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EXECUTIVE SUMMARY 
 
Unexploded ordnance (UXO) surveys encompass large areas, and the cost of surveying 
these areas can be high.  Enactment of earlier protocols for sampling UXO sites 
(SiteStats/GridStats) have shown the shortcomings of these procedures and led to a call 
for development of scientifically defensible statistical procedures for survey design and 
analysis.  This project is one of three funded by SERDP to address this need. 
 
The problem is a very complicated one statistically, with a need to develop new 
approaches in survey design and data analysis.  It became evident to our team at an 
early stage in this project that all of the statistical tools that are needed to address this 
problem were not ‘on the table,’ and that some of the key questions had not been 
previously solved mathematically.  It is critical that a new protocol for design and 
analysis of UXO surveys be able to address: (1) the idiosyncrasies of different sites in 
terms of their geology, ordnance types, topography, vegetation, and extent of 
background knowledge; (2) the uncertainties in performance of different types of 
instrumentation and instrument platforms that are available, or are becoming available 
for UXO surveys; (3) the distinctions between UXO contamination, which occurs at 
discrete points, and chemical contamination, which has a more continuous distribution; 
(4) the opportunities to interrogate the site through sequential surveys; and  (5) the 
regulatory and public-involvement environment in which these surveys are typically 
performed.  The protocol must allow for changes in these factors that may result from 
technological advances.   A protocol that neglects some or all of these issues may never 
be suitable for routine use.   
 
An alternative approach is to develop statistical tools that are appropriate under 
artificially simplistic settings, and to expand these tools over time to accommodate 
situations that are more and more realistic.  We have chosen not to pursue this 
approach because we felt that the ‘top down’ approach was less likely to encounter 
insurmountable obstacles.  
 
Statistically based methodologies are being used, and should be used, to efficiently 
determine the extent of UXO contamination by optimizing locations and geographic 
extent for surveys, defining how to conduct excavation, and developing procedures to 
incorporate survey data into decision making.  These methods may also be used to 
prioritize areas, compare different clearance approaches, and to estimate costs for 
different land uses (i.e., for different specified levels of clearance). 
  
Statistical methods are used to reduce the extent of data acquisition required to 
characterize large areas.  Our protocol has led to development of statistically valid tools 
that can be used to support management decisions by providing maps of estimated 
contamination and associated probabilities and uncertainties at different stages of the 
characterization process.  Such tools enable decisions that lead to more appropriate and 
cost effective remediation. 
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GLOSSARY 
 
Classification: Identification of the category or group to which an individual or object 
belongs on the basis of observed characteristics. 
 
Euclidean Distance: A distance metric. The Euclidean distance between two points is 
defined as the square root of the sums of squares of coordinate differences. 
 
Linear Discriminant Analysis: A statistical technique for classification by means of 
multivariate quantitative data. The discrimination rule is derived from a training data set 
made up from the exhaustive list of groups/categories of interest. When two groups are 
involved it is equivalent to finding a linear combination of the variables that would 
maximize the t-statistic for comparing the two groups. 
 
Mahalanobis Distance: A weighted distance metric. The Mahalanobis distance between 
two points in one coordinate system is equivalent to the Euclidean distance between the 
two points in a transformed coordinate system where the transformation is derived from 
the variation in each dimension, the transformation from correlated to uncorrelated 
variables. 
 
Ordnance Intensity Map:  A plan map showing the probability distribution of ordnance 
intensity around targets. 
 
Point deposition, point process:  The process of adding ordnance to a target, or targets 
to a project site.  Statistically, these are treated as one-dimensional, single point objects. 
 
Receiver Operating Characteristics (ROC) curve:  A graph of (percent or proportion false 
positive responses) vs. (percent or proportion of true positive responses). 
 
Scale of correlation:  A level of investigation in which the point deposition can be 
described by a statistical distribution.  This report refers to three levels (site, target, and 
ordnance), all of which are controlled by independent stochastic processes. 
 
Sector:  A region or section of a project site considered to have homogeneous ordnance 
distribution under SiteStats/GridStats. 
 
Site:  An area encompassing an entire base or bombing range, usually containing more 
than one target. 
 
Target:  Any bombing target, impact area, detonation area, burial pit or similar feature 
that is likely to contain subsurface ordnance. 
 
Target Intensity Map:  A plan map showing the probability distribution of targets around a 
project site. 
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I Spatial Statistical Model and Optimal Survey Design for 
Rapid Geophysical Characterization of UXO Sites 
  

II Performing Organization: Oak Ridge National 
Laboratory, Oak Ridge, TN 
 

III Background 
Sites that have been used for military weapons testing and training generally require 
remediation before they can be returned to public use. One of the hazards in such areas 
is the presence of unexploded ordnance (UXO) deposited over time. Partial 
characterization of UXO deposition at such sites is generally based on facility use 
records, or even geological features which suggest likely historical use. However, more 
precise and objective characterization requires physical screening of the area, generally 
based on indirect measurement technologies. 
 
The existing statistical sampling approach, SiteStats/GridStats (SS/GS,QuantiTech, 
1995a, 1995b), was developed in the early 1990s based on available survey 
technologies.  The Department of Energy’s Oak Ridge National Laboratory (ORNL) 
under the sponsorship of the U. S. Army Corps of Engineers Engineering and Support 
Center, Huntsville (USAESCH) recently reviewed the statistical methods in SS/GS 
(Ostrouchov et al., 1999).  The SS/GS approach is based on limited statistical methods 
that do not use spatial information and do not provide confidence bounds on estimated 
contamination.  Confidence bounds are currently provided by UXO Calculator (Barrett 
and Fanning, 1999), which also uses the assumption that contamination is uniformly 
distributed.  As a result, subdivision of sites into sectors is artificially driven by an 
assumption that is required for confidence bound calculations and by the fact that UXO 
contamination is reported as a single number for a sector.  At the same time, no 
statistically valid methodology is in place for testing the homogeneity of a sector.  The 
homogeneity tests in SS/GS are not valid.  As a result, sector homogeneity decisions are 
based on visual inspection of sampling results.  In brief, the SS/GS procedure 
incorporates invalid statistical methods to characterize an inhomogeneous distribution of 
UXO.  Further, without a valid test of sector homogeneity, confidence bounds produced 
by the UXO Calculator are invalid. 
The fact that an extensive and complex methodology such as SiteStats/GridStats was 
developed and accepted, yet most of its statistical functions are invalid, should serve as 
an example that statistical methodology should be independently evaluated before being 
accepted. Experts who not only apply such methodology routinely, but also develop and 
publish within that field, should ideally perform such evaluations. For spatial statistical 
methods, this means statisticians who are involved in spatial statistics research. 
Complexity is no guarantee of validity. 
Several geophysical methods for ordnance detection have been developed, and many of 
these have been deployed at the Badlands Bombing Range (BBR) in South Dakota.  
These include conventional ground-based magnetic and electromagnetic systems in 
addition to innovative systems; such as helicopter deployed magnetic and 
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electromagnetic systems (Doll et al., 2003) and the MTADS towed array system, which 
used both magnetometers and prototype electromagnetic systems (McDonald et al., 
1996, 1998). Evaluation of airborne systems at BBR was funded by the Environmental 
Security Technology Certification Program  (ESTCP) and has been highly successful 
(Fig. 1).   
 

IV Objective 
We address the site characterization problem in a comprehensive manner and provide 
specific solutions to several components of a comprehensive solution. Our objective in 
characterization is to provide maps that indicate areas of ordnance contamination 
(targets). A comprehensive solution means that we consider the entire span of activities 
from raw data acquisition through production of maps that indicate areas of 
contamination along with estimates of uncertainty. For the most part we do not 
differentiate between intact ordnance (UXO) and ordnance fragments as both indicate a 
possible target area location. 
 

V Technical Approach 
We begin by developing a conceptual site model that considers the process of site 
contamination, how we observe the contamination, and the resulting correlation 
structure. Based on this structure, on the physical nature of the contamination, and on 
the nature of our data, we develop statistical models that closely represent the 
underlying physics. On the basis of this Conceptual Site Model, we develop a 
characterization process that spans the initial information gathering from the archive 
search report (ASR) through platform and sensor selection, sample design, geophysical 
sampling, and final delineation of contaminated areas. Specific procedures are 
presented for most components of this process, while a description of needed 
components is presented for the remainder. 
 

VI Summary 
In the next Section, VII Project Accomplishments, we describe our accomplishments 
from two points of view: an overall conceptual site model (a developer’s point of view), 
and an operational description (a user’s point of view). In Section VII-1 we describe the 
Conceptual Site Model that concentrates on the underlying physical processes, and 
theory and underpinnings of our general approach. Specific methods are described in 
detail in Section VII-2, along with any further necessary theory and links to the 
underpinnings of Section VII-1. In Section VII-2, we follow a sequence in which the 
methods would typically be applied. 
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VII Project Accomplishments 
Major concepts and tools developed include:  

• Three Scales of Correlation concept (Section 1.3.1) 
• DOAM – Distributions On A Map – OIM/TIM concepts (Section 1.3.2) 
• Gauss.target simulation/ASR tool (Sections 2.2 and 2.7.1) 
• Path characteristics optimization 
• Target-related/Target-unrelated anomaly discrimination using multivariate 

statistical techniques applied to various signal characteristics. 
• DOAM estimation with geoRglm (Section 2.6) 
 
 

1 Conceptual Site Model: The Physical and Statistical 
Reality 
 

1.1 The Physical Process of Ordnance Deposition
Procedures for characterizing site contamination should be developed so as to take 
advantage of what is known about the physical process leading to the distribution of 
ordnance. Briefly, individual items of spent ordnance (e.g., intact shells or shrapnel) are 
not typically distributed uniformly throughout a use-area but are rather in spatial clusters 
around some centers of activity.  Within such clusters, individual ordnance items or 
objects are located at physical sites that tend to be close to the cluster center, relative to 
the typical distance between clusters. The purpose of the characterization is to locate 
those sub-areas that contain objects, or a sufficient concentration of objects to merit 
attention.  
 
Our view is that ordnance is deposited at a given site through a series of activities that 
occurred over the entire history of that site. Two stages apply to each ordnance 
activity.  First, a decision is made on the location or locations of the activity. Then 
the activity is performed near the locations and leaves behind ordnance in a 
cluster pattern that is determined by the activity. For example, the first stage 
corresponds to a commanding officer’s decision to locate a specific target and decide on 
the approach and ammunition to be used in that exercise. The second stage is the 
execution of the exercise, when ordnance is deposited in a random pattern mostly near 
the target. Another example might be a cleanup exercise to bury spent munitions. First a 
decision is made on what will be cleaned up and the location of the burial pit, and then 
the cleanup proceeds, leaving behind the buried ordnance and perhaps other scattered 
ordnance. Similarly, a firing range is first located at a convenient site and then ordnance 
is scattered with each firing practice. 
 
Although we may notice that ordnance occur at higher density near the center of a 
target, we cannot measure this density at any location in the manner that we can 
measure a chemical spill concentration or ore content. Rather, we can use the ordnance 
locations to estimate the density per unit area. A physical process where data are 
locations of events (an event being the presence of a piece of ordnance) is called 
a spatial point process in the statistical literature (Cressie, 1991, Stoyan et al., 1995, 
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Diggle, 2003, Diggle and Tawn, 1998). We discuss the statistical issues arising from this 
physical process in Section 1.3.2. 
 

1.2 The Data and Data Acquisition: How we observe the process 
The locations of ordnance are not directly observed (unless exposed at the surface) and 
instead are estimated from indirect measurement technologies. Geophysical sensor 
systems, including magnetometers and electromagnetic (EM) systems are most 
frequently selected for this purpose.  These sensors can be deployed on man-portable, 
towed, or airborne platforms (Fig. 1). An example of such a data set from Stronghold 
Table in the Badlands Bombing Range is shown in Fig. 2.  Figure 2 is an analytic signal 
map, which is derived from airborne magnetic data, acquired with magnetometers 
(sensors) deployed on a helicopter (platform), as described by Doll et al. (2001).  The 
unprocessed measurements consist of 12-meter swaths of data gathered with an array 
of eight magnetometers mounted on the helicopter at 1.7m spacing.   The data from 
each magnetometer are stored on a console in the helicopter. The individual data lines 
are processed, then gridded to produce a magnetic map of the site.  The analytic signal 
is computed from magnetic data by calculating the square root of the sum of the squares 
of the magnetic gradients in three orthogonal directions. Therefore, the map in Fig. 2 and 
all similar geophysical maps represent a composite of data acquired along profile lines, 
with the values between lines and measured points along lines derived by minimum 
curvature gridding.  This gridding algorithm interpolates data by fitting a two-dimensional 
surface to the raw data in such a way that the curvature of the surface is minimized.  It 
yields best results when the data are expected to vary smoothly between measurement 
points, as is usually the case with potential field data (Geosoft, 1997). 

Fig. 1.  Recently 
completed upgrade of 
the airborne 
magnetometer system 
that was deployed at the 
Badlands Bombing 
Range in 1999.  Data 
are acquired in a 12 m 
swath with 1.7 m sensor 
spacing. 
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 Although data maps such as these may be 
extremely detailed, they are subject to some 
degree of error.  For example, the data 
acquisition is guided by navigation systems, but 
the sampling paths are never in complete 
alignment with their intended locations. 
Furthermore, the sensors respond to non-
ordnance metallic objects, naturally occurring 
features (rock and soils), and electromagnetic 
interference, so that in spite of a wide range of 
analysis tools, a level of uncertainty always 
remains about the nature of the anomalies.  
Typically, it is not feasible to acquire geophysical 
data over an entire site. As an option, such 
systems can operate along “swaths” or “paths” to 
sample within the area of interest. 
 
 

 

1.3 Correlation Structures and Spatial Statistical Models 
 
1.3.1 Three Scales of Correlation 
We noted in Section 1.1, that ordnance deposition is a two-stage process. The first two 
scales of correlation are associated with these two stages.  The first stage, which 
concerns the placement of targets (or activities that deposit clusters of items of 
ordnance), has correlations that are inherent in human decisions to place such targets. 
These may be correlations with topography, vegetation, and with activities that 
previously took place at the site (for example, decisions regarding minimum target 
separation, or safety, training and logistical considerations). The second stage governs 
the distances between individual ordnance items within such a cluster.  We can easily 
observe that ordnance density (the number of ordnance items per unit area) tends to be 
very similar at two locations that are very close and usually not so similar at locations 
farther apart. This spatial correlation can be used to provide better estimates of 
ordnance density. Note that these two correlation structures are independent, as 
ordnance targeting precision is largely independent of how targets are spaced. 
 
There is yet a third kind of correlation that concerns the similarity of an electromagnetic 
(EM) or magnetic signal at two very close locations in response to a single piece of 
ordnance. This correlation is a function of the nature of the signals, and the 
instrumentation used to generate them. 
 
Three independent scales of correlation must therefore be considered in characterization 
of a contaminated site via EM or magnetic geophysical instrumentation: 
 

•  Ordnance scale (single geophysical anomaly scale) 
•  Target scale (multiple ordnance objects), and 
•  Site scale (multiple targets). 

Fig. 2.  Magnetic map (analytic 
signal) from a portion of 
Stronghold Table at BBR.  20m 
grid cells. 
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EM and magnetic response signal correlation is at the single ordnance scale, ordnance 
placement correlation is at the single target scale, and target placement correlation is at 
the site scale. These are illustrated in Fig. 3. 
 
Data collected by EM and magnetic methods provide direct information only at the single 
ordnance object scale.  As a result, most characterization methods to date have 
concentrated on producing individual ordnance dig lists and simple site-wide averages 
(SiteStats/GridStats, UXO calculator). Two data conversions must occur to access the 
two larger scales of correlation. For target scale correlation, positions of individual 
ordnance objects must be extracted from geophysical data. Similarly, for site scale 
correlations, individual target locations must be identified. We describe these 
conversions in Sections 2.5 and 2.7, respectively.  
 
Although we are focused on mapping contamination boundaries of entire targets, an 
understanding of physical characteristics of individual ordnance items, the physics of 
projectile impact, and associated geophysical signatures are important considerations in 
selecting signatures that are associated with a target. In particular, we must differentiate 
between geological anomalies and ordnance-related items. We address this in Section 
2.5. 
 
1.3.2 Spatial Representation of Current Knowledge: The Maps 
Whereas representation of an uncertain quantity on a chart or profile can be shown with 
error bars, representation on a plan-view map really requires a collection of maps. We 
develop the concept of distributions on a map (DOAM, pronounced “dome”) to describe 
contamination levels together with probability distributions of uncertainty. Our DOAM 
framework is based on the two-stage nature of ordnance deposition that we discussed in 

ORDNANCE 
SCALE: 
Geophysical 
response 

500m 
60 km

TARGET SCALE: ordnance and 
fragment placement 

25m 

SITE SCALE: Target placement, topography, 
vegetation, ordnance activity decisions 

Fig. 3. Three independent scales of spatial correlation that can be exploited in site 
characterization. 
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Section 1.1, and on the need to properly account for uncertainty in our estimates. We 
focus on estimating two sets of DOAM maps, where each set corresponds to one stage 
of the two-stage ordnance deposition process. Estimation of each set of maps can take 
advantage of the respective scale of correlation. The map sets are: 
 

•  Ordnance Intensity Maps (OIM) provide information on density of ordnance at the 
target scale (we provide estimation procedures and programs). 

•  Target Intensity Maps (TIM) provide information on density of targets at the site 
scale (we only describe the concept of these maps). 

 
We define intensity as the expected number of ordnance items per unit area rather 
than the actual number of ordnance items per unit area. If the ordnance deposition 
process were repeated many times and we averaged the number of ordnance items in a 
given unit area over the repetitions, the average would equal the intensity for that unit 
area. In fact, it is through the introduction of the concept of intensity that we are 
able to estimate the expected number of ordnance objects per unit area (i.e., the 
intensity) in areas not surveyed. Expectation has a precise definition in statistics (see, 
Hogg & Craig 1970).  
 
