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Acronyms

AIC — Akaike information criterion

BOR — body of revolution

BSS — blind source separation

EDA - eigenvalue decomposition analysis

EMI — electromagnetic induction

EM-61 — Geonics’ four gate time-domain EMI system
EM-63 — Geonics’ multi-gate time domain EMI system
FEM — Finite Element Model

GEM-3 — Geophex’s frequency-domain EMI system
GLRT — Generalized Likelihood Ratio Test

HO — Hypothesis 0, or null hypothesis, or non-UX¢pdthesis
H1 — Hypothesis 1, or target/UXO hypothesis

ICA — independent components analysis

IEEE — Institute of Electrical and Electronic Enggms

IPR — In-progress review

MDL — minimum description length

NRL — Naval Research Laboratory

ROC - receiver operating characteristic

SERDP - Strategic Environmental Research and Dpretat Program
SNR - signal to noise ratio

TRGS — Transactions on Geoscience and Remote $§ensin
UXO — Unexploded ordnance.

WES — Waterways Experiment Station



List of Figures
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observatiord. In the computations considered here the cylinelegth and diameter are
2.54 cm; the ring is defined by an inner diamete?.6 cm, outer diameter 3.9 cm and
thickness 5 mm; the distanae=5 mm; and the cylinder and ring conductivities are
6=3x10 S/m andb=5x1¢ S/m, respectively.

Figure 2. Model predictions for two different object orietitens, with a ring shown on
the left and a cylinder shown on the right. Presticvoltage is plotted as a function of
frequency.

Figure 3. EMI response of the composite ring-cylinder taigeFigure 1, as observed at
angle of observation°Qtop left) 186 (top right) and 99(bottom). The squares denote
the results of the direct FEM solution and the lescthe model fit based on a dipole
representation of each target part. The data usedoduce these curves were computed
at the frequencies associated with the points, téenoy squares and circles.

Figure 4 . Model fits and measured data for two differelject orientations of an 81mm
mortar. A) zero degrees, B) 180 degrees

Figure. 5. Model fits and measured data for ninety degreentation of an 81mm
mortar.

Figure. 6. Model predictions and measured data for an 81lmnmtamat 45 degrees.
Prediction is based on model fits from zero, omgh®yi, and ninety degrees

Figure 7. Single dipole fit to measured GEM data from a b@¥& UXO (left) and two-
dipole fit (right) to the same data.

Figure 8. Confusion matrices for 4-target classificationlgeon. True targets labeled in
rows, classified targets labeled in columns. Gli@sgion results for single dipole model
on the left, two dipole model on the right.

Figure 9. Average percent classification obtained from thefgsion matrices obtained
for both one- and two-dipole fits. Three casescaresidered depending on whether
additive white Gaussian noise is present, and hashnvariability/uncertainty there is in
the target moment parameters. Generally, perfocmanstable under reasonable
amounts of noise, but uncertainty in the targeapeters degrades performance. Higher
levels of noise also degrade performance. Perfocsahanges in the single dipole
model are not statistically significant.

Figure 10. ROCs showing performance of an error-based digtator for determining
between the multiple dipole/single dipole hypotlseataiere ROCs are parameterized by
the distance separating the two objects. Simulatensiders EM 61 data.

Figure 11. ROCs showing performance of an error-based discaitor (left) and GLRT-

based discriminator where HO data is obtained ftomming (right) for determining
between the multiple dipole/single dipole hypotlsesBimulation considers EM 61 data.



Figure 12. AIC output (left) and MDL output (right) for a gite object. Minimum shown
with red square.

Figure 13. AIC output (left) and MDL output (right) for twobgects. Minimum shown
with red square.

Figure 14. GEM response at 2790 Hz (red = in-phase, bluedrgixare) for two objects
individually (circle and plus sign), when summedgded) and measured with both
objects present (solid). Objects are 9 inchestaaf 4 inches from the sensor (top) or 9
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Figure 15. Left panel: Probability of correct classificatiof 5 objects that appear in
isolation as a function of SNR (simulated datajghRpanel: Post-ICA classification of
5 objects that appear in pairs as a function of S{$iRnulated data). Object
identifications are: 40 mm (object 1), 60 mm (obj@}, 81 mm (object 3), M42
submunition (object 4), and a 155 mm (object 5).

Figure 16. Confusion matrices for classifier where objemtsur in isolation (top) or in
pairs (bottom). Average percent correct for olgewtisolation is 95%, and is 85% when
occur in pairs when ICA is used, 14% if ICA is nsed.

Figure 17. Original and extracted sources obtained for twatZMand 40mm) of the
objects considered in the source separation expatimLeft panels are for the objects
oriented vertically, right panel for the objectsented transverse. The two objects were
measured together and separated by 1”. Red csh@s original sources, blue are the
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data.

Figure 18. Confusion matrices listing fractional percent eatr identification for
experimental data when two targets are presentltsineously in the field of view of the
sensor. True targets labeled in rows, classifegets labeled in columns.

Figure 19. Example of experimental setup for UXO + multipletter experiment.

Figure 20. Portion of the experimental results from the UXO multiple clutter
experiment. Targets present are shown in thedoktmn. Classification results for the
UXO signature extracted shown in the 2nd and 3ddnosps. A 60 mm was always
present (target 1).

Figure 21.Example of the simulation setup for the circumdeipproblem. Brown area
contains no UXO, green area contains widely sepdrahomalies and dark grey area
contains overlapping objects. Cyan lines show Kited transects, data from which are
provided to the various algorithms to determine thenber of objects present as a
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Figure 22.Example results from a single simulation, a singda@sect. Signal complexity
is plotted as a function of distance along thedeah Red curve is a smoothed version of
the output.

Figure 23. A comparison of the performance of classificatteehniques with and
without incorporation of ICA. Classifiers are txad on calibration measurements of
isolated UXO. Performance is measured in termare& under the ROC for which 1
indicates perfect performance and 0.5 indicatedawmnchance.
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achieves perfect detection at zero probabilityatdd alarm. Only one source is extracted
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Figure 25. ROC for each of the four measured objects. Twocas are extracted by
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Figure 32. Comparison of performance for the UXO model sirhafafor three different
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Performance was measured in terms of area und&ai@

Figure 33. The effect of varying the number of samples usedthe toy problem
simulation. In this case, 0% overlap was used,thacamplitude patterns were modeled
from the dipole model, with random orientationsheTN highest energy samples were
used where N ranges from 800 to 25. Performansemeasured in terms of correlation
coefficients.

Figure 34. The effect of varying the number of samples usedthe toy problem
simulation. In this case, 0% overlap was used,thacamplitude patterns were modeled
from the dipole model, with random orientationsheTN highest energy samples were
used where N ranges from 800 to 25. Signal 4 ¢tnegare wave) was replaced with
another window pulse train that had a correlati@efficient with signal 1 of 0.3.
Performance was measured in terms of correlatiefficeents.
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Figure 38. Comparison of the variability for different typesamplitude patterns for the
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Figure 41. Simplistic amplitude patterns generated for thepmblem simulation: peak,
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Figure 43. The effect of the number of sources extracted @4 for the toy problem
simulation. In this case, 0% overlap was used,thacamplitude patterns were modeled
from the dipole model, with random orientationsheThumber of sources varied from 1-
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terms of correlation coefficients.

Figure 44. UXO-UXO pair classification accuracy using ICA telafe method vs.
different noise levels under the condition that O present

Figure 45.UXO-Clutter pair classification accuracy using |@&mplate method vs.
different noise levels under the condition that UKQ@itter pairs present — 2 UXO in
library and in data.

Figure 46. UXO Classification Accuracy using ICA template methad different noise
levels under the condition that UXO-Clutter pairsgent — 4 UXO present in library and
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Figure 47. Comparison between iterative fit (left) and maximlikelihood fit (right). In
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SERDP/NRL/WES database. AUC is plotted as a fanatif the number of grid points
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Executive Summary

In this effort, we considered the problem of clBgsg closely spaced UXO. When two
UXO are in close proximity, their signatures as swead by electromagnetic induction
(EMI) sensors co-mingle, and traditional classtiima algorithms cannot be utilized. We
explored the use of independent components anglfa#g, a technique from the blind
source separation (BSS) literature as a pre-progesdep by which to separate the
individual UXO signatures from the mixtures meaduog the EMI sensor. Simulations
indicated that this procedure could succeed antbreessome level of classification
performance in the case of overlapping signatufiesst-stand data also indicated that the
ICA-based classification approach showed promi@ally, testing the algorithms on
data collected by NRL/WES suggested that in sonrsesc#CA could be used as a pre-
processing step and that closely-spaced UXO caailcldssified.

During the course of this effort, several studiesrevperformed to try to assess the
limitations of the ICA-based approaches for disangtion of closely spaced objects.

Correlation between object signatures can degradermance, and alternate techniques
based on ICA were considered as a remedy to guisOther issues including sampling
density, noise susceptibility, and others were aigestigated.



l. Background

In this project, we investigated the phenomenolalgispects of the unexploded ordnance
(UXO) detection, location, and discrimination predol with EMI sensors, with a focus on
highly contaminated sites. In the majority of chaare scenarios, UXO co-mingle with
extensive surface and subsurface clutter, suchetal ipieces from shattered ordnance
(e.g. fins). Moreover, near the “bull’'s-eye” of arfher range, many UXO are in close
proximity, with the classification problem exacesxhby intermingling anthropic clutter.
Furthermore, naturally occurring magnetic geologise often adds to the complexity of
the discrimination task. Until recently detecti@agorithms could not distinguish
between buried UXO and clutter, leading to mangdahlarms. Over the last several
years, modern geophysical techniques have beenlopede these merging more-
sophisticated sensors, underlying physical modeld statistical signal processing
algorithms. Such approaches have yielded redudsd #arms. In particular, for sites
where anomalies are well separated, it has beemrshbat the combination of
phenomenological models and advanced signal procesan markedly decrease the
time required to remediate a site by classifying@QJxnd non-UXO items correctly. For
highly contaminated regions, however, the signatuoé multiple anomalies often
overlap, vitiating the utility of many of the newtrchniques. We pursued a program
employing a synergistic use of advanced phenomgigalb modeling and signal
processing algorithms to address this problem.thénend, progress was made toward
solving this problem, and issues that limited tffeativeness of our proposed solutions
were highlighted.

Il. Objective

The research program had two principal objectiy&sthe development of new physics-
based signal-processing approaches applicable éonasos in which responses from
multiple UXO and clutter items co-exist in a senssmgnal, with the goal of
discrimination; and (2) the use of information-thet@ measures to define the types of
scenarios for which UXO and clutter density is kagh to reliably perform classification,
necessitating a direct mechanical excavation adrdite region. The first objective was
addressed by the parallel development of phenorogitall models and statistical signal
processing algorithms. The latter topic addressieclimscription of those regions,
presumably in the vicinity of a former bull’'s-eyfey which discrimination of individual
UXO and clutter is intractable due to the high dgnsf target/clutter overlap and the
limited information in available sensor data. lmoply, this latter objective could lead to
tools that allow circumscription of those regioms fvhich identification of individual
UXO adds value.

