is not horizontal, as previously observed in Figure 3.28.
Choice of the corner of L-curve (star markers) yields unstable total magnetic charge, especially for 60 mm and
M42 items. Conversely, Table 3.6 show thatQuni obtained with the uniform charge model keeps a stable value
through changes of position, its standard deviation remaining at least five times smaller than the amplitude of
Quni. Use of regularization forQ nearQuni (dot markers in Figure 3.30) provides both stable total magnetic
charge and adequate fit to data.

Figure 3.31 shows the same four items at the 12th time channel, where signal gets weaker and noise relatively
increases. Examination of SNR reveals that at a shallow depth clear distinction of the target is possible with SNR
larger than 12. At deeper positions inversion of data remains possible even though SNR lowers to 2–8 (minimum
for 60 mm item horizontal at 1 m below sensor and M42 horizontal at 60 cm below sensor, both shown with
magenta line with plus signs). Study of late time channels and noisy environments suggests increasing separation
between “classic” (L-curve) and “special” (L-curve+Quni) regularization methods when SNR decreases, here
visible for all four items in Figure 3.31. With different choices of the regularization parameterQ can vary tenfold
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Figure 3.30: Variation of Total magnetic chargeQsmc during regularized inversion of first time channel for 60 mm,
90 mm and M42 projectiles. For all panels, each curve showsQsmc for a different position/orientation of target
relative to test stand. Horizontal dashed lines showQuni for each case and define the region of stability of the total
charge. Large dots indicateQsmc for the proposed regularization choice whereas stars highlight failure to obtain
stable charge with corner of L-curve. Positions/orientations are given in Table 3.5. Black, red and green curves
correspond to shallow depths, blue, magenta and cyan to deeper positions; black solid line and blue line-dot at 45
degrees, red dashed and cyan dash-dot vertical, green crosses and magenta pluses horizontal, as in Figure 3.27.

UXO / Quni MeanQuni(T1) σQuni(T1) MeanQuni(T12) σQuni(T12)
40 mm -0.023 0.0024 -0.0076 0.0007
60 mm -0.326 0.062 -0.073 0.022
90 mm -0.915 0.114 -0.206 0.051
M42 -0.041 0.007 -0.003 0.0009

Table 3.6: Mean and standard deviation ofQuni, the total magnetic charge for uniform distribution of normalized
surface charge density, at 1st (T1) and 12th (T12) time channels.
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Figure 3.31: Total magnetic chargeQsmc during regularization for 40 mm, 60 mm, 90 mm and M42. Each panel
shows all six positions given in Table 3 using the 12th time channel with the same plotting conventions as previous
figure.
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and even change sign, as observed for the 60 mm and M42, whileQuni remains stable for all items (Table 3.6).

3.6.5 Detailed analysis of four standard ordnance
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Figure 3.32: Total magnetic charge as a function of time for 40 mm, 60 mm, 90 mm and M42 projectiles, using
EM-63 data from test stand at positions summarized in Table 3. Time series are shorter for smaller objects because
SNR is too low at later time channels.

As a last test on method stability, regularized inversion and detailed analysis are applied to data sets for
40 mm, 60 mm, 90 mm and M42 standard ordnance at multiple depths and orientations. The Geonics EM-63
sensor acquired data on the USACE-ERDC Vicksburg test standat 26 time channels (0.18 ms to 25.14 ms), two
depths (one shallow, one deep) and three inclinations (0, 45, 90 degrees), as in Table 3.5. Figure 3.32 shows the
total magnetic charge as a function of time for all measured configurations obtained with the proposed regularized
inversion algorithm for NSMC. Several conclusions can be drawn:

• All lines cluster for each object; the recovered total magnetic charge is therefore a stable feature and the
inversion is robust;

• Each object has a distinct time evolving total magnetic charge;

• The magnitude of the total magnetic charge scales with the volume of the object;

• Objects with different physical properties have differenttime decay for the total magnetic charge, as illus-
trated by the M42 and 40 mm items that have similar size but different material.
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These results suggest clear and stable separation with NSMCand the total magnetic charge for these four types
of ordnance, thus opening the possibility of applying automated discrimination procedures. As a side note, there
is a slight increase of the total magnetic charge for the 10thand 11th time channels. This effect is only due to a
pervasive instrument bias, not to any physical property or modeling issue, and would not appear should the sensor
be perfectly calibrated.

