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I. Project Background 

 
Using current technologies, the cost of identifying and disposing of UXO in the United 
States is estimated to range up to $500 billion.  Site specific costs range from $400/acre 
for surface UXO to $1.4 million/acre for subsurface UXO.  There are 1900 Formerly 
Used Defense Sites (FUDS) and 130 Base Realignment and Closure (BRAC) 
installations that need to be cleared. Several sensor modalities are currently being 
explored for the detection and identification of surface and buried UXO. These include 
electromagnetic induction (EMI), magnetometers, radar, and seismic sensors.  These 
sensors experience little difficulty detecting the UXO, thus detection does not create the 
bottleneck that results in the high cost of remediating sites.  The primary contributor to 
the costs and time associated with remediating a UXO contaminated site is the high false-
alarm rate associated with each of the sensors when operated individually. 

 
II. Objective 

 
In this project, we investigated the phenomenological aspects of the UXO detection, 
location, and discrimination problem using EMI, radar, and magnetometer sensors.  The 
fundamental insight garnered by characterizing the underlying physics was transitioned 
into performance bounds, as well as high-performance sensor fusion and signal-
processing algorithms for enhanced detection, location, and discrimination of buried 
UXO under a wide range of environmental conditions.  The signal processing algorithms 
that were developed were evaluated on data collected in the field during two government-
sponsored sensor demonstrations.  Finally, the algorithms were applied to a “blind”  data 
set and performance was assessed by an independent agency. 

 
III. Technical approach  

 
The technical approach that was pursued employed synergistic research activities in 
modeling, signal processing, and sensor fusion.  We performed phenomenological 
modeling of wave propagation and scattering for ultra-wideband (UWB) radar and EMI 
sensors.  Our phenomenological studies were performed in collaboration with SERDP-
supported sensor-development programs underway in these areas (at NRL, ARL, and 
AETC). Our previously developed models were extended to allow arbitrary numbers of 
soil layers, arbitrary target shape and orientation, and to accurately account for all 
interactions.  Using these models, we quantified the target types, depths, and soil 
conditions for which radar is an appropriate sensor.  We also quantified the bandwidths 



required to excite resonances for EMI and seismic sensors.  In addition, we developed 
simpler phenomenological models for EMI and magnetometer sensors that could be used 
within the context of data inversion for object parameters. 
 
These models of the wave physics, coupled with models of target, clutter, and 
environmental uncertainties, were incorporated into a statistical signal processing 
framework, thus novel, state-of-the-art optimal detection and identification algorithms 
were developed for each sensor.  Bayesian algorithms, which provide the optimal 
solution to detection and identification problems, were investigated along with an 
algorithm based on a Hidden Markov Model formulation which is specifically suited for 
classification using data from multiple aspect angles.  Algorithms based on Support 
Vector Machines (SVMs) were also considered to mitigate the necessity of estimating 
probability density functions.  This estimation is an inherent step in Bayesian approaches.  
Finally, we developed sensor-fusion techniques that simultaneously exploited the 
richness and diversity of the phenomenology underlying multiple sensor modalities.  In 
all cases, the algorithms that were developed were tested on data collected using sensor 
systems also under SERDP support, such as NRL’s MTADS system, the ARL Boom-
SAR, and Geophex’s GEM-3 EMI sensor. 

 
IV. Summary 

 
For both EMI and SAR sensors, the wave-based phenomenological models that were 
developed provided predictions that matched measured sensor data extremely well.  In 
the case of the SAR data, these predictions were used within a template matching 
construct (or correlation receiver) to improve the false alarm rate over RCS-based signal 
processing approaches.  The EMI models were utilized to validate our more simplistic 
phenomenological models and to help demonstrate the rationale behind failures in the 
more simplistic models.  For example, for complicated UXO, it was demonstrated that a 
simple single-dipole model could not be utilized to accurately predict sensor data from all 
possible target/sensor orientations.  
 