1. Materials and Methods

We pursued a research program that focuses on plegrmdogical modeling of EMI
responses to multiple objects, and on the developmithe associated physics-based
signal processing algorithms. We used the modetadtivate the statistical algorithms,



and to generate a database of simulated signalgham we can test our algorithms. As
we developed models capable of predicting the Eighegure of multiple UXO and
anthropic-clutter items, we used these models i@ldp detection and discrimination
performance bounds for the scenario of multiplexppnate objects. We also investigated
both traditional and novel signal processing apghmea to allow both the detection of the
existence of multiple objects, as well as the s#par of the individual signatures from
the cumulative signature. Following the model-basenulations, we transitioned to
processing data measured from a field pit.

There are two principal sensors used currently @dem UXO sensing: electromagnetic
induction (EMI) and magnetometers. Magnetometer &MI models have been
developed by Duke and others for conducting anebfisrtargets in isolation, and it was
therefore of interest to address how these modett be augmented to handle the multi-
target problem. Initially, our models had been apto simple, isolated UXO. There are
many cases for which one would be interested irersomplicated targets. In the context
of individual UXO, many ordnance are composed oftiple parts (body, rings, fins,
etc.) each of which may contribute its own dipaeponse to the composite signature.
We extended the above EMI resonant-dipole modéheocase of targets with multiple
parts, utilizing iterative techniques.

In terms of signal processing, we developed a tbrage processing procedure. The first
stage was used to determine whether multiple abge present in the sensor’s field of
view, and the second was processed to determinkk#éldood that the sensor data are
associated with a UXO item. In agreement with reptyom other labs [e.g. B. Barrow
and H. H. Nelson, "Model-Based Characterization Electromagnetic Induction
Signatures Obtained with the MTADS Electromagndticay,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 39, pp. 1289;12001.; T. H. Bell, B. Barrow,
and J. T. Miller, "Subsurface Discrimination UsiBggectromagnetic Induction Sensors,"
IEEE Transactions on Geoscience and Remote Senshd39, pp. 1286-1293, 2001.],
our preliminary analyses indicated that utilizatmina dipole-fit parameter to EMI data
can be used as a pre-screener to determine losatere it is likely that multiple
objects are present. |Initial stages of the obgsgaration algorithms also provided
estimates of the number of objects that could kel s a prescreener. In addition to
further investigating the use of Bayesian techrsquwee have used to successfully
discriminate UXO objects from clutter in relativelyncontaminated sites, we also
investigated independent component analysis (IC&ghniques for blind source
separation (BSS). The ICA approach had not beptieal to date for the subsurface
object detection and identification problem. Owoeds was on the development of signal
processing algorithms that rigorously incorporéie tinderlying physics characteristic of
the sensor and the anticipated UXO target. Thégeridoms could provide both a
mechanism by which to detect UXO in highly contaatéd environments, and also a
performance bound which will define the point at ieth alternative clearance
technologies should be employed. For the acqorsitif field data on which we could
more fully test the performance and robustnessuofatgorithms, we will rely on the
sponsor as well as our connections with governntedmtratories (NRL) and industry
(Geophex).



V. Results and Accomplishments
Modeling

We extended the EMI magnetic-dipole model to thgecaf complex targets, such as
UXO. We demonstrated that the simple magnetic-dipnbdel used in our previous
modeling efforts can be extended readily to thee adscomplex targets, by considering
multiple offset frequency-dependent magnetic dipoles, @stsatwith various parts of

the target. For example, in the context of a UX(gnetic dipoles may be used to
represent localized firing rings or fins on the madce, while distinct and spatially
separated dipoles are used to represent the UX@iis lbody (or other components). The
simple model is adequate for relatively simple éésgwith dimensions small relative to
the target-sensor distance. For example, the nfaddhe EMI response for an object
that is identical as observed from both ends oftéinget. This is true for a cylinder, for
example, but not in general for a UXO. The forniola of the single dipole model that
we have used is

M (0 = ZZ[m(0)+Z ;")]+(XX+W)[m(0)+Z ]

2k Ja’

wherez is a unit vector in the direction, andx andy correspond to orthogonal unit
vectors, each perpendicular o The termsm,(0) and my,(0) account for the induced
magnetization produced for ferrous targets (validwil to static magnetic-field
excitation, &« -~ 0) , and the terms in the summations account for fteguency-
dependent character. For simple targets, typicaélyonly require the first term in each
sum, representative of the principal dipole modma@leach of the principal axes. We
extended this model to the form

M (c) = Z{zz[mz(OHZ amZk ]+(xx+yy)[m(0)+2 Jaf }df—f)

=2 M, (ddr-r,)

n=1,N

wherer, represents the location of thth set of dipoles. Note that we have assumed that
the local coordinate system of each dipole sg¥,(2) is the same, although this need not
be true in general. Although the model appearsfoasent a significant escalation in
complexity from the simple model, we note that ragtice (for actual UXO) we typically
only require a small number of terms

We considered a conducting cylinder of length 2&4, diameter 2.54 cm and
conductivity 6=3x10 S/m. Other simulations with different geometriegrev also
considered, and similar conclusions were drawn.addition, we considered a ring of
inner radius 2.6 cm, outer radius 3.9 cm, thickriessn, and conductivitys=5x1C S/m.
The targets are sensed via a simulated GEM-3 fretyudomain EMI sensor. The



cylinder and ring are used to realize a compositget, as depicted in Figure 1. The
center of the sensor coils are positioned 12 cmmftbe center of the cylinder. Our
objective is to consider the fit of the simple paedric model to the FEM-computed EMI
signature of the cylinder and ring alone. The FEbdel was developed under previous
SERDP support. We then consider the accuracyeotdimposite model in the context of
the cylinder-ring composite target. In this test first perform the model fit of the
isolated targets, from which we extract the paramsetequired in the single dipole
model. These same parameters are then used inothposite model, but now the
associated dipoles are positioned at the centdreotylinder and ring respectively (i.e.
the magnetic dipoles associated with the ring aiidder are offset with respect to each
other, to reflect the respective positions of tbe@sponding target parts).

6 =00
T
d
.

6 =90°

6 =180°

Figure 1. Schematic of a conducting cylinder and ring, th® tuwsed to constitute a
composite target. Also denoted is the coordinatgesy used to define the angle of
observatiord. In the computations considered here the cylinglegth and diameter are
2.54 cm; the ring is defined by an inner diamete2.6 cm, outer diameter 3.9 cm and
thickness 5 mm; the distanaE=5 mm; and the cylinder and ring conductivities are
6=3x10 S/m andb=5x1¢ S/m, respectively.

In Figure 2 we depict the in-phase and quadratareponents of the computed voltage
computed for the sensor, with the ring (left) agtinder (right) in isolation. Results are
shown with the coil axes aligned with the targe¢sax®) and orthogonal to the target
axes (96). The solid curves represent the FEM computatam the points the single-
dipole model fits. In Figure 3 we compare the ra, coupled FEM solution of the
ring-cylinder compositeyis-a-visthe multi-dipole model fit, using the model paraens
extracted from thendividual targets. In Figure 3 we show comparisons betwieei-EM
and parametric models for anglel 00° and 186. The parametric model, which here
ignores coupling between the components, is gdgeiralgood agreement with the
rigorous FEM computations, particularly for ®0t is also important to note that the
composite target appears different to the sensobssrved at all angles, due to the fact



that the ring is not in the center of the cylind&rsingle set of dipoles, as in the simple
model, does not capture these differences.
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Figure 2. Model predictions for two different object orietitens, with a ring shown on
the left and a cylinder shown on the right. Presticvoltage is plotted as a function of
frequency.
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Figure 3. EMI response of the composite ring-cylinder taige~igure 1, as observed at
angle of observation°qtop left) 180 (top right) and 99(bottom). The squares denote
the results of the direct FEM solution and the lescthe model fit based on a dipole
representation of each target part. The data usedotduce these curves were computed
at the frequencies associated with the points, téenoy squares and circles.
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Figure. 5. Model fits and measured data for ninety degreentektion of an 81mm
mortar.

We also considered this model in the conteximefsuredGEM-3 data, for an actual
ordnance, an 81 mm mortar. In Figures 4 and 5 isgmt measured data (points) and
the EMI fit based on the multi-dipole, for sensagies of observation®Gand 186. Note
the significant differences in the EMI signaturevaswved along its axis from the top’J0
and from the bottom (18 this motivating the composite model. As a mdnatenging



test of the model, we utilize the parameters es¢chin the context of Figures 4 and 5 —
based on frequency-domain observations at thredesng to predict the complex
frequency response at a fourth angle not observesh\werforming the model fit. Results
are shown in Figure 6 for GEM-3 measured data atw#h a comparison to the multi-
dipole model based on parameters extracted frora datthree separate observation
angles. We see in Figure 6 an encouraging compabistween the parametric model and
the measured data. The results in Figures 4-6daswnstrate the generally strong aspect
dependence to the frequency-domain EMI signaturectial ordnance. However, it is
important to emphasize that although the resul&gares 4-6 show significant variation
with orientation, each example is characterizethieysame magnetization tendéy with

the aspect-dependence of the signature charaddyize. This implies thaM captures
the underlying structure of the target itself, ipededent of orientation, and consequently
the parameters &fl (notU) are used in the classifiers.
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Figure. 6. Model predictions and measured data for an 81lmmtamat 45 degrees.
Prediction is based on model fits from zero, omghyi, and ninety degrees
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Figure 7. Single dipole fit to measured GEM data from a h@¥& UXO (left) and two-
dipole fit (right) to the same data.

Above, we demonstrated that the two-dipole modelided better fits to the FEM
model data. We also showed that a two-dipole mpdailicted experimental data that



had not been used in the fitting algorithm bettenta single dipole model for an 81 mm
mortar. Next, we considered additional UXO itemd ahowed that the multiple-dipole

fit was better than a single dipole fit for all cplex ordnance considered, and did not
degrade the fit for simpler ordnance items (resfdts 37mm, 60mm, and 105 mm

ordnance items reported during the May 2003 IPHBigure 7 shows an example

comparison for a single dipole fit (left) and 2 dip fit (right) for a 105 mm at O degrees.
Similar results were seen for all complex ordnaatall orientations. A complete data

set is available upon request, but these resudisated that the multi-dipole model does
indeed improve fit error for complex ordnance itemghe tradeoff, of course, is the

number of parameters that must be estimated frendaka.