Error analysis
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Figure 3.33: Correlation coefficient between observed dataand model prediction for all time channels, 2 depths
and 3 inclinations (0 for horizontal).

Having established the stability of the total magnetic charge for the 40 mm, 60 mm, 90 mm and M42 at
various depths and orientations, we examine the quality of prediction of the forward models employed above.
Special consideration is given to correlation, misfit and ability to perform at low SNR. Figure 3.33 shows the
correlation coefficient between the observation and model prediction for all time channels as a function of the
inclination of the item, with the different depths superposed. Correlation close to unity in most cases proves that
model predictions are reliable. The few occurrences of low correlation correspond to late time channels where
data quality is poor. Best performance is achieved for targets in vertical position, in which case the signal recorded
at the surface takes the shape of a simple radial decay away from the center of target because UXO are bodies of
revolution. Success when there is central symmetry in the data is not surprising because our model does assume
central symmetry of charges along the main axis of the modeling spheroid (i.e., rings with uniform charge) here
in vertical position, and thus naturally fits the data.

Figure 3.34 measures the misfit of models obtained through the proposed regularized inversion method with
the expected noise estimated from the corner of the L-curve.In 97% of tested cases misfit lies within a 25%
relative difference with estimated noise, thus proving that the method generally converges.

Figure 3.35 provides the conditions of signal to noise ratiothroughout the sets of measurements. SNR varies
by several orders of magnitude for different depths and times. Inversions are not carried out when SNR is lower
than two or when there are less than ten data with values abovethe estimated standard deviation of noise; SNR is
then set to 0. SNR is particularly low at late time channels, or at all times for small items placed at greater depth,
e.g. 40 mm, 60 mm and M42. Regularized inversion of NSMC is able to perform at low SNR and has potential
for use even with highly contaminated data.

75



M
is

fit
 r

at
io

 (
%

)

Time channel
5 10 15 20 25

0

5

10

25

50

100

20

40

60

80

100
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Figure 3.35: Square root of signal to noise ratio. For each item, the first three columns correspond to shallow
positions, the next three to deeper positions, where SNR is lower. SNR=0 at later time channels if too few data
for inversion (22% of cases), SNR≥2 otherwise. Inversion was successful even for SNR as low as 2.
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3.7 Application of the regularized NSMC

3.7.1 Time domain analysis of standard items

Fifteen standard ordnance were measured at the USACE-ERDC Vicksburg test stand using a Geonics EM-63 time
domain sensor to test and develop the capabilities of current EMI forward models. These ordnance span a wide
range of sizes, from 155 mm to 20 mm projectiles, and different material. Data were taken at two depths and three
orientations, as in the previous section. Figure 3.36 showstotal magnetic charge for all these items. To avoid
saturating the figure only the median among all positions at each time channel is displayed. Not shown here, the
distribution of total magnetic charge with time when depth and orientation has similar standard deviation as the
four items presented in the previous section. This illustrates that the method of deriving the total magnetic charge
is stable for all types of ordnance at hand.

Several observations can be made. The amplitude of total magnetic charge decays with time as the amplitude
of the scattered field does. At early time, the magnitude of the total magnetic charge scales with the size of the
ordnance. At later times, the charge signal reflects other properties of ordnance (shape, material). The latest time
channels are not inverted for small items because the signalis too weak. The forward model provides adequate
fit to data and high degrees of correlation between observations and predictions are achieved. All data were
successfully inverted on the same size of spheroid,a priori information on the size of the object to model is
therefore not required.

