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This document serves as the final report on the project titled “Optimal Sensor 

Management for Next-Generation EMI Systems” (SERDP Project MM-1591). This 

project is a collaboration between SIG, Dr. T. C. Bell of AETC, and Dr. Herb Nelson of 

NRL.   

 

This research is directed toward developing the adaptive sensor-management architecture 

needed for next-generation electromagnetic induction (EMI) systems. Specifically, 

SERDP and ESTCP are currently funding multi-coil EMI systems that provide significant 

capability and diversity with respect to the shape of the incident magnetic field, as well as 

in how the induced magnetic fields are measured (e.g., multi-field-component 

measurements). Moreover, systems can operate in the frequency and/or time domain, 

with prescribed data sampling rates.  

 

The large number of sensor parameters (number of transmit/receive coils, as well as the 

time/frequency sample rate) often necessitate hardware design tradeoffs, with the goal of 

achieving practical sensing costs (e.g., sensing time). By making these sensor-design 

tradeoffs in hardware, one necessarily loses functionality, limiting the utility of the 

system (e.g., the system may have to be tailored in hardware to particular classes of 

UXO, and UXO depths). We are therefore developing here an adaptive EMI-sensing 

framework, for next-generation EMI systems; this framework adaptively tailors the use of 

sensor assets to the target under test. Sensor functionality is preserved by making fewer 

compromises in hardware, with practical sensing costs achieved through optimal and 

selective use of sensor assets. The algorithm also adaptively determines when to 

terminate sensing, defined when the data measured thus far are sufficient for 

classification within user-defined risk constraints.  

 

This research is highly relevant for the full exploitation of current SERDP/ESTCP 

investments in next-generation EMI systems, and therefore there are many transition 

opportunities. We have had particularly close interactions with the Lawrence Livermore 

National Laboratory (LBNL) team, in the context of the Berkeley UXO discriminator 

(BUD) system, for which the algorithms developed here are particularly relevant. 
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The remainder of the document is organized as follows. We provide an overview of the 

problem and the description of sensor system in Section I, followed by descriptions of the 

two algorithmic approaches in Sections II and III. The performance of the proposed 

approaches is analyzed in Section IV, followed by conclusions in Section V. The 

algorithms are explicitly applied to data of the type measured by a state-of-the-art active 

electromagnetic prototype developed by Lawrence Berkeley National Laboratory 

(LBNL), thereby improving the efficiency with which such data may be collected in 

practical UXO-sensing missions. 
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I.  Introduction 

 
Electromagnetic induction (EMI) has been widely used for detection and characterization 

of buried conducting and/or ferrous objects. In order to accurately identify a buried UXO 

from other non-UXO metallic fragments (clutter), it is necessary to accurately estimate 

the parameters that characterize the buried objects. A search mechanism is required that 

estimates the parameters, such as the size, shape, orientation, shell thickness and metal 

content (ferrous or non-ferrous) of the buried object without explicit excavation. The 

search for UXO consists of two steps. In the first step, a buried object (UXO or UXO-like 

metal fragments) needs to be detected and its location needs to be identified. We have 

developed an active learning-based greedy search algorithm that involves sensing using 

EMI systems. The second phase involves the estimation of physical parameters, such as 

shape, size, thickness etc, in terms of induced magnetic moments and polarizabilities of 

the buried object.  

 

A typical EMI-based sensor configuration consists of both transmitter and receiver coils, 

placed close to the ground and in the vicinity of the target. If the operating frequency 

corresponds to wavelengths that are typically much larger than target length, it allows one 

to develop simple models for the target response to an EMI sensor. Detection of 

secondary magnetic fields, produced by currents induced in a metallic object by time-

varying magnetic fields from a source current coil, is a popular choice for detecting 

buried metallic objects such as unexploded ordnance (UXO). Detection of the secondary 

magnetic fields is complicated by the fact that they might be a few orders of magnitude 

weaker than the primary magnetic field. One way of reducing that problem is to use a 

time-domain system, which allows the transmitter to operate for a finite period of time 

and activate the receiver only after the effect of the primary inducing field has 

diminished. Another way is to design the location and orientation of the receiver coil 

such that it is null-coupled to the primary inducing field. The algorithms developed at 

SIG have been designed in the context of the state-of-the-art Berkeley UXO 

discrimminator (BUD) system developed at Lawrence Berkeley National Laboratory 

(LBNL). 
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(a) Berkeley UXO Discriminator 

 

In order to fully characterize the inductive response of an isolated conducting object, it is 

generally desirable to measure its response to primary magnetic fields in three orthogonal 

directions. As mentioned above, the receiver coil needs to be null coupled to the primary 

magnetic field, in order to measure the weak secondary magnetic field from the buried 

objects. For a single or a pair of orthogonal transmitters, the receiver coil needs to be at 

right angles to the primary magnetic fields from both transmitters. It has been shown by 

Huang et al. [1] that when transmitter systems are constructed symmetrically with respect 

to a central point, and receiver pairs are similarly constructed, the differences between 

receiver pairs are insensitive to the primary magnetic fields, and thus null coupled in a 

difference mode, for as many transmitter loops as needed.  