Maps are not developed for the geophysical anomaly scale, because this source of 
variability is associated with the measurement system rather than the physical 
deposition of ordnance objects.  However, we point out that such spatial analysis can be 
used to rigorously address the issue of non-detection for that measurement system by 
introducing spatial probability bounds on instrument signal. Such analysis would take 
into account any non-alignment and altitude variation of sampling paths and produce a 
location-specific estimate of non-detection. We emphasize that non-detection is really a 
spatially varying quantity that depends on local geological conditions and local signal 
sampling patterns. This is feasible with the spatial statistical methods used in this report, 
but is beyond the scope of this work. 
 
The OIM and TIM DOAM maps are three-dimensional representations that include 
uncertainty as the third dimension. Our DOAM concept maps provide not only the 
estimated quantities but also a complete probability representation of the quality 
of our estimates. Specifically, for a given map spatial resolution, each individual grid 
has a third dimension that describes the estimated probability distribution of ordnance 
intensity at that spatial location. The distribution can be summarized by a few quantiles, 
say .01, .02, through .99. In which case, a map of 100x200 grids is actually a 
100x200x99 representation. Our software uses a sample of 1,000 intensities for each 
grid representation. Other representations are possible. The advantage of the DOAM 
three-dimensional representation and the ability to estimate it, which we discuss in 
Sections 1.3.2 and 2.6, is that it provides a rich set of maps that can be tailored for 
various sampling, remediation, and confidence assessment criteria. Some examples of 
maps that the DOAM representation can produce include: 
 

•  A map of probability that intensity is over a threshold per acre (see example in Fig. 
4) 

•  A map of probability that intensity is under a threshold per acre. 
•  A map of probability that intensity is between two thresholds per acre. 
•  A map of locations where intensity is under a threshold per acre with at least 95% 

(or any other %) confidence. 
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•  A map of upper 90% (or any other %) probability bound on intensity (see example 
map in Fig. 5). 

•  A map of lower 90% (or any other %) probability bound on intensity. 
•  A map of locations where we are at least 90% (or any other %) certain that 

intensity is under a threshold per acre. 
•  A map of locations we are at least 90% (or any other %) certain that intensity is 

under a threshold per acre (clean) or over a threshold per acre (contaminated). 
 

Fig. 4. OIM Map of probability that ordnance intensity is above 10 per grid (top) estimated 
from actual ordnance counts in a sample path (bottom). Color on both maps is keyed to 
probability on the top map. 
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Because we have the complete distribution estimate of the intensity at every grid of the 
map, we can map any combinations of intensity and probability that are necessary in a 
given remediation setting. 
 
Maps can also be developed to drive further sampling by delineating areas that cannot 
be certified as clean (say 95 percent probability of being below some threshold) but have 
a substantial probability of being clean. This would be a map of areas with 50 to 95 
percent probability of being below a threshold. Further sampling in these areas would 
narrow the confidence bands and allow more area to be declared clean.  
 
The OIM and the TIM are developed initially from synthetic components that are based 
on a site conceptual model, which in turn is derived from the archive search report (ASR) 
and the associated topographic and vegetative cover maps, probable locations, types, 
and densities of UXO, land use maps, and other information, as we discuss in Section 
2.2.  The OIM and TIM are updated as survey data are acquired at the site, as 
prescribed by statistically based survey design procedures.  Information from any 
additional area sampled is incorporated into an updated OIM and TIM, which in turn are 
used to produce specific maps to support the decision making process, and to guide 
survey design decisions if further surveying is required.   
 
 

Fig. 5. OIM Map of 90% upper bound on ordnance intensity per grid (top) estimated from 
actual ordnance counts in a sample path (bottom).  Color on both maps is keyed to upper 
bound on the top map. 
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1.3.3 Statistical Models of Point Patterns 
The deposition of ordnance, as we discussed in Section 1.1, occurs with greater 
frequency near a target than away from a target. This results in a non-uniform point 
pattern of ordnance locations. A process that deposits events (ordnance objects) 
scattered at non-uniform locations is described in statistics as an inhomogeneous 
Poisson point process (Cressie, 1993, Diggle, 2003). This means that ordnance objects 
are randomly placed according to an underlying inhomogeneous intensity (i.e., tend to 
be more densely deposited in some locations than in others).   
One such inhomogeneous Poisson point process specification, the Neyman-Scott 
process (Neyman and Scott, 1958), mimics our physical reality of ordnance deposition 
very closely. In fact, Stoyan et al. (1995) note that Neyman and Scott (1972) use the 
process to model the geometry of bombing. Diggle (2003) describes it by three 
postulates (We add our ordnance deposition interpretation in parentheses.): 
 

1.  A spatial Poisson process generates parent events. (Activity locations such as 
targets are determined by a commanding officer.) 

 
2.  Each parent produces a random number of offspring independently and 

identically according to some probability distribution. (The number of items of 
ordnance used in one activity is independent of another activity.) 

3.  The positions of the offspring relative to their parents are independently and 
identically distributed according to a bivariate probability distribution. (The 
ordnance objects are scattered around the target(s) randomly according to some 
spatial distribution and independently of each other.) 

 
This formulation leads naturally to simulation experiments to elicit properties of such a 
process and to compare various sampling strategies. We use such simulations to 
recommend path width and path spacing strategies for geophysical sampling in 
Section2.3.One of our central aims is to estimate the OIM from ordnance location data in 
surveyed areas. This means that we estimate ordnance intensity in the surveyed areas 
and predict ordnance intensity in areas not surveyed. Our estimation and prediction 
procedure provides uncertainty quantification for constructing the OIM representation 
discussed in Section 1.3.2.  The estimation of maps generated by an inhomogeneous 
Poisson point process, such as the Neyman-Scott process is discussed in Section 2.6. 
 

2 The Site Characterization Process and the Tools  
 
This section describes the steps of the characterization process in the order that it would 
be applied in the field. Each subsection describes a step in this process, including any 
underlying statistical issues. The flow chart maps out the chronology of the sections as 
well as the characterization process. 
 
Ideally, one should treat all three correlation scales in a single model so that full 
information from EM or magnetic signal samples can be carried through to target 
location estimates and contamination intensity estimates. Unfortunately, this presents us 
with intractable complexity. Good approximations exist if the problem is separated into 
ordnance location estimation and point process estimation. That is, we treat the smallest 
scale of correlation on its own and consider the output of this process as the input for 
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target and ordnance intensity estimation. 
 
 
 
 
 

Fig. 6. Flowchart summarizing our method for designing and analyzing 
surveys for UXO. 

Section 2.1

Section 2.2

Sections 2.3  
and 2.4 

Section 2.5 

Section 2.6

Section 2.7

ASR/Background 

Initial site estimates and maps 

Start 

Survey Design from current site estimates 

Geophysical Survey 

Geophysical to Point Pattern Data

Update site estimates and maps with new PP Data 

More Surveys?Yes

Ordnance intensity data to target center and 
target extent delineation 

Present maps for Remediation Decisions 

No 
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2.1 ASR/Background 
 
The starting point for a statistical UXO characterization is known as an Archive Search 
Report (ASR), usually conducted under the direction of the U.S. Army Corps of 
Engineers.  They provide a description of the ASR process on their web site (USAESCH, 
2003) as follows: 

“The Corps of Engineers developed the ASR process as a cost effective means to 
determine the scope of potential hazardous material on former and active military 
installations. These potential hazardous materials include, but are not limited to, 
Ordnance and Explosive (OE), Chemical Warfare Material (CWM), and low-level 
radioactive material. The Center of Expertise and Design Center for OE at the U.S. 
Army Engineering and Support Center, Huntsville in association with the St. Louis 
and Rock Island Districts developed this process.  
The ASR typically follows an initial small-scale study of a Formerly Used Defense 
Site (FUDS) called an Inventory Project Report (INPR). The local District of the 
Corps of Engineers produces this INPR. The INPR determines proof of past military 
ownership or use but they are limited in scope to data obtained from local sources.  
The core of the ASR process is the review and analysis of applicable textual records, 
maps and aerial photographs. This information is stored at numerous facilities 
including national, regional, state, and local archives and record holding facilities. 
The ASR team analyses the collected information for potential hazards. Other 
methods of information gathering may be beneficial such as interviews with veterans, 
former employees, and others associated with the sites. Many times interpretation of 
historic aerial photography greatly aids in identifying specific locations for potential 
hazards. The ASR team analyses the collected information for OE or CWM hazard 
potential. Interpretation of historic aerial photography greatly aids in identifying 
specific locations for this potential.  An ASR site inspection follows after determining 
the areas to investigate. The inspection is limited in scope to a visual, non-intrusive 
inspection of the areas suspected as having a hazard potential. The ASR team 
follows a site safety and health plan prohibiting digging or handling of potential OE 
and CWM. Should any dangerous items be found, local law enforcement authorities 
are contacted to handle the immediate situation. Further actions depend on the 
circumstances. 
 
The final ASR contains:  

•  A brief history of the site     
•  Description and characteristics of the immediate surrounding area     
•  A review of related site investigations   
•  An aerial photography and map analysis of the site     
•  Real estate information, past and present    
•  Findings of the site inspection    
•  Description of the OE and/or CWM identified with the site  
•  Copies of pertinent documents gathered during the archives search” 

 
The ASR provides information for all three scales: ordnance type information for the 
ordnance scale, activity type for the target scale, and activity locations for the site scale.  
Of course, this information is incomplete and sometimes incorrect so that data are 
collected to complete, verify, and correct this information in a statistically rigorous 
manner. 
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Fig. 8.  Target 1 at BBR. Fig. 9. Stronghold Table at BBR 

 
The ASR for the Badlands Bombing Range (BBR) site (USAESCH, 1999) identifies 19 
areas of concern within the 339,233-acre BBR site.  This ASR was conducted following 
a 1997 NRL MTADS survey at two of the areas of concern.  
 

10 miles 

Fig. 7.  Bombing Targets (shown in red) at the Badlands Bombing Range, South Dakota.
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2.2 Initial site estimates and maps 
The final ASR, as described above, contains qualitative and quantitative information that 
can be used to construct an initial site map of target locations and rough estimates of 
potential ordnance contamination. In fact, the “aerial photography and map analysis of 
the site” is the step that must be supported with software that facilitates entry of target 
and contamination estimates into a GIS-based interface. 
We have implemented a tool, “Gauss.target,” in the R statistical software package (Ihaka 
and Gentleman, 1996) that allows the user to place targets on a map. All R functions 
associated with gauss.target are in the R-loadable file Rtarget on the accompanying CD-
ROM. It is a simple example of how a much more complex and full-featured system 
would operate. The user is presented with a site map and graphical user interface (GUI) 
that allows the placement of suspected target locations on the map. Current 
implementation allows placement of targets with a Gaussian scatter of ordnance and 
computes site ordnance intensity on the basis of the user-placed targets and a 
specification of background intensity. An example of intensity that corresponds to the 
BBR map in Fig. 7, is given in Figure 10. Gauss.target will also scatter ordnance 
according to the specified intensity and output the ordnance locations from the map. 
 
Gauss.target is only meant to illustrate the point that the ASR process should include 
software that allows electronic recording of quantitative information for use in later 
estimation and survey design. A full-featured tool would include a number of pre-
specified activity types (bombing target activity, burial pit activity, artillery range, etc.) 
along with entry dialogs for parameters of the activity (dimensions of estimated ordnance 
activity, number of bombing exercises and number of ordnance per exercise, type of 
ordnance, etc.). An entry of a target along with its parameters would generate an upper 
and lower bound on intensity contribution of that target to the site. Such a tool would be 
somewhat like a number of current simulation games (Sim City, Age of Empires, 
etc.), where the user selects items to build on a map and the consequences of 
each selection and its parameters are recorded. The tool must also include features for 

Fig. 10. Representative Initial OIM for BBR. 
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developing new types of targets. Clearly, this is a large project in itself, but it would 
provide appropriate quantitative inputs to the sample design and estimation process that 
follows. 
 
Note that this tool would follow the two-stage nature to the assumed ordnance 
deposition process described in Section 1.1, where first a target is located and then its 
associated ordnance intensity is added to the site ordnance intensity. The output of this 
tool would be a three dimensional map, like the OIM, where the estimated intensity is 
provided at a specified spatial resolution, along with a measure of uncertainty in the third 
dimension. This measure of uncertainty can be simple upper and lower bounds 
computed by adding individual bounds provided with each entered target and some 
expert-elicited background estimate or possibly more quantiles that could be generated 
from distributional assumptions on each target type. In the simplest case of upper and 
lower bounds, the initial OIM would contain three intensity entries for each grid: the 
upper bound, the expected intensity, and the lower bound. The upper and lower bounds 
can be considered as the 1st and 99th percentiles. 
 
We highly recommend that SERDP consider building such a tool that would provide ASR 
inputs to the methodology developed in this and similar projects. The activities recently 
developed under the names SimRange and Visual Sample Plan (VSP) are steps in the 
same direction as Gauss.target. 
 

2.3 Survey Geometry Design 
 
The sampling ideas we describe here follow directly from generic two-stage point-
process models, such as the Neyman-Scott model, referenced above.  Where the 
clusters of ordnance objects associated with each target are small relative to typical 
intra-cluster distances, much of the contiguous area of interest is UXO-free.  Without 
precise prior information on where the targets are located, single-stage sampling plans 
will generally detect relatively few individual objects per linear unit of sampling path, 
since much of the path will be far from the actual clusters.  In this situation, a two-stage 
sampling plan in which the goal of the first stage is cluster detection, and the goal of the 
second stage is the location of individual objects within each target-cluster, may be more 
effective. 
 
Following this idea, we have focused our work on first-stage sampling plans for cluster 
detection. The prior information required includes two components. The first of these is a 
target-scale intensity function, which can be taken to be equal or proportional to the 
expected intensity of the initial OIM. The second is a set of conditional distributions of 
the number and spatial scatter of objects about a target at each potential location. 
Careful specification of this information would depend on a number of factors including 
the type of munitions used and spatial extent of range, much of which may also be 
derived from the ASR. Given these probability models for target intensity and within-
target scatter, the probability that a given sample path fails to detect a randomly placed 
target can be calculated. By ``fails to detect a ... target,'' we mean fails to detect any 
object associated with the target.  (Again, the idea is that if any event in a target-cluster 
is found, the second stage of sampling will be used to find the other objects in that 
cluster.) This failure probability can be written as a double integral involving events 
associated with any given potential target.  The probability can be used as a 
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performance measure itself (i.e., the sample path might be more relevant for multiple, 
independently placed targets).Within this context, sampling plans made up of linear 
transects, meandering paths, or grids of relatively small disjoint sampled areas can be 
evaluated and compared.  In its most obvious form, the integration defining the failure 
probability is not convenient for sample path selection because the sample path defines 
the region of integration for the inner integral; this requires that the entire calculation be 
performed for each possible path.  Substituting a linear approximation for one of the 
factors of the integrand yields an approximation of this quantity as a single two-
dimensional integral over the sample path.  After some one-time “overhead” calculations, 
this approach greatly increases the speed with which each path can be evaluated (or 
alternatively, the number of possible paths that can be compared). 
 

2.3.1 Model: Targets, Objects, and Paths 
Procedures for designing sampling plans should be developed so as to take advantage 
of what is known about the physical process leading to the distribution of ordnance.  
Within clusters of ordnance, individual ordnance items or objects are located at physical 
sites that tend to be close to the cluster center, relative to the typical distance between 
clusters. The purpose of the survey is to locate those sub-areas that contain objects, or 
a sufficient concentration of objects to merit attention. Partial or vague information may 
be available about the size and extent of clusters.  This information is not sufficiently 
detailed or certain to be the sole basis for ordnance removal. However, it can and should 
be used as the basis for designing sampling paths, the data that can be used as the 
basis for effective characterization. 
 
The survey data can be collected by moving a detection device (for example, a 
magnetometer) along a path near the ground, within the area of interest. As the 
detection device passes over an object within its path, it signals the presence of the 
object (with some probability of error), providing an approximate location.  Fig. 11 
contains a simplified schematic showing clusters of objects denoted by filled circles, 
corresponding to five targets, each denoted by an open circle, and a sampling path 
comprised of three longitudinal linear transects through the area of interest.  The objects 
are circles of various sizes, reflecting variation in the physical size of the objects. 
Detection methods have varying levels of sensitivity; relatively more sensitive methods 
might detect objects in three of the five clusters depicted in the figure, while less 
sensitive methods might detect only the larger objects shown in two of the clusters.  
(Note that “sensitivity,” as used here, is related to “false negative” errors – e.g., the 
possible failure to detect an item of ordnance in the sample path.  In reality, “false 
positive” errors attributable to objects which are not items of ordnance, but which are 
detected by the sensor systems, must also be considered.) 
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Fig. 11:  Example of Targets, Objects and Paths.  Diagram displays 5 targets, a cluster 
of large and small objects around each, and the centerline and edges of a sampling path 
comprised of 3 linear transects. 
Because we are primarily interested in approximately locating the clusters, rather than 
precise definition of the extent of each, our primary goal will be to construct sampling 
paths which have the greatest chance of detecting at least one object in each cluster.  
Put another way, we wish to avoid a situation in which we fail to detect the existence of a 
cluster, and our approach is to construct sampling paths that minimize the probability 
that this happens. 
 