These results indicate that the time-evolving total magnetic charge acts as a unique signature for each type
of ordnance. For instance the 37 mm, MK118 and BLU26, which have similar diameters but different material,
length and density, have similar amplitudes at early time channels whereas their relative charge varies with several
orders of magnitude beyond the 15th time channel. A preliminary attempt to quantify the degree of separation
between each class of ordnance is presented in Figure 3.37 ina simple canonical analysis as in Beran (2005),
using the first 18 time channels. In the left panel most of the variability recorded amongst all test stand data for
the 15 ordnance can be summarized with two eigenvalues and feature vectorsxc1 andc2. The resulting two-
dimensional spacexc1 − xc2 (right panel) of Figure 3.37 has total charges corresponding to different positions
for each ordnance cluster and separate from those of other ordnance. The NSMC appears to be suitable for
discrimination algorithms. Further work is warranted to extract the most relevant information out of the total
charge distributions and to deal with complex situations, such as discrimination with incomplete time series of
total charge.

As a further discrimination test, a series of cylinders weremeasured over the USACE-ERDC test stand in the
same conditions as the standard ordnance to study their EMI response and test models. These six cylinders were
chosen to be solid or hollow, short or long, made of steel or aluminum. Their total magnetic charge is presented
in Figure 3.38, along with three large fragments of 105 mm HEAT rounds. Comparison with Figure 3.36 shows
that the charge of these cylinders has a smaller time decay rate, which distinguishes the cylinders from their UXO
counterparts. The fragments of 105 mm also produce distincttotal charge.

3.7.2 Frequency domain analysis of standard items

Data were also collected with a Geophex GEM-3 sensor at the USACE-ERDC Vicksburg test stand to test the
models’ ability to perform with frequency-domain electromagnetic data. The sensor provides the real and imag-
inary part of the signal sampled at 10 frequencies from 90 to 41010 Hz. Data were processed and inverted by
taking the modulus of data for every time channel so that amplitude reached maximum value directly above target,
easing comparison with uniform charge distribution model so that the exact same regularized inversion procedure
as for time domain could be applied. Information on phase wasnot used. Results are presented in Figure 3.39.

The regularized inversion of NSMC performs as well in the frequency domain as in the time domain. Pre-
dicted total magnetic charge is consistent for different positions and orientations of the item. The data misfit is
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Figure 3.36: Total magnetic charge of 15 standard ordnance as a function of time. Data acquired over test stand
with EM-63 sensor at 26 channels. Only median is shown for clarity, standard deviations similar to those of
Figure 3.32. Note: there are 2 types of 81 mm items, the ATC andMontana.
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Figure 3.37: Canonical analysis of the 15 standard UXOs shown in Figure 3.36. Left panel: eigenvalues. Right
panel: representation of features from total magnetic charges taken at different depths and orientations in plane of
the two first eigenvectors.

close to expected noise and correlation coefficients are close to unity, but those details are not presented here.
The method is therefore robust and the magnitude of the totalcharge scales with the size of objects. Canonical
analysis presented in Figure 3.40 confirms stability of the total magnetic charge obtained by regularized inversion,
and shows that each class of UXO has a distinct signature and belongs to a different part of feature space. These
results show similar performance for regularized inversion of the surface charge model can indeed be expected
for time domain and frequency domain electromagnetic induction-based identification of ordnance.

3.7.3 Application to field data

The following presents a series of preliminary tests to assess the type of difficulties the regularized inversion of
NSMC would face when confronted with field realities.

Discrimination by total magnetic charge

Most of our development work on the regularized inversion ofNSMC presented so far is based on test
stand data, which offers a mostly noise-free environment. As a first step toward dealing with real site conditions,
inversion was performed on data collected over a test plot atthe Sky Research center in Ashland, Oregon, where
a series of standard UXO were seeded. Data were acquired withan EM-63 sensor in cued interrogation mode,
that is a stable platform with fix stations, as opposed to the regular dynamic acquisition mode of real survey. Data
used here were taken 40 cm above the surface, slightly higherthan the position of the sensor on its cart, which
partially reduces the electromagnetic response of the magnetic soil. The following analysis includes a uniform
background as additional parameter in the inversion to solve for the additional EM effect of soil.