 

The magnetic field produced at point r due to a current element Idl located at point q is 

given by Biot-Savart’s law as  

               3
0

4
)(

)(
qr

qrIdl
rdB

−

−×
=

π

μ
                                                    (1) 

For a transmitter pair, placed symmetrically with respect to the origin (see Figure 1 

below, where two current elements are placed diagonally opposite on the current loop), 
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Fig. 1:  Geometry of symmetric receiver loop pair, one receiver loop centered at r with 
axis along p, and the other centered at −r with axis along −p.  
 

Note that the combined magnetic field shown above is symmetric with respect to the 

change of sign of r. This suggests that identical magnetic fields are induced at two points 

r and –r, which are mirror images with respect to the transmitter coil. This insight has 

been successfully implemented in the design of the Berkeley UXO Discrimminator 

(BUD) developed at LBNL, where three independent transmitter coil-pairs are arranged 

to have magnetic fields that are linearly independent. We have developed our analysis for 

the BUD system, although the methodology is general. 

 

The BUD sensor system is a prototype EMI system developed for detecting and 

characterizing UXOs [2]. The sensor system consists of two pairs of orthogonal vertical 

loop transmitters (Tx and Ty in Fig. 2(c)) and a pair of horizontal loop transmitters (Tz) 

spaced apart vertically by 26" with a  39" x 39" footprint. The vertical coils are separated 

by 6" and are 45.5" x 23.5". The vertical coils are mounted on the diagonals between the 

horizontal loop coils (see Fig. 2). 
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Figure 2. (a) Cart assembly with X, Y and Z transmitter coils, (b) Transmitter coils being 

wound, (c) Physical structure of the BUD sensor system. 

 

Eight vertical field receivers (ch1 to ch8) are deployed in the upper and lower plane of 

the two horizontal loops (Tz1 and Tz2) and are arranged in pairs to measure offset 

vertical gradients of the fields. By design, the offset vertical field measured by the 

receivers are null-coupled to all three transmitted magnetic fields. The location and 

orientation of the three principal polarizabilities of a target can be recovered from a single 

position of the transmitter-receiver system. The system employs a bipolar half sine pulse 

train current waveform and the receivers are dB/dt induction coils designed to minimize 

the transient response of the primary field pulse. The whole sensor system is mounted on 

a cart, as shown in Fig. 2(a).  

 

(b) Electromagnetic Induction Model  

 

SIG has developed a forward model that simulates the time-domain response received by 

each of eight receiver pairs, for each of three transmitter coil excitations.  

 

(a) 

(c)
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Figure 3. Schematic of an induction sensor interrogating a subsurface UXO 

 

Figure 3 shows the schematic of an active EMI-based system for detection of buried 

metallic objects. The transmitter is represented here as a horizontal loop at location 

(x1,y1,z1) (note that BUD sensor array consists of three transmitter loops along three 

mutually orthogonal directions). The target is located at (x,y,z), at a distance R1 from the 

center of the exciter loop. The receiver is represented by another horizontal loop at a 

distance R2 from the target center. The time-varying magnetic field produced by the 

exciter induces current on the target, which in turn develops a secondary magnetic field 

detected by the receptor coil. For an unit-strength target dipole (a target is modeled as a 

single dipole, assuming the excitation wavelength is much larger than the physical 

dimensions of the target), the magnetic field induced by the presence of an UXO is 

modeled [3] as 
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The variables Mx and Mz represent magnetic moments along x and z direction, where z 

represents the direction along the central axis of an UXO. A buried metallic object, 

modeled as a single dipole, is fully characterized by the following parameters [4]: 

 

     1)  Relative location of the dipole (x,y,z) with respect to the sensor system 

     2)  Strength or Dipole Moment (Mx and Mz). Note that UXOs are assumed to  

                 bisectionally symmetric target. Hence Mx and My are assumed to be equal. 