Mathematical Formulation 
 
The model we describe here is a more specific version of the Neyman-Scott model 
described above, which is a direct incorporation of the ideas just described.  The spatial 
location of targets across the area of interest A follows a non-homogeneous Poisson 
process. For our purposes, we will consider the equivalent formulation in which the total 
number of targets, N is a Poisson variate with mean Λ. Individual locations of these 
targets t1, t2, ... tN , are independently drawn from the distribution I(t).  If a target occurs 
at t, the number of events resulting from that target, nt, is a Poisson variate with mean µt.  
(Note: Strictly speaking, it might be more appropriate to use a truncated Poisson 
distribution omitting the possibility of nt=0, since “targets” with no associated “events” are 
of no practical interest for our purposes.  However, this distinction is not of practical 
importance when the mean number of events associated with each target is not small.)  
Each event associated with a target is determined as et,i = t + εt,i, i=1,2,...nt, where εt,i is a 
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bivariate random variable, independent of all other random variables, with distribution φt  
which may be specific to the target location. 
 
The distribution intensity function for targets I(t), and the spread of the target-specific 
event distributions φt , are such that events generated by the same target are typically 
much closer together than events generated by different targets.   
 
We assume that sampling (data collection) is executed by operating a sensor system 
along a “path” through A. Any particular path will be characterized as a relatively narrow 
“band” of width w centered about one or more continuous line or curve segments in A, 
denoted by p (as depicted in Fig.11).  The specific process of “detecting” objects for a 
particular methodology involves the “physics” of background anomalies, how the signal 
is processed, and other details.  These considerations also contribute to a careful and 
specific analysis of the origin of false-positive and false-negative errors. Here, we shall 
simply say that of the objects actually lying in the sampling path, a proportion s (for 
“sensitivity”) is actually detected. 
 
Under this model, the probability of failing to detect all of the objects associated with a 
target located at point t, using a sample path denoted as p, is approximately: 
 

Prob(t,p) = exp{ - µt { s w / σ } φ( dp(t)/σ )}  (1) 
 
where: 
 

s =   proportion of objects that can be detected with the methodology used 
w =   width of sampling path (from edge to edge) 
dp(t) =   smallest distance from t to the path center (measured perpendicular to   
path) 
φ =   density function of the standard normal distribution 

 
The approximation depends on (1.) the path-width, w, being small and (2.) the path 
being approximately linear both with respect to the scale of a cluster diameter, or about 
4-6σ. Note that this expression is conditional on the location of a target, t, and so does 
not involve the location of targets by the Poisson process described above.  In Section 
2.3.2 we consider the performance of sampling paths for such fixed (but generally 
unknown) values of t; Section 2.3.3 deals with unconditional probabilities and so involves 
I(t). 
 
As noted above, the parameter s (for “sensitivity”) in this formulation allows for false-
negative results from the sensor system.  A model accommodating false-positive results 
can be developed along these lines by adding a relatively small “background” term, not 
associated with the spatial target clustering process, to the probability of detecting an 
“event” at any location.  This would add some complexity to the model and we have not 
developed the methodology along those lines here, but such refinements are certainly 
possible provided data reflecting the density of detectable “geophysical clutter” can be 
obtained for a site. 
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2.3.2 Effects of Detection Methodology and Path Geometry 
 
Characteristics of the detection methodology being used, and the sampling path 
followed, each have an impact on the probability of success of the screening operation.  
Other things being equal, one would expect to see improvements in performance— i.e., 
a decrease in the probability of overlooking a cluster—with increases in the sensitivity of 
the instrument, or in the width of the “swath” covered by the instrument as it is moved 
along the path.  Likewise, increases in the length of the sampling path (and so total area 
sampled) or in the “uniformity” with which the path covers the area of interest should 
ordinarily correspond to improved expected performance.  Hence, one set of 
specifications may be used to offset the effects of operational constraints on the other.  
For example, suppose an area to be explored consists of uneven or wooded terrain, so 
that airborne detectors must be used at a greater altitude than would be desired.  This 
might ordinarily be expected to lead to a decrease in the instrument sensitivity that can 
be expected, and may make it especially difficult to survey certain sub-areas of the 
domain.  Alone, either of these effects would lead to lower expected performance.  
However, in some cases it may be possible to compensate for this by increasing the 
length of the sampling path, and/or by adding width to the sensor array (e.g., widening 
the “path” covered). 
 
Figure 12 shows how instrument and path characteristics interact in their effect on 
performance.  In this graph, M and G are two summary measures of performance due to 
the sampling methodology (larger values of M are better) and path geometry (smaller 
values of G are better).  The figure shows that curves of equal performance, indicating 
that smaller values of M can be, at least to some extent, offset by smaller values of G, 
and vice versa. 
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Fig. 12:  Joint Effects of M and G.  Plotted curves identify the range of (M,G) values that 
lead to three specified probabilities of detection, for two different expected cluster sizes. 
Mathematical Formulation 
 
Equation (1) may be rewritten in a form that more clearly summarizes the influence of 
detection methodology and sampling plan characteristics, as: 
 

Prob(t,p) = exp{-µ M φ( G )} (2) 
 
where: 
 

M = sw / σ   
G = dp(t) / σ 

 
The “consolidated” parameters in this form of the expression are the unitless quantities 
M related to measurement technology characteristics, and G related to the geometry of 
the sampling path used.  µ, the mean number of objects per cluster, remains and can be 
thought of as an index reflecting the overall difficulty of the screening problem, since 
smaller/larger values of µ  represent clusters which are generally harder/easier to find, 
other things being equal.  (We have dropped the subscript t on µ for the time being, as 
we are not concerned here with how it may vary across the area of interest.) The 
implication of this form is that, for a given path geometry, detection methodologies can 
be ranked for effectiveness by their corresponding values of M, where larger values of M 
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are preferred.  Lower values of detection sensitivity, s, can be offset by wider paths, i.e., 
larger values of w, and vice versa.  Detection methodologies with the same product sw 
will be equally effective, and both will be relatively more or less effective as the clusters 
are smaller or larger (as represented by the value of σ), respectively.  Likewise for 
equivalent technologies of a given value of M, sampling paths for which G (for path 
geometry) is relatively small result in a relatively larger probability of detecting objects 
associated with a target placed at t.  Paths with equal G are equivalent for detecting 
such a target, and all such paths are relatively more or less effective as the clusters are 
larger or smaller (as represented by the value of σ), respectively. 
 
This expression is used as the basis for Fig. 12, which displays equivalent combinations 
of M and G values, for µ  (average number of objects per cluster) values of 1000 and 
100. So, for example, a detection methodology that is characterized by M of about 0.25 
for a particular application is capable of detecting target-clusters of normalized distances 
of about 0.8, 1.2, and 1.6 from the path, with probabilities 0.999, 0.99, and 0.9, 
respectively, when the average cluster-size is 100 objects. 
 
2.3.3 Two Popular Path Geometries 
 
In the discussion above, the effectiveness of a particular sampling path for detecting a 
cluster centered at any point t is examined. In the formulae given, this is reflected as the 
factor dp(t), the shortest distance from the path to the cluster center.  In this section, we 
examine this aspect of path geometry alone for two simple survey patterns of interest. 
 
Suppose for this purpose we regard t, the location of a target, as being a random 
quantity, uniformly distributed across the physical region of interest.  This corresponds to 
a uniform probability distribution I(t) in the mathematical description of the model in 
Section 2.3.1.  With respect to this random distribution, dp —now without specification of 
a particular t —is also a random variable, i.e., the distance between a selected sampling 
path p and a randomly chosen target location t.  As noted above, relatively small path-to-
target distances lead to relatively small probabilities of missing a cluster, other things 
being equal.  Hence, particular sampling plans can be compared for overall 
effectiveness by examining their respective induced probability distributions of dp. 
 
Figure 13 displays two particular sampling plans of interest, each laid out in a square 
area of interest for this example.  The solid lines represent path centers; path edges 
have been omitted in this figure because dp(t) is distance from the target to the center of 
the path.  Panel A displays a sampling plan comprised of six parallel linear transects, 
while the plan shown in Panel B is made up of two perpendicular groups of three parallel 
transects each. Note that the total transect length is the same for these two plans. In 
each case, the transects are equally spaced, with the distance from a border transect to 
the area edge equal to half the common inter-transect distance.  The open circles shown 
in each panel are potential target sites that are most remote from the path, that is, target 
sites that would be most difficult to detect with the displayed sampling plan.  Note that 
there are more most-remote points shown for the plan comprised only of parallel 
transects; all points along lines mid-way between transects are most-remote for this 
plan, while only mid-points of the squares formed by perpendicular transects are most-
remote for the sampling plan shown in Panel (b).  However, the most remote points in 
Panel A are of distance 1/12 (relative to the side of the square area) from the path, while 
those in Panel B are of distance 1/6 from the path.  For a general even number of linear 
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transects m (rather than 6), these values are 1/(2m) and 1/m, respectively. Hence for 
any (even) number of transects, the potential worst cases (i.e., most remote points) can 
be detected with greater reliability when all transects are parallel, rather than when they 
are arranged in two perpendicular groups.  On the other hand, as will be shown in a later 
example (Section 2.3.5), even a few simple constraints can result in an optimal search 
pattern with crossing line paths.  
 

 
Fig. 13:  Two Sampling Paths and Most Remote Points for Each.  Sampling paths 
comprised of 6 linear transects are displayed as heavy lines, and the unsampled points 
farthest from the path are displayed as open circles.   
 
 
Figure 14 displays the induced probability distributions of dp, corresponding to the 
sampling paths displayed in Fig. 13. The upper extent of the horizontal axis for each 
graph is 1/6, showing that the points at this distance are most-remote for the sample 
path displayed in Fig. 13b.  The means of these two distributions are 1/24 and 1/18, 
respectively. For a general even number of linear transects (rather than 6), the shapes of 
these distributions and ratios of the means remain the same, as the distributions are 
“compressed” along the horizontal axis. So, as with the distance to most-remote points, 
the distribution of distances to randomly selected points suggest that more effective 
screening is accomplished when all transects are parallel, rather than when they are 
divided into two perpendicular groups. 
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Fig. 14:  The Probability Distributions of dp for the sample paths shown in Figure 13. 
Other path geometries of interest include S-shape or so-called “meandering” paths.  
Extreme S-shaped paths comprised primarily of parallel path segments connected with 
relatively tight turns at each end perform much like parallel transects.  Under the model 
considered here, relatively good sampling paths generally: 
 

•  cover the area of interest uniformly, and 
•  contain few or no crossing segments. 

 
The first of these properties is easy to see—paths that leave substantial sub-areas 
unsampled are especially poor at detecting clusters in those sub-areas.  Paths that 
“cross themselves” frequently are generally wasteful for screening purposes since they 
commit multiple path segments to covering the same small sub-area. 
 
 
2.3.4 Algorithm for Constructing Optimal Paths 
 
The analysis presented in the previous section is intended to demonstrate general 
relationships between geometry of the sampling path and characteristics of the detection 
methodology.  This is useful in showing the “broad” effects of screening characteristics, 
but may not be a sufficient guide for designing sampling patterns in specific situations.  
For a particular site, information may be available on the likely spatial distribution of 
UXO.  Further, irregular terrain features may represent operational restrictions on 
practically useful sampling plans.  Because the unique characteristics of a problem make 
it difficult to offer simple and general sampling rules for conducting a survey, we have 
written a computer algorithm for constructing sample plans which are “optimal” in a 
reasonable sense, given partial information about UXO spatial intensity, allowing for user 
control of which transect segments are considered for inclusion in the plan (i.e., are 
practical segments given what is known about the region). 
 
Three types of information are required as input for the algorithm: 
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•  information characterizing the intensity of targets across the area to be screened, 
along with the likely size and number of objects included in a potential cluster 
located at any point,  

•  information on the detection methodology to be used, in particular about the 
sensitivity of the method and the width of the path to be scanned along each 
transect, 

•  an explicit list of linear transect segments that would be acceptable (i.e., not 
operationally infeasible) for inclusion in a sample path. 

 
Given this information, the algorithm can be used to construct a sample path of specified 
length, made up of segments from the list provided, which minimizes the probability of 
missing all objects associated with any target cluster.  Hence, the intent is to construct a 
path that maximizes the chance of seeing at least one object from each cluster of UXO; 
it is understood that subsequent local-scale sampling will then be needed to determine 
the extent of each cluster. 
 
The algorithm is a “local search,” which implies that not every possible path that could be 
constructed is actually evaluated.  A direct, complete comparison of all possible paths 
would be too computationally intensive for practical use.  The approach taken relies on a 
“segment exchange” process, in which modifications of an existing path constructed by 
removing and adding individual segments, are evaluated, and changes that result in 
improvements are incorporated. The resulting path cannot be guaranteed to be the very 
best possible (in the sense of minimizing the probability of missing a target cluster) 
because not all possible paths are evaluated.  However, the heuristics on which the 
search is based can usually be relied upon to yield paths that are near optimal in this 
sense. 
 
2.3.5 Example 
 
Figure 15 displays examples of the two functions needed as user input by the algorithm.  
The function in Figure 15a is the “target intensity” function, which specifies a relative 
probability of location for the targets located in the square area of interest (site-scale 
information.  Figure 15a, can be thought of as a contour map of this function, indicating 
that targets are considered relatively more likely in the northeast corner and relatively 
less likely in the southwest corner.  Figure 15b depicts a second kind of spatial 
information, the expected number of objects associated with a hypothetical target 
located at each point in the area (target-scale information). Again, the figure can be 
thought of as a contour map, in this case indicating that any clusters located in the 
eastern part of the area are thought to contain relatively more objects on average, and 
clusters located in the western part of the area are thought to contain relatively fewer 
objects on average.  Note that the information related in Fig. 15b does not reflect the 
spatial probability of objects being located at various points (ordnance-scale), but the 
expected number of objects in a cluster conditional upon a target being located at each 
point in the area.  Although some expert judgment is required in the construction of 
these functions for a given situation, much or all of the basic information needed should 
be included in the ASR. 
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Fig. 15:  Target Intensity Function, and Expected Cluster Size Function, for Example of 
Section 2.3.4.  Panel A (left) displays contours of the target intensity function, ranging 
from 0.5 in the southwest corner to 1.5 in the northeast corner.  Panel B (right) displays 
contours of the cluster size function. 
 
The program also requires a list of path segments that can be considered as potential 
components in the search path.   A collection of 88 path segments was specified for this 
demonstration.  All segments are half the length of one side of the square region of 
interest.  Half are laid out east-to-west and extend from the western boundary to the 
central meridian of the area or the central meridian to the eastern boundary. These are 
equally spaced north-to-south, with spacing equal to one-tenth the length of one side of 
the square region.  The remaining half are similarly constructed, but run north-to-south, 
each one-half the length of one side of the square, and equally spaced from east-to-west 
across the region. 
 
Figure 16, Panels A-D, display optimal paths constructed for this problem, comprised of 
5, 10, 15, and 20 path segments, respectively.  Calculations were performed for a 
detection system of perfect sensitivity (i.e., s =1), for situations in which the path-width is 
0.0001 or 0.05 the length of one side of the square region; the resulting calculations 
were identical in this case.  As can be seen in the figure, line transects are selected 
primarily along the east and north sides of the region in this case, reflecting the 
increased target incidence (Fig. 15a) and expected cluster sizes (Fig. 15b) in these 
regions. 
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Fig. 16:  Optimal Sampling Paths for the Example of Section 5.  Paths comprised of 5, 
10, 15, and 20 linear segments are displayed in Panels A, B, C, and D, respectively. 
Mathematical details of the algorithm are described in the following subsection, and a 
listing of the S+ program used in the demonstration calculation is given on the enclosed 
CD-ROM.. 
 
Mathematical Formulation 
 
If a target exists at t and exactly one event is associated with that target, the probability 
that the target is not detected by using sampling path p is: 
 

1 – ∫u∈pφt (u-t) du  =  1 - π(t,p) (3) 
 
where the integration region is the sampling path.  Given the independent location of 
events within target-cluster, the probability of detecting none of the events associated 
with this cluster, conditional both upon a cluster being in this location and of producing nt 
events, is: 

[1 - π(t,p)]nt (4) 
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Removing the conditioning on the cluster size, this probability (still conditioned on target 
location) is: 
 

Σn [1 - π(t,p) ]n  exp{- µt} µt
n / n! 

 
Note that this may be rewritten as: 
 

exp{-µt π(t,p)} Σn exp{-µt(1-π(t,p))}[ µt (1-π(t,p))]n / n! = exp{-µt π(t,p)} 
 
Finally, removing the conditioning on target location, we have that the probability of 
missing all events associated with a single, randomly placed target, is: 
 

Prob(p) = ∫t exp{-µt π(t,p)} I(t) dt 
 
Our goal will be to develop one or more algorithms which minimize Prob(p), or other 
related probabilities, with respect to the sampling plan, for a specified problem.  
However, Prob(p) as developed above is not a convenient form for path selection, 
because it requires the evaluation of a double-integral, with respect to each of t and u for 
any path to be considered.  We next consider how this may be simplified to provide a 
more convenient form for our purposes.   Recall that π(t,p) is the probability that one 
unspecified event associated with a target at t will be detected using path p. If we 
assume this is a small probability, then we may express exp{-µt π(t,p)} in the form of a 
Taylor series about π(t,p)=0 as: 
 

exp{-µt π(t,p)} = 1 - µt π(t,p) + ½ µt
2 π(t,p)2 - ... 

 
Substituting into the above expression for Prob(p), we have: 
 

Prob(p) = ∫t I(t) dt  -  ∫t µt π(t,p) I(t) dt  + ½ ∫t µt
2 π2(t,p) dt  -  ...  

     = 1  -  ∫t µt ∫u∈p φt (u-t) du I(t) dt  + ½ ∫t µt
2 (∫u∈p φt (u-t) du )2 I(t) dt  -  

...  
  = 1  -  ∫u∈p ∫t µt φt (u-t) I(t) dt du  + ½ ∫u∈p ∫u'∈p ∫t µt

2 φt (u-t) φt(u'-t) I(t) 
dt du' du  -  ... 
   = 1  -  ∫u∈p Φ1(u) du  +  ½ ∫u∈p ∫u'∈p Φ2(u,u') du' du  -  ...  
  = 1  -  Ψ1(p)  +  ½ Ψ2(p)  -  ... 
 