In addition, we considered whether or not theserawgd fits actually resulted in
improved discrimination performance. We considefedr targets, the first three of
which were “complex” and consisted of two dipolésidferent locations. The stronger
of the dipoles in all four cases was the same. fébgh target was “simple”, consisting
of only a single dipole. Both one and two dipois fvere computed and used in a
Bayesian classifier. To render the problem mofécdit, the stronger dipole for all
targets (the only dipole for the fourth target) wadentical. Classification performance
was computed as a function of noise level and @iih lheterministic target parameters
and random target parameters. The random paramceterwas considered in order to
assess the impact of ordnance variability as sugdédsllowing the May 2003 IPR. An
example confusion matrix obtained for classificatisith the single dipole model (left)
and two dipole model (right) is shown in Figure 8The average percent correct
classification improves by almost 50%, indicatihgttthe better fits associated with the
two dipole model do positively impact discriminatiqperformance. This trend is
observed for all noise levels, and under conditmingarameter uncertainty. A few of the

results for this analysis are summarized in FigureThe complete data set is available
upon request.

Results with single dipole | | Results with two dipoles
Classified Target Classified Target
T T2 T3 T4 TIT T2 T3 T4
< o fo16] o o8] _TI[1] 0o [o0]o0
]

EPTZ 0O |068 | 0 |034 EDTZ 0O |0%8 | 0 |0.02

513 0 | 0 |04]06 Eﬂ o 0o |10
H

14| O 0 0 1 = T4 0 0 0 1
AV % Correct =51.4 AV % Correct = 99.5

Figure 8. Confusion matrices for 4-target classificationtpeon. True targets labeled in
rows, classified targets labeled in columns. Cli@sgion results for single dipole model
on the left, two dipole model on the right.



Awerage Percent Correct

Case One Dipole = Two Dipole
No Noise, No Uncertainty 51.5 99.5
20 db AWGN, No Uncertainty 52 99.5

20 db AWGN, 10% Uncertainty 53.5 92

Figure 9. Average percent classification obtained from thefgsion matrices obtained
for both one- and two-dipole fits. Three casescaresidered depending on whether
additive white Gaussian noise is present, and hashnvariability/uncertainty there is in
the target moment parameters. Generally, perfocmanstable under reasonable
amounts of noise, but uncertainty in the targeapeters degrades performance. Higher
levels of noise also degrade performance. Perfocsmahanges in the single dipole
model are not statistically significant.

One issue that has yet to be addressed is howddrdinate between a single UXO that
is complex enough to need to be modeled with nmeltigpoles and multiple single-
dipole objects. While this question has not bedar@ssed in this research, we have
considered possible approaches to addressingub&ign. In general, the question we
are trying to address is whether there are multeles in the field of view or not. At
that point, we could then pose the question of hdrethe data could come from a UXO
with a known multi-dipole model, a UXO with a sieglipole model, or whether the
dipoles are not associated with UXO. This compiewill be considered in future
efforts.

Finally, the modeling assumes a BOR since we arg mterested in considering UXO
from the theoretical standpoint. For field worle will not be utilizing the BOR
assumption and thus will be able to ascertain wdredh object’s features extracted from
a dipole model are indicative of a BOR or not.

Signal Processing
Prescreener

The first task was development of a pre-screenat tlan determine when multiple
objects are present. |Initially, we considered eqmreener that detects the presence of
multiple dipoles in spatially collected data. Tetermine whether multiple dipoles were
present in simulated data, we utilized a simpled3&gn processor to decide between the
hypothesis that two objects were present versushtipothesis that one object was
present. The simulated objects were single dipoteter HO and multiple dipoles under
H1. Their moments were based on moment estimetes 80 mm and 81mm test data.
The decision statistic that was utilized was thedyess of fit metric (error) between the
simulated EMI data and the signature predicted lsjingle dipole model. For multi-
frequency EMI data, such a simple prescreener geaviexcellent performance for
almost all object separation distances. Figuresiéws the ROC performance for a



variety of object separations for an EM 61 datayimch objects had to be considerably
more distant to achieve performance similar to toat the multi-frequency system
considered previously. In this curve, the probgbif detection implies probability of
detecting two objects when two are present versasptobability of false alarm. The
latter is the probability of deciding that two otfje are present when only one is present.

Because this prescreener was not as effective Mr @ data, alternatives were
considered. We considered a GLRT processor tdliedtypotheses H1: more than one
dipole present and HO: one dipole present. Tha daed by the processor was the
extracted moments and moment ratios obtained wsisiggle dipole fit. We evaluated
performance of this GLRT under a variety of assuomst regarding the training data:
specifically whether the density functions for tHata under both HO and H1 were
available, or whether only HO prior information wagailable (as would most likely be
true on a test site). Our results indicated tbatiany different combinations of UXO-
like objects and clutter, satisfactory prescregoenformance could be obtained when
only HO training data was known. Figure 11 showsgample in which the fitting error
metric that was used for the GEM-type prescreeras very ineffective (left), whereas
the GLRT processor evaluated using training dateofdy HO was substantially better

(right).

ROC for different target and clutter distances

I pT target =T imasa s T i
: iclutter m1=3 im2=1
(O e e R LR R R oo R R R LR R
' Z
OI 1 1 1 1 |
0 02 04 06 08 1

Pfa

Figure 10. ROCs showing performance of an error-based digtaitor for determining
between the multiple dipole/single dipole hypotlseatiere ROCs are parameterized by
the distance separating the two objects. Simulatensiders EM 61 data.
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Figure 11. ROCs showing performance of an error-based discaitor (left) and GLRT-
based discriminator where HO data is obtained ftomming (right) for determining
between the multiple dipole/single dipole hypotlsesBimulation considers EM 61 data.

We also considered two information-theoretic crehat could be applied to frequency-
domain data to estimate the number of dipoles: Atkeske Information Criterion (AIC)
and a Minimum Description Length (MDL) criteriorGiven a set of eigenvalues of the
estimated covariance matrix, akérequency samples, the AIC and MDL are given by

N — s g(/‘i+11'”'/1m) ; i
AIC(i) =-2(m-i)klIn a(Ai+17”"/]m)+2I(2m )

N — (i g(AHl"“’Am) E i
MDL(i) =-(m=-i)kIn a(/11+1"",/]m)+2|(2m 1)Ink

whereg() anda(e) denote the geometric and arithmetic mean of drguments,

g(/‘i+1”",Am) = ( ﬁ Ak)%n—i

k=i+1

1 m

a(/1|+1! ’Am) m_i k;fk
The AIC or MDL estimation of the number of sourdsstaken to be the value of
i 0{0,---,m-1} where AIC(i) or MDL(i) is minimized. Research has shown that MDL
is asymptotically consistent, whereas AIC is natsistent, and tends to overestimate the
number of sources. However, AIC has been repoadxt tmore robust at a relatively low
SNR or with a smaller sample size. Figures 12 Eoidhow the AIC (left) and MDL
(right) output as a function offor a simulated object with a single dipole and tijoles
respectively. In our simulations, both of thesetrioe have achieved near perfect
discrimination of single dipole objects versus nplét dipole objects in noise free
conditions. Specifically, single dipole objectsarlg always had lower minimum AIC
and MDL (usuallyi = 2) than two dipole objects (usualiy= 4 or i = 5), so
discrimination between one and two dipole objectsiad be effected solely based on this
metric. While performance degrades slightly insegiperformance is still outstanding,
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and much better than goodness of fit metrics. Glethe remaining task is to assess
performance on real data.

AIC Qutput

Figure 12. AIC output (left) and MDL output (right) for a gite object. Minimum shown
with red square.

AIC Qutput
>

o

0 5 10 15 20 25
index

Figure 13. AIC output (left) and MDL output (right) for twobgects. Minimum shown
with red square.
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Signature Separation

As shown in the modeling section, for complex UX® multi-dipole model may be
necessary to fully replicate the aspect-dependehiior associated with uncertain
target/sensor orientation. A second case in whidhtiple dipoles may be observed by
the sensor occurs when there are sivopleobjects within the view of the sensor. We
investigated independent components analysis (K32 mechanism by which to extract
the individual targets signatures from sensor thtan at multiple positions over closely
spaced objects. ICA assumes that the signaturdsetextracted are simple linear
combinations of the underlying signals. In theecag multiple closely spaced objects
sensed with an EMI system, modeling results sugipastEMI currents present on one
object may induce a secondary response in a sectwskly spaced object, thus
invalidating the linearity assumption. As notedwad we utilized our models to assess
the relative size of this non-linear effect, whiale observed to be small. We also
performed several experiments to ascertain whdtteeffect can be observed in field
data.

The first experiment to show proof of concept peate as follows. The GEM-3 was
used to collect data from two simple (cylindricaldacube) objects. The cylinders were
aluminum and steel as were the squares. CubesMerea side and cylinders were 1”
in length and 1” in diameter. Data was taken Far dbjects in isolation and when they
were various distances apart. The sensor waslbeatseveral different heights and data
was taken spatially. The separation distance weasared from the sides of the objects,
not from the center. The distance was equallyt fi@im the origin (e.g. the side of each
object would be located at +/- 4.5 inches for a¢hiseparation). Data was collected —
16” from the origin to 16” from the origin in 2” arlements. Background measurements
were made before and after each measurement tectdor background drift. Object
separations considered were 3" and 9” and sensgintreove the objects was 4” and 7”.
The data from this collection will also be usedetzaluate the signature separation
algorithms.

Figure 14 (top) shows the 2790 Hz component medswiéh the GEM3 for a 9”
separation and 4” sensor height. Object 1 is yfieder and Object 2 is the cube. The
blue lines show the quadrature data, the red khesv the in-phase data. Data plotted
with the circle and plus symbols show the pattefrrspatial response for each of the
objects when measured individually. The solid kews the data measured when both
objects are present, and the dashed line showdatiaethat is predicted by summing the
two individually measured signatures. Clearlyeéinty does not hold in this situation.
Figure 14 (bottom) shows similar data measured thi¢hobjects are separated by 9” but
the sensor is at a 7” height. In this case, tiegliity assumption appears to be valid.

In this experiment, linearity seemed to break datthe 4” height, but was a reasonably
good assumption for all other heights. Assumirgttdrget to sensor height distance was
such that linearity held, linearity held for allrgat separations. It is possible that the
sensor coil is so close to the targets that theatddistort the transmitted field differently
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than one rather than coupling between the senasrsggested by Mike Tuley (personal
communication). It is also possible that in thamfeeld, linearity does not hold.

Response as a Function of Paosition for Two Objects Independently and as a Systemn
an 2780 Hz, 9 Inches of Separation, 4 Inches Sensor to Target Height
T T T T T
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Response as a Function of Pasition for Twa Objects Independently and as a System
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Figure 14. GEM response at 2790 Hz (red = in-phase, bluedgiare) for two objects
individually (circle and plus sign), when summedgded) and measured with both
objects present (solid). Objects are 9 inchestaaf 4 inches from the sensor (top) or 9
inches apart and 7 inches from the sensor (bottom).

