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15 This figure shows the beamformed image for scattering due to a single, thin-shell
spherical target, a single source position, and for all 40 receivers shown in Fig. 10.
The input time series consists of a center frequency of 8000 Hz, and the source
signal has 12,000 Hz bandwidth. The result shows that the scattering intensity is
peaked in the true location of the target. However, in constructing this beamformed
image, only one source position was used. This fact in combination with the finite
bandwidth of the source location is the origin of the smile-like spread of the in-
tensity. The use of additional source positions (as, in fact, is commonly done with
BOSS deployments) would yield sharper focus since all of these contributions are
coherently added, and volumetric regions containing no scatterers will tend to have
deconstructive interference from the wavefields summed over the sources and the
receivers. If the spatial coverage is skewed or non-symmetric, there will tend to be
some geometric distortion. However, even in the case of perfect and complete spa-
tial coverage, the scattering location will tend to be a “ball” rather than a point due
to the finite bandwidth. Thus, in practice, one might use 100 source positions in
the image construction, and each wavefield recording is acquired as the BOSS plat-
form moves at speed 2 m/s and with a source pulse repetition frequency (PRF) of
20 Hz. In this way, beamforming over multiple source positions mitigates against
the scattering location ambiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

16 Simulation of BOSS-like experiment data for a buried metal target (yellow rectan-
gle) in three different sediment layers. The source is indicated by the yellow cross,
and the receiver array is indicated by the yellow circles. . . . . . . . . . . . . . . 53

17 This figure is one of numerous benchmarks we have devised to validate the spectral
element method theoretical formulation and numerical implementation. Validation
is achieved by comparison to an available analytical solution. This simulation of
wave propagation is for a model consisting of two homogeneous poroelastic layers
with continuous bulk and shear modulii and discontinuous porosity, as tabulated
in the upper right of the figure. The source (cross) is located at the cross and
the two receivers are indicated by the circles. The top is a free surface and the
remaining three edges are absorbing boundaries. Upper left: Snapshot of the
vertical-component displacement at t = 0.9 s. The direct fast P (a), the reflected fast
P (b), the reflected fast P-to-S and the fast P-to-slow P converted (c) waves (which
overlap because they have similar wave speeds) can be observed in the upper layer,
together with the direct slow P (d), the reflected slow P (e), the reflected slow P-
to-S converted (f), and the reflected slow P-to-fast P converted (g) waves. We also
observe the reflected fast P wave due to the free surface (h). In the lower layer, the
transmitted fast P (i), fast P-to-S and fast P-to-slow P converted (j) waves (which
again overlap because they have similar wave speeds) can clearly be identified,
together with the transmitted slow P and slow P-to-S converted (k) and slow P-
to-fast P converted (l) waves. There are some weak spurious reflections from the
absorbing boundary at x = 0. Lower left and lower right: Vertical-component
velocity seismograms at receivers 1 and 2 (Spectral Element Simulation: solid
black line, analytical solution: dashed red line). We use domain composition to
accommodate the first-order discontinuity in porosity. . . . . . . . . . . . . . . . 54
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18 The phase histories (without range compression) for a single channel of the 40-
channel BOSS array as the platform tracks over a partially buried, cylindrical tar-
get. This data was acquired at AUV FEST 2007 and is one several data samples
being used to validate the high-fidelity simulation method developed under this
effort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

19 Various views of BOSS beamformed imagery for a data cube containing a target
scattering response from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see
eq. 114). Upper right: Side view of a target object showing the MIP Pyz(y, z)
(see eq. 115). Lower left: Front view of a target object showing the MIP Pxz(x, z)
(see eq. 115). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

20 The model dimensions for simulation are 16×2.5×6 m. This figure shows a 3-D
view of the model with compressional wave speed distribution. . . . . . . . . . . . 57

21 Side view of the model, where the target in red can be seen. . . . . . . . . . . . . . 57
22 Top view of the model showing two different positions of source-receivers vehicle. 58
23 Source waveform represented as a chirp signal sweeping linearly from 2 kHz to

20 kHz. This figures shows the comparison between the actual BOSS waveform
for the data (labeled AST), and our simple model for this signal. . . . . . . . . . . 58

24 Time series at one receiver over 43 pings. The BOSS platform moves along the
target. The background signal has been eliminated. The buried object signature is
the only visible signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

25 SAS Beamforming realized by Kent Harbaugh from Applied Signal Technology,
Inc. using our 3-D numerical results: this shows a data slice parallel with the wing. 60

26 St. Andrew Bay 10-m water depth sand site data collection from 2006. . . . . . . 62
27 St. Andrew Bay 10-m water depth mud site data collection from 2006. Buried

targets are indicated by the red–filled triangles. . . . . . . . . . . . . . . . . . . . 62
28 Yankee test site target locations from the 2007 collection. . . . . . . . . . . . . . 64
29 Various views of BOSS beamformed imagery for a data cube containing the scat-

tering response for a cylinder shaped object from the AUV FEST 2007 collection.
Upper left: Top view of a target object shown as the maximum intensity projection
(MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a target object showing
the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object showing
the MIP Pxz(x, z) (see eq. 115). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

30 Distribution histograms for the geometric center x coordinate (top panel), y coor-
dinate (top panel) and z coordinate (bottom panel) feature types. In each case the
target and clutter features are shown on the left hand and right hand sides, respec-
tively. The features were derived from 3D beamform products using data acquired
by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89
targets were processed in generating these distributions. . . . . . . . . . . . . . . . 70
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31 Features derived from the targets and clutter in this data set from the BOSS AUV
FEST 2008 collection are indicated by the circles and plus signs, respectively.
Scatter plots for various feature pairs are shown. Upper left: ellipsoid radius
A versus ellipsoid radius B. Upper right: ellipsoid radius A versus ellipsoid
length to width ratio A/B. Middle left: ellipsoid radius A versus the voxel en-
ergy density. Middle right: ellipsoid radius A versus the peak intensity. Lower
left: ellipsoid radius A versus the first bin of the 3-bin PDF of the relative inten-
sity. Lower right: ellipsoid radius A versus the third bin of the 3-bin PDF of the
relative intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

32 3D scatter plots showing training points and optimal relevance vectors for various feature
triplets. The features were derived from the BOSS AUV FEST 2008 data set. The training
vectors corresponding to known targets are given by the green circles. In addition, fea-
ture triplets circled in red are determined to be relevance vectors as determined for RVM
analysis for the feature subset (4, 5, 20, 26, 29, 30, 32) as described in Sec. 4.6 and the
case 1 subset (see Table 8). Upper panel: Feature triplet A, B (best fit ellipsoid radii) and
Length to width ratio A/B. Middle panel: Feature triplet A, B (best fit ellipsoid radii)
and Voxel energy density. Lower panel: Feature triplet A, B (best fit ellipsoid radii) and
peak intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

33 Classification results for AUV Fest 2008 BOSS data using the Relevance Vector
Machine. In training, typically half of a data set is randomly chosen as the ‘train-
ing set’ and the remaining half is chosen as the ‘test set’. Thus, there are numerous
random subsets that could be chosen, and so for statistical robustness in choosing
an optimal feature subset, the selection should be made with respect to the ensem-
ble results for various subsets of target/clutter training points. In the results shown
here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the
training set (half of target/clutter exemplars) Upper right: ROC classifier perfor-
mance for the test set (the other half of the target/clutter exemplars). Lower left:
ROC classifier performance for training and test sets.. Lower right: Mean value
of the ROC curves in each dimension from the training and test sets. . . . . . . . . 76

34 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 1 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 79

35 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 2 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 80
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36 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 3 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 81

37 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 4 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 82

38 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 5 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 83

39 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 6 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 84

40 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 7 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 85

41 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 8 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 86
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42 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 9 in Table 8, see also
Table 7). Upper right: Number of relevance vectors chosen from available training vec-
tors per RVM iteration. Middle left: Significant hyperparameters αi from the final RVM
iteration indicating indices of relevance vectors chosen from training vector set. Middle
right: ROC for the training set (half of target/clutter exemplars). Lower left: ROC for the
test set (training set complement). Lower right: ROCs for training and test sets. . . . . . 87

43 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 10 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

44 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 11 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

45 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 12 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

46 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 13 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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47 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 14 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

48 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 15 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

49 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 16 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

50 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 17 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

51 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 18 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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52 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 19 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

53 RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was
trained using the indicated subset of the 50 available features (case 20 in Table 8, see
also Table 7). Upper right: Number of relevance vectors chosen from available training
vectors per RVM iteration. Middle left: Significant hyperparameters αi from the final
RVM iteration indicating indices of relevance vectors chosen from training vector set.
Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test
sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

54 Various views of BOSS beamformed imagery for a data cube containing a target
scattering response from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see
eq. 114). Upper right: Side view of a target object showing the MIP Pyz(y, z)
(see eq. 115). Lower left: Front view of a target object showing the MIP Pxz(x, z)
(see eq. 115). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

55 Various views of BOSS beamformed imagery for a data cube containing a target
scattering response from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see
eq. 114). Upper right: Side view of a target object showing the MIP Pyz(y, z)
(see eq. 115). Lower left: Front view of a target object showing the MIP Pxz(x, z)
(see eq. 115). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

56 Various views of BOSS beamformed imagery for a data cube containing a target
scattering response from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see
eq. 114). Upper right: Side view of a target object showing the MIP Pyz(y, z)
(see eq. 115). Lower left: Front view of a target object showing the MIP Pxz(x, z)
(see eq. 115). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

57 Various views of BOSS beamformed imagery for a data cube containing a target
scattering response from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see
eq. 114). Upper right: Side view of a target object showing the MIP Pyz(y, z)
(see eq. 115). Lower left: Front view of a target object showing the MIP Pxz(x, z)
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58 Various views of BOSS beamformed imagery for a data cube containing a target
scattering response from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see
eq. 114). Upper right: Side view of a target object showing the MIP Pyz(y, z)
(see eq. 115). Lower left: Front view of a target object showing the MIP Pxz(x, z)
(see eq. 115). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

59 Various views of BOSS beamformed imagery for a data cube containing a target
scattering response from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see
eq. 114). Upper right: Side view of a target object showing the MIP Pyz(y, z)
(see eq. 115). Lower left: Front view of a target object showing the MIP Pxz(x, z)
(see eq. 115). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

60 Various views of BOSS beamformed imagery for a data cube containing a target
scattering response from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see
eq. 114). Upper right: Side view of a target object showing the MIP Pyz(y, z)
(see eq. 115). Lower left: Front view of a target object showing the MIP Pxz(x, z)
(see eq. 115). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

61 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the
maximum intensity value of the data cube, corresponding to the target in Fig. 54. . 113

62 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the
maximum intensity value of the data cube, corresponding to the target in Fig. 55. . 114

63 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the
maximum intensity value of the data cube, corresponding to the target in Fig. 56. . 114

64 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the
maximum intensity value of the data cube, corresponding to the target in Fig. 57. . 115

65 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the
maximum intensity value of the data cube, corresponding to the target in Fig. 58. . 115

66 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the
maximum intensity value of the data cube, corresponding to the target in Fig. 59. . 116

67 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the
maximum intensity value of the data cube, corresponding to the target in Fig. 60. . 116

68 For this feature type we fit a volume associated with a clutter or target item to
the best fitting ellipsoid characterized by the three principal radii A (top panel), B
(middle panel) and C (bottom panel). In each case the target and clutter features
are shown on the left hand and right hand sides, respectively. The features were
derived from 3D beamform products using data acquired by the BOSS platform at
the AUV Fest 2008. A total of 132 clutter items and 89 targets were processed in
generating these distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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69 This feature type is given by the unit vector ûA describing the direction of the
principal radius A of the best fitting ellipsoid volume. The x–component, y–
component and z–components are shown, respectively, in the top, middle and bot-
tom panels. In each case the target and clutter features are shown on the left hand
and right hand sides, respectively. The features were derived from 3D beamform
products using data acquired by the BOSS platform at the AUV Fest 2008. A total
of 132 clutter items and 89 targets were processed in generating these distributions. 119

70 This feature type is given by the unit vector ûB describing the direction of the
principal radius B of the best fitting ellipsoid volume. The x–component, y–
component and z–components are shown, respectively, in the top, middle and bot-
tom panels. In each case the target and clutter features are shown on the left hand
and right hand sides, respectively. The features were derived from 3D beamform
products using data acquired by the BOSS platform at the AUV Fest 2008. A total
of 132 clutter items and 89 targets were processed in generating these distributions. 120

71 This feature type is given by the unit vector ûC describing the direction of the
principal radius C of the best fitting ellipsoid volume. The x–component, y–
component and z–components are shown, respectively, in the top, middle and bot-
tom panels. In each case the target and clutter features are shown on the left hand
and right hand sides, respectively. The features were derived from 3D beamform
products using data acquired by the BOSS platform at the AUV Fest 2008. A total
of 132 clutter items and 89 targets were processed in generating these distributions. 121

72 This feature type is given by the cross–sectional areas of the best fitting ellip-
soids to the thresholded intensity blobs identified as target/clutter items in the
BOSS data. These cross–sectional areas are given as πAB,πAC and πBC, and
are shown, respectively in the top, middle and bottom panels. In each case the
target and clutter features are shown on the left hand and right hand sides, respec-
tively. The features were derived from 3D beamform products using data acquired
by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89
targets were processed in generating these distributions. . . . . . . . . . . . . . . . 122

73 This feature type is given by the length to width ratios A/C, A/B and B/C where
A, B and C are the principal radii of the best fitting ellipsoids. These ratios are
shown, respectively, in the top, middle and bottom panels. In each case the target
and clutter features are shown on the left hand and right hand sides, respectively.
The features were derived from 3D beamform products using data acquired by the
BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89 targets
were processed in generating these distributions. . . . . . . . . . . . . . . . . . . . 123

74 This feature type is given by the ellipsoidal volume πABC of the best fitting ellip-
soids to each of the thresholded intensity blobs identified as target/clutter items in
the BOSS data. The target and clutter distributions for this features are shown on
the left hand and right hand sides, respectively. A total of 132 clutter items and 89
targets were processed in generating these distributions. . . . . . . . . . . . . . . . 124
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75 This feature type is given by the voxel volume to each of the thresholded intensity
blobs identified as target/clutter items in the BOSS data. The target and clutter
distributions for this features are shown on the left hand and right hand sides, re-
spectively. A total of 132 clutter items and 89 targets were processed in generating
these distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

76 This feature type is the total energy of the voxel volume corresponding to an iden-
tified target or clutter item from the BOSS data. The target and clutter distributions
for this features are shown on the left hand and right hand sides, respectively. A
total of 132 clutter items and 89 targets were processed in generating these distri-
butions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

77 This feature type is the total energy of the voxels contained within the best–fitting
ellispoidal volumes corresponding to an identifer target or clutter items from the
BOSS data. The target and clutter distributions for this features are shown on the
left hand and right hand sides, respectively. A total of 132 clutter items and 89
targets were processed in generating these distributions. . . . . . . . . . . . . . . . 125

78 This feature type is the voxel energy density for voxels contained within the best–
fitting ellispoidal volumes corresponding to an identified target or clutter items
from the BOSS data. The target and clutter distributions for this features are shown
on the left hand and right hand sides, respectively. A total of 132 clutter items and
89 targets were processed in generating these distributions. . . . . . . . . . . . . . 126

79 This feature type is the voxel energy standard deviation for voxels contained within
the best–fitting ellispoidal volumes corresponding to an identified target or clutter
items from the BOSS data. The target and clutter distributions for this features are
shown on the left hand and right hand sides, respectively. A total of 132 clutter
items and 89 targets were processed in generating these distributions. . . . . . . . . 127

80 This feature type is the voxel energy standard deviation normalized by mean con-
tained within the best–fitting ellispoidal volumes corresponding to an identified
target or clutter items from the BOSS data. The target and clutter distributions for
this features are shown on the left hand and right hand sides, respectively. A total
of 132 clutter items and 89 targets were processed in generating these distributions. 127

81 This feature type is the peak intensity voxel contained within the total voxel volume
identified with a target or clutter item from the AUV FEST 2008 BOSS data. The
target and clutter distributions for this features are shown on the left hand and right
hand sides, respectively. A total of 132 clutter items and 89 targets were processed
in generating these distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

82 The feature type shown here is the 3–bin PDF of relative intensity in which the
top, middle and bottom panels correspond, respectively, to bins 1, 2 and 3. The
intensity voxels were chosen from those contained within the best fitting ellip-
soidal volume associated with each target or clutter item. In each case the target
and clutter features are shown on the left hand and right hand sides, respectively.
The features were derived from 3D beamform products using data acquired by the
BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89 targets
were processed in generating these distributions. . . . . . . . . . . . . . . . . . . . 129
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83 The feature type shown here are bins 1 to 3 of the 9–bin PDF of relative intensity
in which the top, middle and bottom panels correspond, respectively, to bins 1,
2 and 3. The intensity voxels were chosen from those contained within the best
fitting ellipsoidal volume associated with each target or clutter item. In each case
the target and clutter features are shown on the left hand and right hand sides,
respectively. The features were derived from 3D beamform products using data
acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items
and 89 targets were processed in generating these distributions. . . . . . . . . . . . 130

84 The feature type shown here are bins 4 to 6 of the 9–bin PDF of relative intensity
in which the top, middle and bottom panels correspond, respectively, to bins 4,
5 and 6. The intensity voxels were chosen from those contained within the best
fitting ellipsoidal volume associated with each target or clutter item. In each case
the target and clutter features are shown on the left hand and right hand sides,
respectively. The features were derived from 3D beamform products using data
acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items
and 89 targets were processed in generating these distributions. . . . . . . . . . . . 131

85 The feature type shown here are bins 7 to 9 of the 9–bin PDF of relative intensity
in which the top, middle and bottom panels correspond, respectively, to bins 7,
8 and 9. The intensity voxels were chosen from those contained within the best
fitting ellipsoidal volume associated with each target or clutter item. In each case
the target and clutter features are shown on the left hand and right hand sides,
respectively. The features were derived from 3D beamform products using data
acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items
and 89 targets were processed in generating these distributions. . . . . . . . . . . . 132

86 The feature type shown here are bins 1 to 3 of the 9–bin cumulative distribution
function (CDF) of relative intensity in which the top, middle and bottom panels
correspond, respectively, to bins 1, 2 and 3. The intensity voxels were chosen
from those contained within the best fitting ellipsoidal volume associated with each
target or clutter item. In each case the target and clutter features are shown on the
left hand and right hand sides, respectively. The features were derived from 3D
beamform products using data acquired by the BOSS platform at the AUV Fest
2008. A total of 132 clutter items and 89 targets were processed in generating
these distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

87 The feature type shown here are bins 4 to 6 of the 9–bin cumulative distribution
function (CDF) of relative intensity in which the top, middle and bottom panels
correspond, respectively, to bins 4, 5 and 6. The intensity voxels were chosen
from those contained within the best fitting ellipsoidal volume associated with each
target or clutter item. In each case the target and clutter features are shown on the
left hand and right hand sides, respectively. The features were derived from 3D
beamform products using data acquired by the BOSS platform at the AUV Fest
2008. A total of 132 clutter items and 89 targets were processed in generating
these distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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88 The feature type shown here are bins 7 to 9 of the 9–bin cumulative distribution
function (CDF) of relative intensity in which the top, middle and bottom panels
correspond, respectively, to bins 7, 8 and 9. The intensity voxels were chosen
from those contained within the best fitting ellipsoidal volume associated with each
target or clutter item. In each case the target and clutter features are shown on the
left hand and right hand sides, respectively. The features were derived from 3D
beamform products using data acquired by the BOSS platform at the AUV Fest
2008. A total of 132 clutter items and 89 targets were processed in generating
these distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

89 Scatter plot for the features ellipsoid radius B versus the length to width ratio A/B
for the BOSS AUV FEST 2008 data. Features derived from the targets and clutter
in this data set are indicated by the circles and plus signs, respectively. . . . . . . . 136

90 Scatter plot for the features ellipsoid radius B versus the voxel energy density for
the BOSS AUV FEST 2008 data. Features derived from the targets and clutter in
this data set are indicated by the circles and plus signs, respectively. . . . . . . . . 137

91 Scatter plot for the features ellipsoid radius B versus the peak intensity for the
BOSS AUV FEST 2008 data. Features derived from the targets and clutter in this
data set are indicated by the circles and plus signs, respectively. . . . . . . . . . . . 137

92 Scatter plot for the features ellipsoid radius B versus the first bin of the 3-bin PDF
of the relative intensity for the BOSS AUV FEST 2008 data. Features derived from
the targets and clutter in this data set are indicated by the circles and plus signs,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

93 Scatter plot for the features ellipsoid radius B versus the third bin of the 3-bin PDF
of the relative intensity for the BOSS AUV FEST 2008 data. Features derived from
the targets and clutter in this data set are indicated by the circles and plus signs,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

94 Scatter plot for the features length to width ratio A/B versus the voxel energy
density for the BOSS AUV FEST 2008 data. Features derived from the targets and
clutter in this data set are indicated by the circles and plus signs, respectively. . . . 139

95 Scatter plot for the features length to width ratio A/B versus the peak intensity for
the BOSS AUV FEST 2008 data. Features derived from the targets and clutter in
this data set are indicated by the circles and plus signs, respectively. . . . . . . . . 140

96 Scatter plot for the features length to width ratio A/B versus the first bin of the
3-bin PDF of the relative intensity for the BOSS AUV FEST 2008 data. Features
derived from the targets and clutter in this data set are indicated by the circles and
plus signs, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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98 Scatter plot for the features voxel energy density versus the peak intensity for the
BOSS AUV FEST 2008 data. Features derived from the targets and clutter in
this data set are indicated by the circles and plus signs, respectively. This feature
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107 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
A (ellipsoid radii), Length to width ratio A/B, and Peak intensity The features were derived
from the BOSS AUV FEST 2008 data set. The training vectors used for classifier, and
corresponding to known target and clutter items are indicated by green and blue discs,
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114 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
A (ellipsoid radii), Peak intensity and last bin in 3-bin probability distribution of relative
intensity. The features were derived from the BOSS AUV FEST 2008 data set. The train-
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122 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
B (ellipsoid radii), Voxel energy density and last bin in 3-bin probability distribution of
relative intensity. The features were derived from the BOSS AUV FEST 2008 data set.
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129 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Length to width ratio A/B, and Peak intensity. and first bin in 3-bin probability distribution
of relative intensity. The features were derived from the BOSS AUV FEST 2008 data
set. The training vectors used for classifier, and corresponding to known target and clutter
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136 Classification results for AUV Fest 2008 BOSS data using the Relevance Vector
Machine. In training, typically half of a data set is randomly chosen as the ‘train-
ing set’ and the remaining half is chosen as the ‘test set’. Thus, there are numerous
random subsets that could be chosen, and so for statistical robustness in choosing
an optimal feature subset, the selection should be made with respect to the ensem-
ble results for various subsets of target/clutter training points. In the results shown
here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the
training set (half of target/clutter exemplars) Upper right: ROC classifier perfor-
mance for the test set (the other half of the target/clutter exemplars). Lower left:
ROC classifier performance for training and test sets.. Lower right: Mean value
of the ROC curves in each dimension from the training and test sets. . . . . . . . . 166
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139 Classification results for AUV Fest 2008 BOSS data using the Relevance Vector
Machine. In training, typically half of a data set is randomly chosen as the ‘train-
ing set’ and the remaining half is chosen as the ‘test set’. Thus, there are numerous
random subsets that could be chosen, and so for statistical robustness in choosing
an optimal feature subset, the selection should be made with respect to the ensem-
ble results for various subsets of target/clutter training points. In the results shown
here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the
training set (half of target/clutter exemplars) Upper right: ROC classifier perfor-
mance for the test set (the other half of the target/clutter exemplars). Lower left:
ROC classifier performance for training and test sets.. Lower right: Mean value
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142 Classification results for AUV Fest 2008 BOSS data using the Relevance Vector
Machine. In training, typically half of a data set is randomly chosen as the ‘train-
ing set’ and the remaining half is chosen as the ‘test set’. Thus, there are numerous
random subsets that could be chosen, and so for statistical robustness in choosing
an optimal feature subset, the selection should be made with respect to the ensem-
ble results for various subsets of target/clutter training points. In the results shown
here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the
training set (half of target/clutter exemplars) Upper right: ROC classifier perfor-
mance for the test set (the other half of the target/clutter exemplars). Lower left:
ROC classifier performance for training and test sets.. Lower right: Mean value
of the ROC curves in each dimension from the training and test sets. . . . . . . . . 172
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145 Classification results for AUV Fest 2008 BOSS data using the Relevance Vector
Machine. In training, typically half of a data set is randomly chosen as the ‘train-
ing set’ and the remaining half is chosen as the ‘test set’. Thus, there are numerous
random subsets that could be chosen, and so for statistical robustness in choosing
an optimal feature subset, the selection should be made with respect to the ensem-
ble results for various subsets of target/clutter training points. In the results shown
here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the
training set (half of target/clutter exemplars) Upper right: ROC classifier perfor-
mance for the test set (the other half of the target/clutter exemplars). Lower left:
ROC classifier performance for training and test sets.. Lower right: Mean value
of the ROC curves in each dimension from the training and test sets. . . . . . . . . 175
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Abstract

This effort has examined the problem of detection and classification of buried munitions
in underwater environments. We have focused on the use of low frequency sonar since high
frequency acoustic waves are strongly attenuated by sediments. The focus of this effort has
been to process low-frequency data collected from the Buried Object Scanning Sonar (BOSS)
into 3D imagery using beamforming, and to develop target/clutter classifiers that use 3D fea-
tures extracted from this imagery. The principal sonar data sources are BOSS deployments at
various shallow water sites. Morphological processing was applied to the derived imagery for
feature input into a relevance vector machine classifier. Since ground truth was available, it
was possible to compute performance metrics in the form of ROC curves. To enable a system-
atic understanding of the influence of the environment on target responses, we have developed
a poroelastic spectral element method for BOSS data simulations using 2D and 3D models.
The classification results establish that buried targets have a high probability of detection with
the Buried Object Scanning Sonar. However, features from target imagery responses are easily
confused with those of clutter and munitions debris due to their incomplete separation. Small
subsets of possible imagery features show the best performance, and various examples are
shown. We provide a theoretical development for the estimation of structural acoustic reso-
nance features from BOSS-like data. Future classification performance gains with the sonar
modality will likely rely on the combined use of imagery- and resonance-based features.
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Executive Summary
The principal objectives of this research effort are to evaluate the effectiveness of synthetic aperture
sonar (SAS1) for detection and classification of underwater munitions, characterize the influence of
sediment heterogeneity on buried target detection and discimination, identify processing methods
to improve performance of detection systems, and provide recommendations for future algorithm
and system development. In the remainder of this summary we provide a description of the envi-
ronmental problem addressed, the scientific questions that we have explored, the cumulative results
received to date, and potential future applications of the research.