Single-sensor and sensor-fusion algorithms were developed for EMI and magnetometer 
data based on inversion of measured data using the simple phenomenological data.  The 
parameters estimated during the inversion process were submitted to several classes of 
algorithms including Bayesian, clustering, neural networks, and support vector machines.  
The Bayesian and SVM algorithms provided the most improvement in false alarm rates 
and were consistently the most robust.  Data from both the JPG-IV and JPG-V 
demonstrations was processed.  In all cases the algorithms developed under SERDP 
support out-performed those of the demonstrators.  Based on the discrimination 
performance obtained on the JPG-IV data and the blind test results obtained on the JPG-
V data, the statistical algorithms developed in conjunction with this project provided up 
to a factor of 3 improvement in false alarm rates. 

 
 
 
 



V. Project accomplishments 
 

Project accomplishments are divided into sections on modeling, performance bounds, and 
signal processing.  Details regarding accomplishments are provided in the manuscripts 
included in this report in Appendix A. 

 
Modeling 
 
With regard to SAR-based systems, we have developed a Method of Moments (MoM) as 
well as a multi-level fast-multipole algorithm (MLFMA) for modeling radar scattering 
from electrically large targets arbitrarily buried in a half space. Although the MoM 
approach can handle large targets, such as UXO, in principle, the memory requirements 
and computation time become excessive.  There has consequently been significant 
interest recently in the development of a new generation of fast algorithms to cover the 
range of frequencies for the problem of interest.  In general, high frequency asymptotic 
techniques, e.g. physical optics (PO) are either not applicable or difficult to implement.  
The MLFMA model implemented under SERDP support results in considerable 
computational savings. A comparison between the MoM, PO, and MLFMA predicted 
response for a 155mm shell buried 2.54 cm beneath dispersive Yuma soil with a 
depression angle of 30 degrees is shown in Figure 1.  Clearly, the response predicted by 
the MLFMA approach is consistent with that of the rigorous MoM scattering response.  
Figure 2 shows a comparison between the CPU and RAM required to calculate the 
response of each of the models as a function of number of unknowns, which is 
proportional to the size of the object.  As the size of the object increases, the benefit of 
using the MLFMA model becomes increasingly apparent.  The agreement with data 
measured by the Army Research Laboratory is also excellent. An example of the 
comparison between the MoM predicted radar cross section and that measured by ARL 
for the same 155 mm target is shown in Figure 3 located on top of Eglin soil.   
 
The initial MLFMA implementation was applicable to perfectly conducting targets, and 
was limited in that the target could not touch the air-soil interface.  We have extended the 
MLFMA model to the case of general dielectric targets in the presence of a half space, 
and the model has been modified such that the target can touch the interface.  This 
allowed us to model a variety of clutter objects, including vegetation, trees, rocks, etc. 
and to begin to develop statistical clutter models for use with the radar signal processing.  
Figure 4 plots electric currents induced on a tree model, situated above a lossy half space 
(soil). These results were computed via Duke’s multi-level fast-multipole algorithm 
(MLFMA). The tree is 6 m tall, and the results are for 500 MHz operation and vertical 
polarization. The currents are normalized with respect to the incident fields. Figure 5 
plots the computed SAR imagery from the tree trunk considered in Fig. 4. The imagery is 
shown for the center of the SAR aperture position at five different azimuthal positions 
with respect to (the same) tree model. The results are shown for VV polarization, for a 
50-500 MHz bandwidth SAR. These results underscore the strong aspect-dependent 
signature associated with vegetation.  This aspect dependency in the signature is utilized 
within the context of the HMM-based signal processing. 
 



The simpler EMI models that were developed can be applied to either time- or frequency-
domain EMI data.  We assume that at EMI frequencies, and for distances relatively far 
from the target, the induced magnetic fields can be well characterized by a dipole model.  
We first introduce a magnetic polarizability matrix that is unique to each target, and note 
that the eigen coordinate system is related to target geometry.  We have shown that the 
response measured by a receiver can be calculated easily in terms of the canonical target 
response and weighting matrices that describe the target/sensor orientation and the object 
orientation.  This model is similar to the dipole model proposed by AETC, but differs in 
that it specifically relates the polarizability matrix expressed in eigen coordinates to the 
characteristic decaying exponential functions (poles/modes) associated with a target.  
These modes were also calculated using the Method-of-Moments (MoM) code that was 
originally developed under the MURI, but was extended under SERDP support to 
consider arbitrarily large objects that are not required to be a body of rotation.   
 