3) Orientation of the target (azimuth φ, and inclination θ) 

4) Resonant frequencies (ωx, ωz) 

 

The BUD sensor system may be treated as a combination of three linearly independent 

exciter loop pairs, along with eight receiver loop pairs. The time-domain response 

collected by a BUD sensor system excited by the presence of a UXO may be represented 

as 

 

 

 

We have used the above equation to simulate the time-domain data received by the 

receiver loops for any location and orientation of a buried object (the coil dimensions are 

modeled rigorously – no dipole assumption). In the next section, we discuss the optimal 

sequential search strategy that will be employed to detect the approximate target (dipole) 

location (x,y,z) and the associated dipole parameters (Mx,Mz,ωx,ωz). 
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II. Adaptive EMI Sensing of Buried Objects 
 

The main objective of the project is to develop a systematic approach for detection and 

identification (or classification) of buried UXOs over a wide area, by optimally 

exploiting the capabilities of next-generation EMI systems. This approach is developed to 

mitigate an important limitation of powerful new systems such as BUD: while the sensor 

has significant capability, it is far more complex (e.g., time consuming) to deploy, due to 

the complexity and size of the system. The new adaptive algorithms developed here allow 

one to retain the sophistication of such systems, but the system is deployed only on a 

specific set of locations such that the corresponding measurements are essential for an 

efficient detection and classification of buried objects. This is an important new 

paradigm: previously one made tradeoffs in sensor design when constructing the 

hardware; while this leads to more-efficient (faster) deployment, one also sacrifices 

potential sensor performance. In the approach developed here, one retains the full sensor 

sophistication in the hardware (e.g., in the BUD system), and practical deployment is 

manifested algorithmically, with the algorithms developed here defining which 

measurements are essential for detection and classification (the data-collection choices 

are made adaptively, in the field, not at the hardware-development stage).  

 

The objective of the first phase of our algorithm is to efficiently estimate the parameters 

of the target model. As discussed above, a target is modeled as a single dipole (it can be 

extended to a multi-dipole model) with an unknown location, orientation, dipole strength, 

and resonant frequencies. Although we assume that the structure of dipole model is 

known, the inverse model, developed at SIG to estimate the target parameters from the 

time-domain data, is sensitive to sensor noise and has many local minima. The idea is to 

make robust and reliable estimation of these parameters using as few sensing 

measurements as possible (reducing deployment costs for the new sensor, while retaining 

overall capability). The proposed approach develops a fundamental information-theoretic 

framework to adaptively and sequentially identify sensing locations in order to minimize 

the uncertainty on the target-parameter estimation (note that this is distinct from 

laboriously and potentially redundantly collecting data on a fixed grid).  
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The objective of this phase of our research is to efficiently estimate the model parameters 

θ. We have developed an active-learning based search strategy to achieve this goal with a 

minimum number of sensing actions.  Let pn be the sensor parameters (location and 

orientation for both transmitter and receiver coils), and On is the time-domain data 

associated with the nth measurement (sensing action). Assuming no prior knowledge, 

sensing starts at any random location (p1 is chosen randomly within the search area) and 

takes a set of measurements (O1). Based on (p1, O1), one may estimate the dipole model 

parameters 1Θ̂  utilizing the inverse model. The goal is to choose the sensor parameters 

for the next measurement, denoted as p2, to improve the estimate of Θ . In general, after 

N measurements are performed, from which NΘ̂  is determined, the objective is to choose 

pn+1, in order to maximally improve the estimation of the target properties, 1
ˆ

+Θ N .  

 

The search strategy assumes that the Nth measurement is represented as 

NntotalNN GpBpO +Θ=Θ ),(),( , where ),( ntotal pB Θ  is the noise-free target response and 

GN is the additive white Gaussian noise. The search strategy is based on choosing 

measurement parameter pN+1 that minimize the Cramer-Rao bound (CRB) [5] computed 

as the optimal variance of the unbiased estimate of 1+Θ N . Assuming white Gaussian 

noise, the maximum-likelihood estimation of Θ , based on measurements {pn, On}n=1:N, 

reduces to a least-square (LS) fit [5] 
 

                                                                                                                                          (1) 

 

where Θ  = [x, y, z, Mx, Mz, φ, θ ,ωx ,ωz] represent the target parameters and pN 

represents the sensor parameters (location and orientation). An important issue 

concerning the above computation involves the existence of multiple local minima.  