Environmental problems addressed Military training and weapons testing activities in the past
have left the legacy of UXO (Unexploded Ordnance) at a number of sites. This problem is of
even greater concern for those sites designated for base realignment and closure and at Formerly
Used Defense Sites. Particularly difficult is the characterization and remediation of those sites
where UXO is found in underwater environments. Many active and former military installations
have ordnance ranges and training areas that include adjacent water environments. (e.g., ponds,
lakes, rivers, estuaries, and coastal ocean areas). Wartime activities, dumping, and accidents have
also generated significant UXO contamination in coastal and inland waters. Dredging projects fre-
quently encounter UXO, and potential hazards to the public from underwater ordnance encounters
are beginning to arise. Much of the U.S. underwater contamination has occurred near military
practice and test ranges, and potential hazards to the public from underwater ordnance encounters
are beginning to arise.

Presently, there exists no effective capability to survey these underwater areas and map the
location of UXO for site characterization, and little understanding of the UXO or clutter character-
istics from which to establish performance requirements. Factors such as small target size, target
burial, natural and man-made clutter and target signature modification due to target-environment
acoustic coupling all impact sensor performance. See the recent underwater UXO workshop2 for
additional information.

This SERDP research program is designed to determine the potential effectiveness of SAS
for detection and classification of UXO in complex, underwater environments. A major goal is
to acquire a detailed understanding of the influence of sediment heterogeneity on SAS data and
the corresponding influence on the performance of detection and classification algorithms. The
approach we adopt is three-fold using (i) processing of real SAS data collected for buried and sur-
face target fields in underwater environments, (ii) high fidelity simulations of SAS data for targets
embedded in 3D realizations of sediment properties and (iii) post-processing of these data sets
for design and performance evaluation of future automatic target recognition (ATR) algorithms,
discovery of target features that are robust and repeatable, and insights for successful survey de-
sign. These data sets provide will provide rich coverage over a variety of experimental operating

1The term synthetic aperture is taken to include any style of coherent processing of data streams collected from
moving sensor platforms. Hence, this encompasses (i) the traditional synthetic aperture sonar (SAS) processing most
commonly applied for collection trajectories along a linear path (with suitable motion compensation for small depar-
tures from the path) and (ii) generalized beamforming in which data is coherently processed for arbitrary collection
geometries e.g., as in backprojection, but for which the source and receiver positions are known.

2SERDP and ESTCP. Final report, SERDP and ESTCP workshop on technology needs for the characterization,
management, and remediation of military munitions in underwater environments. Technical report, October, 2007.
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conditions and environments, and therefore, can be analyzed to yield a detailed physical and statis-
tical understanding of SAS effectiveness for detection and classification. An additional goal is to
quantify the performance of near-optimal classification algorithms using real data acquired under
other programs with the Buried Object Scanning Sonar (BOSS), and features derived from 3D SAS
beamforming products generated using this data. A final goal is to optimize the design of these
algorithms to maximize the ROC performance metric for a selected operating point.

Scientific questions explored Sonar is a natural candidate for UXO detection in shallow wa-
ter due to its wide-area surveillance capability and target sensitivity. However, sonar signature
interpretation is complicated by a number of factors including (i) natural and man-made clutter,
(ii) data dependence on viewing geometry and target state, (iii) environmental heterogeneity and
wave propagation complexity, (iii) coupling of target response with the environment, and (iv) sen-
sor positioning and motion compensation requirements. This study addresses the above factors
with a special concentration on items (i) – (iii), and uses these findings for improved design of
classification algorithms.

The evaluation for sonar-based buried target detection and discrimination was achieved by
creating and analyzing a comprehensive catalogue of SAS processing results for shallow water
environments. The questions explored included the detectability of buried targets with low fre-
quency sonar, the identification of features useful for image-based discrimination, the design of
classifiers using these features, and simulation methods useful for understanding target scattering
phenomenology in complex environments.

We used BOSS SAS data collected in AUV measurement campaigns (separately funded from
this effort), phase histories from high-fidelity simulations (based on the Spectral Element Method
and on the T-Matrix method) and environment models derived from ONR-sponsored environment
characterization efforts (e.g. the Seismic Acoustic Experiments in 1999 – SAX99, which were
specifically designed to improve understanding required for detection and classification of objects
buried in sediments).

Cumulative results achieved under this effort Our technical approach has yielded advances in
sonar modeling capability, SAS data products derived from processing of BOSS data from various
collections, a feature database for target and clutter derived from BOSS data and classification
tools that exploit this data to achieve discrimination capability. In summary form, these results
include

• Development of the theory for poroelastic wave propagation in a form suitable for imple-
mentation with ‘weak’ forms of the governing equations of motion including the spectral
element method (SEM). This effort led to several publications e.g., [27, 29, 4].

• Numerical implementation of the 2D and 3D poroelastic formulations of the SEM. Com-
parison of the simulation to various benchmarks demonstrated a correspondence of these
simulations with the exact analytical results for the selected end-member cases for which
such results were available.

• A new SPECFEM2D package was released in 2009 and incorporated the poroelastic and
adjoint capabilities developed under this effort. The source code has been made publically
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available and it can be downloaded from the following web site:

http://www.geodynamics.org/cig/software/packages/seismo/specfem2d/

• A 3D version of the code with the poroelastic upgrade is expected to be released in the future.
It will be known as SPECFEM3D Sesame, which includes CUBITTM compatibility.

• Generalized derivation of the T-matrix scattering formalism for free-field targets and for
targets buried in a multi-layered medium. In addition, an inverse theory formalism for esti-
mation of T-matrix coefficients was posed, and selected numerical simulations for the BOSS
source/receiver geometry were performed.

• Processing of data from three separate BOSS data collections (AUV FESTs 2006, 2007 and
2008). Processing results included 3D beamformed imagery and features extracted from
target and clutter detections in the imagery. Fifty feature types were extracted including
geometric, intensity and statistical descriptors.

• Development of a Relevance Vector Machine classifier using extracted features from the
BOSS beamformed data products. The classifier used the features to label detections in the
generic binary categories of target versus clutter. Access to ground truth knowledge of the
object detections enabled the statistical training of the classifier as well as computation of
performance metrics. In this case classifiers and ROC curves were developed for various
subsets of the available feature classes. Restricted feature set sizes were used to improve
generalization performance.

Potential future applications of the research The research results achieved to date have nu-
merous potential applications. The poroelastic extension to the spectral element method has been
published in various forums [27, 29, 4]. The publically available code can be used to investigate
influence of background propagation models and heterogeneity on wave propagation and scatter-
ing from targets within these environments. Investigators can use this data, for example, to design
classifiers and identify optimal data collection strategies. The drawback to the method is the com-
putation time, so questions or applications that depend on it should be designed accordingly. The
SEM is well–suited to investigate scientific questions that require the high-level of fidelity sup-
ported by the code, and for which the issue of computation time is not a paramount concern. For
example, it can be used to assess the validity of approximating poroelastic media with acoustic or
acoustic/elastic models, and to characterize how scattering physics will differ for targets embed-
ded in such different types of media. Examples of this were shown in [27] for the case of line
array recordings for a target embedded in a two layer medium with differing layer types and ma-
terial parameters. A second appropriate SEM application would be to compute off-line scattering
properties for use in an on-line data exploitation system, as discussed in more detail below.

Our combined work in the SEM and the T–matrix methods provides the opportunity to use the
T–matrix approach for on-line applications, but with enhanced fidelity by computing key inputs
off-line using the SEM. The SEM code can be used to simulate high fidelity scattered fields for
a detailed CAD model of a target of interest. The developed T–matrix theory is developed under
the assumption that the target is entirely confined to a single layer of a multi-layered medium,
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but is otherwise quite general. Using the inverse theory that we developed in Sec. 3.2.11, T–
matrix coefficients can be estimated from the scattered data (given sufficient receiver coverage),
and these coefficients can then be used on-line for very rapid synthesis of sonar time series for
use in either a automatic target recognition algorithm, optimal survey design exercise, assessment
of system designs or parameter selection, etc. Further, the synthetic time series may be further
processed to yield 3D beamforming products from which features may be extracted. The utility of
these features for classification or discrimination can then be assessed in combination with features
from real data for improved classifier design. The power of this approach is that the T–matrix
coefficients are intrinsic to the target. Additional factors that affect observed recordings such as
target/sensor geometry, source waveform content, medium layering, etc., are extrinsic. Once the
T–matrix coefficients are available from the off-line computation, synthetic series can be rapidly
simulated on-line for a wide range of extrinsic parameters e.g., number and material properties of
layers, source and receiver positions, and so forth. The theory for this is defined in detail in Sec.
3.2, and simple numerical results are shown in Sec. 4.2.1.

We have created a database of features derived from target and clutter objects using the BOSS
acquisition system. This data set can be used by others for development of advanced classifier
algorithms, and the data will be provided to SERDP with a specified format for this purpose. In
addition, we have generated a database of 3D beamformed image products for the BOSS data
collections. The features we derived were obtained from processing of these image products (see
Table 7 for a summary description of these features). However, additional feature types that we
have not considered may be derived from the image products, and these may help improve classifier
performance. Additional features may be derived from 3D tomographic estimates of the sediment
properties (see Sec. 3.4 and [29, 28]). Features derived from the canonical beamformed products
may be used to spatially cue where tomographic inferences should be spatially culled for feature
construction. Morphological processing and tomographic estimation both represent promising ad-
ditional research possibilities for the future. The kernels for tomography have been derived and
numerically implemented, but the approach has not yet been applied to real data.

We have developed and demonstrated a classifier algorithm for buried targets using the feature
database mentioned above. We developed the algorithm based on the relevance vector machine and
characterized its performance for numerous feature subsets (20 in total). These results are shown
in Sec. 4.6. There is considerable additional work that can be pursued including the application of
a wrapper around the training algorithm itself that adaptively optimizes the feature subset. This is
basically a combinatorial optimization problem involving the discrete index selection from a large
superset. Various algorithms are applicable to this including greedy methods such as sequential
forward method, the sequential backward method, and global methods such as genetic algorithms.
The key here is training of the RVM is very fast (less than one minute using a single 2.1 GHz chip),
and therefore, the model space can be adequately explored.

To generate the feature classes described above, we applied morphological processing to the
3D beamformed image products. The latter were generated using the image formation algorithms
described in Sec. 3.3. However, there were a number of simplifying assumptions used in the
described algorithm, and there is the opportunity to enhance the quality and sharpen the focus of the
derived data products. This can follow from the inclusion of any number of approaches including
exploitation of available environmental information (e.g., by inverting the BOSS data itself for the
best fitting 1D sediment model, and to use this in the specification of the beamforming weighting
coefficients). An additional strategy to improve image product data is to apply more advanced
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beamformers than the simple weighted delay and sum technique that we have used. Candidates for
more advanced beamformers include the Capon and Minimum Variance Distortionless Response
(MVDR) methods [36].

Finally, the results achieved in this program and the future research directions suggested above
should be of interest to Mine Counter-measures (MCM) programs at the ONR. The work is physics-
based, and new methodologies have been introduced making application to mine targets relatively
straightforward.
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1 Objective
Our objective has been to generate a large catalogue of SAS images using real data from multiple
data collections acquired elsewhere with the BOSS system, and synthetic data from sonar phase
history calculations.

Forward simulation methods that are commonly used include Kirchhoff-based approaches and
various implementations of T-matrix theories. These methods also are the basis of the simulation
approaches supported in PC SWAT [34]. While very useful for insight to target responses, the
methods require either homogeneous or layered environment models and therefore do not readily
capture target-environment interactions arising from natural clutter. Thus, an objective of this ef-
fort is to extend sonar modeling capability using a state-of-the-art geophysical simulation method
known as the spectral element method (SEM) (see, e.g. [20]). The SEM captures arbitrary tar-
get/environment complexity and accurately models all wave phenomena (resonant modes, surface
waves, diffractions, specular scattering, target-environment coupling) over the low and high fre-
quency regimes of interest. This enables careful characterization of realistic environment imprints
on target signatures and signature variability in SAS imagery. Shallow-water environment models
can be derived from the outcomes of the extensive SAX99 experiments ([24, 9].

Our research focus is SAS-based target recognition of buried munition objects in shallow wa-
ter environments. The latter consists of the fluid column, the water-sediment interface, and the
embedding sediments. The stratification of these components and the heterogeneity within them
originating from depositional, biological, oceanographic and other processes strongly control wave
behavior and the corresponding sonar observations. Target scattering processes are coupled to
propagation phenomena in the environment, and will therefore obscure and/or modify target sig-
natures predicted for targets emplaced in idealized media (e.g. a homogeneous two-layer half-
space). Further, target responses and wave-field interactions with the environment can change
significantly depending on the frequency content of the active source signal. Generalized synthetic
aperture sonar processing approaches are applied to SAS phase history observations to yield spa-
tial reflectivity maps with cross-range resolution far greater than can be achieved with real aperture
processing alone. In addition, SAS processors attempt to compensate for effects that would other-
wise degrade the image resolution (e.g. platform position perturbations from assumed straight-line
trajectories). Nonetheless, there will always be a data imprint of shallow water complexity on
target signatures due the intrinsic acoustic/elastic coupling of targets and the environment. This
will vary widely according to the target type and emplacement, environment conditions, sensor ar-
ray design and source bandwidth, collection conditions, measurement campaign protocol and type
of SAS-processor applied. Natural and man-made clutter objects (both buried and proud) pose
an additional challenge to the discrimination problem. The success of sonar-based discrimination
algorithms will depend on the distinctness of UXO target and clutter object signatures (e.g. their
separation in feature space), their stability/measurability in the complex shallow water environment
and the suitability of detection/discrimination algorithm design given the above.

In summary, our objectives are to provide

• a knowledge-base consisting of SAS imaging data products, features and discrimination
measures derived from the SAS products, and shallow-water environment models and UXO
target models represented with hexahedral elements (required by the SEM below)

• a high-fidelity spectral element numerical method for modeling wave propagation and target
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scattering in the complex shallow-water environment (and linked to the knowledge-base);
the purpose of this is to permit a thorough understanding of the effect of realistic environ-
ment complexity on target signatures, to enable numerous data realizations consistent with
the statistics of the environment characterizations, to assess the corresponding observabil-
ity and stability of target signatures/features, and to provide a valuable resource for future
discrimination algorithm development and

• a comprehensive analysis synthesizing findings from the real and synthetic data results in-
cluding recommendations for future directions.

Our technical approach combines informed use of both real and simulated data inputs to assess
sonar-based target detection/discrimination capability. Practical data processing of real data sets
invariably requires use of simplifying assumptions, especially for propagation effects in complex
environments. The influence of the environment and these assumptions is difficult to untangle for
real collections. In terms of target classification, any practical deployment will most likely use pre-
dicted target features for a target buried in a simplified background medium. By performing con-
trolled high-fidelity simulation experiments, it will be possible to precisely quantify the influence
of simplifications used in the practical data processors on the ultimate classification performance.
For example, realistic simulations can be performed for a fully realized complex shallow water en-
vironment with a buried target. The processing sequence (such as that described for BOSS below)
can then be applied to the synthetic data set using homogeneous background assumptions. In this
way, robustness of features used for classification with respect to environmental and target vari-
ability can then be precisely characterized. Numerous stochastic realizations of such environments
can then be used to provide a meaningful statistical understanding.

In summary, our technical execution plan consisted of the following key steps:

1. Process data from the BOSS collections for phenomenology understanding and empirical
characterization of performance. Data was processed from known target fields in which
clutter and targets could be separately identified on the basis of prior knowledge.

2. Extract features from BOSS image products and derive classifiers using these features.

3. Perform high-fidelity numerical simulations of the acoustic phase histories for standard SAS
data collection experiments including BOSS. The spectral element method was used for this
purpose. Perform data product generations (e.g., SAS images) using the phase histories from
the resulting simulation.

4. The original objective was to perform SEM simulations for many different stochastic real-
izations of the propagation models, and for each corresponding SAS image, determine the
target signatures and features. The objective of this is to explicitly determine the coupled
medium-target influence on the SAS image, to determine the stability of target-related fea-
tures and the degree to which they can be identified and extracted in the presence of the en-
vironment complexity and variability. However, the extended development time of the SEM
for poroelastic media, and the comptutation time required for each simulation prevented this
particular objective from being fully realized.
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2 Background
Over the past decade there has been a dedicated research effort for the development of detection and
classification methods for underwater objects in shallow and littoral waters. The sonar modality
has been a method of choice due to its far range, wide-area coverage capability and diagnostic
value. Applications have included real-aperture side-looking sonar (SLS) and the higher resolution
synthetic aperture sonar. Example theoretical and observational studies of acoustic responses for
surface and buried targets include [8, 30, 6, 7, 5, 25, 16, 13, 17, 2, 22, 21, 19, 23, 34, 33, 14].
Figure 1 depicts some of the major wave processes that are involved. Many of these studies have
focused on the sea mine discrimination problem; however, considerations for the UXO problem are
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Figure 1: (a) The scattered wavefield due to an acoustic source is comprised of target and envi-
ronment returns. The target scatter in general consists of a complex superposition of wave modes
including direct target scatter, internal target resonances, surface modes, and target-interface res-
onances all of which are mediated by the target shape, size, acoustic-elastic properties and the
incident field (e.g. frequency content). The environment scatter include interface scatter, rough in-
terface scatter and volume scatter due to heterogeneity in the fluid and the sediment. (b) Example
tessellation of a prolate spheroid target. In high-frequency numerical approaches (e.g. Kirchhoff
method) approximate solutions to the Helmholtz boundary integral equation are obtained on each
facet.

roughly similar. Stripmap and spotlight are the two major types of SAS imaging [11], [12], [15]. In
the stripmap mode the beam is held orthogonal to the track of the sonar platform. In the spotlight
mode the beam is steered toward a specific area during the entire integration time, resulting in an
increase in resolution. In practice, the stripmap mode is most commonly used. More generally,
beamforming over synthetic apertures may be applied, and it is this processing style that has been
the focus of our processing thus far.

The challenges of SAS imaging for detection/dicrimination for UXO targets in shallow water
environments derives from a number of sources. These include (i) natural and man-made clutter
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objects (both surface and buried), (ii) the complex coupling acoustic/elastic coupling between tar-
gets and the propagation environment, (iii) the requirement of a robust SAS processing system for
actual data applications and (iv) the need for a discrimination theory well-matched to the com-
plexity of the environment and the targets. Our work focuses on elements (i)-(iii) to provide a
comprehensive assessment using state-of-the art technology. A natural outcome will be input for
item (iv) i.e. features and processing for a future recognition system. Resolution of the clutter prob-
lem will rely on exploiting of the intrinsic sensitivity of the sensor response to target versus clutter
objects. Mitigation of the complicating effect of environment imprints on target signatures will
rely on first characterizing the nature of these imprints, and either discovering feature classes that
are robust as possible to the environment-induced signature variability, or development of methods
to deconvolve the effect of the environment on the measurements. Finally, design of an effective
SAS-based target recognition system will rely on careful synthesis and extension of findings from
elements (i)-(iii) above.

There are at least three data sets that are of interest for continuing study of underwater UXO,
and these are the DARPA, CSS and BOSS data sets as we now describe.

DARPA data DARPA funded a three-phased SAS research and development program from
1994-2000. In phase two, SAS-compatible data were recorded in the waters of Washington State
and processed by one of our team members (AST). The data were collected in four areas spanning
a range of depths, ranges, bottom types, and in both fresh and salt water. Targets ranged from test
frames of corner reflectors and metal spheres (resolution targets) to mine-like targets to downed
airplanes. In Puget Sound near Carkeek Park, a salt water region, the bottom type was sand and
rock and data include upslope views of resolution targets and a simulated mine at long ranges. In
Puget Sound near Spring Beach, a salt water region, the bottom type was coarse sand and most data
were collected of upslope views of targets. Note that the upslope views often demonstrate multi-
path returns from targets resulting in multiple images of targets. Dabob Bay, a salt water region,
had a silty, fine sand bottom and various test targets include a WWII mine. In Lake Washington,
a fresh water region with a muddy bottom, we have data of a test frame (see Fig. 2) and a sunken
PB4Y-2 airplane at various ranges. We can count the wing struts on the airplane and imaged it
from a 1 km range with an acoustic path that included a bottom and thermal layer bounce in each
direction (e.g., [1]). These early data may be made compatible with AST’s PROSASTM, but may
not be ideal candidates due to the non-integrated navigation equipment used on the towfish, how-
ever, we can process the data using AST’s development version SAS processor. Sound velocity
profiles were recorded during the trials and could aid our study of the effects of the environment
on the recorded sonar data.

CSS data: In 1998 and 1999, AST was funded by ONR to process data collected by the (then)
Coastal Systems Station SAS system. AST has in-house several data sets recorded in St. Andrews
Bay and in the Gulf of Mexico (both medium sand bottoms) from sea trials in 1998 and 1999; addi-
tional data sets should be available from the Naval Surface Warfare Center - Panama City (NSWC
PC). These data sets contain targets including fluid filled spheres, ladders, cylinders, and mine-like
shapes (see Fig. 3) at two frequencies, 180 kHz and 20 kHz. Some interesting differences between
the two images indicate how target response is frequency dependent. For example, the cylinder
object (upper right corner) in the high frequency image (left panel) is bright along its whole length,
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Figure 2: SAS data collected at Lake Washington under DARPA-sponsorship for various targets and clutter
objects as indicated in the figure.

and a distinct shadow is visible. However, only its ends are bright in the low frequency image
(right panel), and no shadow is present. Similarly, the long shadow behind the truncated cone (just
below the cylinder) also disappears for the low frequency image.

Buried Object Scanning Sonar (BOSS) data: Florida Atlantic University has recently devel-
oped the BOSS system [32]. This 3-19 kHz, sediment volume imaging sonar operates in con-
ventional, tomographic and synthetic aperture modes of operation. Several data sets for fields
consisting of buried sea mines and clutter objects have been collected in sand and mud environ-
ments off of Panama City, FL, Boca Raton, FL, and Kaneohe, Hawaii (Fig. 4). These collections
have been the focus of the data analysis presented in this report. The data is useful given our objec-
tives since the low frequency BOSS transducer enables sediment penetration. In addition, ground
truthing (clutter and target knowledge) is available for a number of collections, and this supports
classifier development and performance characterization of the classifier.
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Figure 3: This figure shows an example application of our SAS image formation processor to sonar data
collected by Coastal Systems Station (Panama City, Florida) using a Northrop-Grumman array. This array
contained 11 high frequency (180 kHz) elements and 14 low frequency (20 kHz) elements. For these exper-
iments a series of objects (e.g. large cylinder, ladder, a truncated cone) were placed on a sandy bottom. Left
panel: This shows the focused image for the high frequency data. A cylinder in the upper right gives a clear
shadow. The image was formed using redundant phase centers (RPC) and the range migration algorithm
(RMA), but an autofocus step was not required. Right panel: Low frequency (20 kHz) SAS image formed
using RPC, RMA and autofocus. These results illustrate that objects and background reverberation image
characteristics have strong frequency sensitivity. Adapted from [1].
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Figure 4: For the proposed work we will have access to Buried Object Scanning Sonar data. The sites
consist of buried sea mines and clutter objects in various sand and mud environments off of Kaneohe,
Hawaii and Panama City, FL. The low frequency data is ideal for buried target interrogation.
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3 Materials and Methods
In this section we address the methodological aspects of the program effort including development
of simulation methods (Secs. 3.1 and 3.2 for SEM and T–matrix methods, respectively), BOSS
data processing methods (Sec. 3.3), early results on the use of adjoint tomography for developing
new feature sets (Sec. 3.4), and the basis of the Bayesian classifier that we apply to BOSS data
features (Sec. 3.5).

3.1 The spectral element method for poroelastic media
An extensive research investigation was performed to develop the Spectral Element Method for
propagation in poroelastic sediment media. These theoretical finds and numerical methods are
reported in various publications [27, 29, 4] and will not be repeated here.

3.2 T–matrix analysis
The following sub–sections develop in detail the forward problem for T–matrix scattering calcula-
tions, and the inverse problem for T–matrix coefficients. Numerical results for the forward problem
are presented in a later section.

3.2.1 Acoustic equation and Green function

The acoustic equation of motion for the pressure field φ(x, t) takes the form

1

ρc2
∂2

t φ−∇ ·
(

1

ρ
∇φ

)
= S (1)

where S(x, t), ρ(x), and c(x) are the source, mass density and sound speed fields, respectively. In
the frequency domain this takes the form

−∇ ·
(

1

ρ
∇φ̂

)
− ω2

ρc2
φ̂ = Ŝ, (2)

in which Fourier transform pair φ, φ̂ is defined by

φ̂(x, ω) =

∫
dtφ(x, t)eiωt

φ(x, t) =

∫
dω

2π
φ̂(x, ω)e−iωt, (3)

and similarly for S. The formal solution to (2) is

φ̂(x) =

∫
d3x′g(x,x′)Ŝ(x′), (4)

in which the Green function g satisfies,

∇ ·
[
1

ρ
∇g(x,x′)

]
+

ω2

ρc2
g(x,x′) = −δ(x− x′). (5)
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Figure 5: Schematic illustration of background and scattered (outgoing wave) fields. The former
represent the field in the absence of the scatterer, while the latter represent the corrections to the
field due to the presence of the scatterer. The two fields are expanded in a set of basis functions
according to (8) and (9), and related via (11) through the T -matrix.

In an infinite homogeneous medium, one obtains the free-space Green function

g0(x− x′) =
ρ

4π|x− x′|e
ik|x−x′|, (6)

with wavenumber k = ω/c.
In general (1) will fail if there are non-fluid elements in the medium, such as solid elastic

scatterers. However, in what follows we will only require the Green function for the background
fluid medium for which (1) is valid everywhere.

3.2.2 Free–field T–matrix

Consider first a target lying in an infinite homogeneous medium with density ρ and sound speed c.
We separate the field into background and scattered components (see Fig. 5),

φ̂(x) = φ̂b(x) + φ̂s(x), (7)

in which φ̂b is the field generated by the given source in the absence of the scatterer, and φ̂s corrects
for the scattered waves. Let the scatterer be centered on a point xs. It is assumed that φb is smooth
and regular in a neighborhood of xs, including the entire volume occupied by the scatterer, and
admits a convergent expansion,

φ̂b(x) =
∑

n

Anξn(x− xs) (8)
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in terms of a conveniently chosen set of basis functions ξn(x) which are all regular at the origin.
Similarly, the scattered field is assumed to admit a convergent expansion,

φ̂s(x) =
∑

n

Bnψn(x− xs), (9)

outside a sufficiently large neighborhood of the scatterer. The functions ψn will generally be
singular somewhere inside this neighborhood. Both sets of basis functions are solutions to the
homogeneous acoustic equation (2) with Ŝ ≡ 0. For targets that are not too far from spherical,
convenient basis function choices are the spherical waves,

ξlm(x) = jl(kx)Ylm(θ, φ)

ψlm(x) = h
(1)
l (kx)Ylm(θ, φ), (10)

in which (x, θ, φ) are spherical coordinates for x centered on the origin, jl(z) are the spherical
Bessel functions (which are indeed regular, varying as zl near the origin), h

(1)
l (z) the spherical

Hankel functions (which indeed diverge as 1/zl+1 at the origin), and Ylm are the spherical harmon-
ics [18]. For future reference, we note that

Ylm(θ, φ) = βlmPm
l [cos(θ)]eimφ

βlm =

√
2l + 1

4π

(l −m)!