Hence paths which minimize the first-order approximation of Prob(p) are those for which 
the integral of Φ1 over the path area are minimized.  This is intuitive, because it favors 
paths that maximize the prior probability of detecting an event.  However paths which 
are “optimal” by this criterion would occupy only the region in which Φ1 is largest, 
avoiding regions in which the probability of detecting a target is even slightly less.  
Minimizing the second-order approximation of Prob(p) penalizes paths which cover the 
same area too many times since Φ2 is relatively larger for such paths.  Incorporating 
higher-order terms would yield greater accuracy, but require more intensive computing. 
Here, we shall focus on the second-order approximation of Prob(p), 
 

Prob2(p)  =  1  -  Ψ1(p)  +  ½ Ψ2(p) 
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Linear Path Segments 
 
Substitution of Prob2(p) for Prob(p) simplifies the numerical problem of finding optimal 
paths for target detection.  Here we shall simplify the calculation further by restricting 
attention to paths which: 
 

• have constant width, w, and  
• are comprised of linear segments, each segment being all points in A within 

distance ½ w of a specified line segment. 
 
Let the set of line segments specifying a path be denoted by L = { l1, l2, ... ls }.  For any 
single line segment li, the contribution to Ψ1 may be approximated (for small w) by a one-
dimensional integral along li: 
 

Ψ1,i  = w ∫u∈li Φ1(u) du 
 
Similarly, for sections of the path corresponding to segments li and lj, the contribution to 
Ψ2 may be approximated by a double line integral: 
 

Ψ2,i,j  =  w2 ∫u∈li ∫u'∈lj Φ2(u,u') du' du 
 
Hence we may approximate Prob2(p), for small w, by: 
 

Ψ2,i,j ≈  1  -  Σi=1
s Ψ1,i  +  ½ Σi=1

s Σj=1
s Ψ2,i,j 

 
Segment-Exchange Algorithm 
 

•  Given specified A, I(t), and φt, 
•  Given a specified list of “candidate segments”, Λ = {l1 , l2 , ... , lt }, 
•  Given a specified number of segments to be included in the path, r < t, 
•  Given a specified path width, w, 
•  For each segment li from Λ , calculate: 

Ψ1,i  = w ∫u∈lI Φ1(u) du  = w ∫u∈li [∫t µt φt(u-t)I(t)dt ] du 
•  Evaluate the u-integral over a one-dimensional grid of values along li. 
•  For each grid-point on li, evaluate the t-integral over a rectangular two-dimensional 

grid. 
•  For each pair of segments li and lj calculate: 

Ψ2,i,j  =  w2 ∫u∈li ∫u'∈lj Φ2(u,u') du' du  =  w2 ∫u∈li ∫u'∈lj [∫t µt
2 φt (u-t) φt (u'-t)I(t)dt ] du' du 

•  Evaluate the double u-integral over a (crossed) pair of one-dimensional grids along 
li and lj, respectively.  For each pair of points, evaluate the t-integral over a 
rectangular two-dimensional grid. 

•  Select an initial path L = { l1, l2, ... ls } by randomly picking r segments from Λ .  
Denote by Λ - L the set of t-s segments not in the initial path.  Evaluate the initial 
path by calculating: 

Prob2(p) = 1 - Σi Ψ1,i + ½ Σi Σj Ψ2,i,j, 
where sums are over the segments in the path. 

•  Find the segment li in Λ - L which would most reduce P2(a) if it were added to the 
path, i.e. for which: 

Ψ1,i  -  Σj, lj ∈ L Ψ2,i,j  -  ½  Ψ2,i,i 
is greatest.  Add this segment to L, and delete it from Λ -L. 
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•  Find the segment li' in L which would least increase Prob2(a) if it were deleted from 
the path, i.e., for which: 

Ψ1,i'  -  Σj ≠ i',lj ∈ L Ψ2,i',j  -  ½ Ψ2,i',i' 
is least.  Delete this segment from L, and add it to Λ -L. 

•  Re-evaluate Prob2(p) for the new L.  Repeat this process (e.g. exchange of 
segments between and Λ -L) until Prob2(p) is not reduced further.  Then report the 
resulting (locally optimal) path L. 

 
The Test Problem 
 

• A = unit square. 
• I(t) = t1 + t2, i.e. 0 at SW corner and 2 at NE corner. 
• φt  = centered (i.e. zero-mean) bivariate normal with σi=0.1, ρ=0, i=1,2. 
• Λ= segments with endpoints: 

 
(0.0,0.0) (0.0,0.5) 
(0.1,0.0) (0.1,0.5) 
(0.2,0.0) (0.2,0.5) 
... ... 
(1.0,0.0) (1.0,0.5) 
(0.0,0.5) (0.0,1.0) 
(0.1,0.5) (0.1,1.0) 
(0.2,0.5) (0.2,1.0) 
... ... 
(1.0,0.5) (1.0,1.0) 
(0.0,0.0) (0.5,0.0) 
(0.0,0.1) (0.5,0.1) 
(0.0,0.2) (0.5,0.2) 
... ... 
(0.0,1.0) (0.5,1.0) 
(0.5,0.0) (1.0,0.0) 
(0.5,0.1) (1.0,0.1) 
(0.5,0.2) (1.0,0.2) 
... ... 
(0.5,1.0) (1.0,1.0) 

 
• s = 1. 
• w = 0.0001 and 0.05. 

 
2.3.5 Comparison to Other Approaches 
 
The statistical methods used in spatial sampling problems are generally classified as 
being either design-based methods or model-based methods.  Each has characteristics 
that may be thought of as advantageous or disadvantageous relative to the other, 
depending upon the application, prior information, and questions to be answered.  The 
methods described in this report are model-based, because their development proceeds 
from a stochastic model of the spatial distribution of UXO.  Specific spatial models used 
in this report are the Neyman-Scott model (Section 1.3) and other formulations of the 
Cox model (Section 2.6).  The statistical methods developed for predicting and 
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estimating intensities, target locations, et cetera, are constructed in reference to this 
stochastic model, and do not require spatially random sampling for valid results.  Our 
emphasis has been to develop methods based on models that seem most physically 
realistic in the context of what is known about UXO deposition and spatial distribution. 
 
The methodology developed by Bilisoly and McKenna (2003) is also model-based.  The 
spatial model, in this case, is the stationary random field model from which “ordinary 
kriging” is developed.  While spatial predictions can be made without assuming the 
specific form of the spatial model, the standard errors of these estimators are generally 
developed under the assumption that the responses at any collection of points follow a 
multivariate normal distribution.  This may be a reasonable assumption for some longer 
length-scales, where general fluctuations in intensity are of greatest interest, rather than 
the point-locations of targets, or the spatial density of individual objects associated with a 
cluster.  Under these conditions, kriging methodology is computationally simpler than the 
methods we have developed.  However, at shorter length-scales, or when the physical 
clustering mechanism motivating the Neyman-Scott point-process model is dominant, 
kriging models are less reasonable representations of reality. 
 
Design-based methods typically depend on relatively weak assumptions concerning the 
problem structure, and rely on random sampling (sometimes stratified) for statistical 
validity.  The Visual Sampling Plan software (Gilbert et al., 2002, Hassig et al., 2002) is 
based on methodology of this type.  The greatest advantage of design-based 
procedures may be that they do not require strong assumptions concerning the 
deposition pattern of the material being sampled.  As a result, inferences drawn from 
data collected under these plans may sometimes be less susceptible to criticism than 
those obtained through model-based methods.  However, because these methods 
typically do not incorporate spatial models for the process under study, they generally 
require more data than model-based methods.  A further limitation of design-based 
methods is that they generally do not provide a useful framework for predicting 
intensities or concentrations of material except with areas which have been randomly 
sampled, i.e., the absence of an explicit spatial representation makes it difficult to predict 
via interpolation or extrapolation. 
 
Both model-based and design-based methods can be useful tools in the characterization 
of UXO distribution, and in fact, may well be used together at different stages of 
sampling.  As suggested above, the kriging model of Bilisoly and McKenna may have 
practical utility for modeling general trends in intensity over moderate or long length-
scales, while limiting the computational effort required for design and analysis.  The 
design-based techniques of Gilbert et al minimize reliance on spatial assumptions, and 
may be most useful when many spatially scattered samples can be quickly collected, 
and when only average levels of contamination within relatively large cells must be 
estimated.  The methods described in this report are more computationally demanding, 
but are based on point-process models that may more faithfully represent the physical 
problem.  In particular, the techniques to be described in Sections 2.6 and 2.7can be 
used as a “meta-method” to guide sampling where it is most needed over several length 
scales.  Depending on the scale, operational constraints on sampling, et cetera, VSP, 
kriging, and methods based on point processes might all be used at different stages of a 
study and the results integrated through modeling based on physically realistic point 
process models. 
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2.4 Geophysical Sensor and Platform Selection and Performance  
 
In Section 2.3.1, we have provided a mathematical framework for selecting optimal 
geophysical sensors and platforms for a survey.  Equation 1 (p. 18) presents the 
probability of failing to detect all objects associated with a target located at point t, using 
a sample path denoted as p, as a function of four variables, s, w, dp(t), and φ.  Two of 
these variables, s (the proportion of objects that can be detected with the methodology 
used) and w, (the width of the sampling path) can be used to quantify instrument and 
platform performance, in order to select the optimal tools for a particular survey.  
Moreover, it is essential to develop an understanding of geophysical anomalies at the 
ordnance scale in order to more accurately separate them from non-ordnance 
anomalies, and from these anomalies to construct point pattern distributions (Section 
2.5), which are in turn used to make ordnance intensity maps at the target scale (OIM, 
Section 2.6). 
 
2.4.1 Platform selection 
 

Several platforms are available for UXO instruments, including man-portable, vehicle-
towed, aircraft, or boats.  Some platforms are inappropriate for certain sites, e.g., boats 
are inappropriate without a suitable body of water, and aircraft cannot fly at low altitudes 
where they are impeded by tall trees.  The platform controls the minimum and maximum 
distances of the sensors relative to the object.  In selecting a platform for a site, one 
must be concerned with several factors: 

• Vegetative cover can eliminate one or more platforms from consideration.  Tall 
trees can prevent airborne platforms from operating at sufficiently low altitude; 
dense forest can prevent operation of towed instruments and hinder performance 
of man-portable platforms.  Swamps or dense underbrush may be unsuitable for 
man-portable or towed platforms. 

• Rugged topography may restrict all platforms from consideration; moderate 
topography may only be suitable for man-portable instruments (Figure 17). 

• The size of the UXO targets must also be considered.  Airborne platforms 
operate at an altitude that is too great for detection of 20mm or other small 
ordnance objects.  For intermediate sizes of UXO, it may be that instruments 
operating on one platform may be able to detect a larger proportion of UXO, 
although the cost per area may differ considerably. 

• Noise levels vary among platforms, and can affect the detection capabilities of 
instrumentation deployed on that platform. 

• At some sites, the presence of hazardous objects, chemicals, or explosives could 
disallow platforms that must interface with the ground surface. 

• At some sites, regulations for the protection of sensitive species will not allow 
clearing of brush or disturbance of soils that are associated with ground-based 
platforms.  
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2.4.2 Instrument Selection 
 
Most sensors used for UXO mapping are geophysical instruments, primarily 
magnetometers and electromagnetic induction instruments.  Many of the 
electromagnetic instruments were originally designed for geologic mapping, although 
some have been adapted for detection of UXO and other metallic objects, and new 
systems designed specifically for UXO are in development.  As they are passive 
instruments, magnetometers have generally not required design changes for UXO 
surveys.  When operating at low sensor heights, it has been observed that 
electromagnetic instruments are usually more effective than magnetic surveys where the 
background geology causes significant interference.  For instance, electromagnetic 
instruments are generally the instrument of choice in parts of Hawaii and the 
southwestern United States where basalts are predominant.  
 
 

Fig. 17.  a) Topographic map of the Badland Bombing Range, SD; b) first order 
gradient of the topography from a); and c) second order gradient of the 
topography, derived from b). 
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Fig. 19.  Receiver operator curve 
from Asch et al., 2002. 

Fig. 18.  Regional magnetic map of the western U.S. 
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Performance of sensors can be anticipated by reviewing regional geologic or magnetic 
maps, e.g., Fig. 18. Where the magnetic field due to geologic effects is large and 
variable over short wavelengths, it is quite likely that geology, associated with basalts or 
other mafic rock types, will interfere with magnetic systems, making electromagnetic 
sensors the preferred tool.  A larger scale map than that shown in Fig.18, will probably 
be required in order to make this assessment.  Selection of a sensor is most reliably 
determined on the basis of controlled tests, where the different alternatives can be 
judged in terms of their sensitivity to known targets.  These may yield Receiver Operator 
Characteristic curves (ROC curves), as in Fig. 19. 
 
ROC curves, such as the one shown in Fig. 19, provide an indication of sensor 
performance.  They provide an indication of the ratio of false alarms to ordnance items, 
based on excavation of anomalies detected with a particular instrument or by a particular 
survey provider.  Underlying dependencies to these curves include the range of types 
and depths of ordnance encountered, the accuracy of data positioning, the 
discrimination capabilities of the interpreter and the evaluator’s differentiation between 
OE and non-OE items (intact-partial-pieces-frag).  ROC curves can be used to select the 
optimal instrument, but do not provide a value for the parameter s in equation 1, which 
quantifies the proportion of objects that can be detected with the methodology used.  
This depends on how many anomalies are selected for excavation.  The threshold that is 
selected in picking anomalies is directly related to the value of s.    We suggest that the 
ROC curves be used for selection of the optimal instrument, and that the user assign a 
value to s based on the performance of the selected instrument at a local prove-out grid.  
If 80% of the UXO items of the desired type are detected in the test grid, using an 
anomaly threshold that would be used in the survey, then s should be set at 0.8. 
 
Swath width, w, can be taken as about twice instrument height for single sensor 
instruments (1.5-3 times depending on the sensor, see Fig. 20).  This will apply largely to 
ground-based instruments, which are operated at about 0.5 meters above ground level 
(AGL).  For instruments that consist of arrays of sufficiently densely spaced sensors, the 
swath width can be estimated as the maximum separation of sensors plus twice the 
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Fig. 20.  Calculated response for a magnetic dipole for four selected sensor heights.



 35  

instrument height.  The ORAGS-Arrowhead airborne magnetic system, for example, has 
a maximum sensor separation of 12m, and under favorable conditions operates at 1.5m 
AGL, leading to a swath width of 15m. 
 
Practical considerations must guide the selection of platforms and sensors.  Random 
paths cannot be programmed into navigation devices for airborne of towed sensor 
platforms.  Actual paths will always differ somewhat from the programmed path 
locations.  Vegetation or localized topographic features will often cause diversion from 
pre-programmed paths.   
 
2.4.3 Geophysical Forward Modeling for Signature Prediction 
 
The spatio-temporal characteristics of specific sensor signatures (e.g., magnetometers, 
time-domain electromagnetic induction systems and frequency-domain electromagnetic 
induction systems) of specific types of ordnance can be determined by geophysical 
forward modeling.  Validated forward models exist for all the major classes of sensor 
systems used for UXO detection surveys.  The concepts of two specific forward models 
for total field magnetics (TFM) and time-domain electromagnetic induction (TDEM) are 
illustrated in Fig. 21 (Butler et al., 2003).  The models summarized in Fig. 21 have been 
extensively validated.  The models also serve as the foundations for parametric 
inversion to obtain model parameters that best fit field survey data for localized, UXO-
like target anomalies (Butler et al., 2003).  Algorithms for discrimination of UXO-like from 
non-UXO-like targets are based on the model parameters recovered from inversion.  
Examples of model validations are shown in Fig. 22.  The validation example for 
magnetometry compares forward model calculations with measured signatures over a 
105-mm projectile at four azimuthal orientations (Fig. 22a).  For TDEM, the validation 
example illustrates the use of the forward model in parametric inverse modeling and 
compares measured signatures for a 60-mm mortar and a 105-mm projectile with 
forward model calculations using parameters deduced from inversion of the measured 
data (Fig. 22b).  The TDEM validation example illustrates capability to adequately model 
both the spatial signature and temporal evolution of the signature for two different types 
of ordnance.  
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a.  Concept of a prolate spheroid forward model (MAGMOD)  
     for UXO magnetic signature prediction. 

 

 
   

b. Concept of an orthogonal dipole forward model for UXO  
    TDEM signature prediction 
 
 

Fig. 21.  Forward models for UXO signature predictions   
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a. Forward magnetic modeling validation example for magnetometry 
 
  

b. Parametric inversion and forward modeling validation examples for TDEM 
 
 
          Fig. 22.  Validation examples for magnetic and TDEM modeling 
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2.4.4 Ordnance Types, Depths and Orientations 
 
When the specific types of ordnance at a site are known, modeling may be used to 
represent the expected anomalies at representative depths and orientations.  
Representative noise values will be known for appropriate instruments, and this can be 
used as a threshold to select instrumentation for a site.  Total magnetic field signature 
predictions have been developed for 105’s, 155’s, and M-38 practice bombs, and others 
can be developed.  An example is provided in Fig. 23.   This figure shows the maximum 
positive and negative amplitudes for an M-38 practice bomb, the predominant type of 
ordnance found on the Badlands Bombing Range, as a function of sensor height above 
the bomb, for three different orientations of the bomb.  These calculations were 
performed using the code MAGMOD to model the magnetic response of UXO (forward 
modeling; Butler et al. 1998; Butler et al. 2001).  MAGMOD requires details of the 
ordnance item (length; diameter; distance below sensor, where distance = depth + 
sensor height; location within calculation grid; and orientation; see Fig. 21a).  For 
magnetic modeling, the magnitude, inclination, and declination of the Earth’s magnetic 
field at a location of interest is required.  Several model UXO orientations should be 
calculated in order to assure that UXO will not remain undetected due to unfavorable 
orientations – the detection method must be able to detect those items as well as items 
that are favorably oriented. 
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Fig. 23.  Maximum and minimum total field anomalies for an M-38, 100-lb 
practice bomb, pointing toward magnetic north.  Model calculations were made 
with MAGMOD.  The dashed line represents a possible detection threshold, 
although a lower threshold will be appropriate for some sensor platforms and 
many sites with “quiet” magnetic background.   
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Measured responses from ordnance objects that are representative of a site, at a test 
grid, for example, may also be used to bracket the anticipated responses.  These can be 
acquired with the ordnance in representative background geology, in order to 
characterize both the response and the background noise at once.  It is useful to 
conduct modeling in advance of construction of such a test site in order to use optimal 
orientations for the UXO.   
 