Under MURI support, we had developed a rigorous method of moments (MoM) model 
that allows computation of such modal poles. While accurate, the model was 
computationally intensive and yielded little physical insight beyond the poles themselves.  
It was also limited as to the type of object (body of revolution) and size of object which 
could be computed.  We completed a Finite Element Method (FEM) model that can be 
used to compute the resonances of general conducting objects, including ferrous objects.  
This model, while computationally complex, can be utilized to explore the 
phenomenology associated with EMI responses for arbitrary targets at arbitrary 
orientations. Figure 6 shows a comparison of the FEM modeling prediction with 
measured data.  The bottom portion illustrates the excellent agreement between the 
measured and modeled EMI response as a function of frequency to a ferrous cylinder.  
The top curve plots the imaginary part of the response, and the bottom curve plots the 
real part of the response.  The line plots the measured data and the symbols plot the 
model predictions. 
 
Performance Bounds 
 
During the first year, we derived the CRLB for estimating time-domain EMI features, or 
decay rates.  In the second year, we extended that analysis to frequency-domain EMI 
sensors, and derived the CRLB for the elements of the polarizability tensor.  Also in the 
second year, we developed an improved estimation procedure wherein the “poles”  were 
estimated, and preliminary results indicated that this estimation procedure came closer to 
achieving the CRLB.  We also studied the behavior of this estimator in great detail.  The 
method improves the estimates by altering the shape of the objective function, and thus is 
not dependent on the particular optimization technique implemented.  Across a broad 
range of decay rates, SNRs, and ratios of decay rates, the RMS error and bis of the decay 
rate estimates are consistently better when the signal is parameterized in terms of poles 
than in terms of decay rates.  In addition, the results indicate a dependence on the ratio of 
the decay rates in the signal.  As the ratio approaches 1, the exponential signals become 
more similar and thus more difficult to separate.   
 



As an example, consider a signal that is the sum of two decaying exponentials, the upper 
of which is 20,000.  A series of lower decay rates were chosen so the ratio of the two 
decay rates was 0.1, 0.3, or 0.7.  The RMS error and bias of the decay rate estimates are 
shown in Figure 7 as a function of the noise variance, corresponding to total SNRs from 
approximately 35 dB to 135 dB.  Fielded EMI sensors typically operate at an SNR within 
this range.  For each combination of decay rates, the RMS error is shown in the left panel 
and the bias is shown in the right panel.  The dotted lines indicate the results obtained 
using the decay rate signal parameterization and the solid lines indicate the results 
obtained using the pole signal representation.  Parameterizing the signal in terms of poles 
consistently provides better decay rate estimates as measured both by the RMS error and 
the bias. 
 
Signal Processing 
 
Our signal processing efforts focused on HMM processing for SAR data, Generalized 
Likelihood Ratio Test and Support Vector Machine processing for magnetometer and 
EMI data, and sensor fusion.  Magnetometer and EMI data collected by MTADSNRL, 
Geophex, and Naeva were all considered.  Specifically, we focused on two data 
collections that were performed in conjunction  with two Jefferson Proving Ground 
demonstrations:  JPG IV and JPG V. 
 
BoomSAR Processing.  We used the MLFMA model discussed above for modeling 
radar scattering to develop a hidden Markov model for processing SAR data. In 
particular, the validated model allowed us to consider radar scattering from an arbitrarily 
oriented buried UXO. The SAR image varies as a function of the target-sensor 
orientation. We therefore partitioned the physics into a set of states, each state 
characteristic of a set of target-sensor orientations over which the associated SAR image 
is relatively stationary.  We initially used a physics-based matching-pursuits algorithm to 
perform feature parsing, and although this worked fairly well, it could be confused by 
clutter.  We therefore investigated the use of the aspect-dependent computed SAR images 
from our electromagnetic model to design Wiener filters.  The algorithm performed 
extremely well for angle-entry targets and moderately well for surface and flush buried 
targets.  The performance degrades, however, when the aperture of the Boom-SAR does 
not illuminate the broadside of a target, however the performance of the HMM was 
always better than any of the individual prescreeners.  If the SAR was flown in a circle, 
these problems would be mitigated. 
 