(l + m)!
(11)

in which Pm
l (u) are the associated Legendre functions [18]. We also note the useful identities,

Y ∗
lm(θ, φ) = Ylm(θ,−φ)

= (−1)mYl,−m(θ, φ) (12)
Ylm(π − θ, π + φ) = (−1)mYlm(π − θ, φ)

= (−1)l+mYlm(θ, π + φ)

= (−1)lYlm(θ, φ) (13)
Pm

l (−u) = (−1)l+mPm
l (u). (14)

The latter two correspond to spatial inversion, x → −x.
The T -matrix represents the linear relationship

Bn =
∑

n′
Tnn′(k)An′ (15)

between the A and B coefficients that must emerge from a full solution to the acoustic equation in
the presence of the scatterer. For a spherically symmetric scatterer,

Tlm;l′m′(k) = Tl(k)δll′δmm′ (16)

is diagonal and independent of m in the spherical wave basis, and exact solutions are available for
a variety of examples. In matrix form, (15) is written simply as B = TA.

Since (7)–(10) refer only to the solutions in the background medium, the relation (15) holds
even if (2) fails to apply within the target, for example if it is an elastic body rather than a fluid
body. The T -matrix is, of course, much more difficult to compute in such cases.
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3.2.3 Heterogeneous field T–matrix

Suppose now that the target resides in a medium that is homogenous in the target neighborhood,
but not necessarily globally homogeneous. Examples to be discussed below include horizontally
stratified media, which may or may not contain other compact scatterers. Local homogeneity
implies that we may continue to expand the background field (which excludes the effects of the
target, but includes the effects of all other inhomogeneities in the medium) locally near xs in the
form (8). However, the scattered field now has an expansion

φ̂s(x) =
∑

n

BnΨn(x− xs;xs) (17)

in which Ψn is a solution to the global acoustic equation, and the residual xs dependence arises
because the system is no longer translation invariant. The expansion is uniquely defined by writing

Ψn(x;xs) = ψn(x) + ∆ψn(x;xs), (18)

where the correction ∆ψn arises from reflections of the scattered wave ψn that return to the neigh-
borhood of xs. As such, ∆ψn is assumed to be smooth in the neighborhood of xs, and have a
convergent re-expansion,

∆ψn(x;xs) =
∑

n

Unn′(xs)ξn′(x), (19)

in terms of the regular basis functions. Examples of the matrix U will be presented below.
The free field T -matrix now relates the full ξn component of the field to the scattered field. In

matrix form one obtains,
B = T(A + UB), (20)

with solution,
B = TA, T = (T−1 −U)−1. (21)

Through (21) we have succeeded in expressing the full solution to the scattering problem in terms
of the free field scattering problem, together with the global properties of the background medium.
The existence of such local scattering relations relies on the spatial locality of the gradients in the
acoustic equations (1) and (2).

3.2.4 T–matrix for multiple scatterers in a homogeneous medium

Consider next a collection of N targets, centered on points x
(j)
s , j = 1, 2, . . . , N , in a homogeneous

medium, each with its own T -matrix T(j). The background field is now the field generated by a
given source when all targets are absent. Since the medium is homogeneous, the basis functions
ξn(x−x

(j)
s ), ψn(x−x

(j)
s ) in each neighborhood may be chosen simply as translates of each other.

We now require the re-expansion coefficients of the scattered waves from each target about every
other. Let us define the matrix U(x′) by

ψn(x− x′) =
∑

n′
Unn′(x

′)ξn′(x). (22)
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If A
(j)
n are background coefficients appropriate to the neighborhood of x

(j)
s , and B

(j)
n are the corre-

sponding exact scattering coefficients, then one obtains for each j the self-consistency condition,

B(j) = T(j)


A(j) +

∑

j′(6=j)

U(jj′)B(j′)


 , (23)

in which U(jj′) ≡ U(x
(j′)
s − x

(j)
s ). Let us define the super-matrices

T =




T(1) 0 . . . 0 0
0 T(2) . . . 0 0
...

... . . . ...
...

0 0 . . . T(N−1) 0
0 0 . . . 0 T(N)




U =




0 U(12) . . . U(1,N−1) U(1,N)

U(21) 0 . . . U(1,N−1) U(1,N)

...
... . . . ...

...
U(N−1,1) U(N−1,2) . . . 0 U(N−1,N)

U(N1) U(N2) . . . U(N,N−1) 0




.

(24)

Equation (23) then takes the supermatrix form (20), in which A,B are now column vectors con-
structed from all of the A(j),B(j). With these definitions, the formal solution still takes the form
(21).

3.2.5 T–matrix for multiple scatterers in a heterogeneous medium

Let us finally consider the most general problem of a collection of targets in a heterogeneous
medium, each of which lies in a homogeneous neighborhood about its center x

(j)
s . The object is

now to find the formal solution to the scattering problem given only the individual matrices T(j)

and the background properties of the medium if none of the scatterers are present. The major
difference from the results of Sec. 3.2.4 is that each such neighborhood in general has a different
local density ρ(j) and sound speed c(j), and there is a self-scattering contribution from each target.

From (18), we define the local basis functions

Ψ(j)
n (x;x(j)

s ) = ψ(j)
n (x) + ∆ψ(j)

n (x;x(j)
s ), (25)

in which ψ
(j)
n depends on j through the local values of ρ(j) and c(j). Similarly, the regular ba-

sis functions ξ
(j)
n (x − x

(j)
s ) will now depend on j. For j 6= j′ we define the matrix U(jj′) =

U(x
(j)
s ,x

(j′)
s ) via

Ψ
(j′)
n′ (x− x(j′)

s ;x(j′)
s ) =

∑
n

U
(jj′)
nn′ ξ(j)

n (x− x(j)
s ), j 6= j′, (26)

while for j = j′ only the reflected wave contributes:

∆ψ
(j)
n′ (x− x(j′)

s ;x(j)
s ) =

∑
n

U
(jj′)
nn′ ξ(j)

n (x− x(j)
s ), j = j′. (27)
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Thus, U(jj′) describes the re-expansion of the outgoing waves from scatterer j′ in the vicinity of
scatterer j. If A

(j)
n are background coefficients appropriate to the neighborhood of x

(j)
s , and B

(j)
n

are the corresponding exact scattering coefficients, then one obtains the self-consistency condition,

B(j) = T(j)

[
A(j) +

∑

j′
U(jj′)B(j′)

]
, (28)

in which the diagonal term j′ = j is now included in the sum. The formal solution still takes the
form (21), but the supermatrix U is now nonzero along the diagonal:

U =




U(11) U(12) . . . U(1,N−1) U(1,N)

U(21) U(22) . . . U(1,N−1) U(1,N)

...
... . . . ...

...
U(N−1,1) U(N−1,2) . . . U(N−1,N−1) U(N−1,N)

U(N1) U(N2) . . . U(N,N−1) U(NN)




. (29)

3.2.6 Basis functions in horizontally stratified media

Let the background medium parameters depend only on the vertical coordinate z. The Green
function is then horizontally translation invariant, and may be conveniently written in terms of its
horizontal Fourier transform,

g(x,x′) =

∫
d2q

(2π)2
ĝ(z, z′; q)eiq·(r−r′)

=

∫ ∞

0

qdq

2π
ĝ(z, z′; q)J0(q|r− r′|), (30)

in which x = (r, z) and ĝ depends only on the magnitude q = |q|. If, in addition, the background
consists of L layers, with boundaries at d1 > d2 > . . . > dL−1, so that the parameters are piecewise
constant functions of z (see Fig. 6), then ĝ takes the form of a superposition of counter-propagating
plane waves within each layer:

ĝ(z, z′; q) = au(q)e
−lu(q)|z−z′|δuv

+
∑

σ,τ=±1

auσ;vτ (q)e
σlu(q)z+τlv(q)z′ , (31)

in which z lies in layer u, z′ lies in layer v (u, v = 1, 2, . . . , L), and the vertical wavevector is given
by,

lu(q) =
√

q2 − k2
u = −iqz,u(q). (32)

Here ku = ω/cu, and ρu, cu are the parameter values in layer u. We choose the sign of the square
root so that Re(lu) ≥ 0 whereby σ, τ = +1 leads to exponential decay for large negative z, z′.
If k2

u − q2 is real and positive, then we choose qz,u =
√

k2
u − q2 > 0 so that σ, τ = +1 yield

downward propagating waves. The diagonal term

au(q) =
ρu

2lu(q)
(33)
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Figure 6: Schematic diagram of horizontally stratified geometry. Notation is defined in the text.

corresponds to the horizontal Fourier transform of the free Green function (6), which may also be
written in the form g0(x − x′) = (ikρ/4π)h

(1)
0 (k|x − x′|). The coefficients auσ;vτ all vanish for a

homogeneous (single layer) system but rapidly increase in complexity with the number of layers.
However, computationally efficient analytic forms for them exist3 [38], and the three layer forms
are displayed in App. 3.2.12. Symmetry of ĝ under interchange of z, z′ leads to the corresponding
symmetry auσ;vτ = avτ ;uσ.

Equation (31) represents an extension of the free Green function through all of space, and
includes all multiple scattering from and between the layers. In order to similarly extend the
higher order Hankel functions, one needs a corresponding horizontal Fourier transform for them.
Let us define the horizontal Fourier transform of the outgoing wave basis,

ψlm(x) = hl(kx)Ylm(θ, φ)

=

∫
d2q

(2π)2
ψ̂lm(z;q)eiq·r, (34)

so that the free Green function is related to ψ00 via

g0(x− x′) =
ikρ√
4π

ψ00(x− x′)

ψ̂00(z − z′;q) =

√
4π

ikρ
ĝ0(z, z

′; q), (35)

where we note that Y00 = 1/
√

4π. One obtains [31] (see Sec. 3.2.11.3.1 for a derivation):

ψ̂lm(z;q) = i−(l+1) 4π

k
Ylm(θQσ, φQ)

1

2l(q)
e−l(q)|z|, (36)

3The required scalar Green function is denoted γ̂µ(z, z′; q) there, with coefficients aµ
uσ;vτ , aµ

u, and the mapping
µ → ρ and εk2 → k2

u should be made to obtain the scalar Green function ĝ(z, z′; q) required in the present work.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

19 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

in which σ = −sgn(z), and θQσ(q), φQ(q) are the polar coordinate angles of the vector Qσ =
[q,−iσl(q)] = [q,−σqz(q)], corresponding to an upward propagating wave for z > 0 and a
downward propagating wave for z < 0:

cos(θQσ) = −σqz(q)/k = −σ
√

1− (q/k)2

= −iσl(q)/k = −iσ
√

(q/k)2 − 1

sin(θQσ) = q/k. (37)

As seen, for complex k (as in an absorptive medium), or q > k the polar angle θQσ becomes
complex. However, since the spherical harmonics are polynomials in cos(θQσ) and sin(θQσ), the
analytic continuation is trivial (see the corresponding discussion in App. 3.2.11.3.1). Note also
that θQ,−σ = π − θQσ, and recall the corresponding identity (13).

Although not actually required in what follows, one may also define the horizontal Fourier
transform for the regular basis functions,

ξlm(x) = jl(kx)Ylm(θ, φ)

=

∫
d2q

(2π)2
ξ̂lm(z;q)eiq·r. (38)

Then one obtains the identity (see App. 3.2.11.3),

ξ̂lm(z;q) = i−l 2π

k
H(k − q)

1

2qz(q)

∑
σ=±1

e−iσqz(q)Ylm(θQσ, φQ)

= i−l 2π

k
H(k − q)Ylm(θQ+, φQ)

1

2qz(q)

[
e−iqz(q)z + (−1)l+meiqz(q)z

]
, (39)

which corresponds to two counter-propagating waves. Here the Heaviside function H(s) = 1 for
s > 0, and vanishes for s < 0 [which then limits the integral (38) to real values of qz]. As written,
this form is valid only for real k, but it may be extended to complex k by replacing in the second
line of (38) (a) k by |k| everywhere, including qz(q) =

√
|k|2 − q2, and (b) eiq·r → eiζq·r, where

ζ = k/|k| is the phase of k.
The layered medium basis functions Ψlm(x − x′;x′) are now obtained simply by extending

(34) using (31): one obtains

Ψlm(x− x′;x′) =

∫
d2q

(2π)2
eiq·(r−r′)Ψ̂lm(z, z′;q) (40)

with the Fourier kernel given by,

Ψ̂lm(z, z′;q) = i−(l+1) 4π

kvρv

[
δuvav(q)e

σlv(q)(z−z′)Ylm(θv
Qσ, φQ)

+
∑

σ′,τ ′=±1

auσ′;vτ ′(q)e
σ′lu(q)z+τ ′lv(q)z′Ylm(θv

Q,−τ ′ , φQ)

]
(41)

in which σ = −sgn(z − z′), the superscript on θv
Qσ indicates that kv should be substituted for k in

(37), and, again, z′ lies in layer v while z lies in layer u. Thus, the differential operations on x′ [not
on x, as that would not lead to a new solution to the acoustic equation (2) due to the x dependence
of the parameters on the left hand side] that lead to the factor Ylm(θv

Qσ, φQ) in the diagonal term,
must lead to the same factor, with −τ ′ replacing σ, in the non-diagonal terms.
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3.2.7 T–matrix for a single homogeneous spherical scatterer

For a spherical scatterer the T -matrix is diagonal in the spherical wave expansion basis (10):

Tlm,l′m′(k) = Tl(k)δll′δmm′ . (42)

For a homogeneous sphere of radius a, with interior parameters ρs, cs (and exterior parameters
ρ, c), the full solution takes the form

φ(x) = Ylm(θ, φ)

{
Aljl(ksx), x ≤ a

jl(kx) + Tlh
(1)
l (kx), x > a,

(43)

which also serves to precisely define the T -coefficients. Continuity of φ and ρ−1∂xφ at x = a
produce the conditions

[
jl(ka)
j′l(ka)

]
=

[
jl(ksa) −h

(1)
l (ka)

(ρc/ρscs)j
′
l(ksa) −h

(1)′
l (ka)

][
Al

Tl

]
, (44)

with solution

Tl(k) = − jl(ksa)j′l(ka)− (ρc/ρscs)j
′
l(ksa)jl(ka)

jl(ksa)h
(1)′
l (ka)− (ρc/ρscs)j′l(ksa)h

(1)
l (ka)

. (45)

In the limit of a small scatterer, ka ¿ 1, one may use the asymptotic forms [18],

jl(z) ≈ zl

(2l + 1)!!
, hl(z) ≈ −i

(2l − 1)!!

zl+1
, (46)

which, when substituted into (45), yield

Tl(k) ≈ ljl(ksa)− (ρ/ρs)ksaj′l(ksa)

(l + 1)jl(ksa) + (ρ/ρs)ksaj′l(ksa)

× i(ka)2l+1

(2l + 1)!!(2l − 1)!!
. (47)

For strong contrast, ks/k À 1 and ksa of order unity, the prefactor on the right hand side of (47)
may have poles, corresponding to the resonances of a sphere confined in a perfectly rigid medium.
For finite ka, these poles move below the real axis, indicating a finite decay rate due to radiation
damping.

3.2.8 T -matrix for an array spheres in a homogeneous background

3.2.8.1 Array of small spheres We see from (47) that, for small spheres, the s-wave contribu-
tion, T0(k) ∼ ka, dominates, and the larger l scattering contributions may be dropped. In this case,
the individual T and U matrices in (24) and (29) are single elements. For N small spheres in an
infinite homogeneous space one obtains

T =




T
(1)
0 (k) 0 . . . 0 0

0 T
(2)
0 (k) . . . 0 0

...
... . . . ...

...
0 0 . . . T

(N−1)
0 (k) 0

0 0 . . . 0 T
(N)
0 (k)




(48)
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in which the dependence of T
(j)
0 (k) on the index j is through the sphere parameters ρj, cj, aj (and

we assume, clearly, that kaj ¿ 1 for all j). The inverse of this matrix is computed trivially.
Similarly, only the zeroth order outgoing wave ψ00(x) = h

(1)
0 (kx)/

√
4π contributes to the U

matrix:

U =




0 ψ00(x
(1)
s − x

(2)
s ) . . . ψ00(x

(1)
s − x

(N−1)
s ) ψ00(x

(1)
s − x

(N)
s )

ψ00(x
(2)
s − x

(1)
s ) 0 . . . ψ00(x

(2)
s − x

(N−1)
s ) ψ00(x

(2)
s − x

(N)
s )

...
... . . . ...

...
ψ00(x

(N−1)
s − x

(1)
s ) ψ00(x

(N−1)
s − x

(2)
s ) . . . 0 ψ00(x

(N−1)
s − x

(N)
s )

ψ00(x
(N)
s − x

(1)
s ) ψ00(x

(N)
s − x

(2)
s ) . . . ψ00(x

(N)
s − x

(N−1)
s ) 0




.

(49)
The A coefficients are, in turn given by the values of the background field,

φ̂b(x) =
ikρ

4π

∫

VT

d3x′h(1)
0 (k|x− x′|)S(x′) (50)

at the sphere centers:

A =




φ̂b(x
(1)
s )

φ̂b(x
(2)
s )

...
φ̂b(x

(N−1)
s )

φ̂b(x
(N)
s )




. (51)

For a finite array of spherical wave emitters, S(x) is a superposition of discrete compact sources,
and (50) also reduces to a discrete sum. Recalling that the B coefficients refer to the superposition
of outgoing waves from each target, the final signal at an observation point x is,

φ̂(x) =
1√
4π

N∑
j=1

B(j)h
(1)
0 (k|x− x(j)

s |). (52)

For a receiver array, the signal will be a superposition,

φ̂R =

∫

VR

d3xR(x)φ̂(x), (53)

in which R(x) is the receiver sensitivity function.

3.2.8.2 More general array of spheres More generally, if ka is not small, let us suppose that
we keep angular momentum contributions 0 ≤ l ≤ lj for sphere j. The matrix T in (24) now
consists of diagonal blocks T(j) of dimension 1 + 3 + 5 + . . . + (2lj + 1) = (lj + 1)2. With
each 0 ≤ l ≤ lj is associated a diagonal sub-block of dimension 2l + 1 with the values T

(j)
l (k)

along the diagonal. Note that, purely on symmetry grounds, this structure is maintained for any
spherically-symmetric scatterer (including, for example, an elastic solid or shell), as long as one
substitutes in place of (45) the correct forms for the Tl(k).
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Figure 7: Schematic illustration of the measurement geometry for one large scatterer, in an array
of small scatterers, buried in a layered background.

Correspondingly, the matrix U(jj′) is of dimension (lj + 1)2 × (lj′ + 1)2. Its components are

U
(jj′)
lm;l′m′ = c

(l′m′)
lm [k(x(j′)

s − x(j)
s )], (54)

in which the c-coefficients are given by (95) (with x → x− x
(j)
s , and x′ → x

(j′)
s − x

(j)
s . A special

case is that of a single large sphere immersed in an array of small spheres. Then only l1 > 0, and
U(1j′) and U(j1) are, respectively, column and row vectors of dimension (l1 + 1)2. All others are
the single elements ψ00(x

(j)
s − x

(j′)
s ).

3.2.9 T -matrix for an array of scatterers in a layered background

Consider now the U matrix entries for a layered background. We assume that each scatterer lies
sufficiently far from its layer boundaries that a sufficiently large neighborhood of it exists within
that layer on which the basis function expansion coefficients may be defined and related unam-
biguously through the T -matrix.

Although the re-expansion of the diagonal term in (31) gives rise to the analytic series (54)
[with (95)], the non-diagonal terms must be handled numerically via direct integration. Using
the general expression (88) for the expansion coefficients of the series (85), the corresponding
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expansion (26) of the layered medium outgoing wave basis function (40) has coefficients,

U
(jj′)
lm;l′m′ = il−l′−1 (4π)2

kvρv

∫
d2q

(2π)2
eiq·(r(j)

s −r
(j′)
s )

∑
σ,τ=±1

auσ;vτ (q)e
σlu(q)z

(j)
s +τ ′lv(q)z

(j′)
s Yl′m′(θv

Q,−τ , φQ)Y ∗
lm(θu

Qσ, φQ)

+ (1− δjj′)δuvc
(l′m′)
lm [kv(x

(j′)
s − x(j)

s )]

= il−l′−1im
′−mβlmβl′m′ei(m′−m)φ(jj′) 8π

kvρv

∫ ∞

0

qdqJm′−m(q|r(j)
s − r(j′)

s |)

×
∑

σ,τ=±1

auσ;vτ (q)e
σlu(q)z

(j)
s +τlv(q)z

(j′)
s Pm′

l′ [τ
√

1− (q/kv)2]Pm
l [−σ

√
1− (q/ku)2]

+ (1− δjj′)δuvc
(l′m′)
lm [kv(x

(j′)
s − x(j)

s )], (55)

and these comprise the individual entries in the U-matrix (29). Here, as described in App. 3.2.11.3.1,
for q2 > k2

u, where θu
Qσ becomes complex [see (37)], one interprets Y ∗

lm(θQσ, φQ) = Ylm(θQσ,−φQ) =
(−1)mYl,−m(θQσ, φQ) [see (12)]. Note that if j = j′ the diagonal (δuv) term is absent, and, since
Jm(0) = δm0, the remaining (non-diagonal) term is nonzero only for m = m′. Here, z

(j′)
s is in

layer v, z(j)
s is in layer u, Jm(z) = (−1)mJ−m(z) are the usual cylindrical Bessel functions, Pm

l (z)
are the associated Legendre functions, the coefficients βlm were defined in (11), and θ(jj′), φ(jj′) are
the polar coordinate angles corresponding to the separation vector x

(j)
s − x

(j′)
s [which corresponds

to −x′ in (95)]. We use here, according to (37), cos(θu
Qσ) = −σ

√
1− (q/ku)2 = iσlu(q)/ku, and

cos(θv
Q,−τ ) = τ

√
1− (q/kv)2 = −iτ lv(q)/kv. The connection to l(q) exhibited here provides the

analytic continuation for q > k. Since Pm
l (z) is of the form (1 − z2)m/2 times a polynomial of

degree l−m in z (even for l−m even, and odd for l−m odd) [18], the result here is (q/k)m times
a polynomial of degree l − m in ±il(q)/k (with the addition of appropriate indices understood
here).

3.2.9.1 Single large scatterer in an array of small scatterers As an example, as illustrated in
Fig. 7, we construct explicit forms of the U matrix for a single large scatterer (j = 1) in an array
of Ns of small ones (j = 2, 3, . . . , Ns +1). The latter are treated in the s-wave approximation. The
entries in (29) are as follows. For j, j′ 6= 1 the sub-blocks are single elements,

U
(jj′)
00;00 =

√
4πΨ00(x

(j)
s − x(j′)

s ;x(j′)
s ) =

4π

ikvρv

g(x(j)
s ,x(j′)

s ) (56)

= δuv(1− δjj′)h
(1)
0 (kv|x(j)

s − x(j′)
s |)

+
2

ikvρv

∫ ∞

0

qdqJ0(q|r(j)
s − r(j′)

s |)
∑

σ,τ=±1

auσ;vτe
σlu(q)z

(j)
s +τlv(q)z

(j′)
s ,

where we have noted that P 0
0 (z) ≡ 1. Next, the j = j′ = 1 block has dimension (l1+1)2×(l1+1)2,

where l1 is the maximum angular momentum index chosen for the large scatterer. The entries are
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given, according to (55), by,

U
(11)
lm;l′m′ = δmm′il−l′−1βlmβl′m

8π

kvρv

∫ ∞

0

qdq
∑

σ,τ=±1

avσ;vτ (q)e
(σ+τ)lv(q)z

(1)
s

× Pm
l′ [τ

√
1− (q/kv)2]Pm

l [−σ
√

1− (q/kv)2]. (57)

These are the same coefficients as those that appear in Ref. [31], where the case of a single elastic
sphere was studied.

Finally, when exactly one of j, j′ is unity, one obtains:

U
(j1)
00;lm = im−l−1βlmeimφ(j1) 4

√
π

kvρv

∫ ∞

0

qdqJm(q|r(j)
s − r(1)

s |)

×
∑

σ,τ=±1

auσ;vτ (q)e
σlu(q)z

(j)
s +τlv(q)z

(1)
s Pm

l [τ
√

1− (q/kv)2]

+ δuv

√
4πh

(1)
l (kv|x(j)

s − x(1)
s |)Ylm(θ(j1), φ(j1))

U
(1j)
lm;00 = im−l−1βlme−imφ(j1) 4

√
π

kvρv

∫ ∞

0

qdqJm(q|r(j)
s − r(1)

s |)

×
∑

σ,τ=±1

auσ;vτ (q)e
σlu(q)z

(j)
s +τlv(q)z

(1)
s Pm

l [τ
√

1− (q/kv)2]

+ δuv

√
4πh

(1)
l (kv|x(j)

s − x(1)
s |)Y ∗

lm(θ(j1), φ(j1)) (58)

in which, again, θ(jj′) = π − θ(j′j), φ(jj′) = π + φ(j′j) are the polar coordinate angles associated
with the vector x

(j)
s − x

(j′)
s , and we have noted the identities (13) and (14). In both cases (with the

aid of the symmetry auσ;vτ = avτ ;uσ), it has been assumed that x
(1)
s lies in layer v, while x

(j)
s lies

in layer u. The diagonal terms are most simply derived directly from (88) using Y00 = 1/
√

4π and
(36).

Note that since the boundary conditions at infinity are such that there can only be an upward
propagating wave in the first (highest) layer, and a downward propagating wave in the N th (lowest)
layer, one has auσ;N− = auσ;1+ = 0 [plus all symmetry-related vanishings, as seen explicitly in
(100)]. Thus, for example, in a situation where all of the scatterers lie in the lowest layer, the sum
over σ, τ in (55)–(58) reduces to the single term with aN+;N+.

3.2.10 Transmitted and received signals

Once the matrices T and U are constructed, and the matrix T is computed via (21), one is finally
in a position to solve the original acoustic problem.