Next, we began the assessment of algorithms tcaexindividual signatures from
composite measurements. Initially, we considemdgl simulated data. We considered 5
simulated targets, present in the simulated dateresingly, or in pairs. The object
characteristics were selected to mimic UXO-likeeatg, and were estimated using the
AETC GEM database, and GEM-3 like object signatueze simulated (bandwidth=24
kHz). Specifically, we used data from the datalfem® a 40 mm, 60 mm, 81 mm, M42
submunition, and a 155 mm objects and used theageegparameter values estimated
from a dipole model fit. Object identificationseaM42 submunition (object 1), 40 mm
(object 2), 81 mm (object 3), 155 mm (object 4)d am 60 mm (object 5). These
munitions are fairly easy to classify in isolatiohhe simulations considered a 1 m by 1m
grid with samples every 20 cm. For single objettisy were placed at the center of the
grid, for paired objects they were placed on thdlimé of the grid in the y orientation
and -25cm and +25 cm in the x orientation. Theyewsssumed to be pointing nose in
the y orientation and at a depth from the sensd&@Oofm. Additional simulations were
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performed at other orientations and depths anditotg but results were similar so for
brevity only these results are included as theyepessentative.

Classification of the single objects was performephg a traditional Bayesian maximum
aposteriori classifier, as has been used in our previous SE&ioRsored research.
Performance was studied as a function of SNR apthdeClassification of the pairs of
objects was performed by first running a stand&#é &lgorithm on 9 sets of simulated
spatially-collected data, then applying a BayesiEssifier to each extracted signature.
Results were only considered correct for the pairebjects if the classifier identified
both objects correctly, i.e. if objects 3 and 5evpresent, a classification of 3 and 4 was

considered incorrect.

Classification in the paimdgjects simulation was studied as a

function of SNR, object depth, and object sepanatioFor a fixed noise variance,
confusion matrices were calculated. In this c&MR is calculated as the ratio between
the average object energy and noise variance. ghtem spatial locatioss;, assuming\
in-phase samples in the frequency domain nguadrature samples in the frequency

N N
domain, energ§(s) is defined a&(s) = > 1 (f)*+> Q(f)*. Average object energy is
f=1 f=1

defined as the average energy over all spatialtimtas. This definition of SNR is
commonly used in the signal processing literatwtehas not been shown to be consistent
with field values of SNR. Note that since averabgct energy is utilized over a fairly
wide extent, significantly higher SNRs are neede@chieve good discrimination than
would be needed if a different energy metric, sasimaxE(s)] were utilized instead.

Performance curves for the set of 5 objects presesingly as a function of SNR are
shown in Figure 15 (left). Similar curves for ésat of the paired object presentations
Clearly, at a giv@NR, the classification of single

objects is better than classification of pairs lofects, but it is possible to classify pairs of

are shown in Figure 15 (right).

objects to some degree.
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identifications are: M42 submunition (object 1), @@ (object 2), 81 mm (object 3), 155
mm (object 4), and a 60 mm (object 5).

Figure 16 shows confusion matrices for the sindieds at a fixed SNR of 70 dB
(Figure 16 top) and for pairs of objects at the a&@NR (Figure 16 bottom). Average
percent correct classification is also shown. #hs particular combination of object
separation, object depth, and SNR, there is arcappately 10% degradation in percent
correct classification between the paired objesecand the single object case. Also of
interest is the performan@hancementver Bayesian processing that is performed on
the paired object data without performing ICA. Tawerage percent correct performance
in this case is 14%, as compared to 85% when IC&mployed. The rationale behind
this poor performance without the ICA is associamgth the extraction of multiple-
dipole information without any prior informationThis difficulty has been observed in
the multi-dipole fitting described in the modelisgction. In a sense, ICA utilized a
linear mixing matrix assumption for the spatialadlahd separates the signatures so that a
single dipole feature set can be extracted easlliyese results were promising enough

that we continued to investigate ICA.

Object 1| Object2 Object3 Object4 Objegt5 Can'tlbe
classifiec
Object 1 94 0 1 2 2 1
Object 2 1 96 0 0 2 1
Object 3 2 0 95 0 1 2
Object 4 1 1 3 94 1 0
Object 5 1 1 1 2 95 0
0l102| 0103 olo# 0105 0203 0204 0205 0304 4305 q4NBA
olo2| 86 2 0 3 1 1 2 1 1 1 2
olo3| 2 | 85 3 1 2 2 2 1 1 0 1
olo4| 2 218 | 3 1 3 1 1 2 0 0
olo5| 1 1 1186 1 3 1 2 2 2 0
0203| 1 2 3 3] 8 | 1 3 1 2 0 2
o204 2 2 3 1 4183 0 1 1 1 2
0205| 2 2 3 2 3 1183]| 0 0 3 1
o304 1 1 3 3 2 1 38| O 0 1
o305 O 2 2 3 3 0 0 O| 88 1 1
o405 O 3 1 4 1 1 2 2 1| 83 2

Figure 16. Confusion matrices for classifier where objemtsur in isolation (top) or in
pairs (bottom). Average percent correct for olgewtisolation is 95%, and is 85% when
occur in pairs when ICA is used, 14% if ICA is nised.
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Next, we focused on comparing performance of ICAtteer BSS algorithms, since the
particular problem we are considering does not mbet independence assumption
required by the ICA formulation. We also focusedapplying the various approaches to
two forms of experimental data: one where UXO disjere measured in isolation and
then combined to form mixtures (to test initial @i@f concept) and one in which data
from closely spaced objects is measured directlg processed. Then, we have
considered the situation in which a UXO is presdahg withmultiple clutter objects, or
in which multiple clutter objects are present withthe presence of a UXO. This case
was specifically requested following the May 208RI

In our initial simulations we considered a set aflects which when they occurred in
isolation could be discriminated 93% of the timeawerage. These are the same four
objects described above. When these four objeets wresented in pairs (with random
distances between the objects and placed in the dieview of the sensor at random
depths and orientations), the discrimination atponi could only correctly identify the
two objects that were present 22% of the time cegraye when no BSS algorithm was
applied. When ICA was applied prior to discrimioat correct identification occurred
88% of the time on average. Technical details ril@ag the approach and complete
results including confusion matrices can be foundhe Hu and Collins manuscript
published in IEEE TGRS (Hu, W., Tantum, S. L., &ullins, L. M., “Classification of
Multiple Closely-Spaced Subsurface Objects: Appita of Independent Component
Analysis,” IEEE Trans. Geosc. Remote Sensing, 42(1dvember, 2004, 2544-2554).

In the companion experimental study, four objecésenmeasured in isolation and then
combined to create mixtures (objects consisted af5& mm Projectile, an M42
Submunition, an Alu Disk (127), and an Mk118 (Rogkp. These objects, when
presented in isolation, could be discriminated &f%e time. Failures in discrimination
occurred primarily because of poor inversions -eefslly local minima in the search
space. If known poor inversions were excludedsrdignation performance approached
100%, but this would essentially be an impossiblerase in the real world. ICA-based
discrimination of the synthesized two-object compke was correct 82% of the time.
When ICA was not used, both objects were corradéntified 37% of the time. In this
analysis we assumedsangledipole for each UXO object, which we know to oftea
untrue, and linearly combined the signatures. 8asethese assumptions, performance
tracks that obtained for the simulated data. Theselts are also included in the Hu and
Collins manuscript published in IEEE TGRS.

We also considered alternative BSS algorithms. iWestigated an approach based on
eigenvalue decompositions (EDA), which utilizes &t order statistics. The
assumptions underlying this approach are more aitto the UXO discrimination
problem using EMI data because independence obdlieces are not required. This
approach has also been shown in the literature tmdre robust when the available data
is limited. In the simulation study, average patceorrect discrimination performance
was 88% using ICA and 91% using EDA. In the experital data, average percent
correct discrimination performance was 82% using Ehd 92.5% using EDA. Based
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on these results, it appears that EDA does improlassification performance.
Additional performance results using EDA can benfbuin the Hu and Collins
manuscript published in Radio Science (Hu, W. ardli3, L., “Classification of
Closely-Spaced Subsurface Objects Using Electrostaginduction Data and Blind
Source Separation Algorithms”, Radio Science, J2664).

Next, we conducted an experiment in which data nveasured from two closely-spaced
UXO items. For this experiment, a set of 4 UXOg&s (M42 bomblet (T1), 40mm
projectile (T2), 60mm projectile (T3), and an 81npmojectile (T4)) were measured in
various 2 object combinations. The targets weezagp either 1” or 6” apart (measured
from side to side), thus each pair of objects aezlitwice in the data set. Data was
collected with the GEM-3 from -12 to +12 inchesZi#inch increments in a ‘+' pattern
along both the x- and y-axes of the experimentalpseand over 25 frequencies. Data
was also collected with each target alone so thaebed independent signatures could be
compared to the isolated signatures. Figure Lstithtes a subset of the individual and
extracted signatures, and shows that EDA is doirfigirly good job of extracting the
component signatures.

After obtaining the independent signatures from B&S algorithm, the targets were
identified using a Bayesian Classifier. The comdnsnatrix shown in Figure 18 provides
the classification performance. Each pair of tvijeots was measured in two different
spatial configurations, so classification perforwearcan either be 0%, 50% or 100%
since both objects must be identified correctlpéodeemed a correct classification result.
Four out of the six composite mixtures were colyerttentified 100% of the time. In
one case, the composite was correctly identifiecean the two times it was presented,
and in the case where it was misidentified, oneheftwo objects was still identified
correctly. In the remaining case, the mixture waser correctly identified, although
again, one of the two objects was always corradéwtified. These preliminary results
from experimental data from overlapping objectsaurige encouraging. In the future we
would like to apply this approach to data colledtethe field.
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MAa2Z2 (Wertical) 2M42 (Transverse)

Ambplitude
Amplitude

Amplitude

Amplitude

Log Frequency Log Frequency
Solid: In-Phase Red: Original
Dashed: Quadrature Blue: Separated

Figure 17. Original and extracted sources obtained for twatZMand 40mm) of the
objects considered in the source separation expatimLeft panels are for the objects
oriented vertically, right panel for the object$ented transverse. The two objects were
measured together and separated by 1”. Red csh@s original sources, blue are the
sources extracted using EDA. Solid lines plot nage data, dashed lines plot quadrature
data.

Target T12 T13 T14 T23 T24 T34
T12 1.0

T13 05 O 0.5 0 0
T14 0 0 0 1.0
123 0 1.0

124 0 0 0 1.0 0
T34 0 1.0

Figure 18. Confusion matrices listing fractional percent eatr identification for
experimental data when two targets are presentltsineously in the field of view of the
sensor. True targets labeled in rows, classifegets labeled in columns.