 

Assuming β represents the inverse of the noise variance, the likelihood of the measured 

observations O can be written as 
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Let the Fisher information matrix [6] be denoted as J, and its (i,k)th element Jik can be 

evaluated as 
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Hence our objective is to determine optimal sensor parameters pN+1  for N+1th 

measurement, where the quality of pN+1 is based on the Fisher information matrix [6], 

evaluated as 

 

 

Where Θ∇ represents the gradient evaluated with respect to the target parameters Θ  and 

superscript H represents the complex transpose. The above equation is evaluated at 

NΘ=Θ ˆ , assuming the model parameter estimate is correct after N measurements. The 

objective in selecting sensor parameters pN+1 is to reduce the uncertainty in the estimated 

target parameters, characterized through the Cramer-Rao bound C = J-1. We define the 

Fisher information measure q of a measurement sequence {pn, On}n=1:N as  
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where I is a 2x2 identity matrix and  F is a Kx2 matrix (assuming K target parameters), 

{ }[ ])},(Im{,),(Re],[ ntotalntotalIR pBpBFFF Θ∇Θ∇== ΘΘ . The logarithmic increase of the 

Fisher information measure is 

{ }( ) { }( ) FBFIppqpppqp N
T

NNN
1

111 ln},....,ln},,....,ln)( −
+ +=−= βδ              (3) 

where ∑ =
=

N

n
n

N JB
1

is the Fisher information matrix computed using the first N sensor 

parameters {pn}n=1:N, based on the latest estimate of the model parameters NΘ̂ . 

Therefore, the sensor parameters pN+1 for the (N+1)th measurement are selected at the 

point where the model “error bars” FBF N
T 1−β are largest. Since our objective is to achieve 

the maximum information gain, we define the optimal sampling point pN+1 as 

                          FBFIpp N
T

pp
N

1
1 lnmaxarg)(maxarg −

+ +== βδ                                    (4) 

The search for the next sensing location pN+1  is performed in a two-dimensional space, 

corresponding to sensor position (xs, ys). The target parameter estimate is updated ( 1
ˆ

+ΘN ) 

based on {pn ,On}n=1:N+1. It is important to note that BN is only invertible after performing 

a sufficient number of measurements. Such a limitation is handled by adding a “diagonal 

loading” to the matrix BN (i.e., replace BN by BN+λI) for first few measurements. This 

sequential process of choosing sensor locations for measurements is terminated when the 

Fisher information gain is below a threshold, yielding a stable estimate of the 

approximate target location, orientation and model parameters. Once this is achieved, we 

enter the second phase of our work, where the objective is to identify the buried object.  

 

III. Optimal Sensing using POMDP for UXO Classification 
 

We have developed a partially observable Markov decision process (POMDP) based 

autonomous decision making system for UXO identification, assuming the approximate 

location of the buried object is known (e.g., using the technique in the previous section, 

or based on other information that may be available, for example from a magnetometer). 

The algorithm has been successfully developed and tested on data simulated to replicate 

the BUD sensor.  
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Given an area where different types of UXO and clutter are buried, our objective is to 

identify the buried objects through sensing, without costly excavation. We use the same 

BUD sensor system as before, but unlike the previous approach, we incorporate the cost 

of sensing in our sequential decision making process. In other words, the adaptive search 

strategy discussed in the previous section used all three transmitters and eight receivers to 

obtain measurements, which in turn were utilized for target parameter inversion 

(executing all of these measurements may be unnecessary/redundant and wasteful, and 

now we seek to address this issue). The strategy in the previous section also ignored the 

cost of moving the sensor array from one location to the next, which is incorporated in 

the policy design in the POMDP-based approach discussed next.  

 

We develop a policy that evaluates the next best action to take at any time, based on the 

data measured thus far. The policy is optimal in the sense that it tries to maximize the 

long-term (“non-myopic”) discounted reward through its sequential choice of actions. For 

example, the policy decides whether it should declare the “ID” of the buried object, and 

when it needs to sense more (using a risk analysis). We assume that correct and incorrect 

declarations also have corresponding reward/penalty – this, along with sensing costs, are 

provided by the policy maker prior to training the POMDP-based optimal sensing and 

declaration policy.  

 

We have developed a partially observable Markov decision process (POMDP) [7] based 

policy design that that answers the following questions.  

      1.  How to optimally choose sensing positions, so as to use as few sensing  

locations as possible to identify the buried object correctly (minimizing the      

number of times the sensor must be moved. 

     2. How to optimally choose a sensor from the sensor array at each sensing location. 

     3.  When to stop sensing and make a declaration with regard to the target ID (UXO 

vs. clutter). 
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Policy design proceeds in two phases. The first phase involves model training, consisting 

of (a) designing the target/clutter model, which involves estimation of the model 

parameters based on previously collected training data; (b) training of the optimal policy 

given the specified model. There exist many policy-learning algorithms for given 

POMDP models. We have employed the state-of-the-art point-based value iteration 

(PBVI) algorithm [8] here.  