First, one needs to compute the A coefficients for a given source Ŝ(x). From (4), (30), (31)
and (85)–(88), one obtains for a layered medium,

A
(j)
lm = 4πil

∫
d2q

(2π)2

∑
σ,τ=±1

Ŝ[q, iτ lv(q)]auσ;vτ (q)Y
∗
lm(θu

Qσ, φQ)ei[q,−iσlu(q)]·x(j)
s

+ δuvρv





4πil
∫

d3Q

(2π)3

Ŝ(Q)

Q2 − k2
v − iη

Y ∗
lm(θQ, φQ)eiQ·x(j)

s , (Fourier space form)

ikv

∫
d3x′Ŝ(x′)h(1)

l (kv|x′ − x(j)
s |)Y ∗

lm(θ(′j), φ(′j)), (Real space form)
(59)
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where the real space form of the diagonal term will probably be most appropriate for compact
sources. Here η → 0+ is a positive infinitesimal that selects the outgoing wave Green free function,
the source is in layer v, the scatterer in layer u, θ(′j), φ(′j) are the polar coordinate angles associated
with the vector x′ − x

(j)
s , and we have defined the 3D Fourier transform of the source function:

Ŝ(Q) ≡ Ŝ(q, qz) =

∫
d3x′Ŝ(x′)e−iQ·x′ . (60)

In the second (diagonal) term in (59), Q is real, and there is no ambiguity in the definitions of the
polar coordinate angles θQ, φQ associated with the vector Q. In the first (off-diagonal) term, one
interprets, as usual, Y ∗

lm(θu
Qσ, φQ) = (−1)mYl,−m(θu

Qσ, φQ) irrespective of whether θu
Qσ is real or

complex [see (37) and the discussion in App. 3.2.11.3.1].
With (59) as input to (21), the received signal emerges in the form,

φ̂R =
∑

j,l,m

B
(j)
lm φ̂

(j)
R,lm (61)

with individual basis function and scatterer coefficients,

φ̂
(j)
R,lm =

∫
d3xR̂(x)Ψ

(j)
lm(x− x(j)

s ;x(j)
s )

= i−(l+1) 4π

kvρv

∫
d2q

(2π)2

∑
σ,τ=±1

R̂[−q, iσlu(q)]auσ;vτ (q)Ylm(θv
Q,−τ , φQ)e−i[q,iτ lv(q)]·x(j)

s

+ δuv





i−(l+1) 4π

kv

∫
d3Q

(2π)3

R̂(−Q)

Q2 − k2
v − iη

Ylm(θQ, φQ)eiQ·x(j)
s , (Fourier space form)

∫
d3x′R̂(x′)h(1)

l (kv|x′ − x(j)
s |)Ylm(θ(′j), φ(′j)), (Real space form)

(62)

in which R̂(x) is the receiver sensitivity function, with Fourier transform defined analogously to
(60), the scatterer is in layer v, the receiver in layer u, and (40), with (41), has been used to represent
the basis functions. For the diagonal (δuv) term, the second equality in (84) has been used to obtain
the Fourier space form. Once again, the real space form is probably most appropriate for compact
receivers.

3.2.10.1 Special cases Consider now a few special cases. For an isotropic point source, Ŝ(x) =
S0δ(x− xT ), hence Ŝ(Q) = S0e

−iQ·xT , equation (59) reduces to

A
(j)
lm = 2il−mS0βlme−imφ(Tj)

∫ ∞

0

qdqJm(q|rT − r(j)
s |)

∑
σ,τ=±1

auσ;vτ (q)P
m
l [−σ

√
1− (q/ku)2]eσlu(q)z

(j)
s +τlv(q)zT

+ δuviS0kvρvh
(1)
l (kv|xT − x(j)

s |)Y ∗
lm(θ(Tj), φ(Tj)), (63)

where βlm is defined in (11), and θ(Tj), φ(Tj) are the polar coordinate angles associated with the
vector xT − x

(j)
s .
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Similarly, for an isotropic point receiver, R̂(x) = R0δ(x − xR), hence R̂(Q) = R0e
−iQ·xR ,

equation (62) reduces to

φ̂
(j)
R,lm = R0Ψ

(j)
lm(xR;x(j)

s )

= im−l−1 2R0

kvρv

βlmeimφ(Rj)

∫ ∞

0

qdqJm(q|rR − r(j)
s |)

∑
σ,τ=±1

auσ;vτ (q)P
m
l [τ

√
1− (q/kv)2]eσlu(q)zR+τlv(q)z

(j)
s

+ δuvR0h
(1)
l (kv|xR − x(j)

s |)Ylm(θ(Rj), φ(Rj)), (64)

where θ(Rj), φ(Rj) are the polar coordinate angles associate with the vector xR − x
(j)
s .

Consider next a phased vertical line transmitter array:

Ŝ(x) = S0e
ikT (z−zT )δ(r− rT ),

−LT /2 ≤ z − zT ≤ LT /2

Ŝ(Q) = S0e
−iQ·xT

sin[(kT − qz)LT /2]

(kT − qz)/2
, (65)

If one writes kT = kv cos(α), the array generates a cylindrical wave in the direction corresponding
to polar angle α. The corresponding coefficients A

(j)
lm are computed simply by inserting an extra

factor,

Ŝ[q, iτ lv(q)]/S0 =
sin{[kT − iτ lv(q)]LT /2}

[kT − iτ lv(q)]/2
, (66)

into the summand of the first (non-diagonal) term in (63). The second (diagonal) term is probably
most efficiently evaluated by directly integrating the corresponding term in (63) to obtain:

A
(j,diag)
lm = δuviS0kvρv

∫ LT /2

−LT /2

dζeikT ζ (67)

× h
(1)
l (kv|xT (ζ)− x(j)

s |)Y ∗
lm[θ(Tj)(ζ), φ(Tj)],

in which xT (ζ)−x
(j)
s = xT−x

(j)
s +ζ ẑ, and θ(Tj)(ζ), φ(Tj) are the polar coordinate angles associated

with this vector (the latter being independent of ζ).
Similarly, for a phased vertical receiver line array:

R̂(x) = R0e
ikR(z−zR)δ(r− rR),

−LR/2 ≤ z − zR ≤ LR/2

R̂(Q) = R0e
−iQ·xR

sin[(kR − qz)LR/2]

(kR − qz)/2
, (68)

If one writes kR = ku cos(β), the array is most sensitive to waves arriving from directions corre-
sponding to polar angle α. The corresponding coefficients φ

(j)
R,lm are computed simply by inserting

an extra factor,

R̂[−q, iσlu(q)]/R0 =
sin{[kR − iσlu(q)]LR/2}

[kR − iσlu(q)]/2
, (69)
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into the summand of the first (non-diagonal) term in (64). The second (diagonal) term is probably,
again, most efficiently evaluated by directly integrating the corresponding term in (64) to obtain:

φ̂
(j,diag)
R,lm = δuvR0

∫ LR/2

−LR/2

dζeikRζ (70)

× h
(1)
l (kv|xR(ζ)− x(j)

s |)Ylm[θ(Rj)(ζ), φ(Rj)],

in which xR(ζ) − x
(j)
s = xR − x

(j)
s + ζ ẑ, and θ(Rj)(ζ), φ(Rj) are the polar coordinate angles

associated with this vector (the latter being independent of ζ).

3.2.11 Inverse scattering problems

The theory presented thus far is intended to support forward modeling of scattered signals from
known targets in a known background. Here we briefly discussed an associated inverse problem,
namely extraction of T -matrix coefficients from measurements on a known target, e.g., for later
use in a forward modeling calculation. Such measurement-based model inputs are an important
tool when the target complexity exceeds ones computational ability to directly compute the de-
sired coefficients (or has too many unknown parameters to enable robust modeling). For example,
an elastic target may possess a spectrum of internal resonances with very sensitive dependence
on its precise internal structure, and on the parameters of the surrounding medium. A series of
measurements may provide a better fingerprint of the target response than a low fidelity computa-
tion. In what follows, bulk absorption will be neglected and we will neglect reflections from the
experimental system boundaries.

3.2.11.1 Target parameter inversion in a homogeneous background For a target in an infi-
nite homogeneous background, one typically considers plane waves, φ̂b(x) = A0e

iK·x, of various
frequencies incident from various directions. Using the spherical harmonic basis (10) and the plane
wave identity (81), one obtains the incoming wave coefficients,

Alm = 4πA0i
lY ∗

lm(θK , φK). (71)

From (9) and (15), at sufficiently large distance from the target, Kx À 1, where the asymptotic
form hl(z) ≈ (−i)l+1eiKz/z for the Hankel function is valid, the scattered wave takes the form,

φ̂s(x;K) ≈ 4πA0
eiKx

ix

∑

l,m;l′,m′
il
′−lTlm;l′m′(K)

× Y ∗
l′m′(θK , φK)Ylm(θ, φ). (72)

If, for given wavenumber magnitude K = ω/c, one were able to perform a dense set of measure-
ments at fixed distance xR, for all incoming plane wave and outgoing spherical wave directions,
one may extract the desired coefficients by integration:

Tlm;l′m′(K) =
il−l′+1

4πA0

xRe−iKxR

∫
dΩ

∫
dΩK (73)

× Yl′m′(θK , φK)Y ∗
lm(θ, φ)φ̂s(x;K).
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In the absence of full coverage, measurements on a finite grid of points xj,Kj may be used to invert
(72) under the assumption that a suitably truncated finite subset of the T -coefficients dominate the
sum.

In the special case of spherically symmetric target, (16) and the addition theorem for spherical
harmonics [18] allows one to reduce (72) and (73) to the form,

φ̂s(x;K) = A0
eiKx

ix

∑

l

(2l + 1)Tl(K)Pl(uKx) (74)

Tl(K) =
ixRe−iKxR

(2l + 1)A0

∫ 1

−1

duφ̂s[x(u);K]Pl(u)

in which Pl are the usual Legendre polynomials, uKx = K̂ · x̂ = cos(θKx) is the cosine of the
angle between the two unit vectors, and the integral in the second line is over the great circle
Q̂ · x̂(u) = u. If one assumes that Tl(K) is effectively zero for l > lmax, then one may evaluate
the remaining T -coefficients exactly via Gauss-Legendre integration:

Tl(K) =
ixR

(2l + 1)A0

e−iKxR

lmax∑
j=1

wjφ̂s[x(uj);K]Pl(uj) (75)

in which uj, wj are the requisite points and weights for lmax-point integration [37]. It should not be
too surprising that only lmax measurements are required, but by carefully selecting the observation
points x(uj), (75) provides an explicit inversion formula.

3.2.11.2 Buried target parameter inversion Since target scattering parameters may depend
strongly on the background parameters (through the appropriate surface boundary conditions),
measurements in different background media may be required. However, laboratory measure-
ments with target, transmitter, and receivers all surrounded by sediment, for example, may be very
difficult to perform. Instead, one might hope to infer the T -matrix parameters from a two-layer ge-
ometry, in which the target is buried in a homogeneous sediment, while the transmitter and receiver
lie in the homogeneous fluid above it. The boundary between the layers will be taken as z = 0,
and we will again neglect bulk absorption and scattering from the boundaries of the experimental
volume.

Consider therefore a downward-propagating plane wave, A0e
iK·x, in the upper layer with

wavevector K = (k,−kz), kz > 0 (and magnitude |K| = k1 = ω/c1). Since there are only
two layers, this generates a single downward propagating wave in the lower layer,

φ̂b(x) = A0a2+;1−(k)eiK2·x, (76)

with two-layer amplitude a2+;1−(k) = a1−;2+(k) = 1/(χ1 + χ2) given by (101), wavevector
K2 = (k,−kz,2), and kz,2 =

√
(ω/c2)2 − |k|2 > 0. The A-coefficients therefore take the form

(71) with k replaced by k2. The incident background amplitudes are therefore,

Alm = A0e
iK2·xsa2+;1−(q)ilYlm(θ2

K , φK), (77)

in which θ2
K , φK are the polar angles associated with the wavevector K2. From (41), the scattered

field takes the form,
φ̂s(x) =

∑

l,m

BlmΨlm(x− xs;xs), (78)
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in which,

Ψlm(x− xs;xs) =

∫
d2q

(2π)2
Ψ̂lm(z, zs;q)eiq·(r−rs)

Ψ̂lm(z, zs;q) = i−(l+1) 4π

k2ρ2

Ylm(θ2
Q−, φQ) (79)

× e−iqz,2(q)l2(q)zs

{
a1−;2+(q)eiqz,1(q)z, z > 0
a2+;2+(q)e−iqz,2(q)z, z < 0

,

where a2+;2+(q) = (χ2 − χ1)/2χ2(χ1 + χ2), and θ2
Q±, φQ are the polar coordinates associated the

wavevectors Q2± = [q,∓qz,2(q)] (with magnitude |Q2±| = k2 = ω/c2) in the lower layer. The
z > 0 form is relevant for receivers in the upper layer. Finally, the B-coefficients are obtained from
(21) with U matrix provided by the re-expansion (55) of the lower layer (z < 0) form of (79):

Ulm;l′m′ = il−l′−1 (4π)2

k2ρ2

∫
d2q

(2π)2
a2+;2+(q)e−2iqz,2(q)zs

× Yl′m′(θ2
Q−, φQ)Y ∗

lm(θ2
Q+, φQ)

= δmm′il−l′−1βlmβl′m
8π

k2ρ2

(80)

×
∫ ∞

0

qdqa2+;2+(q)e−2iqz,2(q)zs

× Pm
l′ [

√
1− (q/k2)2]Pm

l [−
√

1− (q/k2)2],

which is just (57) specialized to the two layer system.
Given the position of the target and the background parameters, one may in principle accurately

compute the A coefficients, the scattering functions Ψlm, and thereby the U -matrix coefficients.
Given a sufficiently dense set of measurements, a subset of the B-coefficients may then be found
by inverting (78), perhaps through a SVD approach [37]. Equation (20) then specifies a set of
linear equations for a suitably truncated set of T -matrix elements, perhaps also soluble through a
SVD approach. It is likely that with transmitter and receiver positions only in the upper layer, there
will be ambiguities in the inversion, i.e., the data is sensitive to only certain linear combinations
of B and T coefficients, even for only low order values of l. It may be necessary to have at least a
few receivers placed in the lower layer.

3.2.11.3 Basis function expansions

3.2.11.3.1 Green function and plane wave expansions We make extensive use of the fol-
lowing identity [18],

eiQ·x = 4π
∑

l,m

iljl(Qx)Ylm(θ, φ)Y ∗
lm(θQ, φQ), (81)

which relates a plane wave to the spherical wave basis functions, where (Q, θQ, φQ) represents the
spherical coordinate representation of the wavevector Q. For real Q (81) is unambiguous, but we
also require this identity for various complex wavevectors.
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First, if one is able to write Q = QQ̂, where Q may be complex, but Q̂ is a real unit vector
(thus, Q · Q = Q2), then (81) remains valid with θQ, φQ being the polar coordinate angles asso-
ciated with Q̂. It is in this form that it leads to the identity (39): simply multiply both sides by
Ylm(θQ, φQ), and integrate over all solid angles of Q. The two counter-propagating waves come
from the two hemispheres Q± = (q,±

√
|k|2 − q2) after changing variables from (θQ, φQ) to

q = |k| sin(θQ)[cos(φQ), sin(φQ)].
Second, and more importantly, we require (81) for complex wavevectors of the form Q± =

(q,±
√

k2 − q2), where q is a real 2D vector (so that the azimuthal angle φQ remains well de-
fined), and qz(q) =

√
k2 − q2 = il(q) may be complex, either because k is complex (an absorptive

medium leads to Im(k) > 0, so that h
(1)
l (kx) ≈ i−(l+1)eikx/kx decays exponentially for large

x), or because q2 > k2. For q2 > k2 we interpret θQσ according to (37) and Y ∗
lm(θQ, φQ) ≡

Ylm(θQσ,−φQ) = (−1)mYl,−m(θQσ, φQ) [see (12)], so that the complex conjugation does not ac-
tually act on θQ.

Using this second form, the identity (36) may be derived from the Green function expansion
[18],

h
(1)
0 (k|x− x′|) =

eik|x−x′|

ik|x− x′| (82)

= 4π
∑

l,m

jl(kx<)h
(1)
l (kx>)Ylm(θ, φ)Y ∗

lm(θ′, φ′),

which provides the re-expansion (22) for the lowest order basis function ψ00. Here x> = max{x, x′}
and x< = min{x, x′}. Since x,x′ are always real (although k may be complex), there is no am-
biguity here in the definitions of the spherical harmonics. The more general result for the higher
order ψlm will be addressed in Sec. 3.2.11.3.3 below. The connection to (36) begins with the
Fourier relation,

h
(1)
0 (k|x− x′|) =

4π

ik

∫
d3Q

(2π)3

eiQ·(x−x′)

Q2 − k2 − iη

=
4π

ik

∫
d2q

(2π)2

eiQσ ·(x−x′)

2l(q)
, (83)

where η → 0+ is a positive infinitesimal (required for real k), Qσ(q) = [q,−iσl(q)], and σ =
−sgn(z). In the second equality, the qz integral has picked up the pole at

√
k2 − q2 + iη in the

upper half plane for z > 0, and at−
√

k2 − q2 + iη in the lower half plane for z < 0. By expanding
the x′ dependence using (81) [noting that the polar coordinate angles associated with−x′ are π−θ′,
π + φ′, and using (13)], and comparing the resulting series to (82) (under the assumption x′ < x),
one identifies,

h
(1)
l (kx)Ylm(θ, φ) =

4π

k
i−(l+1)

∫
d2q

(2π)2

eiQσ ·x

2l(q)

× Ylm(θQσ, φQ)

=
4π

k
i−(l+1)

∫
d3Q

(2π)3

eiQ·x

Q2 − k2 − iη

× Ylm(θQ, φQ). (84)
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where θQσ, φQ are the polar coordinate angles associated with Qσ, defined in and above (37). The
first equality in (84) coincides precisely with (36).

3.2.11.3.2 Re-expansion coefficient identities The local expansion of a regular solution
φ(x) to the homogeneous acoustic equation is accomplished using the orthogonality properties of
the spherical harmonics. Thus, if one seeks an expansion

φ(x) =
∑

l,m

clmjl(kx)Ylm(θ, φ), (85)

then on identifies
clmjl(kx) =

∫
dΩφ(x)Y ∗

lm(θ, φ). (86)

The choice of reference radius x here is arbitrary, so long as the sphere of radius x lies entirely
within a locally homogeneous region.

Alternatively, if one represents φ(x) in terms of its horizontal Fourier expansion,

φ(x) =

∫
d2q

(2π)2

∑
σ=±1

φ̂σ(q)eiQσ·x, (87)

then by using (81) to represent the plane waves, one obtains

clm = 4πil
∫

d2q

(2π)2

∑
σ=±1

φ̂σ(q)Y ∗
lm(θQσ, φQ)

= 4πil
∫

d2q

(2π)2
[φ̂+(q) + (−1)l+mφ̂−(q)]

× Y ∗
lm(θQ+, φQ), (88)

in which, for complex θQσ, we interpret Y ∗
lm = (−1)mYl,−m as described above.

3.2.11.3.3 Re-expansion of outgoing wave basis functions In general the integral (88)
must be performed numerically. Consider as a special case, however, the re-expansion of the
outgoing wave basis functions ψlm(x):

ψlm(x− x′) = i−(l+1) 4π

k

∫
d2q

(2π)2

1

2l(q)
Ylm(θQσ, φQ)

× eiQσ ·(x−x′)

=
∑

l′,m′
c
(lm)
l′m′ (kx

′)jl′(kx)Yl′m′(θ, φ), (89)

in which σ = −sgn(z − z′). By expanding the x-dependence using (81), one obtains

c
(lm)
l′m′ (kx

′) = (−1)m′
il
′−l−1 (4π)2

k

∫
d2q

(2π)2

1

2l(q)
(90)

× e−iQσ ·x′Ylm(θQσ, φQ)Yl′,−m′(θQσ, φQ).
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where we have explicitly substituted Y ∗
lm = (−1)mYl,−m. We now make use of the identity (see

Eq. (16.89) of Ref. [26]),

Yl1m1(θ, φ)Yl2m2(θ, φ)

=

l1+l2∑

l=|l1−l2|
Dl,m1+m2

l1m1;l2m2
Yl,m1+m2(θ, φ), (91)

in which the D coefficients are related to the Clebsch-Gordon coefficients

C lm
l1m1,l2m2

≡ 〈l1l2m1m2|l1l2lm〉

(which can be nonzero only if m = m1 + m2) via

Dlm
l1m1,l2m2

=

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l0

l10;l20
C lm

l1m1,l2m2
(92)

which therefore also can be nonzero only if m = m1 + m2. The Clebsch-Gordon coefficients have
the symmetry properties [26],

C lm
l1m1;l2m2

= (−1)l−l1−l2C lm
l2m2;l1m1

= (−1)l−l1−l2C lm
l1,−m1;l2,−m2

, (93)

which implies the corresponding symmetries,

Dlm
l1m1;l2m2

= Dlm
l2m2;l1m1

= (−1)l−l1−l2Dlm
l1,−m1;l2,−m2

. (94)

Inserting (91) into (90), one obtains

c
(lm)
l′m′ (kx

′) = 4π(−1)m′
l+l′∑

l′′=|l−l′|
il
′−l−l′′Dl′′,m−m′

lm;l′,−m′

× h
(1)
l′′ (kx′)Yl′′,m−m′(θ′, φ′), (95)

which expresses the coefficients as a finite series in the original outgoing wave basis functions.
The series (82) is recovered when l = m = 0 since in this case only the term l′′ = l′ survives, and
since Y00 = 1/

√
4π, one obtains Dl′,−m′

00;l′,−m′ = 1/
√

4π as well.
The expansion (89) is expected to converge for x′ < x. For x′ > x one should interchange

x ↔ x′. Using the identity (13), one obtains

ψlm(x− x′) = (−1)lψlm(x′ − x) (96)

= (−1)l
∑

l′,m′
c
(lm)
l′m′ (kx)jl′(kx′)Yl′m′(θ′, φ′),

in which c
(lm)
l′m′ (kx) is given by (95) with the appropriate substitutions.
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3.2.12 Green function coefficients for a three layer system

We display here the results for the Green function a coefficients for the case of a three layer
system, i.e., a single finite width layer sandwiched between two semi-infinite half-spaces. Let the
boundaries be at d1 = d and d2 = −d. Let cu, ρu, ku = ω/cu, and lu(q) =

√
q2 − k2

u, denote the
quantities in the upper half space (u = 1), the finite layer (u = 2), and the lower half space (u = 3),
respectively. It should be recalled that, according to (32), for q2− k2

u real and negative we evaluate
the square root on the lower side of the branch cut, defining lu(q) = −i

√
k2

u − q2 ≡ −iqz(q). It is
convenient to define the combination,

χu = lu/ρu, (97)

along with,

Nχ = (χ1 − χ2)(χ2 + χ3)e
4dl2 + (χ1 + χ2)(χ2 − χ3)

N̄χ = (χ3 − χ2)(χ2 + χ1)e
4dl2 + (χ3 + χ2)(χ2 − χ1)

Dχ = (χ1 + χ2)(χ2 + χ3)e
4dl2 + (χ2 − χ1)(χ3 − χ2).

(98)

In terms of (98) the, diagonal coefficients (33) are given by,

au(q) =
1

2χu

, (99)

and the off-diagonal coefficients auσ;vτ (q) are given by, [38]:

a(q) =




0 0 0 0 0 0

0 e2l1d 1
2χ1

Nχ

Dχ
e(l1+3l2)d χ2+χ3

Dχ
e(l1+l2)d χ2−χ3

Dχ
e(l1+2l2+l3)d 2χ2

Dχ
0

0 e(l1+3l2)d χ2+χ3

Dχ

1
2χ2

e2l2d (χ2−χ1)(χ2+χ3)
Dχ

1
2χ2

(χ2−χ1)(χ2−χ3)
Dχ

e(l2+l3)d χ2−χ1

Dχ
0

0 e(l1+l2)d χ2−χ3

Dχ

1
2χ2

(χ2−χ1)(χ2−χ3)
Dχ

1
2χ2

e2l2d (χ2+χ1)(χ2−χ3)
Dχ

e(3l2+l3)d χ2+χ1

Dχ
0

0 e(l1+2l2+l3)d 2χ2

Dχ
e(l2+l3)d χ2−χ1

Dχ
e(3l2+l3)d χ2+χ1

Dχ

1
2χ3

e2l3d N̄χ

Dχ
0

0 0 0 0 0 0




,

(100)
in which the rows are labeled by u, σ and the columns by v, τ in the sequence (1+, 1 − |2+, 2 −
|3+, 3−). The symmetry relation auσ;vτ = avτ ;uσ is evident.

By taking the limit d → 0, the two layer results follow in the form

a(q) =




0 0 0 0
0 χ1−χ2

2χ1(χ1+χ2)
1

χ1+χ2
0

0 1
χ1+χ2

χ2−χ1

2χ2(χ1+χ2)
0

0 0 0 0


 , (101)

in which all of the middle layer parameters drop out as expected, and the layer 3 parameters
have now been relabeled with the index 2. The rows and columns are labeled in the sequence
(1+, 1− |2+, 2−).
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3.3 BOSS data processing methods
The basic processing element for BOSS image formation is 3D beamforming using a series of
overlapped synthetic apertures. The beamformer is a time-domain processor that corrects the lo-
cations of each of the BOSS receiver array elements at every ping as it accumulates a fixed-length
synthetic along-track aperture. The processor than applies near-field beamforming to each 3-d
image pixel location, then shifts the synthetic aperture forward and repeats the process. A level,
uniform, 3-d grid encompassing the entire data run is laid out, and the raw image data from the
beamformer output is then mapped to the final output grid locations. This removes all redundant
or overlapping beamformed data, and results in an image that accurately represents the vehicle
track and maneuvers. We describe these steps in detail in Secs. 3.3.1 - 3.3.4. In Sec. A.7 we show
various views of the resulting data products (derived from the raw data described in Sec. 4.3.1).

3.3.1 Signal processing

The BOSS transmits a linear FM pulse x(t) with a sweep rate b [Hz/s] and instantaneous frequency
fc = fc + b t, and with rectangular amplitude modulation i.e.,

x(t) =

{
A cos(2πfct + πbt2) −T/2 ≤ t ≤ T/2
0 |t| > T/2

where the rectangular enveloped is slightly tapered to prevent generation of harmonics. The sonar
processor performs real time correlation to compress the sonar return Yn(f)

Yn(f) = X(f)HTx(f)Hn(f)HTr(f) + N(f) (102)

recorded at the nth hydrophone to a zero phase wavelet with notation convention

X(f) =

∫ ∞

−∞
x(t) expi2πft dt (103)

and where

HTx(f) = transmitting voltage response of the projector,
HTr(f) = receiving response (transfer function) of the array,
Hn(f) = frequency response of the seabed including targets,
N(f) = noise spectrum (ambient, electronic and self–noise).