Inversion results for three unknown targets, for which the position was estimated by other means, are pre-
sented in Figure 3.41. Thick lines show their total magneticcharge (derived from the field data), thin lines recall
the total magnetic charge obtained from the test stand, as inFigure 3.32. Recovered total charges clearly overlap
with their test stand counterparts; all three items are identified despite significant noise that corrupts late time
channels. Results for the 40 mm and 60 mm ordnance are unambiguous for all time channels, whereas the M42
drifts toward a 40 mm-type response at later times. Work in progress is trying to address that issue.
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Figure 3.38: Total magnetic charge of six types of cylindersas a function of time using EM-63 data taken over
a test stand. SSL: solid steel long, SSS: solid steel short, HSL: hollow steel long, HSS: hollow steel short, SAL:
solid aluminum long, SAS: solid aluminum short.
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Figure 3.41: Field test of NSMC. Total magnetic charge for three buried items, shown in thick lines, overlaid on
top of the total magnetic charge derived for the same ordnance on test stand.
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As a side note, inversion of field data proved to be beneficial for the development of our inversion procedure
because it forced a clear definition of the uniform distribution. When regularization was introduced (Section 3.6),
the uniform charge distribution was taken as the median of the distribution ofHsc

i /ΣjZij , the ratio of the measured
scattered field and the sum of rows in the modeling matrix. Thedistribution and median change when noise and
background value increase. The most robust mean of defining the uniform charge distribution is that of the upper
end member of regularization. This definition of the uniformcharge proves to be far more robust because the
regularization process removes the effect of noise. Further examination of field data shall confirm the success of
the method.

Effect of position on total magnetic charge

Defining the center of a target for EMI modeling is not straightforward because ordnance have complex
shapes and include different material. In SMC modeling, ordnance are represented by a spheroid, the center of
which does not necessarily coincide with that chosen for test stand measurements. This leads to positional un-
certainties for inversion of test stand data. Addressing that issue and others regarding definitions of orientation,
we conducted a simple sensitivity analysis and found that the total magnetic charge obtained by NSMC showed
negligible sensitivity to horizontal positioning error within 15 cm and to any amount of error in azimuthal direc-
tion. The misfit, however, greatly increased when such errors occurred and therefore provided a good tool for
estimating the correct parameters.
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Figure 3.42: Effect of depth on the total magnetic charge. Upper panel: charge vs. time; lower panel: correlation
between observation and prediction.

Depth is a more complex issue that requires particular attention. Figure 3.42 shows the effect of modeling
the wrong depth on the total magnetic charge of a 40 mm UXO. Theupper panel shows the charge, the lower
panel the correlation between the data and forward model predictions. The total charge is found to vary in a
predictable manner by a factor two for a 10 cm increment in vertical direction, expectedly increasing upward and
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Figure 3.43: Percent change of the total magnetic charge when the model depth is offset from the true depth.

decreasing downward with respect to the correct location. Moreover, the charge presents exactly the same time
decay at all modeled depths. Given the large separation between the total charge and the distinct decay rates of
each UXO, this result suggests that 10–20 cm errors in depth would be no impediment for identifying the buried
item. From there, recognizing the buried item can add a constraint on the inversion to recover the correct burial
depth. The lower panel shows that the correlation coefficient, which reflects the data misfit, is only moderately
but consistently affected by the depth error.

Figure 3.43 shows a first attempt to generalize that study. EM-63 test stand data are inverted adding an offset
to the true depth (vertical axis), different settings of depth and orientation for each targets are indicated on the
horizontal axis, only the first time channel is presented. The total charge varies by 50-100% within 10 cm of the
true position, which confirms results for the 40 mm ordnance.Detailed examination through formal sensitivity
analysis is warranted to reinforce that preliminary result. Confirmation of that effect would make the NSMC
method a potent tool for UXO identification and discrimination.