 

After model learning and policy design (done off-line), the second phase involves model 

testing. The testing phase is executed in real time to make decisions to sense or declare 

the ID of the buried object, as dictated by the trained policy.  We briefly discuss the 

salient features of a POMDP model, followed by the specifics of the model as designed 

for UXO classification.  

 

a) Partially Observed Markov Decision Processes (POMDP) 

 

A POMDP is a model of an agent interacting synchronously with its environment. The 

agent starts with an initial estimate (belief) of the underlying unobservable states. A 

belief vector is a probability distribution over the states of the model. The agent takes an 

action dictated by the policy. This produces an observation and a reward from the 

environment. The agent updates its belief based on the observation, and takes the next 

action based on the updated belief. The agent keeps the entire history of the past {action, 

observation, reward} sequence compressed in the form of an updated belief vector over 

the unobservable states (the belief vector is a “sufficient statistic”). This process 

continues until the agent takes one of the terminal actions (e.g., the declaration action in 

the current problem). 

 

A POMDP model is defined by the tuple {S, A, T, R, Ω, O} [7], where S is a finite set of 

discrete states of the environment, A is a finite set of discrete actions, and Ω  is a finite set 

of discrete observations providing noisy state information. In the current problem, the 

states represent the area on the ground divided into square grids (more details are 

presented below in the results section). Note that states S in a POMDP are hidden. In the 
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current problem, the hidden part is the class of the buried object (UXO or clutter), not the 

physical location of the buried object. The actions in our problem consist of three 

different sensing actions (corresponding to three mutually orthogonal transmitters), along 

with five moving actions (moving the sensor system east, west, north, and south by a 

fixed distance for the next measurement; or possibly no-movement, corresponding to 

taking another measurement at the same point). In addition, we incorporate three 

declaration actions: UXO, clutter and clean region. These declaration actions serve as 

terminal actions for a POMDP agent, by which it makes its final declaration about the 

class of the buried object before moving to a new location.  

 

The state transition probability is represented by matrix T where 

T: S×A → Π (S) , where  

 represents the probability of transitioning from state s to s’ upon taking action a. The 

observation function is defined as  

O: S×A → Π (Ω), where   

represents the probability of receiving observation o after taking action a, and transiting 

to state s’. The reward structure is represented as R: S×A → ℜ , where R(s, a) is the 

expected reward (cost) received by taking action a in state s. 

 

Since the state is not observed directly, a belief state b is introduced. The belief state is a 

probability distribution over all states, representing the agent’s probability of being in 

each of the states based on past actions and observations. The belief state is updated by 

Bayes’ rule after each action and observation, based on the previous belief state. 
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A POMDP policy is a mapping from belief states to actions, telling the agent which 

action to take based on the current belief state. The goal of the POMDP is to find an 

optimal policy by maximizing the expected discounted reward                                      , 

 which is accrued over a finite or infinite horizon. The discount factor ]1,0(∈γ  describes 

the degree to which future rewards are discounted relative to immediate rewards. When 

the agent (sensor system in this case) in belief state b, the maximum expected discounted 

reward is given by 

 

 
 

where R(b,a) is the immediate reward and                               is the discounted future 

reward over an infinite horizon. For a finite-horizon case, V*(b) has been shown to be  
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complete PBVI algorithm is designed as an anytime algorithm, interleaving steps of value 

iteration and steps of belief set expansion. It starts with an initial set of belief points for 

which it applies a first series of backup operations. It then grows the set of belief points, 

and finds a new solution for the expanded set. We briefly describe how PBVI performs 

value backups and choose the representative belief points. 

 

 

 

i)  Point-based value backup 

 

The exact value backup for POMDP is given by 

 

 

 

In the PBVI algorithm, the exact value backup is modified such that only one α-vector 
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ii) Belief point set expansion 

 

PBVI focuses its planning on relevant beliefs. It has been proven that PBVI performs best 

when its belief set is uniformly dense in the set of reachable beliefs. Consequently, we 

start with a small, randomly initialized belief set B, and greedily expand it to capture 

reachable belief points. For a given belief point Bb ∈ , PBVI stochastically simulates a 
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single-step forward trajectory using each action to produce a set of new beliefs 

},.....,{
1 Naa bb , one for each possible action Aa ∈ . Finally, it keeps only the belief 

iab that 

is furthest from the starting belief b. So at every step of belief-set expansion, the number 

of belief points essentially doubles and the performance of the algorithm converges after 

a few expansion steps. Since expansion phases are interleaved with value iteration, PBVI 

is an anytime solution. 