The range of depths and orientations of UXO at a site can be predicted or established 
using three approaches, one very conservative, one practical, and one “exact”; (1) 
“theoretical” maximum penetration depths can be determined using penetration 
equations, tables, or nomograms for vertical impact at maximum achievable velocity 
(e.g., Tarno and Butler 1986; Department of the Army 2000); (2) depths and orientations 
based on realistic penetration depths and recovery experience at a variety of locations; 
(3) penetration depth and path for specific cases using a sophisticated penetration code 
(e.g., Adley et al. 2003).   
 

Penetration depths are dependent on soil and/or rock physical properties and 
heterogeneity, type of UXO (mass, length, diameter, nose shape, fins if present, etc.), 
and the details of the impact (velocity, angle of impact, angle of attack, spin, etc.).  The 
type of soil/rock, vegetation, and soil moisture are some environmental factors that 
influence how deep an ordnance object will penetrate into the ground.  Some general 

Table 1.  Selected portion of a tabulation of maximum penetration depths from 
Department of the Army (2000) 
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observations have been noted for soils (Dept. of the Army 1986):  (1) penetration depth 
decreases with increase in bulk density; (2) for materials having the same density, the 
finer the grain size the greater the penetration; (3) penetration depth increases with 
increasing water content.  Geological factors such as frost heave, flooding, erosion and 
deposition, and human activities (agriculture, construction, recreation) can cause 
movement of ordnance object after its initial penetration.   
 
An example of the conservative approach is shown in Table 1, where the maximum 
penetration depths for selected ordnance types (including the 100-lb practice bomb 
considered in Fig. 22) in three types of soil are tabulated.  An example of the usefulness 
of the conservative, maximum penetration depths is shown in Fig. 24, where the total 
magnetic field magnitude versus depth for two orientations of a 105-mm projectile are 
compared to a nominal detection threshold and the maximum penetration depth for a 
typical soil.  The maximum penetration depths correspond to case (d.) in Fig. 25, where 
the ordnance impacts vertically at maximum velocity.   
 
The rest of the cases in Fig. 25 indicate an approach to practical penetration depth 
considerations that indicate a considerably reduced vertical depth of penetration for 
actual angles of impact and realistic impact velocities.  Cases (a. – c.) indicate that 
ordnance will follow a curved trajectory (“J-hook” trajectory); and in the extreme case of 
grazing angles of impact (e.g., < 20o), the ordnance fragment will not remain buried at 
all, but will “breach or ricochet” and return to the surface.  Two useful facts result from  
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Fig. 24.  Total magnetic field anomaly calculations for two orientations of a105-mm 
projectile, compared to a nominal detection threshold, the maximum predicted 
penetration depth for sand and gravel, and an equivalent sphere. 
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Fig. 25.  Illustration of subsurface trajectories of UXO as a function of impact angle. 

 

 Fig. 26.  Plot of actual penetration depths based on extensive database of recovery depths 
of UXO at remediation sites (from Department of the Army 2000). 
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practical depth considerations: (1) actual penetration depths will always be less than the 
conservative, maximum depth; (2) the orientation of the ordnance item is observed 
intuitively and from recovery experience to be inclined predominantly < 45o relative to the 
surface and often is nearly horizontal.  The second fact motivates the inclusion of curves 
for horizontal (0o) and 45 o for modeling assessments such as Fig.22 and Table 1.           
 
Practical penetration depth considerations are also indicated by UXO remediation 
recovery experience.  For example, UXO cleanup at the former Fort Ord has resulted in 
an extensive database that indicates approximately 90% of ordnance pieces and 
ordnance scrap located within 0.3 m (12 inches) of the surface, and 98% located within 
0.6 m (24 inches) of the surface   The Fort Ord experience is consistent with the data 
plotted in Figure 26 that is based on a much more extensive database from UXO 
remediation sites. 

2.5 Geophysical to Point Pattern Data 
Once a survey is designed, as described in Section 2.4, we assume that the survey will 
be conducted and geophysical data will be provided to guide subsequent excavation and 
analysis.  We assume that some anomalies will be excavated to provide an improved 
basis for distinguishing between anomalies that are associated with UXO targets and 
those that are unrelated to UXO targets.  In this section, we describe the tools and 
procedures for developing a point pattern data set from the geophysical data.  This is not 
a trivial task, as it involves an understanding of the geophysical properties of UXO and 
the uncertainties associated with properly identifying the source of geophysical 
anomalies.  If all geophysical anomalies above a selected threshold could be deemed to 
be UXO indicators, the problem would be trivial; unfortunately, this is never the case.  
Significant effort has been expended by ESTCP, SERDP, and other agencies toward 
improving this process at an individual UXO item scale, so as to reduce remediation 
costs. 
 
The utility of geostatistical point pattern data for characterization of UXO sites as 
outlined in this report depends upon the interpretation of the sensor system response 
data, e.g., magnetic or electromagnetic data. The goal of this task was to develop 
statistical methods for classification of anomalies and to be able to distinguish between 
target-related objects (UXO, shrapnel) and target unrelated objects (geology, building 
materials, wire, scrap, etc.). Successful discrimination at this stage will clearly improve 
subsequent analyses that utilize anomalies as points in geostatistical analyses. 
Furthermore, feedback from ground truth data in the iteration between data collection 
and data analysis contributes to improved discrimination models. 
 
Hard data on system performance is required in order to assign statistical properties to 
geophysical anomalies.  For our example, the geophysical data from BBR that have 
been acquired with man-portable, MTADS ground-based, and ORAGS airborne 
magnetometer systems can be used to define system and platform performance. The 
geophysical anomalies mapped at these targets provide indications of the area 
dimensions of the targets.  Selected excavations have been conducted at some of the 
targets.  The statistical procedure would provide guidance on how to separate items that 
are target-related and target-unrelated.   
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Although a mixture of intuition and statistical methods were used to select geophysical 
sampling locations at BBR, we can use the MTADS and airborne data that have been 
collected at BBR to represent the results from a first iteration of sampling.  These include 
several airborne transects, MTADS surveys of two of the bombing targets in Fig. 3 and 
airborne surveys of each bombing target shown in Fig. 3.   
 

Fig. 27.  Magnetic (analytic signal) map from a portion of Stronghold Table at BBR.  The 
geophysical attributes of the anomalies can be used to distinguish target-related from 
target-unrelated anomalies.  Here, the color-coding only indicates a categorization by 
anomaly amplitude, but we anticipate categorization based on other parameters, 
including +/- pole separation, wavelength, and spatial relationship to other anomalies.  
20m grid cells.  

Fig. 28.  Airborne magnetic map 
(analytic signal) of Bombing Target 
1 at BBR.  Analysis of the 
distribution of anomalies and their 
spatial attributes will aid in setting 
survey design parameters.  Results 
from digging such anomalies will 
establish spatial relationships 
between target-related and target-
unrelated features (such as the 
fence line shown above).  Area 
shown is approximately 600m by 
600m. 
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Geophysical forward and inverse modeling as described in Section 2.4.3, can be used in 
interpretation of the geophysical data, in order to produce an estimated ordnance map 
from the geophysical map. Modeling can be used to bracket reasonable statistical 
parameters for anomalies, representing the probability that an anomaly is ordnance-
related vs. non-ordnance-related.  As noted previously in this document, it is important to 
distinguish this classification or discrimination system (ordnance vs. non-ordnance) from 
other discrimination efforts whose aim is to discern between different types of UXO, or to 
identify live UXO among inert UXO.  An example of the application of a discrimination 
algorithm to the 60-mm example of Fig. 22b is shown in Fig. 29.  Assigning probabilities 
to a ranked list of UXO-like targets is based on a goodness-of-fit measure or other 
objective criteria (e.g., Billings et al. 2002). This approach can be applied equally to 
magnetic or electromagnetic data with appropriate algorithms.  The examples in this 
report are drawn from magnetic surveys simply due to the large volume of work and 
experience in this area.  
    
2.5.1 Statistical Approach 
 
The magnetometer-generated signature of a suspected ordnance item can be described 
as a two-dimensional “image” of the magnetic field surrounding the object. It has various 
characteristics of shape and amplitude that can be used to qualify or classify the source. 
Such inverse modeling (inversion) is an under defined (ill-posed) mathematical problem, 
making unique solutions impossible. Most discrimination efforts to date have focused on 
dipole moment modeling where an object's fitted dipole is compared to a library of 
ordnance dipoles. This approach requires the knowledge of the types of ordnance 
expected and their theoretical dipoles. The method was designed for small-scale ground 
surveys, and is arduous to implement in the case of airborne surveys where it may be 
necessary to examine thousands of anomalies in a timely manner.  Furthermore, our 
experience thus far indicates automated versions of dipole model fitting programs have 
not yet proved reliable enough for use with large airborne data sets.  The discrimination 
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Fig. 29.  Example of application of discrimination algorithm to parametric inversion results, 
see Figs. 21 and 22,for a 60-mm mortar; result indicates a ferrous, rod-like target, which 
must be listed as UXO-like in a target list.  UXO probability ranking can be based on a 
goodness-of-fit criteria or similar objective consideration. 
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approaches we investigate here require preliminary calibration, as also do model fitting 
approaches, but can be employed in the field with minimal computing resources. 
 
Magnetic detection systems have been employed at survey sites where the presence of 
ordnance objects is known or suspected. By design these systems respond to ferrous 
materials so that any anomaly that is defined by an elevated analytic signal could be 
caused by either an ordnance or non-ordnance ferrous object. Thus, on its own, the 
strength of the analytic signal is not an effective ordnance/non-ordnance discriminator. 
Note however, implicit in all discussions to follow, all anomalies subjected to 
classification have an analytic signal that exceeds a specified minimum threshold value. 
 
Parameters, other than analytic signal can be derived from magnetic data, for example 
total magnetic field, magnetic peak value, magnetic low value, the separation between 
the magnetic peak and the analytic signal peak, magnetic peak-to-peak amplitude, width 
of analytic signal, width of total field peak, angle between magnetic north and the line 
connecting the maximum and minimum of the total field anomaly (theta), instrument 
height, estimated anomaly depth, and others.  Although any single parameter may be 
only weakly correlated to the presence of UXO, when considered collectively they can 
be quite useful for anomaly characterization. Our approach to discrimination is an 
empirical approach that seeks traits measured by the suite of signal summaries that 
distinguish ordnance items (actually ordnance-related items, which includes ordnance 
fragments) from non-ordnance items. (Further work needs to be done to investigate, and 
possibly expand beyond a standard list, the types of signal summaries that can be used 
to this end.) Integral to this approach and to all supervised classification is training data, 
in our case a data set consisting of dig results and corresponding instrument signals. 
The objects found at a dig location make up a dig result. For purposes of discrimination 
the items are labeled as ordnance or non-ordnance; the non-ordnance group is further 
partitioned into subgroups that have distinguishable features, e.g. wire and scrap. We 
hope to enhance discrimination capability by providing categories of objects with 
relatively homogeneous characteristics even though our ultimate prediction will be either 
ordnance or non-ordnance. (This tactic could be taken for the ordnance group as well, 
although we do not do so because in the Badlands Bombing Range data set discussed 
here the ordnance group is fairly homogeneous; 90% of the items are M-38-related.) 
 
There are various approaches to automated anomaly classification. In general, a 
discriminant rule relates to a division of the multi-dimensional feature space into disjoint 
regions that correspond to the set of predefined groups (Chapter 4, Gnanadesikan, 
1977). An entity whose measured features fall into one of the regions is classified 
accordingly. For the approaches we discuss here the discriminant rule can be recast in 
terms of similarity or distance. For example, it would be reasonable to identify as 
ordnance any unknown whose measured parameters are similar to (close to, not far 
away from) those of ordnance. The approaches differ mainly according to how distance 
is calculated. 
 
We can derive a measure of similarity to ordnance from the multiparameter means and 
covariances obtained from the training set consisting of the ordnance data alone. That 
measure is called the Mahalanobis distance. The concepts of "similarity to ordnance" 
and "distance from ordnance" can be visualized most simply for the two-parameter case. 
Consider a plot of hypothetical data, analytic signal versus magnetic low value, in Figure 
. If the two parameters were uncorrelated and had equal variances, the cloud of points 
on the plot would appear to vary about the mean point (shown as a filled circle) 
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approximately equally in all directions. Then a point on the plot that is "similar to 
ordnance" or "close to ordnance" would be close to the mean point in the usual 
Euclidean distance sense.  This is clearly not the case in the (equal x, y scales) plot of 
Fig. 30a, where there is pattern of negative correlation between the two parameters and 
variability in the analytic signal dimension greater than in the magnetic low value 
dimension.  Euclidean distance between points on this plot does not fit with our sense of 
similarity in this case.  For example, the point P1 at (20, -8) on this plot is situated more 
like other ordnance points than point P2 at (12, 8) even though the Euclidean distance of 
either point from the mean is approximately the same. The calculation of Mahalanobis 
distance takes into account, the variances and covariances.  Mahalanobis distance 
between points in the original scale, such as in Fig. 30a, is equivalent to Euclidean 
distance between points such as P1 and P2 in a transformed representation, such as in 
Fig. 30b, where the new dimensions are uncorrelated and have equal variance.  The 
notions of Mahalanobis distance and transformation to uncorrelated variables extend to 
dimensions greater than two. 

 
 
Fig. 30. Points and Euclidean distance in original and transformed dimensions.
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We can calculate the Mahalanobis distance of any anomaly from the ordnance mean 
and order the distances from smallest to largest as a way to prioritize anomalies for 
follow up. We can choose a cutoff distance for discrimination from the receiver operator 
curve (ROC) derived from the training data set, assessing the trade-offs between 
increasing true positive rate (TPR) and increasing false positive rate (FPR). Available 
resources, time and money, will weigh heavily in the decision. We can in general 
calculate the Mahalanobis distance of any anomaly from any other group mean, e.g., 
scrap mean, in a similar fashion. We could even use this measure when training data 
were available only on ordnance items, but rather than deriving a cutoff from a ROC 
curve we would perhaps determine a upper tolerance bound for the ordnance population 
as a cutoff. See Pepe (2000) for description of ROC methodology. 
 
A ROC curve is a useful diagnostic display to assess two-group classifiers. Consider 
classifying anomalies as ordnance when the analytic signal exceeds some cutoff. The 
ROC curve shown in Fig. 31 pertains to data collected at the Badlands Bombing Range 
(discussed below). Each point on the curve is linked to an analytic signal cutoff value. 
For example, the point (0.812, 0.95) corresponds to classifying an anomaly as ordnance 
if the analytic signal exceeds 4.2nT/m. In this data set 95% of the ordnance and 81.2% 
of the non-ordnance exceed this value. The point (0.5, 0.594) corresponds to a 7.5nT/m 
cutoff. 

Fig. 31.  ROC curve showing the rate of true positives versus false positives for a list of 
anomalies with ordering based on analytic signal (x ≤ cutoff).
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The curve in Fig. 31 shares a property with all ROC curves in that it passes from (0, 0) to 
(1, 1). For this example, the (0, 0) point would imply that we classify all anomalies as 
non-ordnance and therefore get all of the non-ordnance correct but we get none of the 
ordnance correct. The (1, 1) point is where everything is classified as ordnance and 
therefore we get all ordnance correct but get all non-ordnance wrong. The diagonal line 
connecting (0, 0) and (1, 1) corresponds to a random classifier, i.e., a classifier that 
randomly guesses ordnance, non-ordnance by flipping a fair coin. Note that the ROC 
curve is below this diagonal line for the TPR up to approximately 0.73 indicating that for 
some cutoff values the classification rule does worse than classifying ordnance and non-
ordnance by flipping a coin.  Note however, that we could modify this classification rule 
to be better than a random rule overall. For example, setting an upper cutoff threshold 
that eliminates the first 30% of the false positives results in a classification rule that does 
much better than a random rule (since most of the very large responses are too large to 
be ordnance).  It would, however, result in approximately 8% false negative responses – 
a parameter not captured in the ROC curve.  Other rules, such as the multi-parametric 
system described above or the multivariate system below would have completely 
different ROC curves. 
 
A perfect classifier would be a step function rising from (0, 0) to (0, 1) and flat to (1, 1). 
Thus, in general, a classifier whose ROC curve rises sharply and achieves its maximum 
quickly is to be preferred. A traditional method for comparing classifiers is the area under 
the ROC curve (AUC). The perfect classifier has AUC 1 so that classifiers can be easily 
compared using this measure. It is likely in practice that a classifier would not be 
operated at FPR's that are very large. In this case, by specifying an upper bound on the 
FPR, we could evaluate classifiers over the limited FPR range by comparing the partial 
area under the ROC curve (pAUC). Continuing the example, the AUC for the analytic 
signal classifier is 0.43 and if we specified an upper FPR of 0.8 the pAUC is 0.24. 
 