3.8 Conclusion

In this chapter we conducted a detailed examination of the normalized surface magnetic charge model to apply it
to electromagnetic data. With the goal of using the total magnetic charge, the integral of surface magnetic charges,
as a criterion to identify and discriminate buried ordnanceagainst clutter, we particularly focused on the stability
of TMC for multiple orientations, depths, times and sensor types. Because the inverse problem is ill-posed, direct
inversion is unstable and requires regularization. We looked for a physical basis to carry on that regularization and
investigated the properties of the normalized surface charge distribution at the surface of a spheroid enclosing an
ordnance. We found that the distribution varied under different directions and positions of excitation. When data
are collected in real life, targets are illuminated under several directions, therefore some sort of averaging of the
charge distribution occurs. This theoretical consideration, coupled with extensive empirical analysis of synthetic
and test stand data taken at multiple depths and angles, leads to the conclusion that the most stable feature of the
surface charge distribution and its total charge is the uniform charge distribution obtained by averaging. This result
forms the basis of a regularization procedure that identifies a forward model that simultaneously (1) produces a
high correlation coefficient between observation and prediction, (2) balances the misfit (not fitting noise) and the
complexity of the charge distribution, and (3) produces a total magnetic charge close to that of a uniform charge
distribution.

The method was tested on data collected with the Geonics EM-63 and Geophex GEM-3 sensors over 15
standard ordnance, 6 types of cylinders and clutter at multiple depths and orientations with the help of USACE
at the ERDC test stand in Vicksburg, MS. We proved that the total magnetic charge derived from this regularized
inversion protocol was a robust and stable feature for each type of target with both time-domain and frequency-
domain types of data. We also found that the amplitude and time decay of TMC differs for each class of ordnance
and cylinders and reflects the size and electromagnetic properties of their material. A simple canonical analysis
confirmed the clear separation between the TMC features of all ordnance.

Preliminary tests were also done to assess the robustness ofthe method with noisy field data and the sen-
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sitivity of target positioning error. Inversion of field data taken at the Sky Research test plot was successful at
identifying buried items despite the high noise generated by the magnetic soil. Sensitivity analysis when the target
position and orientation were altered showed that large errors in horizontal position and azimuthal direction do not
affect determination of TMC. In contrast, the amplitude of TMC scales with depth error while time decay remains
unaffected, thus allowing possible identification of the target despite depth error. Further work to systematically
investigate these effects and others is warranted and detailed in the following Conclusion chapter.
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Chapter 4

Discussion and Conclusions

4.1 Objectives

Initially, the objective of this research project was to apply the Method of Auxiliary Sources as a modeling tool
for inversion of UXO sensor data. Through comparisons between measured data, analytical solutions, and data
predicted by MAS, we found that MAS was able to accurately model the EMI response of compact metallic
objects such as UXO over a large frequency range extending tothe static case (Beran, 2005, Chapter 2). The
ability to model over such a wide range made the MAS an attractive modeling technique for joint inversion of
multiple data sets. Practical considerations such as the computational time required by MAS to calculate sensor
data prevented us from applying MAS for inversion purposes.However, its quality as a physical model lead
us to revise the objective of this study to evaluate the potential of two modeling techniques derived from the
MAS framework: the Standardized Excitation Approach and the Surface Magnetic Charge model. We tested the
methods for their performance as forward modeling technique, assessed as their ability to predict the data, provide
stable feature vectors that are unique to the target and be fast in the perspective of field application. Although both
SEA and SMC are based on magnetic charge distributions, theyrepresent two fundamentally different approaches
to UXO discrimination. We envision the SEA as part of a library or hypothesis testing technique, whereas SMC
would be used in a parameter estimation/statistical classification scheme.

4.2 The Standardized Excitation Approach

In the SEA, the fundamental step is to build up an RSS that represent target attributes (size, shape, and EM param-
eters). We employ the MAS to generate the RSS for a candidate UXO whose geometry and physical quantities
are the inputs for the process. The geometrical parameters are obtained by either digitizing or approximating
equivalent cylindrical sections for a composite object. The conductivity and magnetic permeability of each sec-
tion are estimated using measured data. The MAS code is then used to determine the source distribution for
different spheroidal modes. There is significant computational effort required to generate the RSS and therefore
it cannot be used in a parameter estimation sense, i.e., it isnot reasonable to invert sensor data for an RSS (which
would subsequently be part of a feature vector to be input to aclassification algorithm). However, once the RSS
is generated, the computational times are relatively quick. The SEA/RSS approach lends itself to a library or hy-
pothesis testing technique for discrimination. Discrimination is thus achieved by determining which target within
the library has the greatest likelihood in producing the anomaly.