The output of the correlation filter is the analytic signal, given by

sn(t) =

∫ ∞

0

yn(τ)f(t + τ)dτ (104)

where f(t) is the correlation replica and yn(t) is the output of hydrophone n. The replica is
chosen to compensate for the frequency response of the projectors and receivers. In other words,the
correlation filter is designed so an echo from an ideal target appears to have a white spectrum. Thus,
we obtain the correlation replica as

f(t) =

∫ ∞

−∞

X(f)

HTx(f)HTr(f)
exp−i2πft df. (105)

This result is used to compute the analytic signal in equation (104) and provides the signal-
processed input required for the beamforming algorithm that we now describe.
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3.3.2 Near–field focusing

Following the matched-field processing described in Sec. 3.3.1 (resulting in the analytical sig-
nals sn(t), we then focus the data by coherent summation of this data over selected physical and
synthetic apertures. The objective of this operation is to migrate the scattered echo responses to
their physical source location (corresponding to scattering heterogeneities or discontinuities in the
propagation medium). Clearly then, for any given focal location xf in the medium, data from
multiple aspects are processed to obtain the scattering amplitude. After each source transmission
(sonar ping), a 3D matrix of image pixels is calculated from the last M pings of the synthetic aper-
ture, starting at ping m1 and ending at ping m2. This yields the image product A(xF ,m2) which
represents the n-phone scattering response from the 3D focal point xF in the seabed:

AM(xF ,m2) =

∣∣∣∣∣
1

NM

N∑
n=1

m2∑
m=m2−M+1

sn,m(tn,m,F )cn,m(xF ,xT
m,xR

m,n)

∣∣∣∣∣ . (106)

Here, sn,m(tn,m,F ) is the value of the analytic signal sampled at the arrival time of sound from
point xF for the two way path from transducer location xT

m (at the mth ping) to the focal point
at xF to hydrophone n. In addition, cn,m(x, y, z) is a weight coefficient that corrects for two
way spherical spreading, boundary losses, refraction, attenuation, etc., computed with respect to a
reference model.

The degree of complexity in computing cn,m will depend on the degree of fidelity desired and
the information that is available (or can be estimated). The simplest approach is to assume the
ray paths connecting the transmitter to the target/scene and the target/scene back to the receiver
are straight-lines. This, of course, is consistent only for an environment propagation model with
a constant sound speed. This assumption will not generally be satisfied for longer ranges or shal-
low grazing angles. Vertical stratification in the sound-speed profile will lead to ray refraction. In
addition, ray interactions with the surface and bottom result in multipath arrivals which can lead
to ghosting effects. Phase-coherent processing schemes must, in general, account for platform un-
certainties or perturbation of environmental propagation parameters that alters the acoustic phase
of the sonar echo via an appropriate processing model. Failure to do so leads to image degradation
(e.g., reduced SNR in image formation, target mis-location, reduced cross-range resolution, larger
side-lobes levels - which is an especially large problem for high-clutter conditions) and blurring.
All of these factors will compromise image interpretation. The experiment protocol for BOSS par-
tially mitigates some of these issues, but they will become increasingly significant with increasing
range.

3.3.3 Approximate near–field focusing

The focusing construction in eq. (106) assumes prior knowledge of the seafloor properties as
embodied in the weighting coefficient cm,n. Of course, in practice, the reference model used to
compute cm,n will be a simplistic approximation to the real medium since typically only limited
information will be available. Perhaps the simplest approximation to cm,n is to account for spher-
ical spreading and to ignore all other effects. Assuming then a homogeneous medium, spherical
spreading occurs along the straight-line propagation paths connecting the active source to the de-
sired scattering point, and the scattering point back to the receiver array element. In this case, cn,m
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is written as
cn,m(xF ,xT

m,xR
m,n) = R(xT

m,xF )×R(xF ,xR
m,n) (107)

in which

R(xT
m,xF ) ≡ path length from the transmitter to xF , (108)

R(xF ,xR
m,n) ≡ path length from xF to the nth receiver (109)

for ping m. From equation (106), the scattering amplitude becomes

AM(xF ,m2) ∼=
∣∣∣∣∣

1

NM

N∑
n=1

m2∑
m=m2−M+1

sn,m(tn,m,F )R(xT
m,xF )R(xF ,xR

m,n)

∣∣∣∣∣ . (110)

The scattering amplitudes computed in this way can then be further processed to yield various
image constructs as we now discuss.

3.3.4 Image construction

Image formation from the scattering amplitude matrices AM(xF ,m2) may be approached in a
number of ways. In our first construct we compute a multi-aspect image B(xF ) by saving for
each desired focal point xF the maximum scattering amplitude value A(xF ,mi) drawn from a
sequence of Q overlapping scattering amplitude matrices such that mi ∈ {m2 − Q + 1, . . . ,m2}.
In other words, the processing from the focusing operation will have generated scattering amplitude
intensities for a sequence of 3D volume samples, and each of these volume samples contain partial
overlaps of co-located sampling points (depending on the processing parameters chosen and the
kinematic trajectory of the sounder). With this choice, the image expression may be written

B(xF ) ≡ max{AM(xF ,m2 −Q + 1), . . . , AM(xF ,m2)} (111)

where the maximum is chosen from one of Q scattering amplitude matrices, and xF is geolocation
of the imaging point. Implicitly, the single final image over the collection of imaging points xF

will be composed from inputs of possibly many matrices, and the contributing matrix may vary
from point to point. However, it is reasonable to expect that there will be small-wavelength spatial
correlations (over xF with respect to the identity of the source matrix. This operation yields a 3D
matrix which may be visualized in various ways (e.g., horizontal or vertical slices, isocontours,
etc.). In addition, this image product may be post-processed to derive various features (e.g., binary
partitions of target/no-target volumes, histograms of scattering intensities within a target scattering
volume, etc.). Alternatively to equation (111), a tomographic image may be obtained as

T (xF ) =

√√√√ 1

M

M∑
m=1

A2(xF ,m) (112)

where the sum is taken for a fixed colocated point xF . Finally, in one more construct, orthogonal
views of the seabed may be computed using Maximum Intensity Projection (MIP) mapping may
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be defined as follows:

Pxy(x, y) = max
zi∈xF

{B(x, y, zi)} for fixed (x,y), (113)

Pxz(x, z) = max
yi∈xF

{B(x, yi, z)} for fixed (x,z), (114)

Pyz(y, z) = max
xi∈xF

{B(xi, y, z)} for fixed (y,z). (115)
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3.4 Adjoint tomography
We have investigated adjoint tomography as a means to estimate poroelastic medium parameters
from BOSS data. The objective is to develop 3D image products for these images, and from these
derive new feature classes similar to those used in the traditional beamformed images but with the
new data. In principle, this could represent a significant augmentation of the standard intensity
derived feature classes.

To enable this program, is necessary to derive the so–called poroelastic finite–frequency sen-
sitivity kernels based upon adjoint methods. This work is reported in [29] and [28], where it is
shown that the adjoint equations are similar to the forward Biot equations. The only difference
involves the choice of the adjoint source. The key point about these kernels is that they quan-
tify the sensitivity of seismic observables to structural parameters, and therefore form the basis
of tomographic inversions. Thus, we have defined a series of new sensitivity kernels attached to
diverse key poroelastic parameters, which can be used to infer potentially valuable information for
discrimination.

Defining the data misfit between an observed and predicted sonar time series as δχ, the sensi-
tivity kernels Kpi

(x) [29, 28] for parameter pi are defined in the following sense:

δχ =

∫ N∑
i=1

δlnpi(x)Kpi
(x)d3x (116)

where the poroelastic parameters pi are enumerated in Table 1.
For example, the kernel for fluid density is given by

Kρ(x) =

∫ T

0

ρ(x)u∗s(x, T − t) · ∂2
t us(x, t). (117)

Kernels for the remaining terms in [29] and [4], and where we also provide a comprehensive pre-
sentation of the adjoint theory, and the basis of the adjoint tomographic process. In the remainder
of this subsection we simply consider a 2D propagation scenario in a poroelastic medium, and we
provide visualization of the various adjoint kernels (such as eq. 117) that enter into into the data
misfit definition in 117.

We consider a simple 2-D poroelastic SEM simulation to generate banana-doughnut kernels
(a common name for the adjoint kernels)4 properties associated with cross-correlation traveltime
measurements. The 2-D model has an aspect ratio of 2:5 in depth versus width, and is homoge-
nous. The source was simulated using a Ricker wavelet source time function. The source-receiver
geometry and a schematic illustration of the P-SV body-wave arrivals are displayed in Fig. 8 to-
gether with the velocity recorded at the receiver. Since we are modeling poroelastic media there
are multiple types of wave modes and wave conversions (at interfaces) that are supported. A subset
of these and the notation for them are enumerated in Table 2

We construct an adjoint source by windowing the PI-S + S-PI arrival recorded at the receiver.
The interaction of the forward field and the adjoint field gives rise to a series of kernels associated

4Banana-doughnut kernels are so-named in the geophysical literature because of their resemblance to bananas.
They indicate the “zone of sensitivity” for a ray i.e., they define the spatial region that define the behavior and properties
of a ray’s characteristics. In a medium with increasing velocity with depth, ray bending occurs, and the ray launched
downward eventually refracts, bends upwards, and returns to a receiver. This ray and the spatial kernel defining it are
what appear to have a banana-like shape for many cases.
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Parameter Description
p1 solid density
p2 fluid density
p3 porosity
p4 tortuosity
p5 solid bulk modulus
p6 fluid bulk modulus
p7 frame bulk modulus
p8 fluid viscosity
p9 frame shear modulus
p10 fast P-wave speed
p11 slow P-wave speed
p12 S-wave speed

Table 1: Poroelastic parameters considered in adjoint sensitivity formulation.

S transverse or shear wave mode
P longitudinal or P-wave mode
PI fast P-wave mode
PII slow P-wave mode
PI-PII Phase due to conversion of fast P-wave mode to slow P-wave mode
S-PII Phase due to conversion of shear mode to slow P-wave mode
PI-S Phase due to conversion of fast P-wave mode to shear mode
PII-PII Phase due to reflection of slow P-wave mode from an interface
S-S Phase due to reflection of a shear mode from an interface
PI-PI Phase due to reflection of fast P-wave mode from an interface
PII-PI Phase due to conversion of slow P-wave mode to fast P-wave mode
PII-S Phase due to conversion of slow P-wave mode to a shear mode
S-PI Phase due to conversion of a shear mode to a fast P-wave mode

Table 2: Mode wave supported in simulation examples including fundamental waves and their
conversions.
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Figure 8: Top panel: Schema of the 2-D model dimensions and source-receiver geometry. The
top surface is a free surface whereas the three remaining edges are absorbing boundaries. We also
draw possible ray paths for the P-SV wavefield, where PI refers to the fast P wave, PII to the slow
P wave and S to the S wave. See Table 2 for nomenclature summary. Bottom panel: Velocity
seismogram (x-component).
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with the PI-S + S-PI arrival. An example subset of kernels are displayed in Fig. 9. Similarly, we
construct an adjoint source by windowing the SS arrival recorded at the receiver. The interaction
of the forward field and the adjoint field gives rise to a series of kernels associated with the SS
arrival. These and other kernels are derived and displayed in [29] and [4].

1

0

-1

1

0

-1

1

0

-1

Shear modulus kernel

Bulk Modulus kernel

Biot Parameter C kernel

Figure 9: Plot of the density-normalized P-SVPIS+SPI banana-doughnut kernels for selected poroe-
lastic quantities. The vertical and horizontal axes have the same arbitrary length units of Fig. 8, and
refer the same length spans as depicted in that figure. (top) - shear modulus kernel, (middle) - Bulk
modulus, (bottom) - Biot coefficient C [29, 4]. See [29] and [4] for details of kernel construction
and for explicit kernels for each of the quantities in Table 1.
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3.5 Bayesian approach for BOSS classification analysis (Relevance Vector
Machine)

A key objective of this effort has been to use BOSS data collections and high fidelity simulations
of BOSS data to develop an effective classification and detection algorithm for buried underwater
munitions. The classifier can have several designs depending on the mission objective, and on
the available data for training the classifier. The classifier should admit feature vector inputs that
can readily be extracted from raw waveforms or beamformed data, and the outputs (i.e., class
labels, probability of correct classification) should correspond, to the extent possible, to the needs
of the end–user. An example output is the binary target/clutter decision. Of course, the training
of the algorithm will vary depending on the prior selection of what constitutes a clutter item and
a target item. If greater specificity is required e.g., bomb, artillery shell or the corresponding sub-
varieties of these target items, then the output dimensionality of the classifier algorithm increases
accordingly, and there is a greater burden on the part of the algorithm designer to collect the correct
descriptors. These comments assume that supervised learning is applied.

The decisive factors for algorithm performance are the choice and number of input features,
the choice and number of output classes, the quality, diversity and size of the available training
exemplars, and the algorithm design itself. An additional key factor is the ‘distance’, in multi-
dimensional space, between features corresponding to the output classes. This reflects the intrinsic
sensitivity of the collected data to the varying target and clutter items. The combination of these
factors define the key performance metrics of the classification system (characterized, for example,
by a receiver operator characteristic (ROC)). A key requirement is good generalization of the
classifier algorithm i.e., the algorithm performance as applied to data inputs outside of the training
set. These and other issues are discussed in a vast literature, and an excellent exposition can be
found in the text by Bishop [3].

We use in the following the Relevance Vector Machine (RVM) [35, 3] to achieve near-optimal
classification performance with respect to the available inputs. We report in Sec. 4.6 on the nu-
merical results obtained from analysis of the AUV FEST 2008 data, and in the remainder of this
section we describe the salient aspects of the RVM that drove our selection of this technique for
the classification analysis.

In supervised learning we are given a set of examples of input vectors (feature vectors) A =
{xn}N

n=1 derived from the data, along with corresponding values B = {tn}N
n=1 that could be nu-

merical values of an unknown function (for regression), or class labels (e.g., target or clutter, target
type, etc.) for classification. From this ‘training set we wish to learn a model of the dependency of
the values or labels on the feature inputs. The objective is to develop a model with which to make
accurate predictions of the value t for a previously unseen value x. In real-world data, the presence
of noise (in regression) and class overlap (in classification) implies that the principal modelling
challenge is to avoid overfitting of the training set.

Stated probabilistically, we seek to determine a parameterized model for the conditional prob-
ability

P (B|A) = f(A;w) (118)

where f is a parameterized functional form, A is an instance of the input feature vector, B is an
instance of the output label or regression prediction, and w are the parameters to be determined.
More generally, the function form f is not necessarily fixed. For example, one possible form of f is
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a weighted, linear summation over basis functions, each of which may have nonlinear dependency
on the input feature vector. In the case of RVM, there may be a basis function associated with
each input training vector, but the initial assumed functional form may be highly sub-optimal. An
informed training process would decide which basis functions to retain, and which to delete. This
is an estimation problem. We may take the variable w to denote a vector of all the ‘adjustable’
parameters in the model, and its dimension will depend on the optimal form of f . In the most
general sense, the optimization problem is over the space of permissable functions f , and the space
of parameters w associated with each f . For the case of the linear sum representation, non-zero
values of wi indicate which basis functions are retained.

Following a conventional route, given a setD of N examples of our variables,D = {An; Bn}N
n=1,

an approach is to maximize an objective function that characterizes the accuracy of the model for
D with respect to (f,w). The output for a given A, is a prediction of B by evaluating f(A; w)
with parameters w. The form f and the values w are discovered during the ‘training’ phase, and
the predictions using previously unseen samples are made during the ‘test’ phase.

Of course, if our model f is made too complex i.e., there are too many basis terms in f and
the corresponding dimension of w is too large, then the model is at risk of being over-specialized
with respect to the observed data D used for training. This yields the classic problem of ‘fitting the
noise’ rather than discovering the true underlying distribution P (B|A). We have adopted the RVM
for our approach since it presents a principled Bayesian inference paradigm in which the posterior
distribution for w is economically determined. A given functional form for f is initially specified,
and which is likely too complex for good generalization properties. However, by the Bayesian
approach, the distribution for w is discovered, and small values for individual components of w
reduce the complexity of f by suppressing the influence of the associated terms i.e., effectively
zeroing them out. This process begins by specifying a ‘prior’ distribution p(w) on w before we
observe the data. The Bayesian approach exemplifies ‘Occam’s Razor’ which is commonly used in
geophysical inverse problems. It automatically ‘integrates out’ all irrelevant variables since there
is an automatic preference for simple models that sufficiently explain the data. This feature avoids
the need to develop cross-validation procedures.

Since the theory of RVM is described in great detail in [35] and [3], we do not reproduce that
exposition here. However, we do provide the minimal background needed to understand the basic
numerical outputs of the BOSS classification results and diagnostics presented in the following
sections.

The model we seek defines a conditional distribution for an output variable (which could be a
continuous variable in the case of regression, or a discrete label in the case of classification). We
denote the output variable as t and the input vector as x, and which takes the form

p(t|x,w, β) = N (t|y(x), β−1) (119)

where β is the inverse noise variance, and the mean is given as the linear model

y(x;w) =
M∑
i=1

wiψi(x) = wT Φ(x) (120)

with fixed, nonlinear basis functions ψi, which will typically include a constant term to correct for
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bias. A specialization of the form in eq. 120 is given by

yj(x,w) =
N∑

n=1

wnK
(j)(x,xn) + w0 (121)

where K is a kernel function (e.g., Gaussian, Cauchy, polynomial, etc.) effectively defining one
basis function for each example in the training set, and w0 is the bias term corresponding to a
constant basis function. In the case of our application to BOSS, an instance of an input training
vector xn for the algorithm would correspond to valuations of a subset of the 50 possible features
listed in Table 7.

Suppose we are given a set of N observations of the input vector x, which we denote collec-
tively by the data matrix X whose nth row is xT

n with 1 ≤ n ≤ N . The corresponding target values
are given by t = (t1, . . . , tN)T . The likelihood function is given by

p(t|X,w, β) =
N∏

n=1

p(tn|xn,w, β−1) (122)

The key feature of the RVM is that it utilizes a prior distribution over the parameter vector w, and
a separate hyperparameter αi for each of the weight parameter wi is assumed instead of a single
shared hyperparameter. We typically consider a zero–mean Gaussian prior, and thus, the weight
prior takes the form

p(w|α) =
M∏
i=1

N (wi|0, α−1
i ) (123)

where αi represents the precision of the corresponding parameter wi, and α = (α1, . . . , αM)T .
In the RVM, when the evidence is maximized with respect to these hyperparameters, a significant
number of them go to infinity, and the corresponding weight parameters have posterior distributions
with means and variances that are concentrated at zero. The basis functions associated with these
parameters therefore play no role in the predictions made by the model and are effectively pruned
out, resulting in a sparse model. In the case of models of the form in eq. 120, the inputs xn

corresponding to the remaining non-zero weights are called relevance vectors.
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4 Results and Discussion
In this section we discuss the specific experiments that were performed along with results of the
data analysis. The principal thrusts areas that we discuss include: (i) numerical simulations using
the SEM (Sec. 4.1), (ii) numerical simulations of BOSS data using both the SEM and T-matrix
methods (Sec. 4.2), feature analysis (Secs. 4.4 and 4.5) of the BOSS data summarized in Sec. 4.3,
and the detailed classification results (Sec. 4.6). The classification analysis focused on the AUV
FEST 2008 data since this data set was the largest available, and since it also contained the most
complete list of separately labeled target and clutter items.

4.1 Numerical simulations using the SEM method
Extensive numerical simulations using the SEM developed under this program have been published
[27, 29, 4] and will not be repeated here. However, it is worth noting that the results reveal the rich
phenomenology of the sonar response induced by poroelastic properties of the sediment medium.
Also, the numerical results were validated by comparison to analytical results for benchmark prob-
lems.

4.2 Numerical simulation of BOSS data
We have pursued numerical simulations of BOSS waveforms and BOSS beamformed image prod-
ucts using two distinct methods, namely, the Spectral Element Method (SEM) and the T–matrix
method (sec. 4.2.1 below). The theory for the latter method was presented in Sec. 3.2.1 and the
poroelastic SEM theory was published as [27].

4.2.1 Numerical simulations using the T–matrix method

Simulations were performed for a source–receiver geometry consistent with that of the BOSS
platform actually used in several of the AUV FEST collections. The geometry used is shown in
Fig. 10.

As described in Sec. 3.2.1, the T-matrix method may be used to synthesize the scattered field
due to a single scatterer, interactions between multiple scatterers and interactions between the
single or multiple scatterers and the boundary interfaces of a layered medium. The physics of
the scattering process are encoded by the T–matrix coefficients Tnn′ . The latter are fundamental
inputs to the approach, and must be derived by other means e.g., analytical solution, numerical
solution or by inversion from real data (as described, for example, in Sec. 3.2.11). We have im-
plemented the T–matrix coefficients for spherical elastic shells, solid elastic spheres and acoustic
(fluid) spheres using the analytical results described in [10]. The T–matrix coefficients define scat-
tering amplitudes and their frequency–dependence implicity define the resonance spectrum of a
particular target. The spectrum can provide a ‘fingerprint’ for target types. Further, for aspherical
targets, modes will be excited differentially depending on incident azimuth and elevation, and this
characteristic variation can also serve as an identifying characteristic. Figure 11 is an example res-
onance spectrum for a thin–shell spherical target. In this the sphere radius is 50 cm, and the shell
thickness is 10 cm. The modal vibration shapes are described by spherical harmonic basis func-
tions Y m

l (θ, φ). These vary with degree l and are independent of m due to the spherical symmetry.
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Source

20 Receivers per wing

235 mm from centerline 
to first receiver

721 mm from receiver 
line to source

51 mm between receivers

Source is 37 mm below wings

Source and receivers 
are modeled as isotropic

Figure 10: This figure shows the source receiver geometry used in the simulation study in which
there are 20 receivers on each wing of the indicated AUV with 51 mm spacing, a spherical source
displaced 721 mm from the centerline of the receivers in the long dimension of the AUV, and for
which the first receiver on each wing is 235 mm from the long–axis centerline of the AUV. This
configuration corresponds to the actual experiment geometry used by BOSS in the more recent
AUV FEST data collects.

Shown are the coefficients as a function of frequency for harmonic degrees 0 ≤ l ≤ 4 where l = 0
is the fundamental mode. Since this is a purely spherical ‘breathing’ mode it is also known as the
s mode.

The time series for a thin–shell target sphere displaced 5 m along the center line from the source
position of the BOSS AUV geometry is shown in Fig. 12, and illustrates the ringing phenomenon
due to the resonant nature of the spherical shell target.

In contrast to the calculation for the target in Fig. 11, Fig. 13 shows an example of a thick–shell
resonant spectrum. In this case the target is also smaller in dimension so that the lowest frequency
modes have higher frequencies than in the thin–shell example (since the two–way travel time or
round–trip circumferential travel time is faster).

To illustrate the character of time series for the case of multiple scatterers in the medium,
we show in Fig. 14 the time series resulting due to 13 randomly distributed solid and thin–shell
spheres. In addition, all multiple interactions between the spheres are included. In this case direct
and interfering arrivals are observed, and the various time delays observed in the wavetrain corre-
spond to the relative source/receiver and target geometries. A homogenous medium was assumed
and the sound speed was taken as 1500 m/s.

In Fig. 15 we apply the beamform processing described in Sec. 3.3 to a set of 40 synthetic time
series corresponding to the 40 receivers shown in Fig. 10. Each of these series were similar to
the synthetic phase history shown in Fig. 12. In this calculation only a single source position was
used5. In the image we observed that the intensity is peaked at the true target location. However,
we also observe a hyperbolic ‘smile’, and this shows the ambiguity in the target location as a
consequence of the restricted experiment aperture. By using additional source positions, we would

5In the real data examples in this report sources were used typically over a 10 m length with a 10 cm ping interval
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Figure 11: Resonant spectrum for spherical harmonic degrees 0 ≤ l ≤ 4 for a thin elastic spherical
shell with radius R = 50 cm, and thin shell thickness given by ∆R = 10 cm. The resonance spacing
depend on the sphere size, sphere elastic properties, and ∆R/R.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

48 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

Figure 12: Time series for single source position and receiver shown Thin-shell target with radius
r = 25 cm, and shell thickness ∆r = 5 cm. The ringing observed after the first main arrival
corresponds to overtones from the resonant mode spectrum, similar to those seen in Fig. 11. A
Fourier analysis of this time series would reveal the spectrum, and provide features for use in
classification.

Figure 13: Thicker shell (left) has radius R = 12 cm, and shell thickness ∆R = 7 cm, while the
thinner shell (right) has values R = 12 cm, and shell thickness ∆R = 6 cm. Detailed spectra provide
features for discrimination
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Figure 14: Synthesized Time Series for 13 Randomly Distributed Solid and Thin-shell Spheres.
All possible multiple interactions are accounted for in this simulation.

discover that returns from the true target location constructively interfere while returns from ‘false’
positions do not. Hence, the collective effect is to suppress the ‘smile’ and to enhances the true
point scattering location.

4.2.2 Numerical simulations using the spectral element method

We show in Fig. 16 an application of the SEM modeling capability to simulate the scattering
response for a buried target for a data experiment that mimics the collection style of the BOSS
system. We designed three models to evaluate the signature of a purely elastic buried object (yellow
rectangle in the figure) in three types of environments:

• (1) Model 1: acoustic layer on top of a poroelastic medium with a porosity gradient and no
viscous damping.

• (2) Model 2: acoustic layer on top of a poroelastic medium with a porosity gradient and
viscous damping (with fluid viscosity ηf = 10−4 Pas, and isotropic permeability k = 10−11

m2).

• (3) Model 3: acoustic layer on top of an elastic medium.

Figure 16 shows differential acoustic/seismic waveforms due to the insonification for each of the
bottom environments. The differential calculation is taken between waveforms synthesized with
and without the buried target, and they therefore provide a direct signature of the target. The results
show significant differences in the response depending on the environment. In further downstream
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Figure 15: This figure shows the beamformed image for scattering due to a single, thin-shell
spherical target, a single source position, and for all 40 receivers shown in Fig. 10. The input time
series consists of a center frequency of 8000 Hz, and the source signal has 12,000 Hz bandwidth.
The result shows that the scattering intensity is peaked in the true location of the target. However, in
constructing this beamformed image, only one source position was used. This fact in combination
with the finite bandwidth of the source location is the origin of the smile-like spread of the intensity.
The use of additional source positions (as, in fact, is commonly done with BOSS deployments)
would yield sharper focus since all of these contributions are coherently added, and volumetric
regions containing no scatterers will tend to have deconstructive interference from the wavefields
summed over the sources and the receivers. If the spatial coverage is skewed or non-symmetric,
there will tend to be some geometric distortion. However, even in the case of perfect and complete
spatial coverage, the scattering location will tend to be a “ball” rather than a point due to the
finite bandwidth. Thus, in practice, one might use 100 source positions in the image construction,
and each wavefield recording is acquired as the BOSS platform moves at speed 2 m/s and with a
source pulse repetition frequency (PRF) of 20 Hz. In this way, beamforming over multiple source
positions mitigates against the scattering location ambiguity.
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processing, waveform feature descriptors of the response may be derived as a function of frequency
(e.g., acoustic color), target type and aspect angle, and others. Of course, these waveforms may be
processed into 2D and 3D image products from which additional features may also be extracted.
The differential acoustic/seismic traces for Models 1 (top panel) and 2 (middle panel) illustrate
the impact of viscous damping on the slow compressional waves, which are clearly suppressed
in Model 2. The signature of the object in differential seismograms for elastic Model 3 (bottom
panel) is noticeably different from that in the poroelastic models.