Linear discriminant analysis (LDA) is another approach to classification where a 
discrimination rule is derived from a training data set made up from the exhaustive list of 
groups/categories of interest. The rule classifies a new item according to its 
(multivariate) similarity to a group, i.e., LDA classifies to the predefined group the item is 
closest to. You can think of LDA classifications based on Euclidean distances after a 
mathematical transformation, as described above for Mahalanobis distance. The 
transformation used in LDA is different from the one used for Mahalanobis distance. 
Other discrimination approaches can be derived as variants of LDA or Mahalanobis 
distance, e.g., calculate Mahalanobis distance from each group separately and classify 
into the closest group. One disadvantage of traditional LDA and this variant of 
Mahalanobis distance from each group is that all groups must be predefined and have 
training data. See Section 4.2.1 of Gnanadeskikan (1977) for a general discussion of 
distance measures as related to classification. 
 
In this report we focus on two classification procedures, Mahalanobis distance from 
ordnance and a variant of the two-group traditional LDA denoted here by LDAv. In LDAv 
we perform a usual two-group LDA using a training set with items known as either 
ordnance or non-ordnance (i.e., the further refinement of non-ordnance into subgroups is 
ignored). In the two-group case LDA simplifies to classifying into one group or the other 
based upon a single transformed variable, x which is a special weighted sum of the 
original variables. The special weights are determined so that the t-statistic testing group 
difference is maximized using data on the transformed x (Panel on Discriminant 
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Analysis, Classification, and Clustering 1989). A cutoff value in the transformed scale, 
called the first discriminant coordinate (LD1), determines whether an item is classified 
into one group or the other. The method, which the cutoff value is chosen, is how LDAv 
differs from usual LDA. We use the ROC curve derived from the training set to assess 
and choose LD1 cutoff values. 
 
Implicit in the discussion of multivariate classification is that there is a defined set of 
variables to be used. We identified a number of parameters that could be calculated 
from the magnetics data without regard to their utility for classification. We now want to 
select effective discriminators. If we include too many variables we may do very well 
when classifying the training data set but do worse when classifying new data. 
Therefore, we would like to strike a balance between the number of variables and good 
discrimination. We performed a two-stage screening of the variables. In the first stage 
we identified and dropped variables that were essentially redundant. In the second stage 
we compiled the final collection of variables from lists obtained using regression analysis 
techniques. 
 
We couched our search for the best list of variables within the framework of classical 
LDA. Our primary interest was to discriminate ordnance from non-ordnance where we 
had several types of non-ordnance items. We separated the non-ordnance items into 
groups to take advantage of signal characteristics that may exist and may improve 
discrimination. We applied standard variable selection techniques to the two-group 
discrimination problems, ordnance versus each of dirt, scrap and wire, and then 
determined the final set of variables from the combined list. Parameters appearing in 
multiple lists and consistently within discrimination sets of various sizes were favored for 
the final list. The two-group LDA can be recast into a regression setting (Panel on 
Discriminant Analysis, Classification, and Clustering 1989) where group membership, 
recoded as a binary variable (say 0 for one group and 1 for the other group), is the 
dependent variable and the potential discriminators are the independent variables. Then 
an all-subsets regression routine can help assess the value of classifier sets. 
 
2.5.2 Analysis of Badlands Bombing Range Data 
 
Data were acquired at the Badlands Bombing Range (BBR) in South Dakota, using a 
helicopter boom-mounted magnetic detection system during 2000 and 2001. The site, 
instrumentation, and ground follow-up is described ORNL, 2000. The raw data were 
gridded to a cell size of 1m and post-processed with Geosoft Oasis Montaj software 
(Geosoft, 2003), to compensate for instrumentation system and configuration influences 
and other systematic effects, to calculate the analytic signal, and to select anomalies 
analyzed here. Anomalies were chosen based upon a threshold intensity of the analytic 
signal peak (analytic signal > 1.2 nT/m to 1.5 nT/m). Further statistical analyses were 
performed using the open-source R statistics package (Ihaka and Gentleman, 1996). 
Some, but not all of the surveyed sites, had dig information that could be associated with 
anomalies. Dig results and magnetic data were paired according to physical location, 
easting and northing coordinates. The closest dig result within 3 meters of a magnetic 
anomaly was considered a match. 
 
A suite of summaries for the training set was calculated for each anomaly. Each variable 
considered in this investigation is listed in Table 2, along with a brief description.  
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Table 2.  List and Description of Variables Used in the Statistical Analyses 
 
Variable Description (units) 
========================================================= 
*as.approx Analytic signal approximation(nT/m) 
*as.grid Analytic signal(nT/m) 
*depth Calculated anomaly depth(m) 
inst.height Instrument Height(m) 
mag.pp Magnetic peak-to-peak amplitude(nT) 
*mag.pp.sep Magnetic peak separation(m) 
*maglow.value Magnetic low value(nT) 
magpeak.as.sep Separation of magnetic peak and analytic 
   signal(m) 
magpeak.value Magnetic peak value(nT) 
*theta Offset angle of total field anomaly from 
   magnetic north(deg) 
*width.as Width of analytic signal(m) 
*width.tf.peak Width of total field peak(m) 
ihpd Instrument height + calculated anomaly 
   depth(m) 
x.as.peak Easting of as.grid(m) 
x.maglow Easting of maglow.value(m) 
x.magpeak Easting of magpeak.value(m) 
y.as.peak Northing of as.grid(m) 
y.maglow Northing of maglow.value(m) 
y.magpeak Northing of magpeak.value(m) 
*rat.asg.asa Ratio, as.grid:as.approx 
rat.mpass.ihpd Ratio, magpeak.as.sep:ihpd 
*rat.mpass.mpps Ratio, magpeak.as.sep:mag.pp.sep 
*rat.mpass.was Ratio, magpeak.as.sep:width.as 
*rat.mpass.wtfp Ratio, magpeak.as.sep:width.tf.peak 
rat.mpps.ihpd Ratio, mag.pp.sep:ihpd 
*rat.mpps.was Ratio, mag.pp.sep:width.as 
*rat.mpps.wtfp Ratio, mag.pp.sep:width.tf 
*rat.mpv.mpp Ratio, magpeak.value:mag.pp 
rat.was.ihpd Ratio, width.as:ihpd 
rat.wtfp.ihpd Ratio, width.tf.peak:ihpd 
*rat.wtfp.was Ratio, width.tf.peak:width.as 
========================================================= 
*Indicates variables considered as potential candidates for discrimination 
between ordnance items and non-ordnance items. 
 
The variables are either summaries calculated from gridded raw data using Geosoft 
Oasis Montaj (Geosoft, 2003) software or derived variables, functions, mostly ratios, of 
those summaries. The signal characteristics of an item vary with the item's distance from 
the sensor. We attempt to remove the effect of item-to-sensor distance on an anomaly's 
signal through these derived variables and gain additional insight on discriminating 
ordnance items from non-ordnance items. (Further research into variable selection is 
part of a new study proposal submitted by ORNL.) 
 
Table 3 contains the dig list grouped into broad categories. A large number of the  
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Table 3.  Badlands Bombing Range Anomaly Descriptions 
 
Anomaly group 
  Anomaly description                                       Frequency 
=========================================================== 
Soil 
  Magnetized soil               25 
  Magnetized rock        2 
 
Ordnance 
  250 lb.sand filled practice bomb, AN-M57        1 
  4lb incendiary pieces-fuse(burnt) & frag        2 
  Bomb Frag/Bomb fin            8 
  Bomb Frag & Barbed Wire           2 
  M50 Series Inc. bomblet, Blown in Place       1 
  M38 pieces/fin/frag             8 
  M38/M38 (Backhoe)/M38 & & Functioned Bomb Fuze, M100 Series  144 
  M38 100lb Practice Bomb           8 
  M38 with Live Spotting Charge/M38 link of (3) .50 cal (rds)   2 
  Strongback from Incendiary Dispenser        4 
 
Scrap 
  Bed Spring              1 
  Can/Can lid/Cooler top/Paint can/20mm ammo can     8 
  Car parts/Buried car/Old farm implement         5 
  Corrugated tin/Wash tub/Barrel bottom/Bucket      5 
  Culvert/Culvert under paved road         2 
  Hay rake/Plow blade/Rake tooth         5 
  Metal/Rusty metal pieces            2 
  Metal Wagon Wheel/Steel loop           2 
  Radar Reflector Target           2 
  Rebar/Steel bar/Metal stake/Metal rod       12 
  Steel posts/Fence post/Fence and post       10 
  Steel pipe/Exhaust pipe           2 
  Target anchor/Chain/            7 
 
Wire 
  Wire                 18 
  Barbed wire/woven wire           51 
  Barbed wire and metal/Pipe and wire        2 
  Old fence post & posts w/padlock         1 
  Guide wire post anchor/Telephone pole and cable 3 
 
Unknown or nothing detected 4 
No dig results                         1178 
=========================================================== 
 1527 (tot) 
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anomalies have no associated dig results because no follow-up digs have been done. 
We focused on the four main groupings of dug anomalies, ordnance/ordnance-related 
(ord, n=180, 162 are M-38's or M-38 fragments), magnetic rock or dirt struck by lightning 
(dirt, n=27), scrap metal (scrap, n=63), and wire (wire, n=75) as the training set (n=345) 
for developing discrimination tools. The statistical analysis of that data set is described 
here. 
 
Overall and group statistical summaries are presented in Appendix 2 for each of the 
variables listed in Table 2. The statistics calculated are n total (n), the number equal to 0 
(n=0), mean (Mean), standard deviation (SD), minimum (Min), order p quantiles for 
p=0.5, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 (0.5, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, respectively), 
and maximum (Max). Boxplots in Fig. 32 provide visual comparisons of univariate 
distributions with regard to anomaly group. The lower and upper extents of a box 
correspond to the interquartile range, the 0.25 and 0.75 quantiles, the line within the box 
corresponds to the 0.5 quantile (median), and the dashed lines extend to the most 
extreme data points which are no more than 1.5 times the interquartile range from the 
box. Data values more extreme are plotted individually. Box width is proportional to the 
square root of the number of observations in the group. To facilitate comparisons of the 
bulk of the data, some of the plots are clipped either above or below indicated in a plot's 
marginal text by the cutoff value(s) used and the resulting number of data points from 
each group not shown. 
 
Some of the individual summary parameters show potential for discriminating between 
ordnance items and non-ordnance items. Consider, for example, magnetic low value, 
analytic signal, the ratio of anomaly magnetic peak value to magnetic peak-to-peak, and 
separation between magnetic peak and analytic signal peak, respectively.  These plots 
show and the summaries in Appendix 2 confirm, for example, that 95% of the ordnance 
items of the types encountered here exhibit analytic signals below 21 nT/m, will tend to 
have small (in absolute value) magnetic low values (95% are greater than -11 nT/M), 
and tend to have shorter distances between the magnetic peak and analytic signal than 
non-ordnance (95% are less than 3.2 m). Furthermore the ratio of positive magnetic 
peak to magnetic peak-to-peak is a fair discriminator of ordnance items from dirt, the 
bulk of ordnance values are larger than the bulk of the dirt values. 
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Fig. 32.  Boxplots comparing anomaly groups with respect to variables. 
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Collectively, a suite of parameters should improve our ability to discriminate between 
ordnance items and non-ordnance items. In each of the approaches to multi-parameter 
discrimination we must specify that set of parameters. Some of the variables listed in 
Table 2, provide redundant information and some may not have utility for discrimination 
at all. If we include too many variables we may do very well when classifying the training 
data set but do worse when classifying new data. We would like to strike a balance 
between the number of variables and good discrimination. 
 
As a first level of screening for variables to be used for discrimination, we viewed various 
x,y plots and assessed correlations among variables (not presented here). We identified 
a number of redundant parameters. When selecting among alternatives we preferred 
variables that have some theoretical basis for discrimination (e.g., Nelson, et al. 1998) 
suggest that the offset angle for UXO may be within say 35-50 degrees of the earth's 
field because of shock demagnetization), variables that may account directly for 
instrument height and item depth (e.g., ratios), and variables that have desirable, 
interpretable properties (e.g., analytic signal). The analytic signal serves as a surrogate 
for both the magnetic peak value and magnetic peak-to-peak amplitude, however the 
ratio of magnetic peak value to magnetic peak-to-peak amplitude was retained. 
Instrument height plus calculated item depth, was found to be highly correlated with the 
magnetic peak-to-peak separation; the latter was retained as a variable and in ratios, 
rather than the former. The magnetic peak, analytic signal separation variable was highly 
correlated with all ratios where it was the numerator; one ratio, the ratio of magnetic 
peak, analytic signal separation to width of the analytic signal was retained. The list of 
potential variables for discrimination after the initial screening, are indicated in Table 2. 
 
We sought the best list of variables for discrimination of ordnance from non-ordnance 
using two-group LDA, ordnance versus each of dirt, scrap, and wire. We cast LDA as a 
regression problem and used variable selection techniques to arrive at candidate sets. 
The final set was derived from the best sets from each two-group LDA. The top single-
variable discriminators for ordnance and the individual non-ordnance categories were 
fairly consistent, either analytic signal (as.grid), magnetic low value (maglow.value), ratio 
of magnetic peak value to magnetic peak-to-peak (rat.mpv.mpp), or ratio of magnetic 
peak, analytic signal separation to width of analytic signal (rat.mpass.was). We settled 
upon a six-variable discrimination set after additional subsets were evaluated, all 
including the four variables just listed. The two additional variables added were offset 
angle (theta) and width of analytic signal (width.as). Although this six-variable list is not 
the overall best list for each two-group discrimination problem, it is among the best for 
each. 
 
First, consider Mahalanobis distance of anomalies from the ordnance mean for the 
different groups of anomalies. Figure 33 shows boxplots comparing distance from the 
ordnance mean for the four groups. Clearly there is a benefit to considering parameters 
collectively; it appears that approximately 75% of the calculated distances for the 
ordnance group are below 2.4 units whereas approximately 75% of the distances in the 
other groups are above that level. Figure 34 shows a ROC curve for Mahalanobis 
distance. This classifier classifies anomalies according to a cutoff rule; larger distances 
are more consistent with non-ordnance. One possible rule identified on the plot 
corresponds to a cutoff distance of 4.41 units resulting in 95% of the ordnance correctly 
identified and 63.6% of the non-ordnance incorrectly identified as ordnance. The pAUC 
for a 0.8 FPR is 0.61 for this classifier, much improved over the analytic signal classifier 
discussed earlier.  
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Fig. 33.  Boxplots comparing anomaly group with respect to Mahalanobis distance. 
 

 
Fig. 34.  ROC curve showing the rate of true positives versus false positives for a list of 
anomalies with ordering based on Mahalanobis distance  (x < cutoff). 
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Now, consider anomalies with respect to LD1, the first linear discriminant coordinate in 
the LDAv classifier. Figure 35 shows boxplots comparing LD1 in the four groups. Again, 
as was observed with the Mahalanobis distance, separation between ordnance and non-
ordnance groups in this transformed variable is enhanced when compared to that for 
individual parameters as seen in Fig. 32. Figure 36 shows the LDAv classifier ROC 
curve. This classifier classifies anomalies as ordnance when LD1 exceeds a cutoff 
value, i.e., larger LD1 values are more likely with ordnance items than non-ordnance 
items. The rule identified on the plot classifies anomalies as ordnance when LD1 
exceeds -0.28 units, which results in 95% of the ordnance correctly identified and 50.3% 
of the non-ordnance incorrectly identified as ordnance. The pAUC for a 0.8 FPR is 0.59 
for the LDAv classifier. 
 
2.5.3 Summary 
 
Parameters, other than analytic signal, have utility for discriminating between ordnance 
items and non-ordnance items; however, the multivariate nature of magnetic anomalies 
can be exploited for improved discrimination. There are a variety of classification 
techniques; all require a training set for calibration, representative of the area, ordnance 
types, and measurement technology to be applied. 
 
We presented two classifiers that utilize multivariate information found in the magnetic 
signal; both can be tuned using ROC curves. One classifier is based upon Mahalanobis 
distance, an intuitive measure of similarity. Ordnance training data are required in order 
to develop a framework for measuring similarity to ordnance, but training data are not 
required for non-ordnance items unless we want to tune the classifier using ROC curves. 
LDAv is the other classifier, which is a variant of traditional linear discriminant analysis. It 
classifies according to a transformed variable LD1, which is the first linear discriminant 
coordinate. It too is quite intuitive in that the transformation maximizes the separation 
between ordnance and non-ordnance items. A full training set of ordnance and non-
ordnance items is required.  
 
A set of discriminator variables was selected in two stages from the full suite of signal 
parameters. In the first stage we dropped redundant variables, retaining those that are 
easily interpretable or theoretically meaningful. We recast two-group LDA, ordnance 
items versus each of dirt, scrap and wire, as a regression problem and used variables 
selection techniques to arrive at the final set of discriminators. For the BBR data we 
selected a six-parameter set, analytic signal (as.grid), magnetic low value 
(maglow.value), ratio of magnetic peak value to magnetic peak-to-peak (rat.mpv.mpp),  
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Fig. 35.  Boxplots comparing anomaly groups with respect to the first discriminant 
coordinate.  

Fig. 36.  ROC curve showing the rate of true positives versus false positives for a list of 
anomalies with ordering based on first discriminant coordinate.
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ratio of magnetic peak, analytical separation to width of analytic signal (rat.mpass.was), 
offset angle (theta) and width of analytic signal (width.as). 
 