 

 

c) POMDP Model Design for UXO Identification 

 

It is assumed in this phase of the project that the approximate location of a buried object 

is known a priori, although their identification (UXO or clutter) is unknown to the agent 

(sensor system in this case). The objective is to classify the buried object through a 

careful choice of sensing actions around the buried object so as to facilitate classification 

without costly excavation. The agent can be in one of three possible (hidden) situations, 

where the underlying buried object is an UXO, clutter, or the subsurface is relatively 

clean. Each such situation is designated as a “world” in the POMDP, while all worlds 

constitute the “universe”. The agent can move between states of a world, but no transition 

between the worlds is permitted. This is intuitive in the sense that the sensor system can 

move from one location to another around the buried object, while the nature of the 

buried object does not change. Since the class of the buried object identifies the world, no 

state transition is permitted between worlds. Out of three possible worlds, one of them is 

the true world, but the agent does not possess this information (it is “hidden”).  

 

We model a given region via nine state, where each state represents a .5m x .5m square 

area. A “clean” world is modeled as a single state. Assuming the object location is 

approximately known, the agent starts in state s5 of world 1 (UXO) or 2 (Clutter), or s1 

of world 3 (Clean). The idea is to identify which world the agent is in. The sequential 

sensing process terminates when the agent makes a declaration about the class of the 

buried object.  
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 Figure 4.   (a) World -1:UXO            (b) World-2:Clutter                  (c) World-3:Clean 

 

We have modeled five moving actions {stay, go-east, go-west, go-north, go-south} 

coupled with three sensing actions {sense with transmitter coil Tx, Ty or Tz}, or 

declaration action {declare-UXO, declare-clutter, or declare-clean}. Also, note that we 

have modeled the transitions between states as determinimistic, assuming that after the 

algorithm identifies a moving actions as the next best action to take, there would be 

outside help to move the sensor system to the new location. Hence we can concentrate on 

the policy training for the underlying worlds, without being involved in the stochastic 

motion modeling. According to the model described above, the agent’s motion would be 

constrained within the boundaries of the world. This is implemented within the state 

transition model in the following way: If the agent is in state S9 of world 1, moving action 

towards north or right would not move the agent, whereas moving action towards west or 

south would lead the agent to state S6 or S8 respectively, with probability one. Although a 

POMDP is capable of handling stochastic transitions, we have used deterministic 

transitions (with probability 0 or 1) in our problem.  

 

The POMDP model is based on discrete observations. For each sensing action, the 

forward model (which possesses the knowledge of the target location and other 

parameters) simulates a set of eight time-domain signals corresponding to eight receiver 

coil pairs. Given the set of continuous time-domain signals, we perform a model 

inversion to estimate the underlying target parameters. Note that any such model 

inversion technique leads to multiple local optimas. Hence one needs to estimate the 

distribution of the inverted parameter vectors prior to POMDP training. In order to 

achieve the above goal, we first generate a large set of simulated UXO, Clutter, and clean 

area responses, from each of the 19 probable states of the universe. Given a set of 

received time-domain signals, we ran model-inversion algorithm with many random 

 S3  S6 S9 

S2 S5 S8 

S1 S4 S7 

S3  S6 S9 

S2 S5 S8 

S1 S4 S7 
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seeds to generate a large set inverted target parameters. We discretized this large sample 

set using vector quantization (VQ) to develop a codebook. The codebook serves as the set 

of possible discrete observations for the POMDP. We choose a codebook size of 15 for 

discretizing the parameter space for the entire universe. The POMDP model requires a 

discrete observation probability distribution. We approximate this distribution by the 

relative frequency of observing each codebook element within each of 19 states in the 

universe.   

 

IV. Performance Analysis 

 
We analyzed the performance of the proposed algorithms based on simulated data 

modeled on the active electromagnetic BUD sensor system developed at LBNL. The 

forward model that emulates the BUD sensor system is capable to illuminating the target 

with one of three orthogonal transmitter coils and receive secondary magnetic field in all 

eight horizontal receivers. The parameters of the targets used in these simulations were 

based on inverting measured data from the BUD system. 

 

a) Phase 1: Adaptive EMI Sensing 

 

The first phase of our research was detection of buried objects, where our principal aim is 

to identify the approximate location and parameters (shape, size, dipole moments etc). 