The acoustic/elastic target properties were taken as follows: density – 4000 kg/m3, bulk mod-
ulus – 63.6 GPa, shear modulus – 8 GPa, P-wave speed – 4309 m/s, and S wave speed – 1414 m/s.
We uses a Ricker source time function with a dominant frequency of 5 kHz. The dimensions of the
simulation are 10 m × 8 m, the source (cross) is located in the acoustic domain at xs = (2.5, 4.0),
and the 20 receivers (circles) are placed near the bottom of this domain in a line array with receiver
elements evenly located between xr1 = (4.0, 3.5) and xr20 = (8.0, 3.5). All the edges in the SEM
simulation are absorbing boundaries. We can observe the direct P (a) and the reflected P (b) waves
in the acoustic domain, the transmitted fast P (c), the P-to-S converted (d), and the fast P-to-slow
P converted (e) waves in the poroelastic domain, plus waves reflected by the elastic object (f).
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Figure 16: Simulation of BOSS-like experiment data for a buried metal target (yellow rectangle)
in three different sediment layers. The source is indicated by the yellow cross, and the receiver
array is indicated by the yellow circles.
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Figure 17: This figure is one of numerous benchmarks we have devised to validate the spectral
element method theoretical formulation and numerical implementation. Validation is achieved
by comparison to an available analytical solution. This simulation of wave propagation is for a
model consisting of two homogeneous poroelastic layers with continuous bulk and shear modulii
and discontinuous porosity, as tabulated in the upper right of the figure. The source (cross) is
located at the cross and the two receivers are indicated by the circles. The top is a free surface
and the remaining three edges are absorbing boundaries. Upper left: Snapshot of the vertical-
component displacement at t = 0.9 s. The direct fast P (a), the reflected fast P (b), the reflected
fast P-to-S and the fast P-to-slow P converted (c) waves (which overlap because they have similar
wave speeds) can be observed in the upper layer, together with the direct slow P (d), the reflected
slow P (e), the reflected slow P-to-S converted (f), and the reflected slow P-to-fast P converted (g)
waves. We also observe the reflected fast P wave due to the free surface (h). In the lower layer,
the transmitted fast P (i), fast P-to-S and fast P-to-slow P converted (j) waves (which again overlap
because they have similar wave speeds) can clearly be identified, together with the transmitted
slow P and slow P-to-S converted (k) and slow P-to-fast P converted (l) waves. There are some
weak spurious reflections from the absorbing boundary at x = 0. Lower left and lower right:
Vertical-component velocity seismograms at receivers 1 and 2 (Spectral Element Simulation: solid
black line, analytical solution: dashed red line). We use domain composition to accommodate the
first-order discontinuity in porosity.
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An example of BOSS phase histories from AUV FEST 2007 that we are currently modeling
is shown in Fig. 18. Modeling of such data requires knowledge of the source strength, receiver
response to a unit source as a function of frequency (i.e., transfer function), pulse repetition fre-
quency, precise source-receiver geometry, UUV kinematics, UUV pose with respect to the envi-
ronment, and knowledge of the environment itself including sediment background model as well as
the target/clutter field. These data have been gathered to support the simulations. The beamformed

Figure 18: The phase histories (without range compression) for a single channel of the 40-channel
BOSS array as the platform tracks over a partially buried, cylindrical target. This data was ac-
quired at AUV FEST 2007 and is one several data samples being used to validate the high-fidelity
simulation method developed under this effort.

image for the target in this data snippet is shown in Fig. 19. The modeling objective is to match
the waveforms and/or the beamformed image products.

Our initial BOSS data modeling efforts are for cylindrical targets because these targets rep-
resent a common ordnance class. Because of the low frequencies required to insonify deep into
the sediment, a SAS approach designed to detect buried targets will necessarily be low resolu-
tion, typically 10-20 cm. Hence, the measurable differences between the various bomb-shaped and
torpedo-shaped targets when fully buried are minimal. A classifier robust enough to operate against
buried targets in multiple environmental and clutter conditions will find it difficult to distinguish
the specific cylindrical target type in all but the most pristine of conditions. Thus, examining the
features needed to differentiate a cylindrical target from common environmental clutter is sufficient
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Figure 19: Various views of BOSS beamformed imagery for a data cube containing a target scatter-
ing response from the AUV FEST 2007 collection. Upper left: Top view of a target object shown
as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a
target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object
showing the MIP Pxz(x, z) (see eq. 115).
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to classify any ordnance of similar length and composition.
In the following we present results of a 3D simulation performed using the simulation package

SPECFEM3D developed under this program for an elastic sediment layer. The schematic design
of the model geometry is displayed in Figs. 20 – 22. The model dimensions are 16×2.5×6 m.
We use a source/receivers geometry reflecting the UUV and BOSS sensor geometry, and that was
shown in (Fig. 10). We model a source waveform close to that secured by our AST partner, as a
chirp signal sweeping linearly from 2 kHz to 20 kHz (Fig. 23).

Figure 20: The model dimensions for simulation are 16×2.5×6 m. This figure shows a 3-D view
of the model with compressional wave speed distribution.

Figure 21: Side view of the model, where the target in red can be seen.

In Fig. 24, the time series at one receiver over 43 pings are displayed. The background signal
has been eliminated, and thus, we only see the signature of the buried object.
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Figure 22: Top view of the model showing two different positions of source-receivers vehicle.
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Figure 23: Source waveform represented as a chirp signal sweeping linearly from 2 kHz to 20 kHz.
This figures shows the comparison between the actual BOSS waveform for the data (labeled AST),
and our simple model for this signal.
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Figure 24: Time series at one receiver over 43 pings. The BOSS platform moves along the target.
The background signal has been eliminated. The buried object signature is the only visible signal.
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Figure 25 shows an example of the BOSS beamform processor applied to SEM–generated
synthetic traces over the 40 receivers in the model and for a sequence of 43 pings as the BOSS
platform moves over a linear trajectory at 2 m/s.

Figure 25: SAS Beamforming realized by Kent Harbaugh from Applied Signal Technology, Inc.
using our 3-D numerical results: this shows a data slice parallel with the wing.
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4.3 Buried Object Scanning Sonar (BOSS) data
We present a general overview of the BOSS data in Sec. 4.3.1 and a summary of the specific
collections in Secs. 4.3.2 - 4.3.5.

4.3.1 BOSS data collections

We have acquired from Florida Atlantic University sonar collected in the BOSS6 experiments
for our initial data analysis. The BOSS collection set was chosen as it fairly extensive and the
sites contain a number of emplaced UXO-like targets. In addition, the site-properties and sensor
deployments are relevant to the shallow water conditions of interest including sand and mud media
and shallow water depths.

All of the data presented in what follows was collected in St. Andrew’s Bay (SAB) near
Panama City, Florida by Florida Atlantic University (FAU). The data collections were over two
different target fields – one at a ‘sand site’ just inside SAB, south of Panama City, and the other at
a ‘mud site’ in the northern part of SAB, directly West of the airport. At these sites the unmanned
underwater vehicle (UUV) was running at constant-depth, and the seabed was slightly sloping.
These target fields were long and narrow, and contained a variety of target shapes – some inert
mine shapes and some other clutter. For each site the collections were run repeatedly parallel to
the length of the field, with sequential small offsets from the centerline on each run. Thus, this
collection plan yielded many looks at the same targets from slightly different aspects.

The receiver array element were on the underside of ‘wings’ on either side of the UUV and
the source was directly under the UUV body. The projected acoustic source signal is an FM chirp
sweeping 2 kHz to 20 kHz. Since none of the targets were ‘deeply’ buried, the lower end of this
spectrum was not necessary for sufficient sediment penetration. In fact, in our processing7 it was
found that the image appearance was improved when the lower frequencies were suppressed. Thus,
all the images shown below were generated with using a bandwidth of 10-18 kHz.

The four key BOSS data collections available for analysis are (a) the 2004 Disk BOSS Trial,
(b) the 2006 BMH Sea Trials, (c) the AUV FEST 2007 BMH Sea Trial and (d) the AUV FEST
2008 Trial. These are described, respectively, in Secs. 4.3.2 – 4.3.5.

We have processed (beamformed imagery available for the 2006, 2007 and 2008 AUV FEST
data collections. In addition, we have derived feature sets for target/clutter items from each set of
imagery. In terms of the classification analysis presented in the later sections of this report, we
consider only the 2008 data. Results for 2006 and 2007 data sets will be delivered at a later time.

4.3.2 2004 Disk BOSS Trial

The 2004 collection was performed for an array of receivers arranged in a disk geometry. Although
this data is available, it was acquired with an earlier version of the BOSS system, and we therefore
find it less suitable than the three collections described below, and therefore, we do not pursue it
further.

6See http://www.oe.fau.edu/CHIRP/boss.html
7The processing was performed by Applied Signal Technology using an executable provided to us by FAU.
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4.3.3 2006 BMH Sea Trials

The 2006 collections were performed for a UUV platform with a wing geometry, and in which 20
receivers were arranged on each of the wings. The site conditions are sands and muds, and the
burial depths range from proud targets to buried a few meters deep.

The 2006 data collection was performed by Florida Atlantic University (FAU) in St. Andrew’s
Bay (SAB) near Panama City. The collections were over two different target fields – one at a ‘sand
site’ just inside SAB, south of Panama City, and the other at a ‘mud site’ in the northern part of
SAB, directly West of the airport.
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S03 5.5' Bomb-Shaped Target (11" OD)
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(with 80 A-m2 Bar Magnet)

S07 35” 203mm Artillery Shell

S08 14" Stainless Steel Sphere

(with 80 A-m2 Bar Magnet)

S09 2' Iron Cylinder (6" OD)

S10 NE 6' Bomb-Shaped Marker (18" OD)

A1 96” Concrete Pipe (18” OD)

A2 72” Concrete Pipe (18” OD)

A3 72” Concrete Pipe (18” OD)

A4 72” Concrete Pipe (18” OD)

A5 61” Bomb-Shaped Target 

A6 72” Bomb-Shaped Target

A7 Oil Drum

A8 Mine Anchor

A1 A2

A3

A4

A5 A6 A7 A8

S02

S03

S04

S07

S09

S10

S01

S05
S06

S08

3007.90

3007.91

3007.92

3007.93

3007.94

3007.95

3007.96

3007.97

3007.98

3007.99

8541.738541.748541.758541.768541.778541.788541.798541.808541.818541.82

Longitude

L
a
ti

tu
d

e

Buried Targets

Proud Targets

Figure 26: St. Andrew Bay 10-m water depth sand site data collection from 2006.
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Figure 27: St. Andrew Bay 10-m water depth mud site data collection from 2006. Buried targets
are indicated by the red–filled triangles.

At these sites the UUV hosting the BOSS system was running at constant-depth, and the seabed
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was slightly sloping. These target fields were long and narrow, and contained a variety of target
shapes – some inert mine shapes and some other clutter. For each site the collections were run
repeatedly parallel to the length of the field, with sequential small offsets from the centerline on
each run. Thus, this collection plan yielded many looks at the same targets from slightly different
aspects. Figure 26 shows the geographic distribution at the sand site for many of the labeled targets
(both proud and buried) and known clutter objects in Table 3. Figure 27 shows the clutter object
distribution at the mud site. The identity of most of these is indicated in the table.

Internal Label Index Target/Clutter Instances Description
S1, S10 0 clutter 4 End marker
S3 1 target 4 5.5ft-long bomb
S4 2 target 7 6ft-long cylinder

3 target 7 NSWC target
S5 4 target 2 5ft cylinder
S6, S8 101 clutter 25 14in-diameter sphere
S7 102 clutter 4 Bullet-shape object
S9 103 clutter 2 2ft-long cylinder

104 clutter 1 100mm artillery shell
S2 105 clutter 1 81mm artillery shell

106 clutter 4 Sand-filled scuba tank
107 clutter 5 Cement-filled metal tube
108 clutter 0 Sand-filled pipe

M1 111 clutter Unaltered pipe
M2 112 clutter Cylinder A 2in lip
M3 113 clutter Cylinder B 2in indent
M4 114 clutter Cylinder C flat finish
M5 115 clutter Cylinder D 9in hem
M6 116 clutter Cylinder E lip 30 deg
M7, Y19, Y26 117 clutter 2 Oil drum
M8, Y21, Y28 118 clutter Clump
Y20, Y27 119 clutter Tire
Y22 120 clutter Magnet

121 clutter Large Lim cylinder
122 clutter Medium Lim cylinder
123 clutter Small Lim cylinder
200 clutter 694 Unidentified clutter object

Table 3: Summary of target and clutter objects of BOSS data taken 2004-2007. These provide
sufficient data to test algorithms for target versus clutter discrimination and for target classification.

4.3.4 AUV FEST 2007 BMH Sea Trial

The BOSS 2007 AUV-Fess data collection is very similar to the 2006 collection described above,
but with improved control and knowledge of targets, and so we are using targets from this collection
validation of our simulation method. In addition, data snippets from this collection are being used
to validate the 3D SEM simulation method that we have developed. The available target and clutter
distribution for the 2007 collection is shown in Fig. 28.
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Figure 28: Yankee test site target locations from the 2007 collection.

The receiver array element were on the underside of ‘wings’ on either side of the UUV and
the source was directly under the UUV body. The projected acoustic source signal is an FM chirp
sweeping 2 kHz to 20 kHz. Since none of the targets were ‘deeply’ buried, the lower end of this
spectrum was not necessary for sufficient sediment penetration. In fact, in our processing it was
found that the image appearance was improved when the lower frequencies were suppressed. Thus,
for this data set images are generated with using a bandwidth of 10 kHz to 18 kHz.

4.3.5 AUV FEST 2008 Trial

The AUV FEST 2008 site was located off the coast of Newport, RI near the Naval Undersea
Warfare Center (NUWC), and the collection was conducted in May, 2008. The AUV (Autonomous
Undersea Vehicles) FEST was co-sponsored by NOAA and the Office of Naval Research, and
featured a variety of autonomous vehicle technologies including BOSS. Newport was selected
because Narragansett Bay offers a realistic environment to evaluate the performance of potential
littoral mine countermeasure systems. Also, at the same time it was an ideal location to explore the
seabed for historical shipwrecks. It is worthwhile to consider the phenomenology of these features
in detail for more informed development of classifiers that depend upon them.
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4.4 Summary of target/clutter data descriptors available for classification
analysis

We have developed feature data sets from the 2006, 2007 and 2008 AUV FEST data collections
described above. In each of these, varying levels of detail are available for the target/clutter de-
scriptions, and there are varying instances of targets and clutter for which data were recorded at
each of the sites. With respect to the 2006 data collection, we have a set of 50 features for both
target and clutter items. In this data set there are 17 instances of targets and 10 instances of clutter.
Descriptions of the target/clutter items in this data set are summarized in Table 4. Although we
do have some specificity for some of the targets in this collection, other targets are only named as
such, and are not specifically described since they are classified. These classified targets comprise
the first 10 entries in the cited table. The geographic distribution of targets in this data set was

Row Index Target/clutter label Object Description Data structure name
1 y18 target no label (classified) Targ2006
2 y18 target no label (classified) Targ2006
3 y23 target no label (classified) Targ2006
4 y24 target no label (classified) Targ2006
5 y23 target no label (classified) Targ2006
6 y25 target no label (classified) Targ2006
7 y23 target no label (classified) Targ2006
8 y25 target no label (classified) Targ2006
9 y15 target no label (classified) Targ2006
10 y23 target no label (classified) Targ2006
11 s4 target 6ft–long cylinder Targ2006
12 s5 target 5ft–long cylinder Targ2006
13 s5 target 5ft–long cylinder Targ2006
14 s4 target 6ft–long cylinder Targ2006
15 s4 target 6ft–long cylinder Targ2006
16 s4 target 6ft–long cylinder Targ2006
17 s4 target 6ft–long cylinder Targ2006
1 y19 clutter oil drum Clut2006
2 y19 clutter oil drum Clut2006
3 s3 clutter unknown Clut2006
4 s1 clutter end marker Clut2006
5 s1 clutter end marker Clut2006
6 s1 clutter end marker Clut2006
7 s7 clutter bullet–shape object Clut2006
8 s6 clutter 14in–diameter sphere Clut2006
9 s10 clutter end maker Clut2006
10 s9 clutter 2ft–long cylinder Clut2006

Table 4: Summary of target and clutter objects from AUV Fest 2006 collection for which BOSS
data is available for classifier analysis.

shown in Fig. 27.
The BOSS data from the 2007 AUV FEST collection consists of 29 targets and 49 clutter
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items, as summarized in Table 5 below. There are 50 features that have been extracted for each
item. Unfortunately, only the target/clutter labels are available for each contact. The targets are
geographically distributed as shown in Fig. 28.

Row Index in .mat file Target/clutter Description Data structure
1 target no label (not available) Targ2007
2 target no label (not available) Targ2007
. . . target no label (not available) Targ2007
29 target no label (not available) Targ2006
1 clutter no label (not available) Clut2007
2 clutter no label (not available) Clut2007
49 clutter no label (not available) Clut2007

Table 5: Data for AUV Fest 2007 collection

The 2008 field objects are the same types of objects as those listed Table 4 in the 2006 collec-
tion. However, individual target/clutter labels for each feature vector is not available at this time.
This is because the identity of the target/clutter items is classified. The data itself is not classi-
fied, but it would become classified if labels were attached to any of the detections. Instead, only
the binary target/clutter descriptor is available. In total, 89 target items and 132 clutter items are
included in this data set, as summarized in Table 6 below.

Row Index in .mat file Target/clutter Description Data structure
1 target no label (not available) FeatTarg2008
2 target no label (not available) FeatTarg2008
. . . . . . . . . . . .
89 target no label (not available) FeatTarg2008
1 clutter no label (not available) FeatClut2008
2 clutter no label (not available) FeatClut2008
. . . . . . . . . . . .
132 clutter no label (not available) FeatClut2008

Table 6: Target/clutter data available for the AUV FEST 2008 BOSS collection.
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Feature index Feature class Feature name
1-3 Geometric Geometric center
4-6 Geometric Best-fit ellipsoidal radii: A, B, C
7-9 Geometric Direction of radius vector associated with A
10-12 Geometric Direction of radius vector associated with B
13-15 Geometric Direction of radius vector associated with C
16-18 Geometric Cross-sectional areas: πAB, πAC, πBC
19-21 Geometric Length-to-width ratios: A/C, A/B, B/C
22 Geometric Ellipsoidal volume: πABC
23 Geometric Voxel volume: N∆X∆Y ∆Z
24 Intensity Total energy
25 Intensity Ellipsoidal energy density
26 Intensity Voxel energy density
27 Intensity Voxel energy standard deviation
28 Intensity Voxel energy s.d. normalized by mean
29 Intensity Peak intensity
30-32 Probabilistic 3-bin PDF of relative intensity
33-41 Probabilistic 9-bin PDF of relative intensity
42-50 Probabilistic 9-bin CDF of relative intensity

Table 7: This table describes in summary form the 50 feature classes derived for each 3D beam-
formed target or clutter detection. These features define the available components of an input
feature vector for use with the relevance vector machine classifier. Here PDF and CDF indicate the
probability and cumulative density functions, respectively.

4.5 Feature analysis of BOSS data from AUV FEST 2008
In this section we provide detailed views into the nature of various morphological features derived
from the 3D beamformed intensity images of BOSS data collected for a distribution of targets
and clutter at the AUV FEST 2008 data collection site. The features derived from this data are
summarized in Table 7, and as discussed later, various subsets of these features are used in the
classifier development.

Features may be derived from data inputs in numerous ways including descriptors derived
from raw observed waveforms to morphological or statistical properties derived from 2D and 3D
image products. Image products are typically formed from beamforming, but other images types
are also possible. Tomographic estimates of material attributes obtained, for example, from adjoint
tomography (see Sec. 3.4) can provide a potentially extremely valuable discriminant. Tomographic
maps can be independently derived for such quantities as shear wave speed, fast and slow P-
wave speeds, density, porosity, permeability, and other poroelastic properties. These estimates are
for the sediment medium and any embedded targets, and provide complementary information to
the scattering intensities derived from beamforming. Estimates of the spatial-distributed values
for each of the parameter types may be used to segregate natural clutter from targets, and more
precisely define the target shape and composition. An additional feature class is acoustic color or
spectral properties measured as a function of target/sensor aspect and spectral band.

Desirable attributes for feature inputs include robustness to natural variability, and high dis-
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crimination power for targets versus man-made and natural clutter. An additional issue for feature
identification is not just the class of feature, but tuning parameters used to extract the feature. As
an example, various geometric-based and intensity-based features depend on a threshold operation
applied to volumetric image products. Knowledge of environment-induced contribution to these
features can be used for intelligent threshold selection. The value of the simulations for feature
development is that the propagation effects and data collection parameters that enhance or degrade
the utility of features for classification can be systematically evaluated.

4.5.1 3D beamformed imagery examples from BOSS data collection

The features cited in Table 7 are derived from 3D beamformed image products. Figure 29 shows
an example of this beamformed imagery using projected image intensities for various views (in
2D). Additional example images along with 3D isocontours of scattering intensity are shown in
App. A.2.
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Figure 29: Various views of BOSS beamformed imagery for a data cube containing the scattering
response for a cylinder shaped object from the AUV FEST 2007 collection. Upper left: Top view
of a target object shown as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper
right: Side view of a target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front
view of a target object showing the MIP Pxz(x, z) (see eq. 115).
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4.5.2 Histogram analysis of target/clutter feature distributions for AUV FEST 2008 data

We consider here an empirical example of the feature distributions for the target and clutter items
available for analysis in the AUV FEST 2008 BOSS data set. As described in Sec. 4.4 and Table
6, there are 89 target exemplars and 132 clutter exemplars in this data set. The 50 features from
Table 7 were derived for each of these target/clutter exemplars, and we obtained feature histograms
for each of these. As noted earlier, due to reasons of security classification, only the binary tar-
get/descriptor labels are available for this data set. Therefore, for each feature, we generated two
different feature histograms corresponding to target population and to the clutter population. The
histogram results for the first three features in Table 7 are shown in Fig. 30. Histograms for the
remaining 47 features in the target and clutter populations are shown in App. A.3.

Of course, for a given feature class, if the feature distribution of the target and clutter popu-
lations strongly differ, the feature has the potential to be a strong discriminator input for a classi-
fier algorithm. More commonly, feature distributions for target/clutter items can have significant
overlap. However, the hope is that by combining inputs from multiple feature classes, improved
discrimination can be achieved.
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Figure 30: Distribution histograms for the geometric center x coordinate (top panel), y coordinate
(top panel) and z coordinate (bottom panel) feature types. In each case the target and clutter
features are shown on the left hand and right hand sides, respectively. The features were derived
from 3D beamform products using data acquired by the BOSS platform at the AUV Fest 2008. A
total of 132 clutter items and 89 targets were processed in generating these distributions.
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4.5.3 Feature pair analysis of target/clutter features for AUV FEST 2008 data

An informative method to evaluate the discrimination power of features is by examination of the
2D spatial spread of features for various feature pairs. Of course, for feature vectors of large
dimensionality, it is impossible to examine all possible feature pairs. However, in classifier con-
struction, we usually use a small subset of the available features. For the case of the feature subset
corresponding to features 4, 5, 20, 26, 29, 30 and 32 (see Table 7), we present feature pair plots
for all possible feature pairs (from the AUV FEST 2008 data set). Several example feature pairs
for all available target/clutter instances are shown in Fig. 31. Appendix A.4 shows the feature pair
plots for all of the other cases.

The results in Fig. 31 show good separation for several of the feature classes amongst tar-
get/clutter pairs, but within a fixed feature pairs, there remains significant overlap for many of the
exemplars. Again, by using a sufficient number of features, the hope is that the feature distance
between targets and clutter in the multi-dimensional feature space is sufficient to provide good
discrimination capability.
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Figure 31: Features derived from the targets and clutter in this data set from the BOSS AUV
FEST 2008 collection are indicated by the circles and plus signs, respectively. Scatter plots for
various feature pairs are shown. Upper left: ellipsoid radius A versus ellipsoid radius B. Upper
right: ellipsoid radius A versus ellipsoid length to width ratio A/B. Middle left: ellipsoid radius
A versus the voxel energy density. Middle right: ellipsoid radius A versus the peak intensity.
Lower left: ellipsoid radius A versus the first bin of the 3-bin PDF of the relative intensity. Lower
right: ellipsoid radius A versus the third bin of the 3-bin PDF of the relative intensity.
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4.5.4 Feature triplet analysis of target/clutter features for AUV FEST 2008 data

Complementary to the feature pair analysis presented in Sec. 4.5.3, we consider here feature anal-
ysis for triplets of features. Extending the feature dimensions to higher dimension can clearly be
valuable as the extra dimension(s) can provide improved separability of target/clutter responses.
Of course, there is a limit to this as generalization eventually degrades. It is useful to visualize
feature separation in three dimensions and so consider all possible feature triplets for the subset of
features 4, 5, 20, 26, 29, 30 and 32 (see Table 7). These correspond to the A and B best–fitting
ellipsoid radii, the length to width ratio A/B, the voxel energy density within the best–fitting el-
lipsoid, the peak intensity, and the first and last bins of a 3–bin probability density distribution of
relative intensity values for 3D voxels within the best-fitting ellipsoid.

An informative method to evaluate the discrimination power of features is by examination
of the 2D spatial spread of features for various feature pairs. Of course, for feature vectors of
large dimensionality, it is impossible to examine all possible feature pairs. However, in classifier
construction, we usually use a small subset of the available features. For the case of the feature
subset corresponding to features 4, 5, 20, 26, 29, 30 and 32 (see Table 7), we present feature pair
plots for all possible feature pairs (from the AUV FEST 2008 data set). Several example feature
pairs for all available target/clutter instances are shown in Fig. 32. Appendix A.4 shows the feature
triplet plots for all of the remaining cases with respect to this feature subset.
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Figure 32: 3D scatter plots showing training points and optimal relevance vectors for various feature
triplets. The features were derived from the BOSS AUV FEST 2008 data set. The training vectors cor-
responding to known targets are given by the green circles. In addition, feature triplets circled in red are
determined to be relevance vectors as determined for RVM analysis for the feature subset (4, 5, 20, 26,
29, 30, 32) as described in Sec. 4.6 and the case 1 subset (see Table 8). Upper panel: Feature triplet A,
B (best fit ellipsoid radii) and Length to width ratio A/B. Middle panel: Feature triplet A, B (best fit
ellipsoid radii) and Voxel energy density. Lower panel: Feature triplet A, B (best fit ellipsoid radii) and
peak intensity.
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4.6 Numerical results for BOSS classification analysis
In this section we process the features derived from the AUV Fest 2008 data to obtain target/clutter
classifications. A detailed examination of these features was provided in Sec. 4.5 and the appen-
dices. The Bayesian analysis that we apply to the feature data for development of the classifier
(based on the Relevance Vector Machine [35, 3]) was described in Sec. 3.5.