In the next experiment, a set of 5 clutter tardetske can, copper cylinder, lead ring,
metallic rock, and a spam can) and 1 60mm UXO tasgee used to form various target
systems with the number of objects present at argngime ranging from 3 to 6. Figure

19 shows an example of one configuration of objesesd in the data collection. Data
was collected with the GEM-3 from -10 to +10 inche<-inch increments along both

the x- and y-axes and over 10 frequencies. Dasaal&m collected with each target alone
so the extracted independent signatures could bgaeed to the isolated signatures.

19



The confusion matrix shown in Figure 20 providgsoation of the classification results
using the Bayesian classifier following BSS. Thessults show that the combined
BSS/Bayesian classifier approach was able to ifyetiie UXO correctly (using a library
of the four targets from the previous experimenf)ew supplied a mixed signal
consisting of the UXO and several clutter targétsee 60mm was correctly identified in
22 out of 25 trials. In each incorrect case, thadidate item with the second highest
value generated by the algorithm was correct. &hgas no ‘don’t know’ option
available to the classifier.

Figure 19. Example of experimental setup for UXO + multipletter experiment.
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Taraets 1% Choice 2" Choice
1234 60mm M42
1235 60mm

1236 60mm M42
1245 60mm M42
1246 M42 60mm
1256 60mm 81lmm
1345 60mm

1346 M42 60mm
1356 60mm 81lmm
1456 60mm M42

Figure 20. Portion of the experimental results from the UXO multiple clutter
experiment. Targets present are shown in thedoktmn. Classification results for the
UXO signature extracted shown in the 2nd and 3ddneps. A 60 mm was always
present (target 1).

Area Circumscription

The area circumscription problem was also constdmgefly. Figure 21 provides a
pictorial representation of the area circumscriptroblem we are considering in our
simulations. In these simulations, we set up guowatiis regions in the search space in
which anomalies consist of N dipoles, where N 2,1,.. We then apply our prescreeners
(goodness of fit, GLRT, MDL, AIC) along transectsdugh the simulation region and
plot the output as a function of the distance altvegtransect. Note that the prescreeners
are assuming at least one object — we did not pacate the ‘no object’ option at this
point. We can apply smoothing filters to this autpand then threshold the output to
delineate areas of high UXO density. These ddioes can then be compared to ground
truth. While the results do not match the dipategity exactly since the techniques are
estimating signal complexity, not necessarily dgpoumbers, our preliminary results are
quite promising in that they delineate areas. IE&g22 plots the output of one such
simulation along one transect, where the blackeishe output of the AIC prescreener
and the red curve shows the smoothed and threghpldeof UXO density. While these
simulated data proved interesting, no field date \esailable to test the algorithms
further. Nonetheless, in a separate effort fuoe@STCP through SIG, we did develop
an algorithm that used risk assessment that maybalsiseful for solving this problem.
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provided to the various algorithms to determine thenber of objects present as a
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Figure 22.Example results from a single simulation, a singd@sect. Signal complexity
is plotted as a function of distance along thedeah Red curve is a smoothed version of
the output.

SERDP/NRL/WES Preliminary Results

Our next focus was on processing the mixed sigeatiata measured for SERDP by
NRL, an effort which has been taken over by WEStidl efforts were primarily limited

DTKNN with two types of training
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Figure 23. A comparison of the performance of classificatiechniques with and
without incorporation of ICA. Classifiers are tmad on calibration measurements of
isolated UXO. Performance is measured in termeed under the ROC for which 1
indicates perfect performance and 0.5 indicatedormnchance.

to processing the GEM-3 data. Results from ourailnprocessing was mixed, and these
mixed results prompted several of the simulatiadists described below. Essentially,
our BSS/ICA techniques worked quite well for alt ltiue largest UXO, particularly when
coupled with preprocessing which included the esioln of ‘background’ data (data
with negligible energy from any metal object) fratassification. However, as described
below, some puzzling results were obtained. Ireotd investigate whether there were
sampling effects, amplitude effects, or signatweeatation effects that were causing the
degradation in performance, several simulationistusvere performed. It should be
noted that these simulation studies were basedeasuned field data as much as possible
— simulated data was only used in order to contrafiables (such as signature
correlation) that could not easily be controlledngsmeasured data alone. Our final
results on the SERDP/WES/NRL report will be desadliafter the simulation results

Simulations
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ICA extracting 1 source
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Figure 24. ROC for each of the four measured objects. Nwethe 60 mm object
achieves perfect detection at zero probability aéd alarm. Only one source is
extracted by ICA per object pair.

These results, and additional details regardingstidy, are in [Throckmorton, C. S.,
Tantum, S. L., Tan, Y., and Collins, L. M., “BliffSoburce Separation for UXO Detection
in Highly Cluttered Environments,” Journal of Apgdi Geophysics, 61, 2007, 304-317.]

ICA extracting 2 sources
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Figure 25.ROC for each of the four measured objects. TwocEs are extracted by
ICA per object pair. 60 mm curve follows 81 mm\aiwhere color is ambiguous.

The goal of BSS is to recover independent souro@aged only sensor observations that
are linear mixtures of independent source sigr@la. is a method for solving the BSS
problem. The goal of ICA is to find a linear tramshation,h, of the dependent sensor
signals,x, that makes the transformed sensor measurememsegzendent as possible.
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Therefore,y is an estimate of the sources. The sources amdlgxacovered whei is
the inverse of the mixing matrid, up to a permutation and scale change.

Two key issues in applying ICA are the definitidhaomeasure of independence and the
design of algorithms to find the change of basiss@parating matrix)B, to optimize this

Performance With 1 Source
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Figure 26. A comparison of the performance of ICA with thegoral, processed
data and the original data with additional pre-pesing. Performance is measured
in terms of area under the ROC for which 1 indisgterfect performance and 0.5
indicates random chance.

measure. Within a signal processing framework,ideas of ICA exploit the algebraic
structure of higher-order moments of the obsenesttor, and therefore, the measures of
independence are based on fourth-order correlahetween the entries of the measured
datay. Several algorithms have been developed, includawg (Cardoso & Souloumiac,
1993) and FastICA (Hyvarinen & Oja, 1997).

Previous work using independent component ana(ySi) to classify multiple objects,
both in simulation and with measured data, dematesdr the ability to separate and
classify each object (Hu et al., 2004). The messdiata consisted of four target objects,
taken in pairs, with ICA used to extract the signa$ of each object. Classification was
then accomplished using a library for which soureese generated using a dipole
model.

Given the demonstration of the ability of ICA tgpaeate the signatures of two objects,
ICA was applied to a field data set (a subset efSERDP/NRL/WES data set) in which
two objects were closely spaced; however, one @fothjects was now one of six clutter
items. The task was somewhat different from theeal. (2004) study. In that study,
all the objects were represented in the libraryydwer, in this task, only calibration data
for the UXO were used to determine the presencabsence of UXO in the joint

measurements. The performance for a classificatlgarithm incorporating ICA was

first compared to a standard classification algonit(K nearest neighbors, using a
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distance metric). For the ICA-based algorithm, I@As used to extract sources from the
mixtures and these extracted sources were useddssification. For DTKNN, model
inversions were performed on the mixtures, andibeel parameters providing the best
fit to the mixtures were used for feature-basedsifecation. Both algorithms were
trained using only the calibration measurementghef UXO in isolation (either as

Signal 1

Signal 2

Signal 3

Signal 4

Figure 27. The four signals used for the toy problem simalati All correlation
coefficients between signals were less than 0.05.

examples of the true sources or as examples @afubenodel parameters). Utilizing ICA
to separate the signatures prior to discriminatimmovided a clear performance
improvement for all but the largest UXO (see Fig).2 However, the results also had
several unexpected elements. First, only extrgairsingle source for each object pair
(either clutter and clutter or UXO and clutter) yiceed better performance (see Figs. 24
& 25) than extracting two or more per pair. Furfharget size was not an indicator of
which object would be most easily discriminated. owdver, the additional pre-
processing performed on the data by our lab, wimcluded reducing the size of the data
cube considered, did tend to improve performanee Eg. 26).

Simulations were run in order to gain a greatereustdnding of the factors that affect
ICA, thereby both gaining a greater understandihghe results from analysis of the
measured data as well as investigating possibleowmements for our analysis methods.
Simulations provided an advantage over the measdegd since control over the
variables for measured data is limited. The follayvissues were explored through
simulation: the importance of the pattern of sangpl how the correlation between
signals affects performance, the effect of a mismat the number of sources extracted
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No Overlaj 75% Overla|

50% Overla

Figure 28. An example of the different levels of overlap ftire toy problem
simulation. The color bars indicate amplitude, vehiglue equals zero and red equals
1. The top portion of each subplot represents lgaco that remains in the same
position, while the bottom portion of each subpkgresents an object that is brought
closer to the first object such that their spatesponses overlap (i.e. their signatures
are mixed).

versus those present, and finally the effect ofahwlitude pattern (i.e. the weighting
pattern that mixes the signals).

Two types of simulations were designed. Although began with a simulation that
incorporated models of UXO signatures and amplgystdterns, this later proved to offer
too little control over variables. So, a secondugation was designed which was more
simplistic — a toy problem.

A. UXO Model Simulation

For this simulation, a target was randomly placetthiw a square meter, and 1-5 clutter
items were randomly placed around it at a consttitl distance (separation distance).
Thus, the clutter items were all equidistant frdme target, but were randomly spaced
from one another. The target location was resiidty the separation distance such that
clutter could be placed at any radial location atidlbe located within the square meter.
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The target could either be a simulated UXO or eljtthus, the hypotheses being tested
were UXO + clutter versus clutter + clutter.

UXO were modeled as bodies of revolution (BOR). BOR has two principal

coordinates: vertical and transverse. When the®es placed along the cylinder axis,
only the vertical modes are excited. When the@eissplaced orthogonal to the cylinder
axis, only the transverse modes are excited. Hlitye the fundamental resonant
frequency dominates the sensor response and ttesponding sources can be written as

VeEY— e v
s(f)y=a+p -

f
f—jft’
where f is the set of measurement frequencié$;and f' are the fundamental resonant
frequencies which depend on the material of theeab@and its geometry (generally,
f'<fY); B and B modify the strength of the resonances and arerrdated by

s(f)=a+p

Mean Performance across
Separation Distance
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Figure 29. Result of increasing the spacing between sampleshe UXO model
simulation for 1-5 clutter objects. The perform@anmeasured in area under the
ROC, was averaged across separation distance.

target/sensor geometry; am and a' are constants associated with the EMI response to
ferrous objects and are zero for non-ferrous obje&li objects (UXO and clutter) were
assumed to be located at a constant depth of Otwvever, orientation ¢) and

inclination (@) angles were randomly selected from a range @ @ tfor each object.
For the simulation of UXOa' and a' were set to zero, anfl’ and f' were set to 200

28



Hz and 50 Hz respectively. The resonant frequenicieclutter were randomly selected
from a range of 5kHz to 24kHz, with the constraiat f' < f".