Figure 8 shows receiver operating characteristic (ROC) curves for two detectors, as 
applied to ARL SAR data measured at Yuma Proving Ground. The detectors were 
applied to regions specified via the prescreeners. Results are shown for an HMM 
classifier, and a simple correlation filter. The HMM, as discussed above, explicitly 
exploits the multi-aspect information provided by the SAR. In these results the HMM 
detector is designed to find surface and shallow-buried UXO (not deeply buried targets), 
motivated by the goal of UXO-range detection. 
 



JPG IV Processing.  Performance at JPG-IV was summarized in a variety of ways, but 
we compared the performance obtained using the False Positives (probability of stating 
“UXO” when non-UXO is present) and True Positives (probability of stating “UXO” 
when UXO is present) measures.  We applied both Bayesian techniques and fuzzy 
clustering techniques to the data collected by Geophex with the GEM-3, NRL with the 
MTADS system, and NAEVA with the PROTEM system.  Fuzzy clustering techniques 
were considered in addition to the Bayesian approach as the amount of training data was 
minimal, and the phenomenological models were not yet complete.  Algorithms were 
trained in a “ round-robin”  fashion: the data set was partitioned into a training set and a 
testing set, performance was evaluated, then the data set was re-partitioned.   In addition, 
a second training set was supplied by NRL and the algorithms were trained on this 
second set and tested on the JPG IV data. 
 
The importance of utilizing physics-based models for feature extraction is illustrated in 
Figure 9.  These results show receiver operating characteristic (ROC) curves obtained for 
the GEM-3 sensor during the JPG-IV demonstration.  Probability of detection is plotted 
as a function of probability of false alarm.  The green symbol shows the performance 
obtained by Geophex during the demonstration.  The red curve shows the performance of 
a statistical algorithm operating on features developed in an ad-hoc manner, whereas the 
blue curve shows the performance of a statistical algorithm operating on features 
obtained by inverting the sensor data for features associated with a phenomenological 
(dipole) EMI model.  Clearly, performance is substantially better utilizing either 
statistical algorithm, but is improved most when physics-based features are utilized. 
 
We also investigated algorithms for processing both the MTADS EM and magnetometer 
data, as well as algorithms for fusing this data.  We worked with Dr. Sean Hart and others 
at NRL to compare our algorithms to the Probabilistic Neural Network algorithm that has 
been developed there. Several signal processing algorithms were considered.  First, we 
considered a statistical signal processing approach based on the generalized likelihood 
ratio test.  Traditionally, such statistical processors are less robust when limited training 
data are available, or when the statistics of the parameters that affect the signal cannot be 
adequately characterized, as was hypothesized to be the case for the JPG IV 
demonstration.  Therefore, sub-optimal but potentially more robust approaches were 
considered.  These included a maximum likelihood estimation-based clustering algorithm 
whose clusters are initially determined using the ISODATA algorithm, and a subtractive 
fuzzy clustering technique. 
 
The ROC curves for the algorithms described above are shown in Figure 10 for case 
where leave-one-out training was applied in conjunction with the JPG IV data. All 
processors utilize both magnetometer and EMI data, thus the results are essentially 
“sensor fusion”  results. ROC obtained for a simple threshold processor operating on the 
EMI data alone.  The EMI threshold is indicative of the performance obtained by a 
cueing processor that might be used as a pre-processor.  In addition, the performance of 
the MTADS system using “man in the loop”  processing as scored for the JPG IV 
demonstration is shown.  Clearly, a simple threshold on the EMI data is not an effective 
discriminator of UXO from non-UXO items.  The maximum-likelihood clustering 