The sequence of classifier experiments that we performed is summarized in Table 8. Each
experiment corresponds to the selection of a distinct subset of features for construction of the cor-
responding RVM classifier. In total, 20 distinct subsets of features were chosen, and the classifier
results for each of these are shown in Figs. 34 – 53 (as indicated in the table). We also note that
we used the available AUV FEST 2008 data to form both the training and test data sets. Typically,
half of the available input training vectors are chosen to build the classifier, and of these, only a
portion are used to form the relevance vectors that define the final classification model. These sub-
sets of input vectors are randomly chosen, and so the classifier performance will vary for each set
of inputs. Clearly, to obtain a statistical robust means to choose between different sets of features
for the final classifier, there should be numerous realizations of the training inputs. An example of
the corresponding results obtained is shown in Fig. 33 for the case of feature subset (1) (see Table
8). Corresponding statistical outcomes for the remaining 19 feature subsets considered are shown
in App. A.6.

The sub–plots in each of Figs. 34 – 53 have the same interpretation. We note that each result
shown is for a single realization of a random subsampling of the available training vectors. The
upper left of each figure is a stem plot that shows the feature indices used for the classifier devel-
opment. The RVM algorithm iterates over a maximum of 100 iterations. The upper right of each
figure shows the progress of the algorithm for each iteration. The action of the RVM is to obtain
a sparse set of relevance vectors from the clutter and target exemplars. For each case it can be
seen that the starting set contains∼ 115 exemplars. As the iteration proceeds, this set is winnowed
down until the final, optimal set of exemplars is discovered i.e., the relevance vectors. The size of
the set will vary depending on the feature subset used. The middle left of each figure shows the
values of the hyperparameters αi associated with each weight wi of the selected relevance vectors.
The number of αi shown, is the same as final number of basis points in the upper right figure. Re-
call that during the RVM training process, a significant number of the αi are driven to a very large
number (toward infinity) so that the corresponding mean and variance of the associated weight
is centered on zero. Only those training vectors associated with αi that are sufficiently distinct
from infinity are retained, and those become the relevance vectors (see Sec. 3.5) and [35, 3] for
further details). The middle right of each figure shows the receiver operator characteristic (ROC
curve) obtained from the derived RVM classifier as applied to the training set. The lower left of
each figure shows the receiver operator characteristic (ROC curve) obtained from the derived RVM
classifier as applied to the test set (which is the complement of the training set with respect to the
totality of all available data). Finally, the lower right of each figure shows the superposed ROC
curves for both the training and the test sets.

Examination of the results in Figs. 34 – 53 reveals that, as expected, some feature subsets
perform better than others. However, it should be noted that results in the mean (with respect
to an ensemble of training vector sets) as shown in Fig. 33 and in App. A.6 should be used
for identification of the superior feature input set. Each feature subset tested (as listed in Table
8) was chosen by intuition. For a more robust result, an optimizer should be used to discover
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Figure 33: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature
1
2
3
4 • • • • • • • • • • • • • • • • •
5 • • • • • • • • • • • • •
6 • • • • • • •
7
8
9
10
11
12
13
14
15
16 • • •
17 • • •
18 •
19 • • • •
20 • • • • • • • • • • • • • • •
21 • • • • • • •
22 • • • • • • • •
23 • • • • • • • • • •
24 • • • • • • •
25 • • • • • • • •
26 • • • • • • • • • • • • • • • •
27 • • • • • • • • • •
28 • • • • • • •
29 • • • • • • • • • • • • • • • • • • •
30 • • • • • • • • • • • • • • • •
31 • • • • • • • • • • • • • •
32 • • • • • • • • • • • • • • • •
33 • • •
34 • •
35 • •
36 • •
37 • •
38 • •
39 • •
40 • •
41 • •
42 • • • • • • •
43 • • • • • • •
44 • • • • • • •
45 • • • • • • •
46 • • • • • • •
47 • • • • • • •
48 • • • • • • •
49 • • • • • • •
50 • • • • • • •
Figure 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Table 8: Summary of feature subsets used for training relevance vector machine classifiers. From
a given training set the RVM discovers the optimal subset of feature input vectors for use in a
kernel–based classifier design. However, the design of the classifier is dependent on the dimen-
sion of the input feature vector. Use of all possible features (in this case, 50), typically leads to
poor generalization. Therefore, we experimented with different subsets of features, and obtained
the corresponding classifier designs and performance metrics. These subsets, chosen by intuition
rather than an optimizer, are indicated in the columns of the table. Each row index corresponds to
the feature index and is directly linked to the feature descriptors in Table 7. The columns labeled
from 1 to 20 each indicate the feature subset used as as indicated by the bullets, and the bottom
row indicates the Figure number for which the performance metrics of the corresponding classifier
are plotted.
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the optimal subset of features. This could be readily implemented as a wrapper around the core
algorithms already developed and implemented. Essentially, the feature subset selection problem
is a combinatoric optimization problem. However, effective techniques for treating such problems
have already been developed. Of course, we are not restricted to the feature set that was used,
and we speculate that high–performing features can be discovered, and that is the subject of future
research.
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Figure 34: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 1 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 35: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 2 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 36: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 3 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 37: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 4 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 38: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 5 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 39: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 6 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 40: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 7 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 41: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 8 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 42: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 9 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 43: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 10 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 44: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 11 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 45: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 12 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

90 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Feature index

F
ea

tu
re

 u
se

 in
di

ca
to

r
Feature Set

0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

110

Training Iteration

N
um

be
r 

of
 B

as
is

 P
oi

nt
s

Number of Basis Points (Relevance Vectors)

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Basis Point

H
yp

er
pa

ra
m

et
er

 A
lp

ha

Hyperparameters α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Training Set, Features 19:32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Test Set, Features 19:32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Test/Train Sets, Features 19:32

 

 

Test set
Training set

Figure 46: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 13 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 47: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 14 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 48: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 15 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 49: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 16 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 50: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 17 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 51: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 18 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 52: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 19 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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Figure 53: RVM classification results for AUV Fest 2008 BOSS data. Upper left: The RVM was trained
using the indicated subset of the 50 available features (case 20 in Table 8, see also Table 7). Upper right:
Number of relevance vectors chosen from available training vectors per RVM iteration. Middle left: Signif-
icant hyperparameters αi from the final RVM iteration indicating indices of relevance vectors chosen from
training vector set. Middle right: ROC for the training set (half of target/clutter exemplars). Lower left:
ROC for the test set (training set complement). Lower right: ROCs for training and test sets.
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5 Conclusions and Implications for Future Research and Im-
plementation

Our findings, show that buried targets can be detected by low-frequency sonar, and that there is
some discrimination capability provided by use of features derived from 3D beamformed imagery
of such data. However, for economical remediation of underwater munitions, our results show
that their needs to be continued detailed survey sonar-based improvements for buried targets. This
is primarily driven by the facts that (1)targets are hard to detect since sediments attenuate high-
frequency waves, and (2) they are hard to discriminate since high-frequency features e.g., shadows
are lost. This implies that target imagery responses are easily confused with those of clutter and
munitions debris due to incomplete separation of target and clutter features. It will be necessary
to continue to improve phenomenology understanding of munitions and site conditions. Object
responses are strongly affected by factors extrinsic to the object e.g., sediment properties, object
orientation and proximity to sediment interfaces. The compensation of target signatures for the
influence of munitions state and site conditions is one approach to enhance classification value of
existing and new features.

For future research efforts, we suggest that improved classification can be derived by aug-
menting the image-based features used in this study with additional feature classes. In particular,
following the findings from the structural acoustics community, and the T–matrix results presented
here, we recommend the combined use of image-based and resonance-based features. This would
require a method to extract resonance features from the data, and the development of a joint clas-
sifier that uses both the image- and physics-based features. In addition, methods to calibrate out
the effect of the environment need to be developed. A true model-based effort that exploits the res-
onance features can benefit from the precise characterization of such features for real targets and
targets expected in field conditions. A combined approach utilizing carefully controlled labora-
tory data for such information with application to BOSS or other low-frequency sonar data should
provide a step forward in the discrimination problem.

From our findings, and from a survey of other work performed in the underwater munitions
area, we have identified the following technology gaps:

• There is a need for adaptive environment calibration for improved image formation (cor-
rection for time delay and amplitude effects) and for model-based resonant characteristic
estimation (which as shown in the T–matrix development presented here, depends on the
1D background model). Such an approach should be developed to exploit the unique BOSS
source and receiver aperture.

• There is a need for a method to invert for intrinsic resonant fingerprint constructively for
non-spherical targets using all available data.

• There is a need for a classifier combining 3D image and physics features (use model-based
and in-field data training methods).

• There is a lack of high-fidelity models of real-target scattering (especially for high aspect
ratio targets), and usable for adaptive, in-field estimation. Usability depends on both fidelity
and computational feasibility.
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• Effective classifier design will rely on uncertainty analysis for resonance features, and de-
tectability of such features in at-sea conditions (especially aspherical targets).

The features we used for the classification results presented in Sec. 3.5 were described in Sec.
4.5 and summarized in Table 7. The discovery of the optimal subsets of feature types for use
in classification analysis will require additional experimentation, and perhaps the application of
an optimization wrapper around the core classification algorithm. Results for various manually
selected feature subsets were shown in Sec. 3.5. Additional feature classes can also be derived to
improve classification metrics. We speculate that features of interest include T–matrix coefficients
estimated from the data (see e.g., Sec. 3.2.11) and volumetric estimates of material parameters
from adjoint tomography (see e.g., Sec. 3.4).

In summary, the key conclusions and results from the present effort include the following:

1. Buried targets are detectable in the 2D and 3D image products from the BOSS processing
results. This means that despite attenuation in the sandy sediments, there is a strong enough
scattered return for the frequency range of interest. This finding suggests that it is worthwhile
to further characterize and optimize the use of SAS for target detection and classification.

2. We applied the processing sequence described in Sec. 4.3 to generate 2D and 3D image
products for BOSS data collected in AUV FESTs 2006, 2007 and 2008. Examples of the
resulting image products are shown in App. A.7.

3. Classification analysis was applied to AUV FEST 2008 data since this collection had the
most information concerning target/clutter labels for known objects in the test field. The
classification results demonstrated the utility of image-based features for target/clutter dis-
crimination, but there is still room for improvement.

4. The Spectral Element Method was developed for target scattering simulation in poroelastic
media. Much effort was committed to developing this technique. The publications [27,
29, 4] resulting from the effort provide a methodological advance to the community, and
the corresponding code has been made publically available. It is expected that interesting
applications of the code will be found in the future.

5. A feature database from 3D imagery was developed, and other researchers can use this
database for testing new classification algorithms. An interesting feature class is tomo-
graphic estimates of the material parameters in the sediments and objects embedded in the
sediments. Adjoint tomography was proposed for this purpose, and was described in Sec.
3.4.

6. In terms of forward simulation, it is necessary to capture all aspects of the system in addi-
tion to the specific target scattering phenomenology. The former consists of source prop-
erties (location, Chirp waveform, strength, etc.), receiver specification (e.g., geometry of
receiver array, individual receiver response, data acquisition protocol (e.g., kinematics of the
sonar platform, pulse repetition frequency) and environment specification (e.g., water col-
umn depth and sediment properties). These were implemented in both a T–matrix framework
and in the SEM implementation.
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With respect to the Go/No-Go decision point established by the Scientific Advisory Board for
this effort (the ability to extract features for proud and buried targets), this was amply demonstrated
in the classification results for the AUV FEST 2008 data, and in the image processing results shown
in App. A.7. Numerous targets are visible in the swaths (Figs. 155 - 165) while Figs. 166 - 172
show 2D xy-slices for a single target. From these figures it is very clear that various features can
be extracted such as target area regions, intensity values, etc.

Key objectives in this study were to (1) evaluate low frequency sonar for buried target detec-
tion; acquire and process a target-rich data set in a relevant littoral environment to guide our phe-
nomenology understanding; and to recommend high-performance classifier designs, (2) develop
and an SEM simulation method for high fidelity modeling, (3) apply the SEM code to numerous
stochastic realizations of the environment to thoroughly characterize the influence of the environ-
ment on target detectability and classification and (4) develop a database of sonar products for use
in classifier design. We believe we have succeeded in executing objectives (1), (2) and (4). How-
ever, developing the SEM code and theory required more resources and time than we originally
expected. Therefore, there were not enough program resources to carry out the Monte Carlo study,
or to perform a detailed comparison of predictions to real data. However, the essentially exact
correspondence of the code predictions to available analytical results for end-member models en-
courages us as to the essential correctness of the theory and its numerical implementation. There
remains a great deal of interesting and worthwhile work to do regarding the exploitation of the
SEM development for furthering the basic understanding of sonar phenomenology in the littorals.
In implementing objectives (1) and (4), we were fortunate to gain access to BOSS data sets through
Professor Steve Schock at Florida Atlantic University and our AST subcontractor.
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A Supporting Data
This section provides data generated under this effort including 2D views of beamformed imagery
(Sec. A.1), 3D views of the same imagery in Sec. A.2, histogram analysis of feature classes for tar-
gets and clutter in the AUV FEST 2008 data set (Sec. A.3), illustrations of pair-wise target/clutter
separation for various feature pairs (Sec. A.4), illustrative target/clutter separations for feature
triplets (Sec. A.5), statistical examination of ROC performance curves as a function of random
partitions of the available data into training and test sets (Sec. A.6) and examples of processed
BOSS imagery in the form of maximum intensity projections for 2D display and as selected depth
slices (Sec. A.7).
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A.1 Beamformed imagery (2D)
The figures in this section show front, top and side views of the scattering intensities for selected
targets from the AUV 2007 collection. Target names were not provided to the performers due to
evaluation protocols in the conduct of the AUV Fest 2007 collections. The only data available for
public release is the binary designation of target versus clutter. The objects shown here are targets.
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Figure 54: Various views of BOSS beamformed imagery for a data cube containing a target scatter-
ing response from the AUV FEST 2007 collection. Upper left: Top view of a target object shown
as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a
target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object
showing the MIP Pxz(x, z) (see eq. 115).
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Figure 55: Various views of BOSS beamformed imagery for a data cube containing a target scatter-
ing response from the AUV FEST 2007 collection. Upper left: Top view of a target object shown
as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a
target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object
showing the MIP Pxz(x, z) (see eq. 115).
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Figure 56: Various views of BOSS beamformed imagery for a data cube containing a target scatter-
ing response from the AUV FEST 2007 collection. Upper left: Top view of a target object shown
as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a
target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object
showing the MIP Pxz(x, z) (see eq. 115).
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Figure 57: Various views of BOSS beamformed imagery for a data cube containing a target scatter-
ing response from the AUV FEST 2007 collection. Upper left: Top view of a target object shown
as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a
target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object
showing the MIP Pxz(x, z) (see eq. 115).
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Figure 58: Various views of BOSS beamformed imagery for a data cube containing a target scatter-
ing response from the AUV FEST 2007 collection. Upper left: Top view of a target object shown
as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a
target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object
showing the MIP Pxz(x, z) (see eq. 115).

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

110 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

Along Track [m]

C
ro

ss
 T

ra
ck

 [m
]

SnipSAM22_Am000 Top View

 

 

10 20 30 40

−10

0

10

20 0

5000

10000

Along Track [m]
D

ep
th

 [m
]

SnipSAM22_Am000 Side View

 

 

10 20 30 40

−10

0

10

0

5000

10000

Cross Track [m]

D
ep

th
 [m

]

SnipSAM22_Am000 Front View

 

 

2 4 6 8 10

−2

0

2

4

0

5000

10000

Figure 59: Various views of BOSS beamformed imagery for a data cube containing a target scatter-
ing response from the AUV FEST 2007 collection. Upper left: Top view of a target object shown
as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a
target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object
showing the MIP Pxz(x, z) (see eq. 115).
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Figure 60: Various views of BOSS beamformed imagery for a data cube containing a target scatter-
ing response from the AUV FEST 2007 collection. Upper left: Top view of a target object shown
as the maximum intensity projection (MIP) Pxy(x, y) (see eq. 114). Upper right: Side view of a
target object showing the MIP Pyz(y, z) (see eq. 115). Lower left: Front view of a target object
showing the MIP Pxz(x, z) (see eq. 115).
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A.2 Beamformed imagery (3D)
The figures in this section 3D isocontours of scattering intensities for selected targets from the AUV
2007 collection. Target names were not provided to the performers due to evaluation protocols in
the conduct of the AUV Fest 2007 collections. The only data available for public release is the
binary designation of target versus clutter. The objects shown here are targets.

Figure 61: 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the maximum
intensity value of the data cube, corresponding to the target in Fig. 54.
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Figure 62: 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the maximum
intensity value of the data cube, corresponding to the target in Fig. 55.

Figure 63: 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the maximum
intensity value of the data cube, corresponding to the target in Fig. 56.
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Figure 64: 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the maximum
intensity value of the data cube, corresponding to the target in Fig. 57.

Figure 65: 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the maximum
intensity value of the data cube, corresponding to the target in Fig. 58.
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Figure 66: 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the maximum
intensity value of the data cube, corresponding to the target in Fig. 59.

Figure 67: 3D isocontour of the subvolume for an iso–intensity value given by 1/2 of the maximum
intensity value of the data cube, corresponding to the target in Fig. 60.
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A.3 Histogram analysis of target/clutter feature distributions for AUV Fest
2008 data
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Figure 68: For this feature type we fit a volume associated with a clutter or target item to the
best fitting ellipsoid characterized by the three principal radii A (top panel), B (middle panel) and
C (bottom panel). In each case the target and clutter features are shown on the left hand and
right hand sides, respectively. The features were derived from 3D beamform products using data
acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89 targets
were processed in generating these distributions.
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Figure 69: This feature type is given by the unit vector ûA describing the direction of the principal
radius A of the best fitting ellipsoid volume. The x–component, y–component and z–components
are shown, respectively, in the top, middle and bottom panels. In each case the target and clutter
features are shown on the left hand and right hand sides, respectively. The features were derived
from 3D beamform products using data acquired by the BOSS platform at the AUV Fest 2008. A
total of 132 clutter items and 89 targets were processed in generating these distributions.
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Figure 70: This feature type is given by the unit vector ûB describing the direction of the principal
radius B of the best fitting ellipsoid volume. The x–component, y–component and z–components
are shown, respectively, in the top, middle and bottom panels. In each case the target and clutter
features are shown on the left hand and right hand sides, respectively. The features were derived
from 3D beamform products using data acquired by the BOSS platform at the AUV Fest 2008. A
total of 132 clutter items and 89 targets were processed in generating these distributions.
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Figure 71: This feature type is given by the unit vector ûC describing the direction of the principal
radius C of the best fitting ellipsoid volume. The x–component, y–component and z–components
are shown, respectively, in the top, middle and bottom panels. In each case the target and clutter
features are shown on the left hand and right hand sides, respectively. The features were derived
from 3D beamform products using data acquired by the BOSS platform at the AUV Fest 2008. A
total of 132 clutter items and 89 targets were processed in generating these distributions.
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Figure 72: This feature type is given by the cross–sectional areas of the best fitting ellipsoids to
the thresholded intensity blobs identified as target/clutter items in the BOSS data. These cross–
sectional areas are given as πAB,πAC and πBC, and are shown, respectively in the top, middle
and bottom panels. In each case the target and clutter features are shown on the left hand and
right hand sides, respectively. The features were derived from 3D beamform products using data
acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89 targets
were processed in generating these distributions.
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Figure 73: This feature type is given by the length to width ratios A/C, A/B and B/C where A,
B and C are the principal radii of the best fitting ellipsoids. These ratios are shown, respectively, in
the top, middle and bottom panels. In each case the target and clutter features are shown on the left
hand and right hand sides, respectively. The features were derived from 3D beamform products
using data acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and
89 targets were processed in generating these distributions.
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Figure 74: This feature type is given by the ellipsoidal volume πABC of the best fitting ellipsoids
to each of the thresholded intensity blobs identified as target/clutter items in the BOSS data. The
target and clutter distributions for this features are shown on the left hand and right hand sides,
respectively. A total of 132 clutter items and 89 targets were processed in generating these distri-
butions.
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Figure 75: This feature type is given by the voxel volume to each of the thresholded intensity
blobs identified as target/clutter items in the BOSS data. The target and clutter distributions for
this features are shown on the left hand and right hand sides, respectively. A total of 132 clutter
items and 89 targets were processed in generating these distributions.
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Figure 76: This feature type is the total energy of the voxel volume corresponding to an identified
target or clutter item from the BOSS data. The target and clutter distributions for this features are
shown on the left hand and right hand sides, respectively. A total of 132 clutter items and 89 targets
were processed in generating these distributions.
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Figure 77: This feature type is the total energy of the voxels contained within the best–fitting el-
lispoidal volumes corresponding to an identifer target or clutter items from the BOSS data. The
target and clutter distributions for this features are shown on the left hand and right hand sides,
respectively. A total of 132 clutter items and 89 targets were processed in generating these distri-
butions.
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Figure 78: This feature type is the voxel energy density for voxels contained within the best–
fitting ellispoidal volumes corresponding to an identified target or clutter items from the BOSS
data. The target and clutter distributions for this features are shown on the left hand and right hand
sides, respectively. A total of 132 clutter items and 89 targets were processed in generating these
distributions.
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Figure 79: This feature type is the voxel energy standard deviation for voxels contained within
the best–fitting ellispoidal volumes corresponding to an identified target or clutter items from the
BOSS data. The target and clutter distributions for this features are shown on the left hand and right
hand sides, respectively. A total of 132 clutter items and 89 targets were processed in generating
these distributions.
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Figure 80: This feature type is the voxel energy standard deviation normalized by mean contained
within the best–fitting ellispoidal volumes corresponding to an identified target or clutter items
from the BOSS data. The target and clutter distributions for this features are shown on the left
hand and right hand sides, respectively. A total of 132 clutter items and 89 targets were processed
in generating these distributions.
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Figure 81: This feature type is the peak intensity voxel contained within the total voxel volume
identified with a target or clutter item from the AUV FEST 2008 BOSS data. The target and clutter
distributions for this features are shown on the left hand and right hand sides, respectively. A total
of 132 clutter items and 89 targets were processed in generating these distributions.
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Figure 82: The feature type shown here is the 3–bin PDF of relative intensity in which the top,
middle and bottom panels correspond, respectively, to bins 1, 2 and 3. The intensity voxels were
chosen from those contained within the best fitting ellipsoidal volume associated with each target or
clutter item. In each case the target and clutter features are shown on the left hand and right hand
sides, respectively. The features were derived from 3D beamform products using data acquired
by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89 targets were
processed in generating these distributions.
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Figure 83: The feature type shown here are bins 1 to 3 of the 9–bin PDF of relative intensity in
which the top, middle and bottom panels correspond, respectively, to bins 1, 2 and 3. The intensity
voxels were chosen from those contained within the best fitting ellipsoidal volume associated with
each target or clutter item. In each case the target and clutter features are shown on the left hand
and right hand sides, respectively. The features were derived from 3D beamform products using
data acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89
targets were processed in generating these distributions.
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Figure 84: The feature type shown here are bins 4 to 6 of the 9–bin PDF of relative intensity in
which the top, middle and bottom panels correspond, respectively, to bins 4, 5 and 6. The intensity
voxels were chosen from those contained within the best fitting ellipsoidal volume associated with
each target or clutter item. In each case the target and clutter features are shown on the left hand
and right hand sides, respectively. The features were derived from 3D beamform products using
data acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89
targets were processed in generating these distributions.
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Figure 85: The feature type shown here are bins 7 to 9 of the 9–bin PDF of relative intensity in
which the top, middle and bottom panels correspond, respectively, to bins 7, 8 and 9. The intensity
voxels were chosen from those contained within the best fitting ellipsoidal volume associated with
each target or clutter item. In each case the target and clutter features are shown on the left hand
and right hand sides, respectively. The features were derived from 3D beamform products using
data acquired by the BOSS platform at the AUV Fest 2008. A total of 132 clutter items and 89
targets were processed in generating these distributions.
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Figure 86: The feature type shown here are bins 1 to 3 of the 9–bin cumulative distribution function
(CDF) of relative intensity in which the top, middle and bottom panels correspond, respectively,
to bins 1, 2 and 3. The intensity voxels were chosen from those contained within the best fitting
ellipsoidal volume associated with each target or clutter item. In each case the target and clutter
features are shown on the left hand and right hand sides, respectively. The features were derived
from 3D beamform products using data acquired by the BOSS platform at the AUV Fest 2008. A
total of 132 clutter items and 89 targets were processed in generating these distributions.
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Figure 87: The feature type shown here are bins 4 to 6 of the 9–bin cumulative distribution function
(CDF) of relative intensity in which the top, middle and bottom panels correspond, respectively,
to bins 4, 5 and 6. The intensity voxels were chosen from those contained within the best fitting
ellipsoidal volume associated with each target or clutter item. In each case the target and clutter
features are shown on the left hand and right hand sides, respectively. The features were derived
from 3D beamform products using data acquired by the BOSS platform at the AUV Fest 2008. A
total of 132 clutter items and 89 targets were processed in generating these distributions.
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Figure 88: The feature type shown here are bins 7 to 9 of the 9–bin cumulative distribution function
(CDF) of relative intensity in which the top, middle and bottom panels correspond, respectively,
to bins 7, 8 and 9. The intensity voxels were chosen from those contained within the best fitting
ellipsoidal volume associated with each target or clutter item. In each case the target and clutter
features are shown on the left hand and right hand sides, respectively. The features were derived
from 3D beamform products using data acquired by the BOSS platform at the AUV Fest 2008. A
total of 132 clutter items and 89 targets were processed in generating these distributions.
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A.4 Feature pair analysis of target/clutter features for AUV Fest 2008 data
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Figure 89: Scatter plot for the features ellipsoid radius B versus the length to width ratio A/B for
the BOSS AUV FEST 2008 data. Features derived from the targets and clutter in this data set are
indicated by the circles and plus signs, respectively.
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Figure 90: Scatter plot for the features ellipsoid radius B versus the voxel energy density for the
BOSS AUV FEST 2008 data. Features derived from the targets and clutter in this data set are
indicated by the circles and plus signs, respectively.
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Figure 91: Scatter plot for the features ellipsoid radius B versus the peak intensity for the BOSS
AUV FEST 2008 data. Features derived from the targets and clutter in this data set are indicated
by the circles and plus signs, respectively.
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Figure 92: Scatter plot for the features ellipsoid radius B versus the first bin of the 3-bin PDF of
the relative intensity for the BOSS AUV FEST 2008 data. Features derived from the targets and
clutter in this data set are indicated by the circles and plus signs, respectively.
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Figure 93: Scatter plot for the features ellipsoid radius B versus the third bin of the 3-bin PDF of
the relative intensity for the BOSS AUV FEST 2008 data. Features derived from the targets and
clutter in this data set are indicated by the circles and plus signs, respectively.
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Figure 94: Scatter plot for the features length to width ratio A/B versus the voxel energy density
for the BOSS AUV FEST 2008 data. Features derived from the targets and clutter in this data set
are indicated by the circles and plus signs, respectively.