For these simulations, the area was sampled irasterisk’ pattern, with the distance
between the sample points varying from 5 cm to 26 cThe sampling patterns were

Random Clutter Position

0.95 A _ —e
0.9 ,ﬂ_—l'm’iq;
8 0.85 —e— UXO + 1 Clutter
n: 0.8 | —m— UXO + 2 Clutter
S 0.75 UXO + 3 Clutter
ﬁ 0.7 UXO + 4 Clutter
g 0.65 4 —¥—UXO + 5 Clutter
0.6
0.55
0.5

5cm 10cm 25cm

Sample Spacing

Figure 30. Results for the case in which clutter no longes haconstant separation

distance from the target, i.e. clutter is randorplgced within the square meter

without relation to target location. Spacing isreesed between samples for the UXO
model simulation for 1-5 clutter objects.

centered on the square meter, thus the target nmghtbe centered beneath the
measurement pattern. Three separation distancestested: 5 cm, 10 cm, and 25 cm.
The signal to noise ratio (SNR) used in the simoret was 20 dB with respect to the
energy of the simulated UXO. A Gaussian detectas wesigned and tested on the
sources extracted by ICA. Performance is measas@rea under the ROC where
performance of one indicates perfect performancelah indicates random chance.

B. Toy Problem Simulation

ICA makes the assumption that the signals to baraggd are independent (and therefore
uncorrelated); however, this is unlikely to be dase for UXO and/or clutter. However,
with a toy problem, a set of highly uncorrelategnsils can be designed such that issues
such as sample spacing and amplitude patterns eatoihsidered separate from the
confounding factor of correlation between signalBor this problem, four relatively
uncorrelated signals were designed (window pula@,trsawtooth wave, cosine, and
square wave) and plotted in Fig. 27. These sigeglisce the simulated UXO signatures
that would normally represent axial and transveigeatures from a dipole model. These
signals, being mere constructs to test the functibthe ICA algorithm do not have
dimensions.
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Energy Detector: Mean
Performance across Separation
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Figure 31. Result of increasing the spacing between sampleshE UXO model
simulation for 1-5 clutter objects. In this case energy detector rather than a
generalized Gaussian detector (Fig. 29) was usHte performance, measured as
area under the ROC, was averaged across sepaiaiance.

For each signal, an amplitude pattern was desi@graeging depending on the problem to
be addressed). These amplitude patterns simptgsept the weights for each signal that
determine the resulting mixed signals. Each ptesl be considered a measurement at a
“spatial” location, with the amplitude of the patiedetermining the weight of the
corresponding signal at that location. The finated signal at that location is then the
sum of each signal weighted by its amplitude pattgrthat location. The amplitude
patterns of the first and third signals overlappetdhpletely, as did the second and fourth
signal amplitude patterns. The reasoning wasnulsite the case where the axial and
transverse signals for a single object have angsitpatterns that overlap completely.
The overlap between the amplitude patterns of wee dignal pairs was then varied to
determine the effect of distance between the tvjetds’ (see Fig. 28). For example, in
the top left subplot, at each pixel, the amplityddtern for one of the objects is zero
(blue); thus, the signatures would not be mixedrat location. However, in the other
subplots, locations for which the amplitude patefior both objects are greater than zero
would be locations for which the signatures woutdnhbixed based on the corresponding
weights for each signal. Performance is measurerims of correlation between the
sources extracted by ICA and the original signals.

Sampling
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Two issues were investigated in terms of samplikgst, the effect of sparser sampling
on performance was considered. Second, the effiethe pattern of sampling was
considered. Both of these issues were investigatdte UXO model simulation.

Fig. 29 shows the results of sparser sampling. drea under the ROC was averaged
across target/clutter separation distances. Asntiaber of clutter items increased,
performance tended to decrease. Increasing thendes between samples also tended to
decrease performance. Theoretically, ICA in a eless paradigm with uncorrelated
signals requires only a small number of sampleshef mixtures (on the order of the
number of signatures composing the mixtures) ireotd separate the signals perfectly.
These simulations, with a high SNR, suggest thattfe case of dipole-modeled
signatures, the sources extracted by ICA can bd teseevelop detectors with a high
level of performance despite a low level of sangplin

For this simulation, the case for which the clutteration is no longer tied to the target
location was also considered. Rather than forclager to be located within a constant
radial distance to the target, the clutter was a@kewed at random within the square
meter. The restriction on the target location t(thamust be at least the separation

Comparison of Sample Methods
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Figure 32. Comparison of performance for the UXO model sirtiata for three
different methods of sampling: asterisk pattemergy partitioning, and energy
threshold. Performance was measured in termseafarder the ROC.

distance from the edge of the square meter) wasralsoved. As can be seen in Fig. 30,
a result similar to Fig. 29 was observed. For h8MR, detectors relying on sources
extracted by ICA are fairly robust to decreased@eng rates.

However, this robustness may in part rely on anr@ppate choice of detector. For
comparison, the effect of sampling rate was comediéor an energy detector. In this
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case, the decision statistic is based on the erd@rthye extracted sources. As expected,
performance across all cases is much lower witlersergy detector (see Fig. 31). In
addition to this general performance decrease, hemva lower sampling rate tends to
double the drop in performance, e.g. for UXO andutter, using an energy detector,
performance dropped from 0.78 to 0.68 (differenée0d), but for the generalized
Gaussian detector, performance dropped from 0.9%® (difference of 0.03).

For investigating the effect of the pattern of séngp two energy-based systems were
compared to the asterisk measurement patternt, &ipgartitioning system was designed
in which the energy in the measurement area watitipaed with low energy areas

‘discarded’ (not measured) and high energy areapleal. Since the partitioning system
discarded a large amount of low energy area, itmssicted to 25 samples (rather than
the 81 samples used by the asterisk pattern). henaohethod of sampling areas of high
energy set an energy threshold above which all Esmmwere taken, resulting in a

variable number of samples. All three measurerpatterns are compared in Fig. 32.
Little difference in performance was observed fur three methods of sampling. Thus,
the high level of performance with detectors utilig ICA does not appear to be a
function of the sampling pattern used.

In the previous simulations, performance with detec that utilize ICA-extracted
sources has been considered with the assumptiorhitita performance is indicative of
ICA successfully extracting the original signature& simulation to directly assess the
success of ICA in extracting sources for differeampling levels was implemented using
the toy problem. The four highly uncorrelated signwere used in lieu of modeled axial

Comparison of Number of Samples
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Figure 33. The effect of varying the number of samples usedttie toy problem
simulation. In this case, 0% overlap was used, thiedamplitude patterns were
modeled from the dipole model, with random oriented. The N highest energy
samples were used where N ranges from 800 to Zsforfhance was measured in
terms of correlation coefficients.
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and transverse signatures; however, the amplitaderps were modeled as the spatial
energy patterns generated by the dipole model annmtations randomized across 900
trials. The sensor-to-object separation used tdehthe amplitude pattern was 0.5 m.

Correlation Between Signals 1 & 4
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Figure 34. The effect of varying the number of samples uswdttie toy problem
simulation. In this case, 0% overlap was used, #edamplitude patterns were
modeled from the dipole model, with random orieoteg. The N highest energy
samples were used where N ranges from 800 to &als4 (the square wave) was
replaced with another window pulse train that hadoaelation coefficient with
signal 1 of 0.3. Performance was measured in tefrosrrelation coefficients.

The signals were mapped to object axial and trasev@mplitude patterns as follows' 1
signal — first object axial; " signal — second object axial®3ignal - first object
transverse; and"4signal — second object transverse. By using thklyruncorrelated
signals, ICA is given a more ideal condition undenich to function, and source
extraction is not tied to the choice of resonaatfrencies for the objects. ICA’s ability
to extract the original signals was measured imseof correlation between the original
signals and the extracted sources for differentbersof samples. The samples were
chosen as the N highest-energy samples. For thmmise case, ICA was able to extract
all four signals near perfectly (correlation coatnts > 0.99). Noise level was increased
to 60 dB SNR, and the ability of ICA to extract thignals decreased significantly (see
Fig. 33). However, ICA was able to maintain appmetely the same level of
performance until over 70% of the samples wereadldsd. These results support the
results from the previous simulations that sugdleat the performance of ICA-based
algorithms is fairly robust to sampling density.
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However, these simulations also highlight the desed ability of ICA to isolate

One Sample Difference Random Amplitude

4 6 8 10 12 14 16

Figure 35. Example of two amplitude patterns used with thepgmwblem simulation:
simplistic peak with one sample different, and @mdamplitude patterns.

completely overlapping signals in noise, even urfdgh SNR conditions. Since one
signal from each signal pair was more poorly exé@c(signal 1 was more poorly
extracted than signal 3, and signal 2 was more lpa®xtracted than signal 4), the

Comparison of Two Amplitude Patterns
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Figure 36. Average correlation coefficients for each signal the toy problem
simulation. The two types of amplitude patterngicked in Fig. 35 are compared.

guestion arises as to whether the cause is duene,salbeit small, residual correlation
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between the signals is confounding the extractiowtwether the relative weights of the
signals within a signal pair, in particular the #amty in weights, is causing the
detrimental effect. To this end, both the impattcorrelation between signals and
similarity between amplitude patterns was inveséidan the following sections.

Performance for Different Amplitude
Patterns
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Figure 37. Comparison of the performance for different typéamplitude patterns
for the toy problem simulation. Dotted lines regmet both the random amplitude
patterns (filled symbols) and one-sample-diffeneaak amplitude patterns (hollow
symbols). The solid lines represent the model-daseplitude patterns.

These simulation results relate to the field dasults in several ways. First, these
simulations suggest that the performance of anriéhgo based on ICA will not
necessarily decrease with a decrease in samplirigs@ithat decrease is substantial). In
the field data results, part of the improvemenpénformance was due to discarding non-
informative background samples before performing\ I@pproximately 30% of the
samples). Since the amount of samples discardedrelatively small, the simulations
suggest that performance should not have beentedfeletrimentally, and by discarding
these samples, it is possible that confounding unest were excluded from ICA’s
extraction process.

Also in the field data results, the size of theegbjdid not seem to be correlated with
performance (e.g. larger objects were not necégsadsier to detect than smaller
objects). Since these simulations suggest that t€duires only a small subset of
samples for high performance, it might be expethed the advantage of large objects
(more samples of the UXO signature) does not nacéssccur.

Correlation Between Signals
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Performance Variability for Different Amplitude
Patterns
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Figure 38. Comparison of the variability for different typesamplitude patterns for
the toy problem simulation. Dotted lines represbath the random amplitude
patterns (filled symbols) and one-sample-differpaak amplitude patterns (hollow
symbols). The solid lines represent the model-dbaseplitude patterns.