In the BBR data analysis, the Mahalanobis distance and LDAv classifiers had similar 
performance, but in general this may not be the case. One reason for a difference is that 
we do not take into account direction.  When Mahalanobis distance is calculated, an 
ordnance item quite distant from the ordnance mean could be even further distant from 
the non-ordnance groups, but be classified as non-ordnance. We would expect the LDAv 
classifier to be better in situations when covariance structures are the same in the 
ordnance and non-ordnance groups, because by design, LDA finds the best separation 
between the populations. Performance will be degraded, however, when covariances 
are heterogeneous, but LDA is known to be quite robust to assumptions. Both classifiers 
discussed here are definite improvements over classifiers using single parameters such 
as analytic signal.  Finally, once classification of detection instrument signals is 
complete, the locations of those predicted to be ordnance-related is utilized in the next 
analysis stage. 
 

2.6 Construction of OIM from Point Pattern Data 
Although the point pattern locations themselves can be used in nearest neighbor 
distance estimation methods, when estimating the intensity of an inhomogeneous 
Poisson process from an incomplete sample, the mathematics becomes intractable 
(Diggle 2003). However, methods exist for Poisson count data. For this reason, the point 
pattern of the ordnance location data is converted to counts on a grid, as shown in Figs. 
4 and 5, and is used in the estimation methods described in this section. 
 
2.6.1 Estimating the OIM 
 
Estimation procedures for point pattern data are discussed in Cressie (1991), Stoyan et 
al. (1995), and Diggle (2003). The Neyman-Scott process, introduced in Section 1.3.3, is 
a doubly stochastic process. This means that the parameters of an observed random 
process (ordnance deposition) are governed by another random process (target 
placement). Both sources of randomness must be taken into account in estimation to 
avoid underestimating uncertainty. 
 
Our estimation methodology connects to the Neyman-Scott process through a result by 
Bartlet (1964), who has shown that the Neyman-Scott process is a Cox process (Cox, 
1955) for which mathematically tractable constructions exist. The Cox process is based 
on the following postulates (Diggle 2003): 
 

1.  A spatial stochastic process generates a non-negative intensity function. 
2.  An inhomogeneous Poisson process produces events according to the generated 

intensity function. 
 
A relatively flexible and tractable construction for a Cox process is the class of log-
Gaussian processes (Moller et al., 1998). These models are tractable to the extent that 
spatial intensity estimation procedures are available via Markov chain Monte Carlo 
(MCMC).   
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Christensen and Waagepetersen (2002) use a log-Gaussian (LG) process model for 
estimating weed counts in a field from a sample of area counts for use in precision 
applications of weed killer. The analogy of applying weed killer only where there are 
weeds carries over to applying ordnance contamination remediation methods only where 
there are items of ordnance. Estimation of this model is implemented in a package 
geoRglm (Christensen and Ribeiro 2003) for the R statistical system (Ihaka and 
Gentleman 1996), which is distributed under the GNU General Public License. 
 
The LG model assumes that the intensity is an exponential function of a Gaussian 
random component with a spatial correlation structure and a regression on a vector of 
covariates. In particular, for any location x within a site and a small region with area A 
centered on x, we assume that the number of ordnance objects in this region, given by 
Y(x), has the Poisson distribution with a mean λ(x).  For each location x, we let 
 

λ(x) = exp( S(x) + f(x,β) ), 
 

where S(x) is a correlated zero-mean Gaussian process, and f(x,β) is a linear regression 
function on the initial, ASR-based, OIM upper and lower bounds in the neighborhood of 
x.  Because of the Poisson distribution assumption, prediction equations do not have a 
closed form so that geoRglm proceeds by Markov chain Monte Carlo (MCMC, also 
sometimes known as the Metropolis-Hastings algorithm).  Loosely speaking, we apply 
kriging to the log of the intensity, while treating the count data as the result of Poisson 
realizations.   
 
As is customary in variations on kriging, this also requires the estimate of a variogram for 
the correlation function of the stochastic process S(x). The package geoRglm provides 
two ways of estimating the variogram. This can be estimated externally to the MCMC 
estimation by fitting a variogram function to the log of the count data, or a Bayesian form 
can be estimated during the MCMC estimation. 
 



 64 

 
 
We conducted a simulation with Gauss.target and generated several targets and 
associated ordnance on a Badlands Bombing Range map as illustrated in the top Figure 
37.  A gridding and counting function (that we include in Gauss.target) produces the 
counts in the bottom Fig. 37. Next, we consider a sample of this map indicated by the 
red counts. This sample alone is used in fitting a variogram and using geoRglm to 
produce distributions for all grids on the map, including those not sampled. Distribution 
histograms for the predicted intensity of several grid locations are in Figs. 38 and 39. 
Note that all true counts are covered by the predicted probability distributions (including 
the extreme 24 in Fig. 39, that is at about the .99 tail probability), confirming appropriate 
uncertainty coverage. Note that intensity estimates for the sampled grids also contain 
uncertainty. For example, a grid with a 1 count in the path on the left boundary of Fig. 
39, results in an intensity estimate roughly between 0 and 3, as indicated by the green 
histogram. This is because of the Poisson stochastic layer of the underlying model; the 
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Fig. 37.  Top: Simulated targets (magenta) with scattered ordnance (red) and background 
ordnance (black) positioned on a map of Badlands Bombing Range. Map color indicates 
ordnance intensity.  Bottom: Ordnance counts after gridding top map. Red counts indicate 
locations to be sampled. Blue counts indicate locations predicted in Figs. 4 and 5. 
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interpretation is that a Poisson distribution with intensity between 0 and 3 is likely to 
produce a count of 1 (although spatial correlation plays a role here too).  The results we 
present in Figs. 4 and 5 are for the same simulated BBR map but with a different sample 
path. 
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Fig. 38.  Estimates of grids with true zero counts put more probability on bigger counts 
as distance from path increases. This is reasonable because correlation decreases with 
distance. 
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Fig. 39.  Intensity distribution predictions for a number of grid locations.  Note that 
uncertainty about intensity exists even at the grids that were sampled (top left histogram 
for the 1 and bottom left histogram for the 15). 
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2.6.2 Relationship to Other Kriging Methodologies 
 
Count data sampled in portions of a grid can be interpolated with various kriging 
methodologies. The interpolation and variance calculations of simple kriging depend only 
on the sample locations and make no distributional assumptions other than spatial 
stationarity of the process. However, as soon as the computed variances are used in 
making a probability statement, an implicit distributional assumption on counts is made. 
Usually the assumption is Gaussian. The greatest difficulty with this assumption arises 
when the counts are low and the count distribution becomes asymmetric as is apparent 
in our estimates shown by histograms in Figs. 38 and 39 (in contrast to Gaussian 
symmetry). Using notation of the previous section, ordinary kriging uses the model 
 

Y(x) = S(x), 
 

dropping the Poisson layer of variability. In the same setup, the universal kriging model 
is 

Y(x) = S(x) + f(x,β), 
 

and the same implicit Gaussian assumption and loss of Poisson variability exists. The 
net result is an incorrect assessment of uncertainty. 
 
This asymmetry in low count situations can be more appropriately handled by trans-
Gaussian kriging. This methodology begins by taking a transformation of the data, so 
that a Gaussian assumption is more tenable, and proceeds with kriging. The results are 
then transformed with the inverse transformation. This introduces some bias (Cressie 
1991) but can work well in some cases. In the case of log-Gaussian kriging, the model is 
 

Y(x) = exp(S(x)). 
 
However, both of the above kriging approaches are ignoring one stochastic layer that is 
present in our point process situation. They both ignore the Poisson nature of our count 
data. That is, they model Y(x) instead of λ(x). As a result, the uncertainty estimates will 
be overly optimistic. 
 
One method that avoids the implicit Gaussian assumption on the counts and includes 
both stochastic layers is indicator kriging.  Indicator kriging applies kriging to indicator 
functions of the data. For example, the function can specify if a threshold is exceeded 
with a certain minimum probability, where the probability computation can include both 
stochastic layers. Kriging is then applied to the probability that the indicator is 1. The 
reports on indicator kriging in the statistical literature are mixed. Cressie (1993) 
considers the theoretical underpinnings of indicator kriging to have some ad hoc 
components. Krivoruchko (2001) reports loss of information due to the indicator 
transformation.  In any case, it seems clear that a careful evaluation and review of the 
theoretical properties of indicator kriging, and careful consideration of the method’s 
appropriateness relative to the physical processes involved in the UXO mapping 
problem, is needed before it can be seriously considered in this context. 
 
The advantage of all these kriging methods is that the estimation process has a closed 
form and can be computed very quickly.  Our choice of the log-Gaussian model with 
MCMC estimation of Section 2.6.1, is based on its realistic assumptions, good 
theoretical underpinning, close relationship with the physics of ordnance deposition, and 
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the ability to estimate intensity and its uncertainty directly.  As we have shown in our 
simulation, the estimation performs well for both low and high ordnance counts. 
Complete computation of our estimated DOAM distributions for the maps presented in 
Figs. 4 and 5 required about 20 minutes on an 850 MHz laptop computer.  Subsequent 
production of all the maps from one DOAM representation takes only seconds. As 
current (2003) laptops are roughly 2 GHz and their speed doubles about every 18 
months, we believe the computational requirements for DOAM are very reasonable. 
 

2.7 Target Extent Delineation and Target Center Location 
 
As we discussed in Section 1.1, the physical ordnance deposition process is a series of 
two-stage activities, where the first stage locates a target and the second stage scatters 
the ordnance around the target. Given a DOAM OIM representation of a few targets, 
here we discuss how to classify clean and contaminated areas on the basis of the 
DOAM OIM, and how to develop a DOAM TIM. 
 
2.7.1 Target Extent Delineation 
 
The DOAM OIM representation can be computed for any gridding resolution that is 
feasible on available computing resources. The resolution used in the BBR figures, such 
as Fig. 4, in this report is 16 x 43. Because all ordnance data are provided as locations, 
a single target or a few targets that are in close proximity can be estimated in greater 
detail with a finer resolution. Care needs to be taken to include a data border around the 
area of interest that is a little wider than the variogram. This is to include any data that 
may influence a prediction through spatial correlation. An estimated DOAM OIM 
representation can then provide a number of detailed maps useful for guiding further 
surveys necessary to completely classify an area according to some decision criterion. 
 
Most regulatory situations require a threshold to be satisfied with some high probability. 
For example, if the threshold were 8 or fewer ordnance per grid with probability 0.90 or 
more, the blue areas in Fig. 5 would be considered clean. At the same time, grids in 
green, yellow, and orange in Fig. 4, have probability 0.20 or more that they have 10 or 
more ordnance per grid, so they could be considered as requiring remediation. Grids 
that satisfy neither of these requirements are candidates for further surveys until all grids 
are classified. These and similar maps at a greater resolution for a smaller area of the 
BBR can be used to classify areas according to some regulatory or remediation 
technology requirement. 
 
So far, we have not addressed the difference between a UXO and exploded ordnance 
fragments because the focus of this report is the location and delineation of targets. 
However, we put forward a hypothesis that targets may typically have a UXO-free buffer 
around their perimeter that contains only exploded fragments.  When ordnance 
explodes, it distributes fragments in a pattern that can be statistically defined. We have 
configured our Gauss.target simulation tool to provide this third level of ordnance 
deposition (1. locate target, 2. scatter ordnance hits around target, 3. scatter ordnance 
fragments around each ordnance hit). Figure 40 illustrates a simulated target that shows 
ordnance impact points and fragment scatter around those points.  Both impact points 
and fragments are shown with Gaussian scatter.  Because a UXO item remains at the 
impact point, this suggests that UXO scatter is typically less than fragment scatter and 
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targets may have a UXO-free border. Depending on the explosion scatter radius, the 
UXO-free border may cover a substantial portion of target area as illustrated in Fig. 40.  
We suggest that this is checked by ground truth data from a few targets. 

 
Fig. 40.   Gauss.target simulation: Target center (magenta) with Gaussian scatter of 
ordnance impact points (red) and Gaussian ordnance fragment scatter around each 
impact point (green). 

 
2.7.2 Target Center Location and TIM estimation 
 
Ordnance locations are a consequence of target location, therefore, it must be 
information other than ordnance location that influences target location. The location of 
targets may be influenced by site configuration such as topography, vegetation, geology, 
training objectives, logistics, safety,  and the location of other targets or structures on the 
site. As a result, it makes sense to talk about a point process describing target locations 
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as a model of human decisions to locate targets within a site. This is an important 
concept that was not envisioned at the outset of this project and consequently we only 
describe it without providing software or estimates. We believe that this could become a 
very effective means of locating undocumented targets within a large site by using 
information from all targets across all sites. 
 
A procedure similar to that of ordnance location from a geophysical signal can be used 
to locate targets in a map of site ordnance intensity. The resulting target locations can be 
converted to grid counts on a rather coarse spatial resolution. These will be low counts, 
so an appropriate model is a log-Gaussian point process with an intensity 

λ(x) = exp( S(x) + f(x,β) ), 
where S(x) is a correlated zero-mean Gaussian process, and f(x,β) is a linear regression 
function on a set of grid features. The grid features should include anything that may 
influence a human decision to locate a target. For example, relative elevation, gradient, 
second order gradient, type of vegetation, distance to nearest occupied structure, 
prevailing wind direction, etc. This model can be estimated with geoRglm and 
predictions of target location intensity in the form of a DOAM TIM can be made for an 
entire site. The TIM can then be used to compute maps such as the probability that one 
or more targets are located in a grid. 
 

3 The Site Characterization Process Flow 
 
The complete site characterization process that leads to and maintains the DOAM OIM 
and TIM representations is presented in Fig. 41. It repeats the diagram presented at the 
outset of Section 2, while providing some additional detail. Some of the components in 
Figure 4.1 are conceptual and need further development.  Some require implementation 
on a site-specific basis, and some have production or research software codes available 
Further projects need to be initiated to complete these tasks before an integrated UXO 
remediation suite of software tools can be produced and routinely used. 
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ASR/Background 

A: Initial Ordnance Intensity Map (OIM), Target 
Intensity Map (TIM), and Ordnance List (OL) 

Start 

B: Survey Design from OL, OIM, TIM, Cost, and Topography 
i. Sample Method and geometry 

ii. Placement of Samples 
iii. Equipment Parameters 

C:  Survey – Geophysical Data 

D: Level I: Geophysical to Point Pattern Data (PP) 
i. MAG Peak definition (anomaly scale correlation) 

ii. Classification into target-related and target-unrelated 
iii. Update OL 

E: Level II: Updating OIM with new PP Data 
i. Convert PP Data to counts on a discretized grid 

ii. Estimate Intensity distribution in all grids based on all 
PP data and initial OIM information and assumed 
spatial model (target scale correlation). 

iii. Map updated OIM and Target boundaries 

G: More Surveys? 
Consider OIM and TIM 

Yes 

F: Level III: OIM to TIM 
i. Map Target centers and convert to counts on a 

discretized grid 
ii. Estimate target intensity with Topography, Geology,

Present OIM and TIM for Remediation 
Decisions 

No 

Fig. 41.  Flowchart for statistical design and analysis of UXO surveys. 
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Appendix 1: R files on Enclosed CD-ROM 
 
Directory Listing: 
 
07/08/2003  10:17p               2,465  gauss.targets.r.txt 
07/24/2003  12:41p               9,090  Splus-SegmentExchange.txt 
01/13/2003  02:53p           8,345,513  Rtarget.RData 
01/13/2003  02:53p               4,571 . Rhistory 
07/24/2003  01:11p          22,257,262  rw1071.exe 
07/24/2003  01:11p              11,031  README.rw1071 
07/24/2003  01:12p             713,408  geoR.zip 
07/24/2003  01:13p             313,318  geoRglm.zip 
07/24/2003  01:13p             353,025  splancs.zip 
07/24/2003  01:17p             204,157  mva_code.tar.gz 
              10 File(s)     32,213,840 bytes 
 
 
 
gauss.targets.r.txt - Gauss.target simulation tool R-code. Can be imported into an R 
session with source() command. 
 
Splus-SegmentExchange.txt  - S-plus code for Segment Exchange algorithm, may 
require Splus package, although is likely to run under R also. 
 
Rtarget.RData - An R workspace that contains all functions for DOAM estimation as well 
as supporting codes for Gauss.target. This is the first thing to load into R, followed by 
splancs, geoR, and geoRglm below. 
 
.Rhistory - contains a history of recent commands in an R session and may be useful as 
examples of how to run various functions. 
 
rw1071.exe - an executable for R setup on a Windows platform (linux and Mac versions 
are available from www.r-project.org) 
 
README.rw1071 - installation instructions for R 
 
geoR.zip - a general geostatistics package for R 
 
geoRglm.zip - the R package for estimating DOAM 
 
splancs.zip - an R package required for Gauss.target 
 
mva_code.tar.gz - R code for multivariate analysis of target related and target unrelated 
anomalies 
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Appendix 2 Summary Statistics for magnetic survey 
parameters, overall and by anomaly group 

 
Data from Badlands Bombing Range, South Dakota. 
 