Consistent with Fig. 98, voxel energy densities for targets have a right-skewed component
relative to that of clutter.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

139 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

5

Length−to−width ratios A/B

P
ea

k 
in

te
ns

ity

Feature Pair for Targets and Clutter

 

 
Target
Clutter

Figure 95: Scatter plot for the features length to width ratio A/B versus the peak intensity for
the BOSS AUV FEST 2008 data. Features derived from the targets and clutter in this data set are
indicated by the circles and plus signs, respectively.
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Figure 96: Scatter plot for the features length to width ratio A/B versus the first bin of the 3-bin
PDF of the relative intensity for the BOSS AUV FEST 2008 data. Features derived from the targets
and clutter in this data set are indicated by the circles and plus signs, respectively.
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Figure 97: Scatter plot for the features length to width ratio A/B versus the third bin of the 3-bin
PDF of the relative intensity for the BOSS AUV FEST 2008 data. Features derived from the targets
and clutter in this data set are indicated by the circles and plus signs, respectively.
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Figure 98: Scatter plot for the features voxel energy density versus the peak intensity for the BOSS
AUV FEST 2008 data. Features derived from the targets and clutter in this data set are indicated by
the circles and plus signs, respectively. This feature appears to be a useful discriminant for target
versus clutter for at least some targets. It is clear that simultaneously strong peak intensities and
voxel energy densities are strongly coordinated to targets. This is because actual targets provide a
strong scattering contrast relative to natural and man-made, non-target clutter.
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Figure 99: Scatter plot for the features voxel energy density versus the first bin of the 3-bin PDF
of the relative intensity for the BOSS AUV FEST 2008 data. Features derived from the targets and
clutter in this data set are indicated by the circles and plus signs, respectively.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

142 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Voxel energy density

3−
bi

n 
P

D
F

 o
f r

el
at

iv
e 

in
te

ns
ity

 (
bi

n 
3)

 

Feature Pair for Targets and Clutter

 

 
Target
Clutter

Figure 100: Scatter plot for the features voxel energy density versus the third bin of the 3-bin PDF
of the relative intensity for the BOSS AUV FEST 2008 data. Features derived from the targets and
clutter in this data set are indicated by the circles and plus signs, respectively.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

143 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peak intensity

3−
bi

n 
P

D
F

 o
f r

el
at

iv
e 

in
te

ns
ity

 (
bi

n 
1)

 

Feature Pair for Targets and Clutter

 

 
Target
Clutter

Figure 101: Scatter plot for the features peak intensity versus the first bin of the 3-bin PDF of the
relative intensity for the BOSS AUV FEST 2008 data. Features derived from the targets and clutter
in this data set are indicated by the circles and plus signs, respectively.
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Figure 102: Scatter plot for the features peak intensity versus the third bin of the 3-bin PDF of the
relative intensity for the BOSS AUV FEST 2008 data. Features derived from the targets and clutter
in this data set are indicated by the circles and plus signs, respectively.
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Figure 103: Scatter plot for the features first bin of the 3-bin PDF of the relative intensity versus the
third bin of the 3-bin PDF of the relative intensity for the BOSS AUV FEST 2008 data. Features
derived from the targets and clutter in this data set are indicated by the circles and plus signs,
respectively.
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A.5 Feature triplet analysis of target/clutter features for AUV Fest 2008
data
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Figure 104: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radius), B (ellipsoid radius) and first bin in 3-bin probability distribution of relative intensity, The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 105: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radii), B (ellipsoid radii) and last bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 106: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
A (ellipsoid radii), Length to width ratio A/B and Voxel energy density. and first bin in 3-bin probability
distribution of relative intensity, The features were derived from the BOSS AUV FEST 2008 data set. The
training vectors used for classifier, and corresponding to known target and clutter items are indicated by
green and blue discs, respectively. Of these, the optimal relevance vector are those indicated by the red
circles.
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Figure 107: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radii), Length to width ratio A/B, and Peak intensity The features were derived from the BOSS
AUV FEST 2008 data set. The training vectors used for classifier, and corresponding to known target and
clutter items are indicated by green and blue discs, respectively. Of these, the optimal relevance vector are
those indicated by the red circles.
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Figure 108: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radii), Length to width ratio A/B, and first bin in 3-bin probability distribution of relative intensity.
The features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 109: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radii), Length to width ratio A/B, and last bin in 3-bin probability distribution of relative intensity.
The features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

149 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

0

2

4

6

8

0.8

1

1.2

1.4

1.6
0.5

1

1.5

2

2.5

3

 

Best−fit ellipsoidal radius AVoxel energy density
 

P
ea

k 
in

te
ns

ity

Target training point
Clutter training point
Relevance vector

Figure 110: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radii), Voxel energy density and Peak intensity. The features were derived from the BOSS AUV
FEST 2008 data set. The training vectors used for classifier, and corresponding to known target and clutter
items are indicated by green and blue discs, respectively. Of these, the optimal relevance vector are those
indicated by the red circles.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

150 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

0

2

4

6

8

0.8

1

1.2

1.4

1.6
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

Best−fit ellipsoidal radius AVoxel energy density
 

B
in

 1
 o

f 3
−

bi
n 

P
D

F
 (

re
l. 

in
te

ns
ity

)

Target training point
Clutter training point
Relevance vector

Figure 111: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radii), Voxel energy density and first bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 112: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radii), Voxel energy density and last bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 113: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
A (ellipsoid radii), Peak intensity and first bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 114: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
A (ellipsoid radii), Peak intensity and last bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 115: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet A
(ellipsoid radii), first bin in 3-bin probability distribution of relative intensity and last bin in 3-bin probability
distribution of relative intensity. The features were derived from the BOSS AUV FEST 2008 data set. The
training vectors used for classifier, and corresponding to known target and clutter items are indicated by
green and blue discs, respectively. Of these, the optimal relevance vector are those indicated by the red
circles.
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Figure 116: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), Length to width ratio A/B and Voxel energy density. The features were derived from the
BOSS AUV FEST 2008 data set. The training vectors used for classifier, and corresponding to known target
and clutter items are indicated by green and blue discs, respectively. Of these, the optimal relevance vector
are those indicated by the red circles.
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Figure 117: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), Length to width ratio A/B and Peak intensity. The features were derived from the BOSS
AUV FEST 2008 data set. The training vectors used for classifier, and corresponding to known target and
clutter items are indicated by green and blue discs, respectively. Of these, the optimal relevance vector are
those indicated by the red circles.
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Figure 118: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), Length to width ratio A/B and first bin in 3-bin probability distribution of relative intensity.
The features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 119: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), Length to width ratio A/B and last bin in 3-bin probability distribution of relative intensity.
The features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 120: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), Voxel energy density and Peak intensity The features were derived from the BOSS AUV
FEST 2008 data set. The training vectors used for classifier, and corresponding to known target and clutter
items are indicated by green and blue discs, respectively. Of these, the optimal relevance vector are those
indicated by the red circles.
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Figure 121: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), Voxel energy density and first bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 122: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), Voxel energy density and last bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 123: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), and Peak intensity and first bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 124: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), and Peak intensity and last bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 125: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet B
(ellipsoid radii), first bin in 3-bin probability distribution of relative intensity and last bin in 3-bin probability
distribution of relative intensity. The features were derived from the BOSS AUV FEST 2008 data set. The
training vectors used for classifier, and corresponding to known target and clutter items are indicated by
green and blue discs, respectively. Of these, the optimal relevance vector are those indicated by the red
circles.
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Figure 126: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Length to width ratio A/B, Voxel energy density and Peak intensity. The features were derived from the
BOSS AUV FEST 2008 data set. The training vectors used for classifier, and corresponding to known target
and clutter items are indicated by green and blue discs, respectively. Of these, the optimal relevance vector
are those indicated by the red circles.
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Figure 127: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Length to width ratio A/B, Voxel energy density and first bin in 3-bin probability distribution of relative
intensity. The features were derived from the BOSS AUV FEST 2008 data set. The training vectors used
for classifier, and corresponding to known target and clutter items are indicated by green and blue discs,
respectively. Of these, the optimal relevance vector are those indicated by the red circles.
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Figure 128: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Length to width ratio A/B, Voxel energy density and last bin in 3-bin probability distribution of relative
intensity. The features were derived from the BOSS AUV FEST 2008 data set. The training vectors used
for classifier, and corresponding to known target and clutter items are indicated by green and blue discs,
respectively. Of these, the optimal relevance vector are those indicated by the red circles.
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Figure 129: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Length to width ratio A/B, and Peak intensity. and first bin in 3-bin probability distribution of relative
intensity. The features were derived from the BOSS AUV FEST 2008 data set. The training vectors used
for classifier, and corresponding to known target and clutter items are indicated by green and blue discs,
respectively. Of these, the optimal relevance vector are those indicated by the red circles.
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Figure 130: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Length to width ratio A/B, and Peak intensity. and last bin in 3-bin probability distribution of relative
intensity. The features were derived from the BOSS AUV FEST 2008 data set. The training vectors used
for classifier, and corresponding to known target and clutter items are indicated by green and blue discs,
respectively. Of these, the optimal relevance vector are those indicated by the red circles.
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Figure 131: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Length to width ratio A/B, first bin in 3-bin probability distribution of relative intensity and last bin in 3-bin
probability distribution of relative intensity. The features were derived from the BOSS AUV FEST 2008
data set. The training vectors used for classifier, and corresponding to known target and clutter items are
indicated by green and blue discs, respectively. Of these, the optimal relevance vector are those indicated
by the red circles.
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Figure 132: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Voxel energy density, Peak intensity and first bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 133: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Voxel energy density, Peak intensity and last bin in 3-bin probability distribution of relative intensity. The
features were derived from the BOSS AUV FEST 2008 data set. The training vectors used for classifier,
and corresponding to known target and clutter items are indicated by green and blue discs, respectively. Of
these, the optimal relevance vector are those indicated by the red circles.
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Figure 134: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Voxel energy density, first bin in 3-bin probability distribution of relative intensity and last bin in 3-bin
probability distribution of relative intensity. The features were derived from the BOSS AUV FEST 2008
data set. The training vectors used for classifier, and corresponding to known target and clutter items are
indicated by green and blue discs, respectively. Of these, the optimal relevance vector are those indicated
by the red circles.
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Figure 135: 3D scatter plot showing training points and optimal relevance vectors for the feature triplet
Peak intensity, first bin in 3-bin probability distribution of relative intensity and last bin in 3-bin probability
distribution of relative intensity. The features were derived from the BOSS AUV FEST 2008 data set. The
training vectors used for classifier, and corresponding to known target and clutter items are indicated by
green and blue discs, respectively. Of these, the optimal relevance vector are those indicated by the red
circles.
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A.6 Statistical realizations for classifier training
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Figure 136: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 137: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 138: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 139: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 140: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

170 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Training Set, Features 4:5, 20, 26, 29:50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Test Set, Features 4:5, 20, 26, 29:50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Test/Train Sets, Features 4:5, 20, 26, 29:50

 

 

Test set
Training set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

 (mean value)

P
cc

 (
m

ea
n 

va
lu

e)

Mean Results for Features 4:5, 20, 26, 29:50

 

 

Test set (mean value)
Training set (mean value)

Figure 141: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 142: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

172 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Training Set, Features 4:6, 16:17, 20, 26:27, 29, 30, 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Test Set, Features 4:6, 16:17, 20, 26:27, 29, 30, 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Test/Train Sets, Features 4:6, 16:17, 20, 26:27, 29, 30, 32

 

 

Test set
Training set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

 (mean value)

P
cc

 (
m

ea
n 

va
lu

e)

Mean Results for Features 4:6, 16:17, 20, 26:27, 29, 30, 32

 

 

Test set (mean value)
Training set (mean value)

Figure 143: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 144: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 145: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.

Sensor Phenomenology and Feature Development for
Improved Sonar-based Detection & Classification of
Underwater UXO

175 BAE SYSTEMS AIT
Applied Signal Technology, Inc.
Princeton University



BAE SYSTEMS AIT SERDP Project MM-1533

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Training Set, Features 4:6, 22:32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Test Set, Features 4:6, 22:32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

P
cc

BOSS Test/Train Sets, Features 4:6, 22:32

 

 

Test set
Training set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fc

 (mean value)

P
cc

 (
m

ea
n 

va
lu

e)

Mean Results for Features 4:6, 22:32

 

 

Test set (mean value)
Training set (mean value)

Figure 146: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 147: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 148: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 149: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 150: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 151: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 152: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 153: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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Figure 154: Classification results for AUV Fest 2008 BOSS data using the Relevance Vector Ma-
chine. In training, typically half of a data set is randomly chosen as the ‘training set’ and the
remaining half is chosen as the ‘test set’. Thus, there are numerous random subsets that could be
chosen, and so for statistical robustness in choosing an optimal feature subset, the selection should
be made with respect to the ensemble results for various subsets of target/clutter training points. In
the results shown here, 25 realizations of training vectors were chosen, and the corresponding ROC
curves for each set are shown. Upper left: ROC classifier performance for the training set (half of
target/clutter exemplars) Upper right: ROC classifier performance for the test set (the other half
of the target/clutter exemplars). Lower left: ROC classifier performance for training and test sets..
Lower right: Mean value of the ROC curves in each dimension from the training and test sets.
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A.7 BOSS processing results
In this section we display our processing results of the data collects described in Sec. 4.3.1 using
the signal and image processing steps described in Secs. 3.3.1 – 3.3.4. We display 2D image
constructs corresponding to the maximum intensity projection mapping in the horizontal (x,y)
plane i.e., Pxy(x, y) in equation (114). These results are for both the mud and sand sites and for
various platform altitudes above the seabeds. These varying conditions are indicated in the figure
notations, and these notations are defined below in Table 9. Figures 155 – 165 show various MIP

Notation Definition

ss The ’ss”’ runs were collected at the ‘sand site’, just inside St. Andrew’s Bay,
south of Panama City

boss The ‘boss’ runs were at the ‘mud site’, in the northern part of St. Andrew’s
Bay, directly West of the airport

low These are low-altitude runs, typically 2-3 m above the seabed. The total
water depth was approximately 10 m

high These are high-altitude runs, typically 5-6 m above the seabed. The total
water depth was approximately 10 m

Table 9: Data notation definitions for the BOSS data collections and processing results.

images for the sand and mud sites. In addition, we show in Figs. 166 – 172 show detailed views of
a particular target at the mud site for various depth planes corresponding to BxF in eq. (111).

Figure 155: This figure shows Pxy (maximum value over all z planes at each (x,y) point) for an
entire run at the mud site. Total water depth is approximately 10 m.
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Figure 156: Similar to Fig. 155 but for a different run.

Figure 157: This figure shows Pxy (maximum value over all z planes at each (x,y) point) for an
entire run at the sand site. The platform was at a ‘high’ altitude above the seabed (typically 5 to 6
m). Total water depth is approximately 10 m. Exploded views of this run are shown in Figs. 158
and 159.

Figure 158: Exploded view of Fig. 157 for the first half of the run.
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Figure 159: Exploded view of Fig. 157 for the second half of the run.

Figure 160: This figure shows Pxy (maximum value over all z planes at each (x,y) point) for an
entire run at the sand site. The platform was at a ‘low’ altitude above the seabed (typically 2 to s
m). Total water depth is approximately 10 m. Exploded views of this run are shown in Figs. 161
and 162.

Figure 161: Exploded view of Fig. 160 for the first half of the run.
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Figure 162: Exploded view of Fig. 160 for the second half of the run.

Figure 163: Similar to Fig. 160 but for a second run.

Figure 164: Exploded view of Fig. 163 for the first half of the run.
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Figure 165: Exploded view of Fig. 163 for the second half of the run.

Figure 166: This figure shows a detailed view of B(xF ) (eq. 111) for a particular target at the mud
site. This view shows slices on the z-plane at depth indices 16 and 17.
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Figure 167: Similar to Fig. 166 but for depth slices 18 and 19.
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Figure 168: Similar to Fig. 166 but for depth slices 20 and 21.
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Figure 169: Similar to Fig. 166 but for depth slices 22 and 23.
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Figure 170: Similar to Fig. 166 but for depth slices 24 and 25.
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Figure 171: Similar to Fig. 166 but for depth slices 26 and 27.
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Figure 172: Similar to Fig. 166 but for depth slices 28 and 29.
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B.1 Papers
The following publications were supported by this SERDP program:

1. C. Morency and J. Tromp, Spectral-element simulations of wave propagation in porous me-
dia, Geophys. J. Int., vol. 175, pp. 301–345 (2008).

2. C. Morency, Y. Luo and Jeroen Tromp, Finite-frequency kernels for wave propagation in
porous media based upon adjoint methods, submitted to Geophys. J. Int., accepted 2009
July 10.

3. C. Morency, Y. Luo and Jeroen Tromp, Spectral-Element Simulations of Wave Propaga-
tion in Porous Media: Finite-Frequency Sensitivity Kernels based upon Adjoint Methods,
in POROMECHANICS IV (Proceedings of the Fourth Biot Conference on Poromechanics,
DEStech Publications, Inc., Pennsylvania, USA.

B.2 Technical abstract for SERDP/ESTCP Annual Symposium (2006)
SYNTHETIC APERTURE SONAR FOR DETECTION

AND DISCRIMINATION OF UNDERWATER UXO

EUGENE M. LAVELY
BAE Systems AIT

6 New England Executive Park
Burlington, MA 01803

(781) 273-3388 Ext. 294
eugene.lavely@baesystems.com

CO-PERFORMERS: Dr. Angela Putney (Applied Signal Technology, Inc.)
Professor Jeroen Tromp (California Institute of Technology, Department of Geological and Plane-
tary Sciences)

Abstract

We are pursuing a combined simulation and observational study to assess the potential
performance of sonar-based discrimination systems for UXO targets in littoral and other shal-
low water environments. Sonar is a natural candidate for UXO detection due to its wide-area
surveillance capability and target sensitivity. Specifically, we are analyzing synthetic aperture
sonar (SAS) imagery for both buried and bottom surface targets to determine repeatability of
discriminating features, especially given the complex wave propagation characteristics in the
water column and sediments. Environment complexity can couple the target response to the
detailed variation of the embedding medium (including bulk properties and surface properties
such as sediment ripples). To better understand this we intend to apply a high-fidelity wave
simulation for modeling of wave propagation in heterogeneous porous media and for targets
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embedded in that media. The resulting sonar phase histories will then be processed with a
SAS image formation processor for image generation. We are using the Biot formulation of
the wave equations for the simulations and we are assigning realistic values of Biot propagation
parameters using experimental characterizations derived from previous studies. The Spectral
Element Method (SEM) is currently being evaluated as the numerical method for the wave
solution, but in principle, other methods are applicable as well (e.g. finite difference, time do-
main). To be useful, the numerical method must capture arbitrary target/environment complex-
ity and accurately model all wave phenomena (resonant modes, surface waves, diffractions,
specular scattering, target-environment coupling) over the low and high frequency regimes of
interest. To support this effort we are in the process of building target and environment models.
This activity, along with the results data products, target signatures and features from both sim-
ulations and real data collections will provide an outstanding resource for evaluation, design
and development of target recognition systems. This work is supported under the Munitions
Management (MM) focus area of SERDP as Project MM-1533.

B.3 Technical abstract for SERDP/ESTCP Annual Symposium (2007)
SYNTHETIC APERTURE SONAR FOR DETECTION

AND DISCRIMINATION OF UNDERWATER UXO

EUGENE M. LAVELY
BAE Systems AIT

6 New England Executive Park
Burlington, MA 01803

(781) 273-3388 Ext. 4294
eugene.lavely@baesystems.com

CO-PERFORMERS: Matthew Nelson (Applied Signal Technology, Inc.)
Professor Jeroen Tromp and Christina Morency (California Institute of Technology, Department
of Geological and Planetary Sciences)

Abstract

We are pursuing a combined simulation and observational study to assess the potential
performance of sonar-based discrimination systems for UXO targets in littoral and other shal-
low water environments. Sonar is a natural candidate for UXO detection due to its wide-area
surveillance capability and target sensitivity. Specifically, we are analyzing synthetic aperture
sonar (SAS) imagery for both buried and bottom surface targets to determine repeatability of
discriminating features, especially given the complex wave propagation characteristics in the
water column and sediments. Environment complexity can couple the target response to the
detailed variation of the embedding medium (including bulk properties and surface properties
such as sediment ripples). To better understand this we intend to apply a high-fidelity wave
simulation for modeling of acoustic wave propagation, wave propagation in heterogeneous
porous media and wave interaction with targets embedded in that media. The resulting sonar
phase histories will then be processed with a SAS image formation processor for image gener-
ation. We are using the Biot formulation of the wave equations in the porous medium, derived
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using the averaging principle in a biphasic system, for the simulations and we are assigning
realistic values of Biot propagation parameters using experimental characterizations derived
from previous studies. For the acoustic equation of motion, a displacement potential formu-
lation is used, which results in an acoustic-poroelastic coupling based on a non-iterative time
scheme. The Spectral Element Method (SEM) is currently being evaluated as the numerical
method for the wave solution. In principle, other methods are applicable as well (e.g., finite
difference, time domain), but the SEM is a high-order variational method, which allows to
compute synthetic seismograms in heterogeneous models with deformed geometry with very
high accuracy and low numerical dispersion. To be useful, the numerical method must capture
arbitrary target/environment complexity and accurately model all wave phenomena (resonant
modes, surface waves, diffractions, specular scattering, target-environment coupling) over the
low and high frequency regimes of interest. To support this effort we are in the process of build-
ing target and environment models. This activity, along with the results data products, target
signatures and features from both simulations and real data collections will provide an out-
standing resource for evaluation, design and development of target recognition systems. This
work is supported under the Munitions Management (MM) focus area of SERDP as Project
MM- 1533.

We are pursuing a combined simulation and observational study to assess the potential
performance of sonar-based discrimination systems for UXO targets in littoral and other shal-
low water environments. Sonar is a natural candidate for UXO detection due to its wide-area
surveillance capability and target sensitivity. Specifically, we are analyzing synthetic aperture
sonar (SAS) imagery for both buried and bottom surface targets to determine repeatability of
discriminating features, especially given the complex wave propagation characteristics in the
water column and sediments. Environment complexity can couple the target response to the
detailed variation of the embedding medium (including bulk properties and surface properties
such as sediment ripples). To better understand this we intend to apply a high-fidelity wave
simulation for modeling of wave propagation in heterogeneous porous media and for targets
embedded in that media. The resulting sonar phase histories will then be processed with a
SAS image formation processor for image generation. We are using the Biot formulation of
the wave equations for the simulations and we are assigning realistic values of Biot propagation
parameters using experimental characterizations derived from previous studies. The Spectral
Element Method (SEM) is currently being evaluated as the numerical method for the wave
solution, but in principle, other methods are applicable as well (e.g. finite difference, time do-
main). To be useful, the numerical method must capture arbitrary target/environment complex-
ity and accurately model all wave phenomena (resonant modes, surface waves, diffractions,
specular scattering, target-environment coupling) over the low and high frequency regimes of
interest. To support this effort we are in the process of building target and environment models.
This activity, along with the results data products, target signatures and features from both sim-
ulations and real data collections will provide an outstanding resource for evaluation, design
and development of target recognition systems. This work is supported under the Munitions
Management (MM) focus area of SERDP as Project MM-1533.

B.4 Technical abstract for SERDP/ESTCP Annual Symposium (2008)
UNDERWATER BURIED MUNITIONS DETECTION AND CLASSIFICATION WITH

SONAR-BASED FEATURES
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EUGENE M. LAVELY
BAE Systems AIT

6 New England Executive Park
Burlington, MA 01803

(781) 273-3388 Ext. 4294
eugene.lavely@baesystems.com

CO-PERFORMERS: Matthew Nelson and Kent Harbaugh (Applied Signal Technology, Inc.);
Jeroen Tromp and Christina Morency (Princeton University)

Abstract

We develop an underwater munitions classifier algorithm with a special focus on buried
objects using bottom-penetrating low-frequency sonar data. Objects in the classifier training
set include various munition targets, man-made clutter objects such as concrete pipes, cylin-
ders and spheres, and natural clutter responses. One of our key criteria for feature selection
is robustness to natural variability, and to specific details of target-sensor geometry. An addi-
tional issue for feature identification is not just the class of feature (e.g., shape-based, intensity
histogram, waveform-derived, tomographic estimates of material properties, etc.) but also the
tuning parameters used to extract the feature. Effective choice of these parameters can reduce
false alarms. We use the Relevance Vector Machine as the basic classification tool since it pro-
vides a Bayesian framework, a means for principled estimation of posterior class membership
probabilities, and can be used to automatically determine the relevance of each feature to the
identification of class membership probability. We report on classifier performance using both
real data sets and synthetic data sets generated with a high-fidelity simulation tool based on
a recently developed spectral element method. Synthetic responses from both acoustic-elastic
and poroelastic simulations are considered. This project is supported under SERDP Project
MM-1533.

B.5 Technical abstract for American Geophysical Union Meeting (Winter,
2008)

Spectral-Element Simulations of Wave Propagation in Porous Media: Finite-Frequency
Sensitivity Kernels Based Upon Adjoint Methods

Christina Morency, Yang Luo and Jeroen Tromp - Princeton University De- partment of
Geosciences, 114 Guyot Hall, Princeton, NJ 08544-1003, United States

The mathematical formulation of wave propagation in porous media developed by Biot is based
upon the principle of virtual work, ignoring processes at the microscopic level, and does not explic-
itly incorporate gradients in porosity. Based on recent studies focusing on averaging techniques,
we derive the macroscopic porous medium equations from the microscale, with a particular em-
phasis on the effects of gradients in porosity. In doing so, we are able to naturally determine two
key terms in the momentum equations and constitutive relationships, directly translating the cou-
pling between the solid and fluid phases, namely a drag force and an interfacial strain tensor. In
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both terms, gradients in porosity arise. One remarkable result is that when we rewrite this set of
equations in terms of the well known Biot variables us, w), terms involving gradients in poros-
ity are naturally accommodated by gradients involving w, the fluid motion relative to the solid,
and Biots formulation is recovered, i.e., it remains valid in the presence of porosity gradients We
have developed a numerical implementation of the Biot equations for two-dimensional problems
based upon the spectral- element method (SEM) in the time domain. The SEM is a high-order
varia- tional method, which has the advantage of accommodating complex geometries like a finite-
element method, while keeping the exponential convergence rate of (pseudo)spectral methods. As
in the elastic and acoustic cases, poroelastic wave propagation based upon the SEM involves a
diagonal mass matrix, which leads to explicit time integration schemes that are well-suited to sim-
ulations on parallel computers. Effects associated with physical dispersion and attenuation and
frequency-dependent viscous resistance are addressed by using a memory variable approach. Var-
ious benchmarks involving poroelastic wave propagation in the high- and low-frequency regimes,
and acoustic-poroelastic and poroelastic- poroelastic discontinuities have been successfully per-
formed. We present finite- frequency sensitivity kernels for wave propagation in porous media
based upon adjoint methods. We first show that the adjoint equations in porous media are sim-
ilar to the regular Biot equations upon defining an appropriate adjoint source. Then we present
finite-frequency kernels for seismic phases in porous media (e.g., fast P, slow P, and S). These ker-
nels illustrate the sensitivity of seismic observables to structural parameters and form the basis of
tomographic inversions. Finally, we show an application of this imaging technique related to the
detection of buried landmines and unexploded ordnance (UXO) in porous environments.
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