To test the impact of correlation on ICA, the toplgem from the previous section was
re-run with signal 4 replaced with another windowse train (increasing the correlation
coefficient between signals 1 and 4 to 0.3). As lsa seen in Figure 34, the ability of
ICA to extract the other three signals remains game, but ICA is unable to reliably
extract signal 4 for any number of samples. Tigblights what is perhaps the greatest
limitation of ICA. It is predicated on the assuiopt that the mixtures comprise
independent (uncorrelatedjgnals. When two signals are correlated, ICAnsahle to
separate the correlated portions. Thus, one signil be extracted successfully,
containing both the correlated and uncorrelated pmrmants; however, because the
correlated component cannot be extracted twice séo®nd extracted signal will only
contain its uncorrelated components. Thus, foretated signals 1 and 4, signal 1 was
extracted accurately while only the uncorrelatethgonents of signal 4 were extracted.
However, while correlation may affect baseline perfance with ICA, the simulations
suggest that ICA remains fairly robust to low sangplates.

These simulations demonstrate that correlation @etwthe individual signatures can
have a large impact on the ability of ICA to susfely extract them from the mixtures.
Thus, size may be less important in terms of nurlbsamples than it is in terms of the
degree of correlation between the UXO signaturestia clutter signatures.
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Figure 39. The average of the amplitude patterns producing 200 highest
correlation coefficients for each signal.

Amplitude Patterns

The problem of overlapping UXO differs from a ty@idCA application in two regards.
First, the signals to be extracted may have moae thegligible correlation with each
other. The effect of this issue has been considerdhe previous section. Second, in
typical ICA problems, the signatures that compdsemixtures are assumed to emanate
from different locations, resulting in amplitude tieans (weights) that are distinct.
However, for each UXO in the problem consideredehdhe axial and transverse
signatures emanate from a single location, thugltireg in amplitude patterns that share
similarities that might be confounding to ICA. As extreme example, consider multiple
uncorrelated signals with identical amplitude paigse(equal weighting for all the signals
in each sampled mixture). There is no informatiorindicate that there are multiple
signals present rather than a single signal thdtdssum of all of the signals, and ICA
will not be able to separate the original signgmilarly, it is possible that having axial
and transverse signatures that emanate from the &agation (thereby having similar
amplitude patterns) could cause a decrease inbility & separate those signatures.

The toy problem was used to assess the limits & f@ separating overlapping

signatures based on the similarity of the amplitpaterns. Five overlap conditions were
investigated with two types of amplitude patternghe overlap conditions were 0%,
25%, 50%, 75%, and 100%. The amplitude patterne wither random or a simplistic

37



peak with one sample different for each signal (&ge 35), with the random amplitudes
changing for each trial but remaining constant s€mverlap conditions. As in previous
toy problems, the amplitude patterns of signalsnd @ and signals 2 and 4 overlap
completely, representing axial and transverse tiges. As expected, for amplitude
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Figure 40. The average of the amplitude patterns producing 200 lowest
correlation coefficients for each signal.

patterns that are almost identical (dashed liné3gn36), ICA fails to extract both of the
signatures from each set. Further, the signals dale extracted (3 and 4) are not as
correlated with the originals as those extracteanfmixtures derived from randomized
amplitude patterns. This suggests that similantgmplitude patterns can have a strong
effect on ICA performance, even for highly uncaatet signals. Proportion of overlap
also affects the ability of ICA to extract the fasignals; however, performance appears
to be fairly robust to increased mixing as longlessignals do not all emanate from the
same location (100% overlap).

The results above verify the hypothesis that thepliémde patterns can affect
performance, but are not based on physical phenologyn The performance with

dipole-modeled amplitude patterns was comparetié@tevious simulations in order to
assess the degree to which model-based amplitutierns inhibit successful source
extraction. Model amplitudes were substitutedtfa other amplitude patterns with the
orientation of the two ‘objects’ randomized acrtigals. The results are shown in Fig.
37. In general, performance is as expected. Redioce was lower than for the random
amplitudes, since the amplitude patterns share symiarities, but better than for the
one-sample-different peak patterns. Also, the iSeitg to the proportion of overlap
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increased from that observed for the random angditpatterns. The reason the
proportion of overlap affected the three types mpbtude patterns to different degrees
was not immediately obvious. However, it was higgsized that it might be related to
the design of each problem. For the one-sampferdiit problem, the amplitude
patterns remained constant from trial to trial.r Both the random amplitude patterns and
the dipole-modeled patterns, the amplitude pattetlvenged across trials. While the
random patterns were completely randomized (i.Bkelg to have any one pattern occur
more than once), the dipole-modeled amplitudes tmsflare many similarities across
trials, dependent on orientation, and these siitidarmight confound ICA.
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Figure 41. Simplistic amplitude patterns generated for the gooblem simulation:
peak, ring, 2 peaks, 2 peaks flipped.

Fig. 38 shows the standard deviation of the caiimrlacoefficients for the three types of
amplitude patterns. The random and one-samplerdiit peak patterns have standard
deviations that remain below 0.1 while the modeddehpatterns have higher standard
deviations, ranging from 0.15-0.35. The higheriarage for the dipole-modeled
amplitude patterns is unlikely to be due to origotes being randomized across trials
since the random amplitude patterns are also raizéonacross trial without detrimental
effect. Thus, the performance variance for th@l@iymodeled patterns was hypothesized
to be a function of the amplitude patterns themeselv

To investigate the cause for the high variance wiibdel amplitudes, the amplitude
patterns producing the 200 highest and 200 low@selation coefficients were averaged,
and are plotted for each signal in Figs. 39 and B@aks tended to produce the highest
performance while ring-shaped patterns producedawest performance for signals 1
and 2. Although the average pattern appears haged for signals 3 and 4, it is actually
the average of patterns that have two peaks ro@@edit a center point. Thus, the
implication appears to be that some amplitude pegtean cause worse performance than
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others, and by randomly choosing between amplipatéerns with good performance
and those with poor performance, the variancedseased. This was further verified by

Casel: Random Selection of Four Casell: Random Amplitude
Patterns
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Figure 42. Comparison of performance and variance for twesas the toy problem
simulation: randomly choosing amplitude patterrenf a set of four and using
random amplitude patterns. Error bars represeet standard deviation from the
mean.

simulating several different simplistic amplitudatierns (see Fig. 41) and for each trial,
randomly choosing from the set for each signal.

The performance from using this method to selegiliémde patterns (case 1) is compared
to the performance using the random amplitude patteethod (case Il) in Figure 42.
The mean performance is plotted for each methot wie error bars indicating the
standard deviation. Two interesting results shdaadoted. First, the variance for case |
is much higher than for case Il. Second, proportboverlap affects case | to a greater
degree than for case Il. This agrees with theltethat were previously noted in Fig. 38.
These results may indicate several issues to becav¥awith implementation with field
data. First, orientation may add variability tesuks such that performance on field data
with one orientation may not be an indicator offpenance with other orientations. For
an accurate measure of performance, testing on regamples of objects at different
orientations may be necessary. In the field dap@roximately 75% of the UXO were
positioned horizontally. The effect of orientatiomy be further compounded by the
effect of proximity between objects. To fully asséCA-based algorithms, the examples
of objects and orientations will need to be testechultiple distances.

Number of Sources
The previous simulations suggested some possiatons for size not being an indicator

of performance; however, another unexpected resith the field data was that
extracting only one source per object pair produgetier performance than extracting
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two or more. To investigate this issue, the topbpem simulation was used to
investigate the effect of mismatch between the remalb sources extracted by ICA and
the number of actual signals. The dipole model again used to provide amplitude
patterns which were generated for orientations Weae randomized across trials. ICA
was used to extract 1-7 sources, with the correather being 4. Performance was
considered for 0% overlap.

The functional form of ICA extracts a number of gkms equal to the number of samples

Comparison of Number of Sources
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Figure 43. The effect of the number of sources extractedd®y for the toy problem
simulation. In this case, 0% overlap was used, taiedamplitude patterns were
modeled from the dipole model, with random oridota&g. The number of sources
varied from 1-7, with 4 (the number of signals)rugihe correct value. Performance
was measured in terms of correlation coefficients.

of mixtures; however, a dimension reduction stepyjsically performed under the
assumption that more samples will be measured tthene are actual signatures present.
Principle Components Analysis (PCA) reduces theadato its basis functions in
eigenspace, and typically only those basis funstibiat represent the majority of the data
are retained. This then controls the number ofcasuextracted by ICA, e.g. if only the
one component that most represents the data imedtthen ICA will extract only one
source. If the number of extracted sources is tless the number of signatures in the
mixture, the extracted sources may be successtudatdons of some of the original
signals, or they may be a mixture of two or morehaf original signals. The results in
Figure 43 suggest that the latter may be the cdmn\& single source is extracted from
the mixture of the four signals. This single se@uveas correlated with all four signals
and matched to some extent two of the four (sigBagd 4). These two were those
assigned to a single “object”. When a second sowas extracted, the signals from the
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second “object” were matched (signals 1 and 3)rfoReance across all four signals
continued to improve (esp. for signals 2 and 4)tres number of extracted sources
increased to four, suggesting that some of the dnsa@irces may have been separated
once the number of extracted sources increasedeVewthe performance increase from
separating these mixed sources is not substanti@ther proportions of overlap
demonstrated similar results.

These results do suggest that even in the extrase af extracting one source in the
presence of two objects (four signatures), useftidrmation rather than mere noise is
contained in that extracted source. Further, tbewalations suggest that ICA extracts a
source that represents a single object rather ahauxture of all the signatures for both
objects. This result may relate to the field datavhich performance increased with the
extraction of one source rather than two or mdtés possible that with one source, ICA
tends to represent the UXO and not the clutterthéndimension reduction process, the
UXO signatures may be represented by a single Wasigtion while the clutter may
require more complex representation. This wouldumm tend to lower the amount of
data represented by each clutter basis functiarg, lihwering the likelihood that a clutter
basis function would be selected during dimensgexnuction. In this way, ICA may be
successfully selecting a UXO source that can thercdmpared to calibration sources.
However, further investigation in to ICA processinidj be necessary to fully explain the
field data results.

Simulation Summary

Two questions arose from the results with the meaksdata — why performance might
be better with one source extracted rather thanemand why performance did not
appear to be dependent on object size. Simulatiwetsvaried the number of sources
extracted while keeping constant the number of sipresent suggested that a single
source was capable of representing one of a pabjetcts (Fig. 43). This coupled with
the results from the field data suggest that the abject represented by the single source
is the UXO rather than the clutter. However, fartinvestigation will be necessary to
validate this hypothesis.