For this study we developed an RSS library for 9 UXO. Testing was completed to determine the number of
spheroidal modes sufficient for modeling transmitter fieldsgenerated by loop sensors. The ability to model both

86



frequency and time domain data was confirmed by comparing modeling results to Geophex GEM3 and Geonics
EM63 data collected on a test stand. A simple library based discrimination technique was tested on GEM3
test stand data. An inversion algorithm for determining optimal location and orientation for a given UXO is in
development.

Some SEA issues were identified during our investigation:

• Improving the method of estimating conductivity and permeability for a composite UXO

When developing the RSS, the conductivity and permeability were calculated from a single sounding of
GEM3 data collected over a horizontal target. A trial and error procedure was used to determine perme-
ability and conductivity. Data collected on a line along thelength of the target were used for evaluating the
suitability of the permeability and conductivity estimates. Firstly, the material properties for an heteroge-
neous target should not be determined from only a single sounding when additional spatial data is available,
or could be collected. Secondly, this process should be reformulated as an inverse problem to determine the
material properties in an optimal way.

• Further testing is required to determine the optimal number of charge rings

We chose 12 rings for the RSS based on limited measurements. Now that we have access to data acquired
on the USACE-ERDC test stand, we can determine the number of rings required by the method.

• Optimizing code for reducing forward modeling times

The non-optimized, research code used in this report required close to 7 seconds to model a RSS for a
single sounding of 13 frequencies. These computations werecarried out on a Pentium 4 3.2 GHz processor.
Preliminary code improvements have reduced the time to justunder three seconds. Further inefficiencies in
the code are yet to be fixed. Eventually, The real high-speed SEA computation might be implemented via
parallelization.

• Developing algorithms for inverting location and orientation

The method tested in this report determined location and orientation by simply trying numerous depths and
orientations. Although code was developed for inverting location and orientation for a given RSS, it was
not mature enough by the end of the study to evaluate its accuracy and feasibility for real data.

4.3 The Surface Magnetic Charge Model

The SMC approach is used to predict the EMI response of a metallic object by assuming that the scattered field
measured by sensors at the surface originates from a magnetic charge distribution on a fictitious spheroid that
encloses the target. Once the surface is determined, the modeled data is a linear function of the charge distribu-
tion on the surface. The forward modeling is very fast and, therefore, sensor data can be inverted for the charge
distribution. The sum of the charge distribution, i.e., thetotal surface magnetic charge, can be used for discrimi-
nation. Difficulties arise, however, because determining the surface magnetic charge distribution is an ill-posed,
under-determined problem. The SMC inversion problem requires significant regularization in order to produce
stable results for the total surface magnetic charge. Greateffort was invested in the reported study to gain better
understanding of the magnetic charge distribution and accordingly device a stable regularization procedure.

Some SMC specific issues were identified during our investigation:

• The Normalized Magnetic Charge distribution is dependent onthe angle of excitation

We showed that the normalized charge distribution changes as the angle of the primary field changes. Con-
sequently, the total normalized magnetic charge, suggested by Shubitidze et al. (2005a) as a discriminant,
will also vary. In order for the total normalized magnetic charge to be a more stable discriminant, data
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should be taken such that there are numerous excitation angles. Data collected in this manner would pro-
duce a total normalized magnetic charge that represents an ”averaging” of the normalized charges over all
excitation directions. This type of data could be collectedby a single transmitter loop in low noise con-
ditions collecting multiple soundings (such as a test stand), or by ”steering” the transmit field by using
combinations of transmitter loops, or by changing the orientation of a single loop.

• Regularized inversion for a stable Total Magnetic charge is possible with high quality data

We proposed a regularization method for SMC inversion such that the TMC is stable for high quality data
collected over a test stand, and for measurements taken at mid-height above a magnetic soil. As mentioned
above, the SMC method is data dependent. Therefore, simulations such as Monte Carlo and inversion of
lesser-quality field data would be useful for covering a wider range of conditions and determining the data
fidelity required for this method to succeed.