algorithm improves performance somewhat, and its performance is near that achieved by 
the NRL “man-in-the-loop”  approach.  The PNN, subtractive fuzzy clustering technique, 
and the Bayesian approach provide substantial performance improvements over that 
obtained by the maximum likelihood clustering technique.  This may be a result of the 
additional information incorporated by the fuzzy rule base and the PNN, or the 
correlation structure incorporated into the Bayesian processor.  Although the limited 
amount of data does not allow strict statistical comparisons across algorithms, it appears 
that the PNN performance is better than the other algorithms at the lower true positive 
rates and that the GLRT performance is better than the other algorithms at the higher true 
positive rates.  The subtractive fuzzy technique tends to perform at the average of the 
PNN and GLRT algorithms.  Similar, though slightly lower, performance trends were 
observed when a separate training set was utilized. 
 
JPG V Processing.  The JPG V test was more consistent with a traditional field survey in 
that data was gathered continuously instead of in a grid surrounding pre-defined locations 
were objects of interest were emplaced.  Three areas were surveyed in JPG V and were 
designated Areas 1, 2, and 3.  Ground truth was released for area 3, but was not released 
for area 2.  Both the Bayesian approach, or Generalized Likelihood Ratio Test (GLRT) 
and the SVM were applied to data collected during the JPG-V demonstration by the 
GEM-3 and MTADS sensors respectively.  Algorithms were developed based on the 
Area 3 data and then applied to Areas 1 and 2.  The output of the algorithms for each 
anomaly defined by the vendor was provided to IDA for blind scoring.  Performance is 
reported as probability of detection as a function of false alarm count, and all results are 
scored without the 20 mm ordnance items.   
 
ROCs for the performance results are shown in Figures 11-13.  The green star represents 
the performance obtained by the mag and flag crew, the blue line represents the off-site 
performance obtained by the vendor, and the black and red curves show the performance 
of the SVM and GLRT algorithms respectively.  Similar to the results for the JPG-IV 
demonstration, the performance obtained with the statistical algorithms is substantially 
better than that obtained with more traditional approaches.  In addition, the fact that 
performance gains were obtained under blind test conditions suggests that statistical 
processing approaches based on features extracted using phenomenological models can 
be used to decrease the false alarm rate. 
 
 

VI. Conclusion 
 

The hypotheses underlying this research were that phenomenological models could be 
utilized to facilitate statistical signal processing, and that statistical signal processing 
algorithms could be used to reduce the false alarm rates associated with discriminating 
UXO from anthropic and geological clutter.  Both of these hypotheses were validated 
during the term of this research project.  Statistical algorithms that were based on features 
extracted from EMI and magnetometer data using phenomenological models 
outperformed similar algorithms operating on ad-hoc features.  Similarly, statistical 
algorithms out-performed more traditional algorithms operating on the same data sets and 



using similar training sets.  In particular, these hypotheses were validated in recent 
performance results from two different sensors in a blind field test.  These results suggest 
that the algorithms developed under this program should be transitioned to the end-user 
to aid in reducing false alarm rates in realistic field scenarios. 

 
VII. Transition Plan 

 
In collaboration with AETC, we have obtained ESTCP support to roll the model, 
inversion, and processing algorithms into the GeoSoft platform.  The transitioned 
algorithms will be tested on field data for verification purposes.  Issues involving 
updating training sets and data validation will also be considered. 

 
VIII. Recommendations 

 
The ESTCP transition path is appropriate for moving the algorithms developed under this 
program to the end user.  However, it is important to note that these algorithms were 
developed assuming a reasonable training set is available, prior knowledge regarding the 
targets present in a data set is available, precisely positioned data is available, and that the 
individual anomalies occur in isolation.  Many of these assumptions are not always valid, 
and care must be taken to only apply the algorithms developed here when the algorithms 
are valid.  Additional research must be pursued, and in fact in several cases is ongoing, in 
order to develop algorithms that are robust to these assumptions.  In addition, as more 
information becomes available as to the variability of UXO signatures, this information 
should be incorporated into the formulation of the statistical algorithms. 