We have designed an active-learning based information-theoretic technique that 

efficiently chooses a sequence of sensing actions to minimize the uncertainty on the 

unknown model parameters. The algorithm starts with a randomly picked starting 

location, from where its makes its first sensing action. In this phase, a sensing action 

involves all three transmitters and eight receivers. Based on the set of eight time-domain 

signals, the algorithm estimates the approximate target location and the uncertainty on 

each of these estimates. The algorithm then evaluates the Fisher information matrix based 

on the current estimate of the model parameters and evaluates the next best location to 

sense that would maximally reduce the uncertainty on the model parameters. This greedy 
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search strategy is continued until the reduction in uncertainty is lower than a predefined 

threshold, leading to a stable estimate of the target location. 

 

Figure 5(a) represent the sequence of sensing locations as evaluated by the adaptive 

strategy. As shown in the figure, the target is located near the middle of the search area 

(marked by a red dot), while the sensor system starts sensing from an arbitrarily chosen 

location (marked as “1”). Based on the observation it receives, the target parameter Θ is 

estimated (using an inverse model developed at SIG). The Fisher information matrix [6] 

is evaluated as shown in Eq. 2, assuming the current parameter estimate 1Θ̂  is correct. 

The next best location to sense is evaluated (marked as “2”) that maximizes the gain in 

Fisher information (as defined in Eq. 3).  

 

 

 

 

 

 

 

 
 

Figure 5: (a) Variation of the BUD sensor location pn as a function of measure n; pn is 

determined adaptively; (b) Variation of the BUD sensor location pn as a function of 

measure n, using a fixed grid of sensor position;  (c) Fitting error for the estimation of the 

UXO parameters Θ for  the two search strategies. 

 

The next set of measurements are taken at location “2” and the target parameters 2Θ̂  is 

updated. It is important to note that the parameter estimate 2Θ̂  is based on both the 

observations collected from locations “1” and “2”. This process is continued for five 

sensing actions, marked 1 to 5 on Fig. 5(a). Observe that the agent makes sensing actions 

around the target, while gradually moving towards the correct location of the target. 

Within five sensing actions, the sensor system is on top of the buried object and the 
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corresponding parameter estimate is close to the ground truth (comparisons are tabulated 

in table 1). In order to recognize the efficacy of the active learning technique, we 

compare its performance with a uniform sampling approach (shown in Fig. 5(b)), where 

sensing is performed on an uniform grid for sixteen measurements. Figure 5(c) compares 

the two approaches where the vertical axis represents the fitting error on the target 

parameters and horizontal axis represents the number of points used. One can easily 

recognize that the fitting error reduces drastically using only five sensing measurements 

using the adaptive strategy, whereas the uniform sampling approach takes eight sensing 

operations to achieve a similar performance. 

 

The comparison between the model parameters estimated by the adaptive strategy and the 

fixed grid strategy is shown in Table 1. As noted above, {x,y,z} correspond to the 

physical location of the buried target, {θ,φ} correspond to the orientation, and {Mx, ωx, 

Mz, ωz} correspond to the dipole moments. This clearly shows the benefit of the adaptive 

strategy in estimating the approximate target parameter with only a small number of 

sensing operations.  

 

 
 

 

(b) Target Classification using POMDP-based sensor scheduling 

 

Once the approximate location and model parameters of the buried object are obtained, 

we employ the second phase of the strategy, where a POMDP-based policy dictates how 

a buried objected needs to be illuminated by different transmitter coils in order to identify 

the “class” of the buried object. This model assumes the sensing cost with three 

individual transmitter are known a priori, along with the cost of declaring the “ID” of the 

      True  parameters, parameters fitted adaptively, parameters fitted with fixed-grid 

                        θ          φ        x         y         z          Mx          ωx             Mz           ωz 

True                         0.52   1.05   4.10    4.98    -0.37    20         90000       30         11000 
fitted adaptively       0.55    0.97  4.08    4.99    -0.36    15.68    11036       62           4752 
fitted with fixed-grid 0.38    0.91  4.10    4.93    -0.44    184.73   1543       113          4987 

Table 1:    Target parameters using two search 
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buried objects, both correctly and incorrectly. Note that a policy maker needs to carefully 

design these costs since they can significantly alter the policy. Suppose the cost structure 

for declaration is represented by a 2x2 matrix as 

 

Reward for correct detection of an UXO Reward(-cost) for missing an UXO 

Reward (-cost) for generating a false alarm Reward for correct labeling of a clutter 

 

 

As described in Section III, the POMDP model needs to be trained prior to deploying the 

agent (the sensor system) on the field to make decisions on where to sense, which sensor 

to use for sensing, and when to stop further sensing to make declaration of the “class” of 

the buried object. The model consists of transition and observation probability matrices, 

along with cost/reward structure. These rewards/costs consist of cost of employing 

individual transmitters (which can be estimated based on their use of various resources 

like battery power etc), and the opportunity cost of mislabeling the underlying objects 