• Time decay of Total Magnetic Charge is ordnance specific

Every type of ordnance and cylinder that we have tested so farshows a different signature. This is confirmed
by preliminary canonical analysis and suggests the high potential for discrimination of UXO through their
TMC. In-depth review of available statistical classification methods and development of procedures to deal
with incomplete recovery of the TMC curve are warranted.

• Sensitivity to location–orientation parameters

Preliminary tests suggest that the correct TMC can be inferred even when the modeling spheroid has an
inaccurate horizontal position (≤ 10 cm) or with large errors in azimuthal direction. Depth errorappears
to affect the TMC in a predictable and consistent manner at all time channels, thus helping with the identi-
fication of buried ordnance despite modeling positional error. Detailed sensitivity analysis is warranted to
systematically explore this effect and that of data positional error.

• If target depth is known, a sphere or a plane can be used to determine the total magnetic charge

There is a tremendous amount of flexibility in the SMC model. As such, we have found that the shape of the
magnetic charge surface does not need to conform closely to the target, i.e., multiple spheroids smaller or
larger than the target can be used to model charges. Results not presented here also show that if we choose
a sphere or a simple horizontal plane to model the charge distribution and determine the TMC, we can (1)
still fit the data well, and (2) eliminate the need to determine the target orientation.

• Inversion Algorithms for Location and orientation needs further development

In this study the location and orientation of the target was given, although simple algorithms were tested to
optimize the horizontal position to correct for the discrepancy between the center of a ordnance as defined
in the field and the center of the modeling spheroid that minimizes data misfit. A procedure to deal with
the non-linear part of data inversion, i.e., identificationof position and orientation, remains to be developed
and tested. At this point it also remains unclear whether data are needed at two elevation to accurately
determine all UXO parameters, as in Shubitidze et al. (2005), or whether full non-linear inversion of data
at a single elevation would be possible.

4.4 Outlook

The work presented here has demonstrated that both the SEA/RSS and SMC approaches have potential to improve
UXO discrimination. However, a substantial research and development effort must be undertaken before these
techniques can be applied to the real world UXO problem. We presented some of the concerns specific to the
performance and suitability of each method. Addressing these concerns, the next logical steps would include:

• Comparison to Dipole Models

The dipole model is the most commonly used technique for UXO discrimination problems. In this study,
we did not investigate if the SMC and SEA methods would represent a significant improvement to dipole
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based methods. The SMC and SEA can model the non-dipolar components of the secondary field. This
suggests that the spread of feature parameters for a SMC/SEAmodel would be relatively smaller than for
dipole parameters. We would expect that for a library based discrimination approach the RSS would be
more suitable than the dipole model due to the ability to moreaccurately model the data. The SMC model,
however, is very flexible and, since a significant amount of regularization needs to be injected into the
problem, the inversion for a charge distribution is much less straightforward than a dipole inversion. Now
that a method for recovering the charge distribution has been established, comparisons to the dipole models
discrimination ability can be carried out.

• Sensitivity analysis

For both the SEA and SMC techniques it is critical to determine the data fidelity required for application
to practical discrimination purposes. For the SEA, we need to determine a threshold for the misfit (or
correlation) to the measured data below (or above) which we classify anomalies as not coming from targets
within our library. For the SMC, analysis has to be completedthat determines the quality of the total
magnetic charge estimates as a function of signal to noise ratio as well as data coverage, positional error,
and other survey/instrument characteristics.

• Multiple Targets

The data considered in this study were from single, isolatedtargets. Provided that the response of two UXO
targets are linear, the RSS can easily model the total response, and interpretation techniques based on the
RSS can be developed. Nevertheless, the overlapping scenario of UXO plus clutter would be challenging
to the SEA techniques. The ability for the SMC to be effectivein a multiple target scenario is an open
question.

• Geologic background

A geologic background signal prevented us from processing data collected at the Sky Research UXO Test
Site. Since the data were collected in a cued interrogation style (i.e., a small 2 m x 2 m area), we need to
incorporate a soil background signal into our analysis.

We believe that if the above research can be carried out, thenthe full potential of the SEA and SMC tech-
niques can be realized in UXO discrimination surveys.
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