 



IX. Appendix A 
 

List of manuscripts supported by SERDP (attached).  Technical abstracts follow 
manuscripts. 
 

(1) Rigorous Modeling of Ultrawideband VHF Scattering from Tree Trunks 
Over Flat and Sloped Terrain, He, Geng, Nguyen, and Carin, IEEE Trans. 
Geosc. Remote Sensing. 

(2) Multi-aspect Detection of Surface and Shallow-Buried Unexploded 
Ordnance via Ultra-Wideband Synthetic Aperture Radar, Dong, Runkle, 
Carin, Damarla, Sullivan, Ressler, and Sichina, IEEE Trans. Geosc. 
Remote Sensing. 

(3) On the Wideband EMI Response of a Rotationally Symmetric Permeable 
and Conducting Target, Carin, Yu, Dalichaouch, Perry, Czipott, Baum, 
IEEE Trans. Geosc. Remote Sensing. 

(4) Multilevel Fast-Multipole Algorithm for Scattering from Conducting 
Targets Above or Embedded in a Lossy Half Space, Geng, Sullivan, 
Carin, IEEE Trans. Geosc. Remote Sensing. 

(5) A Comparison of Algorithms For Subsurface Target Detection and 
Identification Using Time-Domain Electromagnetic Induction Data, 
Tantum and Collins, IEEE Trans. Geosc. Remote Sensing. 

(6) Performance Bounds and a Parameter Transformation for Decay Rate 
Estimation, Tantum and Collins, IEEE Trans. Geosc. Remote Sensing 

(7) A Comparison of the Performance of Statistical and Fuzzy Algorithms for 
Unexploded Ordnance Detection, Collins, Zhang, Li, Want, Carin, Hart, 
Rose-Pehrsson, Nelson, McDonald, IEEE Trans. Fuzzy Systems. 

(8) Sensing of Unexploded Ordnance with Magnetometer and Induction Data: 
Theory and Signal Procesing, Zhang, Collins, Yu, Baum, and Carin, IEEE 
Trans. Geosc. Remote Sensing. 

(9) Unexploded Ordnance Detection Using Bayesian Physcis-Based Data 
Fusion, Zhang, Collins, Carin, Integrated Computer-Aided Engineering. 
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Figure 1.  Comparison between MoM and MLFMA predictions 
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Figure 2.  Comparison of CPU and RAM savings of the MLFMA algorithm 

compared to the MoM approach.  Calculations are for a SGI Origin 2000, 300MHz 
processor with aR12000 CPU chip. 
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Figure 3.  Measured RCS Boom-SAR data (top) and model predictions (bottom)



 
 
 

 
Figure 4.  Electric currents generated by the SAR on a modeled tree. 
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Figure 5.  Modeled SAR imagery from the tree modeled in Figure 2 at various aspect angles.   

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Comparison of measured data and FEM EMI model predictions. 
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Figure 7.  Simulation results for decay rates of {2000, 20000}, {6000, 20000}, {14000, 
20000}.  DR indicates decay rate parameterization of the signal model and P 
indicates pole parameterization of the signal model. 
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Figure 8.  ROC performance of a correlation detector and the HMM on Yuma data 
collected with the Boom-SAR. 



 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  ROC performance for Bayesian algorithms during the JPG-IV 
demonstration using ad-hoc and physics-based feature sets. 
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Figure 10.  ROC performance for MTADS JPG IV data using leave-one-out 
training. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  ROC Performance for JPG V, Area 3.  Left panel, GEM-3 results on 202 
anomalies, 16 UXO.  Right panel, MTADS results on 141 anomalies, 16 UXO. 
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Figure 12.  ROC Performance for JPG V, GEM3 data scored blind.  Left panel, 
Area 1 results on 178 anomalies, 33 UXO.  Right panel, Area 2 results on 236 
anomalies, 24 UXO. 
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Figure 13.  ROC Performance for JPG V, MTADS data scored blind.  Left panel, 
Area 1 results on 149 anomalies, 33 UXO.  Right panel, Area 2 results on 
147anomalies, 24 UXO. 
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