(described by the 2x2 table above). The trained model generates a set of α vectors, each 

associated with a discrete action from the action set. During the testing phase, the agent 

(sensor system) starts at the center of one of the underlying worlds and takes a 

measurement. Based on the output of the measurement, the trained policy decides the 

next best action, which could be taking another measurement using the same or different 

transmitter, or movement to another location and for further sensing. As the agent takes a 

sequence of actions and gathers a sequence of observations, it sequentially updates its 

belief over the entire universe. This iterative process terminates, when the agent is certain 

enough about the “class” of the underlying target (meaning the combined belief over all 

states of one world is close to one), at which it “declares” the class of the buried object. 

 

Figure 6 shows the variation in classification performance as the declaration cost 

structure is varied. In Fig. 6(a), the reward for correct classification of an UXO or clutter 

is kept fixed at 500, while gradually increasing the cost of missing an UXO (or 

incorrectly declaring an UXO as clutter) from 400 to 4400. It is observed the probability 

of detection (pd) also increases monotonically from 0.75 to 0.99. In the next set of 
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experiments (shown in Fig. 6(b)), we increased the cost of incorrectly declaring a clutter 

as an UXO from 400 to 4400. The consequence is the monotonic fall in the false alarm 

rate from 0.24 to 0.04. Both of these phenomena is expected and it demonstrates the 

direct effect of the cost structure on the probability of detection and false alarm. Figure 7 

displays the variation of the average number of sensing actions taken by the sensor 

system before declaring the “ID” of the buried object as a function of the cost structure. 

As expected the number of sensing actions increase monotonically in order to achieve 

higher detectability of UXOs and lower false alarm rate. 

 

 

 

 

 

 

 

 

 

 

 
 

           (a)                                                                       (b) 

Figure 6. (a) Variation of pd as a function of the cost of missing an UXO; (b) Variation in 

pfa as a function of the cost of labeling a clutter as an UXO;  
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Figure 7. Variation in the number of sensing actions as a function of the declaration costs. 

V. Conclusions 
 

We have developed two algorithms with an ultimate goal of optimal sensor management 

for detection and classification of buried UXOs. The algorithms under development are 

designed to efficiently and adaptively exploit the full capabilities of next-generation EMI 

systems, such as the LBNL BUD system. The first algorithm is designed to 

approximately identify the location and model parameters of a buried object in a wide 

area. This approach adaptively identifies the sensing locations that minimize the 

uncertainty in the model estimates. The information-theoretic approach is shown to 

outperform the uniform sampling approach with better model estimates with less number 

of sensing actions. While this approach is effective in approximately identifying object 

locations, it does not incorporate cost of sensing or moving the sensor array from one 

location to the next. This approach also assumes that all the transmitter and receivers are 

employed for each sensing action, which might be inefficient and costly for wide area 

sensing. We are currently investigating the prospect of embedding these costs in the 

adaptive search algorithm. Once the approximate target location is identified, we employ 

our second algorithm that ensures optimal sequence of sensing actions to maximize target 
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identification, while minimizing the total sensing cost. The trained policy is optimized for 

a cost/reward structure provided by the policy maker. Although we have used only three 

transmitter coils, the scope of the policy can be expanded easily to include multi-modality 

where a sensor system includes multiple sensors with different sensing costs. We have 

restricted ourselves to only three sensing actions in this problem (corresponding to the 

choice of any one of the three transmitter coils for each sensing action), although it can 

be generalized to any possible combinations of three transmitters (six choices) and any 

combination of the eight receivers. Since the receivers are passive, we perceived their 

deployment as low-cost endeavor, hence we employed all eight receivers for each sensing 

action. 

 

There are a few constraints of the proposed approaches. The adaptive search strategy 

assumes the sensor noise is white Gaussian which is often not completely true. The 

POMDP approach is based on the assumption that the approximate location of the target 

is known. This would not be true if the adaptive search strategy fails to locate the target. 

In this case the state space of the POMDP has to be increased. The POMDP model 

complexity grows exponentially with the size of the state space, hence it might not be 

practical if the adaptive search strategy fails. We are currently investigating POMDP 

training approaches that are capable of handling a larger state space and action space. In 

addition, the POMDP policy training employed here is an offline training scheme, where 

the policy needs to be trained every time a new sensor is added to the current set, or if the 

sensing/declaration costs (provided by the policy maker) change to accommodate a 

change in the environment. We are also investigating online POMDP training algorithms 

that perform concurrent exploration and exploitation to adapt to the changes in the 

environment in real-time and achieve the goal. 
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