The simulations of sampling patterns and samplatgsralso suggest reasons explaining
the lack of dependence of performance on objeet si?vith high SNR, ICA is fairly
robust to low sampling rates, hence the advantéd@rge objects (more samples) may
not be applicable. On the other hand, correlatias a large impact on the sources
extracted by ICA (see Fig. 34). Thus, the abildysuccessfully discriminate objects of
any size may depend more on the correlation betwesnsignatures and the signatures
of clutter than on their size (and the number ofiiglas of their signatures). Furthermore,
the amplitude pattern simulations indicate the jbid#y of a large variance in
performance depending on orientation and separdistance. Thus, the performance
trends of individual UXO types (e.g. 40 mm) notedoine small data set may not be
indicative of the performance results in anotheladset. The issues driving the high
variance observed in the simulation performanceaulshbe investigated in more depth
through simulations and measured data.
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Simulated Time domain EMI signals (EM63)

We consider the problem that there are a totabof bbjects, two of which are present at
a time. In the time-domain, the eddy current tireeay response of a metal target can be
expressed as

S() = Aexp(-a 1)

where t represents time; & the target amplitude response coefficient and theith

decay rate. Each of the decay rates corresporalaatural resonant frequency of the
interrogated target and is a function of the tasgaysical attributes. The time domain
EMI sensor response is dominated by the slowestydede. The targets of interest in

this application (UXO) may be modeled as bodiesewblution (BOR). A BOR has two
principal coordinates, axial and transverse, arwth eaordinate is associated with one
dominated decay rate. Thus EMI response of a UX@etaan be approximated as a sum
of two decaying exponential signals.

s(y= Ae™ + Ae™

In the simulation, we assume four objects with gleades as shown in Table 1. These
parameters were chosen to match those of the GEtddy so that performance
comparisons could be considered. These are baseédoay rates extracted from four of
the UXO present in the SERDP/NRL/WES overlappingatdatabase as described
earlier.

Table 1. Object parameters

Object a, a,
1 211000 271900
2 271300 271200
3 271600 271500
4 21900 271800

The time signals are linear sampled from 0.04~26m®04 ms increments for a total of
650 time samplesA values will result from the mixing matrix thatapplied.

Comparing classification results from using eitl@ercorrection matrix method (Hu,
Tantum and Collins, 2004) or a template method @Add Collins, 2003), we found that
under noise free conditions, both methods achievd&(% correct classification rate,
however, in the noisy environment, the templatehmetoutperformed the correction
matrix method. For example, assuming mixture sgysabject to white Gaussian noise
with SNR=10"° (estimated from the data set using the same aweB&R calculations
described previously, e.g. page 15 of this repofdple 2 and Table 3 contain
classification results from the two methods. Ascae see, the template method achieves
an average 63.5% correct classification rate aspeoed to an average 31.886rrect.
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Note that these results are poorer than thosermdatavith the GEM-3 simulations at the

same SNR. This may simply suggest that frequencyaih data is easier to invert than
time-domain data.

Table 2: Confusion Matrix Using Correction Matrixelhod

Estimate
1&2 | 183 | 1&4 | 283 284 384
1&2 0.86 0 0 0.14 0 0
1&3 0.92 0.05 0 0.02 0.01 0
Truth 1&4 0.36 0.06 0 0 0.06 0.52
2&3 0 0 0 0 0 1
284 0.02 0 0 0 0 0.98
3&4 0 0 0 0 0 1
Table 3: Confusion Matrix Using Template Method
Estimate
1&2 | 1&3 | 184 | 2&3 284 384
1&2 0.98 0 0 0 0 0.02
1&3 0.03 097 0 0 0 0
Truth 1&4 0 0.01 0.99 0 0 0
2&3 0.35 0.35 0.19 0.11 0 0
284 0.01 0.01 0.02 0.2 0.76 0
3&4 0.46 0.32 0.08 0.11 0.03 0

Apply ICA template algorithm to EM63 data

To more accurately assess performance for an EMIGS0s, we model 26 time gates and
we only use the first 17 (0.177, 0.191, 0.216, 6,21286, 0.336, 0.4, 0.48, 0.584, 0.714,
0.883, 1.097, 1.366, 1.714, 2.157, 2.724, 3.445 Ws)simulated the measurements in a
‘+’ pattern (from -10 inches to 10 inches in 5 inalsrements along both x and y axes).
Thus, there are total 10 spatial measurements.

In this study, we assumed that the number of thgctd is two. The simulated

overlapping signatures have white Gaussian noidedadand the SNR ranges from 0 dB
to 100 dB. The ICA template classification methodrks perfectly under noise free
condition (SNR>100 dB), as observed in the previsinsulations. Under the scenario
that two UXO targets present, there are a totaibopossible UXO pairs. There are also
six possible clutter items that can be placed witdXO objects (again, simulating the
SERDP/NRL/WES database) and six clutter objects ¢ha be placed in pairs in the
context of the simulation. Fig. 44 illustratestttiee classification accuracy as a function
of SNR, when the ICA template classification aluon is applied to distinguish the six
pairs of UXO. The classification accuracy of 0.1@found 1/6) implies that ICA

template classification algorithm behaves randoralyder very noisy conditions
(SNR<40 in Fig 44).
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Similar classification results can be seen in ttieeiotwo scenarios: Assuming a UXO-
Clutter pair is present, Fig 45 illustrates thessification accuracy of distinguishing 24
pairs of UXO-Clutter under different noise levedsid Fig 46 illustrates the classification
accuracy of distinguishing four types of UXO unddferent noise levels.
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Figure 44. UXO-UXO pair classification accuracy using ICA telate method vs.
different noise levels under the condition that O present
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Figure 45.UXO-Clutter pair classification accuracy using |@mplate method vs.
different noise levels under the condition that UKQ@iter pairs present — 2 UXO in
library and in data.
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Figure 46. UXO Classification Accuracy using ICA template methad different noise

levels under the condition that UXO-Clutter pairsgent — 4 UXO present in library and

in data.

As expected, the more UXO in the library, the potine performance as the problem is
more complicated and uncertainty is higher. Wittike range of SNR (and the definition

of SNR) is not reflective of field standards, therfprmance trends are consistent with
what we would expect with increasing complexitytied problem at hand and of changes
in SNR.

EM®61 processing

Preliminary work was performed to assess performaricseveral separation techniques
for EM61 processing. One technique is an iteratipp®le model fit of the sort proposed
by Keiswetter in his 2005 IPR. Another technigsi@m iterative fit of two dipole models
simultaneously. Another fit approach is to useva tlimensional Gaussian shape to
model each dipole — this has the advantage of ussgyparameters to fit the data, thus
being less problematic during the inversion process$ has the disadvantage of being
non-physics based. The final approach that isgpeamsidered is a maximum likelihood
estimation technique. An example of a comparisetween the iterative dipole model fit
and the maximum likelihood fit is shown in Figuré. 4The measured data consisted of a
60 mm in the center of the grid with an adjacenn@h. A 1 m by 1m square of data
with 10 cm sampling was used. It does not apdesrthe iterative fit (left) is finding a
fit for target 2 while the maximum likelihood fitight) does. While the results are
encouraging for the maximum likelihood approacHy dimited data has been considered
so far.
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Measured Data Synthesized Data Measured Data Synthesized Data

Fit Target 1 Fit Target 2 Fit Target 1 Fit Target 2

Figure 47. Comparison between iterative fit (left) and maximlikelihood fit (right). In
each set of panels, the measured (field) dataae/ston the top left, the two individual
fits to the data are shown on the bottom left, #mal synthesized data from the two
individual fits is shown on the top right.

From the simulations we learned that ICA is a psing technique for source separation,
but for the UXO it can be impacted by (1) corredatbetween either the sources or their
amplitude patterns; (2) the number of sources etddaversus the number of sources
present; (3) mismatched energy between the soui@esyerlap between the modes of
the UXO and the clutter. It was also noted thahglkicated sampling strategies are not
necessary — simply utilizing the highest energyamin a spatial area is sufficient.

SERDP/WES/NRL data redux

The data set consisted of 18 single object, 67 diigdct, and 1 no-object (hole)
measurements. There were four UXO target typeS (@, 81 mm, 60 mm, and 40
mm) and six clutter items. The single object measents were provided for calibration
and consisted of one measurement of each UXO t&ygetin three different positions:
horizontal, vertical nose up, and vertical nose mow In addition to those 12
measurements, each clutter item was also measnpedfor calibration purposes.

The dual object measurements consisted of 14 merasuits of the 105 mm, 60 mm, and
40 mm targets; 19 measurements of the 81 mm tadyed, 6 measurements of

combinations of clutter items. The majority of tteget measurements (46) were of
horizontal targets, with the 81 mm and 60 mm alsasared once in a vertical nose up
and once in a vertical nose down position. On¢hefpositions for an 81 mm target
measurement was not listed, and ten of the 40 migettaneasurements were in the
vertical nose up position. The first four clutitesms (or fragments thereof) were paired
with UXO targets 11-15 times, and the fifth andtlsiwere paired with UXO targets 4

and 3 times respectively.

As mentioned previously, we generally expected éhhitgger object would be easier to
classify than a small object since there would yregbly be more samples with the
response to a big object, but the 105 was the vpanisormerwhen analyzed in the same
manner as the rest of the object€lassification was better for the 105 mm when ICA
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Figure 48. Area under the curve for classification of eactinance type from the
SERDP/NRL/WES database. AUC is plotted as a fonctif the number of grid
points used to perform ICA. Training data for thassifier was obtained from the
isolated UXO items.

was performed on the mixed signals when the dats aveanged as spatial data X
frequency; whereas for the other objects the data generally arranged freq x spatial
data. For example, see the results provided inr€ig8. Performance is plotted versus
the number of sample points using a radial zoortepat The radial zoom patterns is a
method for selecting data points for processingciréle is centered on the target and all
sample points within that circle are used for pssgey. By varying the radius of the

circle, the amount of data used for processingoeavaried and its impact assessed.

Performance for the 40 mm, 60 mm, and 81 mm UX&inslar; however, performance
for the 105 mm UXO, when analyzed in the same wayquite poor. However,
performance can be significantly improved by trarsspg the mixed signals, increasing
performance to the same level as the other objdtts.unclear at this point the basis for
this result.

Generally, if ICA is not performed on the data,ssiéication performance is chance, i.e.
25%. This suggests that given single object diaation performance, ICA followed by
a Bayesian classifier improves performance to atots% correct.

V. Conclusions
Simulations, test stand data, and field data inditdaat ICA/BSS techniques can be used
to extract individual ordnance signals from mixgimeasured by EMI systems when

UXO and clutter are in close proximity. The EDApapach, which is less sensitive to
correlated objects, provided the best performaridbe approaches considered. While
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there are several caveats, and research remabs done, this study has demonstrated
that ICA can restore classification performancenfressentially chance levels when

objects are closely spaced. Issues related tondigieg when there are multiple objects

present appear most pressing, and may require deoreely sampled data. Test stand
results were promising, but a conclusive test oeadistic data set is necessary prior to
any firm conclusions.

VI.  Technology Transfer
Source code for multiple dipole model provided B and AETC.
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