Parameter: Offset angle of total field anomaly from magnetic north (deg) [theta] 
           n n=0  Mean   SD   Min  0.05   0.1  0.25   0.5 0.75  0.9 0.95  Max 
Overall  345   0  4.15 40.4 -89.5 -64.5 -48.6 -24.0   5.9 31.8 58.9 72.5 89.7 
 - ord   180   0  6.36 38.7 -89.5 -63.2 -41.4 -19.3  10.0 30.9 55.4 69.1 84.1 
 - dirt   27   0 -5.54 55.9 -86.0 -79.6 -62.6 -57.2 -15.2 40.3 73.1 78.0 87.1 
 - scrap  63   0  5.18 40.0 -80.0 -53.8 -40.1 -23.3   0.5 35.8 67.9 72.7 89.7 
 - wire   75   0  1.45 38.6 -80.0 -65.8 -55.3 -24.1   4.3 25.9 53.2 61.4 88.1 
 
 
Parameter: Analytic signal (nT/m) [as.grid] 
           n n=0  Mean    SD Min 0.05  0.1 0.25   0.5 0.75   0.9  0.95   Max 
Overall  345   0 16.60 29.90 1.3 2.70 3.94 5.70  8.10 13.9  29.5  56.3 320.0 
 - ord   180   0  9.97  7.75 1.6 4.30 4.80 5.70  7.55 12.0  16.5  21.0  67.3 
 - dirt   27   0  9.45 12.80 1.3 1.64 2.26 3.85  6.30  9.2  15.3  23.9  67.5 
 - scrap  63   0 33.20 58.20 1.9 2.95 3.62 6.45 11.20 24.4 106.0 140.0 320.0 
 - wire   75   0 21.20 27.20 1.6 2.24 3.06 6.00 10.30 25.8  46.9  77.0 132.0 
 
 
Parameter: Magnetic peak value (nT) [magpeak.value] 
           n n=0 Mean    SD  Min  0.05   0.1 0.25  0.5 0.75   0.9  0.95 Max 
Overall  345   0 44.3  81.7 -9.6  6.60  9.70 15.0 21.6 36.7  83.3 147.0 826 
 - ord   180   0 26.5  19.7  3.6 12.10 13.50 16.2 21.1 29.1  47.4  57.7 196 
 - dirt   27   0 25.3  30.2  1.8  5.07  6.52 10.6 13.9 30.0  49.1  75.3 147 
 - scrap  63   0 92.4 164.0  5.9  8.52  9.08 14.9 27.0 78.9 251.0 349.0 826 
 - wire   75   0 53.7  65.7 -9.6  4.44  6.44 12.5 28.1 73.0 139.0 212.0 325 
 
 
Parameter: Magnetic low value (nT) [maglow.value] 
           n n=0   Mean   SD  Min  0.05    0.1  0.25    0.5  0.75   0.9  0.95  Max 
Overall  345   1 -10.10 20.8 -168 -40.6 -25.70 -10.0  -3.40 -1.70 -0.30  0.64 11.5 
 - ord   180   1  -4.06 11.0 -140 -11.4  -6.64  -4.4  -2.55 -1.20 -0.19  0.71  6.6 
 - dirt   27   0 -16.50 17.0  -59 -56.1 -40.60 -21.7 -12.00 -3.80 -2.74 -0.78  3.7 
 - scrap  63   0 -18.00 31.5 -165 -82.5 -42.20 -19.0  -5.90 -1.85 -0.64  3.33 11.5 
 - wire   75   0 -15.50 24.5 -168 -56.7 -37.30 -18.5  -6.60 -2.85 -1.58 -0.65  1.3 
 
 
Parameter: Magnetic peak-to-peak amplitude (nT) [mag.pp] 
           n n=0  Mean    SD  Min  0.05  0.1 0.25  0.5  0.75 0.9  0.95 Max 
Overall  345   0  54.4  91.6 4.80 10.50 14.5 19.3 27.3  47.9 113 213.0 870 
 - ord   180   0  30.6  25.4 7.01 14.30 15.9 19.2 23.0  32.4  51  67.6 227 
 - dirt   27   0  41.8  38.3 4.80  6.89 10.7 15.8 33.4  47.3 103 134.0 143 
 - scrap  63   0 110.0 178.0 7.04 10.90 14.4 20.6 38.0 101.0 303 377.0 870 
 - wire   75   0  69.2  77.7 5.85  8.84 10.7 19.3 36.7  84.2 177 252.0 366 
 
 
Parameter: Magnetic peak separation (m) [mag.pp.sep] 
           n n=0 Mean   SD  Min 0.05  0.1 0.25  0.5 0.75  0.9 0.95  Max 
Overall  345   0 13.0 4.54 6.18 7.50 8.08 10.0 12.2 15.4 18.5 20.6 35.3 
 - ord   180   0 13.8 4.12 6.18 7.50 8.98 11.2 12.9 16.1 19.6 20.9 29.8 
 - dirt   27   0 12.4 5.46 6.71 7.55 7.91  9.6 12.1 13.4 17.2 18.2 35.2 
 - scrap  63   0 12.6 5.16 6.18 7.50 7.53  9.0 11.3 15.3 17.8 22.6 30.4 
 - wire   75   0 11.8 4.33 6.36 7.50 7.65  9.0 10.6 13.9 17.1 18.5 35.3 
 
 
Parameter: Separation of magnetic peak and analytic signal (m) [magpeak.as.sep] 
           n n=0 Mean   SD Min 0.05 0.1 0.25  0.5 0.75  0.9  0.95  Max 
Overall  345  76 2.12 3.03   0 0.00 0.0  0.5 1.50 2.12 5.13  8.72 19.5 
 - ord   180  42 1.31 1.46   0 0.00 0.0  0.5 1.12 1.58 2.24  3.17 10.6 
 - dirt   27   2 4.06 4.03   0 0.45 1.5  1.5 2.12 5.37 8.69 12.60 16.2 
 - scrap  63  12 2.75 3.28   0 0.00 0.0  0.5 1.50 3.18 7.82  9.31 15.9 
 - wire   75  20 2.86 4.35   0 0.00 0.0  0.0 1.50 2.12 8.31 13.80 19.5 
 
 
Parameter: Width of analytic signal (m) [width.as] 
           n n=0 Mean    SD Min 0.05  0.1 0.25 0.5 0.75  0.9 0.95  Max 
Overall  345   0 3.11 1.560 1.8  1.8 1.80 2.00 2.7 3.70 4.86 6.08 11.1 
 - ord   180   0 3.01 1.340 1.8  1.8 1.80 2.00 2.7 3.60 4.51 5.41  9.6 
 - dirt   27   0 2.85 0.873 1.8  1.8 1.86 2.15 2.8 3.25 3.88 4.63  4.9 
 - scrap  63   0 3.41 2.000 1.8  1.8 1.80 2.00 2.6 4.40 6.32 7.36 11.1 
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 - wire   75   0 3.20 1.780 1.8  1.8 1.80 1.90 2.7 3.90 4.76 8.03 10.3 
 
 
Parameter: Width of total field peak (m) [width.tf.peak] 
           n n=0 Mean   SD Min 0.05 0.1 0.25 0.5 0.75  0.9 0.95  Max 
Overall  345   0 2.55 1.18 1.4  1.8 1.8 1.90 2.4 2.50 3.30 5.06 10.5 
 - ord   180   0 2.58 1.26 1.4  1.8 1.8 2.00 2.4 2.42 3.01 5.10 10.5 
 - dirt   27   0 2.34 0.62 1.8  1.8 1.8 1.85 2.2 2.50 3.18 3.30  4.4 
 - scrap  63   0 2.60 1.14 1.8  1.8 1.8 1.90 2.4 2.55 3.54 5.40  7.8 
 - wire   75   0 2.50 1.17 1.8  1.8 1.8 1.80 2.4 2.40 3.30 3.93  9.1 
 
 
Parameter: Ratio, magpeak.value : mag.pp [rat.mpv.mpp] 
           n n=0  Mean    SD   Min  0.05   0.1  0.25   0.5  0.75   0.9  0.95  Max 
Overall  345   0 0.813 0.199 0.102 0.402 0.543 0.731 0.865 0.941 0.986 1.020 1.66 
 - ord   180   0 0.879 0.134 0.204 0.670 0.747 0.829 0.905 0.955 0.992 1.030 1.36 
 - dirt   27   0 0.595 0.208 0.192 0.289 0.329 0.434 0.595 0.724 0.872 0.919 1.03 
 - scrap  63   0 0.786 0.236 0.230 0.439 0.517 0.614 0.838 0.941 0.971 1.020 1.66 
 - wire   75   0 0.758 0.220 0.102 0.263 0.429 0.681 0.826 0.892 0.953 0.982 1.08 
 
 
Parameter: Ratio, magpeak.as.sep : width.was [rat.mpass.was] 
           n n=0  Mean    SD Min 0.05   0.1  0.25   0.5  0.75   0.9 0.95  Max 
Overall  345  76 0.786 1.130   0 0.00 0.000 0.208 0.500 0.833 1.760 3.02 8.34 
 - ord   180  42 0.482 0.473   0 0.00 0.000 0.171 0.409 0.697 0.941 1.22 3.31 
 - dirt   27   2 1.490 1.410   0 0.13 0.454 0.572 0.884 1.840 3.530 4.78 5.05 
 - scrap  63  12 1.000 1.250   0 0.00 0.000 0.236 0.625 1.330 2.560 4.22 5.73 
 - wire   75  20 1.080 1.690   0 0.00 0.000 0.000 0.589 0.949 3.460 4.32 8.34 
 
 
Parameter: Ratio, magpeak.as.sep : width.tf.peak [rat.mpass.wtfp] 
           n n=0  Mean    SD Min 0.05   0.1  0.25   0.5  0.75   0.9 0.95  Max 
Overall  345  76 0.895 1.310   0 0.00 0.000 0.179 0.600 0.833 2.010 4.06 8.39 
 - ord   180  42 0.542 0.667   0 0.00 0.000 0.142 0.457 0.750 0.972 1.21 5.05 
 - dirt   27   2 1.770 1.690   0 0.18 0.615 0.743 0.922 1.980 4.460 5.06 6.43 
 - scrap  63  12 1.170 1.520   0 0.00 0.000 0.208 0.707 1.250 3.570 4.05 8.39 
 - wire   75  20 1.200 1.800   0 0.00 0.000 0.000 0.625 0.833 4.020 5.28 7.53 
 
 
Parameter: Ratio, magpeak.as.sep : ihpd [rat.mpass.ihpd] 
           n n=0  Mean    SD Min   0.05   0.1  0.25   0.5  0.75   0.9 0.95  Max 
Overall  345  76 0.958 1.350   0 0.0000 0.000 0.196 0.528 0.993 3.110 4.55 6.86 
 - ord   180  42 0.525 0.673   0 0.0000 0.000 0.161 0.434 0.663 0.953 1.45 4.40 
 - dirt   27   2 2.110 1.860   0 0.0697 0.399 0.863 1.220 3.560 4.860 5.19 5.92 
 - scrap  63  12 1.360 1.580   0 0.0000 0.000 0.219 0.688 1.720 4.060 4.76 5.77 
 - wire   75  20 1.250 1.700   0 0.0000 0.000 0.000 0.645 1.190 4.470 4.72 6.86 
 
 
Parameter: Ratio, magpeak.as.sep : mag.pp.sep [rat.mpass.mpps] 
           n n=0  Mean    SD Min   0.05    0.1   0.25    0.5  0.75   0.9  0.95   Max 
Overall  345  76 0.180 0.253   0 0.0000 0.0000 0.0411 0.1010 0.175 0.557 0.857 1.380 
 - ord   180  42 0.104 0.134   0 0.0000 0.0000 0.0324 0.0873 0.127 0.192 0.252 0.884 
 - dirt   27   2 0.360 0.325   0 0.0128 0.0664 0.1490 0.2210 0.600 0.868 0.889 1.020 
 - scrap  63  12 0.249 0.294   0 0.0000 0.0000 0.0440 0.1320 0.295 0.791 0.877 1.000 
 - wire   75  20 0.239 0.332   0 0.0000 0.0000 0.0000 0.1240 0.210 0.848 0.924 1.380 
 
 
Parameter: Ratio, mag.pp.sep : ihpd [rat.mpps.ihpd] 
           n n=0 Mean    SD  Min 0.05  0.1 0.25  0.5 0.75  0.9 0.95  Max 
Overall  345   0 5.30 0.458 4.72 4.96 4.97 4.97 4.98 5.45 6.21 6.22 6.25 
 - ord   180   0 5.12 0.257 4.72 4.96 4.96 4.97 4.98 5.43 5.44 5.45 6.24 
 - dirt   27   0 5.95 0.341 5.42 5.43 5.44 5.61 6.20 6.21 6.22 6.23 6.25 
 - scrap  63   0 5.44 0.525 4.96 4.96 4.96 4.97 5.42 6.00 6.21 6.22 6.25 
 - wire   75   0 5.39 0.534 4.96 4.96 4.97 4.97 4.98 5.99 6.21 6.22 6.25 
 
 
Parameter: Ratio, width.as : ihpd [rat.was.ihpd] 
           n n=0 Mean    SD   Min  0.05   0.1  0.25   0.5 0.75  0.9 0.95  Max 
Overall  345   0 1.48 1.150 0.337 0.542 0.615 0.793 1.110 1.71 2.82 3.57 8.51 
 - ord   180   0 1.25 0.798 0.354 0.528 0.572 0.731 0.978 1.55 1.99 2.90 5.82 
 - dirt   27   0 1.53 0.708 0.495 0.716 0.929 1.100 1.260 1.78 2.69 2.96 3.25 
 - scrap  63   0 1.81 1.470 0.337 0.557 0.593 0.796 1.230 2.10 4.40 4.89 6.59 
 - wire   75   0 1.74 1.520 0.431 0.607 0.655 0.853 1.270 2.03 3.19 4.70 8.51 
 
 
Parameter: Ratio, width.tf.peak : ihpd [rat.wtfp.ihpd] 
           n n=0 Mean    SD   Min  0.05   0.1  0.25   0.5 0.75  0.9 0.95  Max 
Overall  345   0 1.15 0.758 0.308 0.544 0.636 0.802 0.978 1.24 1.61 2.19 7.24 
 - ord   180   0 1.06 0.734 0.329 0.544 0.606 0.741 0.891 1.09 1.54 2.13 7.24 
 - dirt   27   0 1.25 0.557 0.387 0.843 0.915 0.970 1.160 1.34 1.56 1.89 3.58 
 - scrap  63   0 1.27 0.799 0.473 0.528 0.586 0.867 1.130 1.46 1.70 2.18 5.91 
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 - wire   75   0 1.25 0.822 0.308 0.659 0.736 0.889 1.160 1.29 1.59 2.10 7.00 
 
 
Parameter: Ratio, width.tf.peak : width.as [rat.wtfp.was] 
           n n=0  Mean    SD   Min  0.05   0.1  0.25   0.5 0.75  0.9 0.95  Max 
Overall  345   0 0.956 0.545 0.175 0.357 0.462 0.632 0.900 1.20 1.33 1.60 5.56 
 - ord   180   0 0.994 0.641 0.188 0.404 0.475 0.645 0.879 1.22 1.33 1.63 5.56 
 - dirt   27   0 0.867 0.236 0.408 0.554 0.581 0.670 0.909 1.05 1.16 1.19 1.32 
 - scrap  63   0 0.935 0.482 0.257 0.316 0.357 0.523 0.947 1.27 1.49 1.68 2.85 
 - wire   75   0 0.915 0.403 0.175 0.358 0.455 0.615 0.900 1.23 1.33 1.57 2.00 
 
 
Parameter: Ratio, mag.pp.sep : width.as [rat.mpps.was] 
           n n=0 Mean   SD   Min 0.05  0.1 0.25  0.5 0.75  0.9 0.95  Max 
Overall  345   0 5.01 2.53 0.728 1.60 2.00 3.14 4.74 6.45 8.49 9.38 14.8 
 - ord   180   0 5.33 2.52 0.938 1.71 2.50 3.37 5.16 6.88 8.79 9.87 14.1 
 - dirt   27   0 4.68 2.11 1.840 1.93 2.08 3.29 4.61 5.26 6.74 8.72 11.0 
 - scrap  63   0 4.76 2.83 0.879 1.23 1.39 2.64 4.42 6.24 8.56 8.94 14.8 
 - wire   75   0 4.55 2.35 0.728 1.40 1.91 2.66 4.47 5.83 7.59 8.20 12.6 
 
 
Parameter: Ratio, mag.pp.sep : width.tf.peak [rat.mpps.wtfp] 
           n n=0 Mean   SD   Min 0.05  0.1 0.25  0.5 0.75  0.9 0.95  Max 
Overall  345   0 5.58 2.18 0.687 2.50 3.44 4.25 5.27 6.72 8.16 9.32 17.7 
 - ord   180   0 5.90 2.17 0.687 2.34 3.42 4.74 5.85 6.87 8.69 9.32 16.5 
 - dirt   27   0 5.43 2.12 1.740 3.15 3.74 4.53 5.33 5.96 6.72 7.34 14.1 
 - scrap  63   0 5.26 2.24 0.981 2.58 3.45 3.82 4.72 6.03 8.54 9.42 12.1 
 - wire   75   0 5.13 2.08 0.824 2.57 3.57 4.17 4.86 5.83 7.13 7.60 17.7 
 
 
Parameter: Calculated anomaly depth (m) [depth] 
           n n=0  Mean    SD   Min   0.05    0.1  0.25   0.5  0.75  0.9 0.95  Max 
Overall  345   0 0.670 0.986 -7.08 -0.526 -0.170 0.190 0.660 1.120 1.74 2.14 4.25 
 - ord   180   0 0.854 0.985 -7.08 -0.340 -0.051 0.355 0.865 1.270 1.90 2.22 3.32 
 - dirt   27   0 0.935 0.794 -0.07  0.081  0.350 0.540 0.810 1.070 1.43 1.85 4.25 
 - scrap  63   0 0.372 1.220 -5.55 -1.000 -0.504 0.000 0.380 0.870 1.45 1.76 4.10 
 - wire   75   0 0.383 0.663 -1.57 -0.470 -0.296 0.065 0.330 0.685 1.05 1.40 2.87 
 
 
Parameter: Instrument height (m) [inst.height] 
           n n=0 Mean    SD  Min  0.05   0.1 0.25  0.5 0.75  0.9 0.95  Max 
Overall  345   0 1.82 0.905 0.46 0.812 1.010 1.38 1.68 2.09 2.58 3.05 8.90 
 - ord   180   0 1.85 0.657 0.69 1.280 1.380 1.55 1.75 2.01 2.38 2.73 8.53 
 - dirt   27   0 1.17 0.524 0.46 0.653 0.726 0.91 1.07 1.31 1.56 2.04 3.13 
 - scrap  63   0 1.99 1.470 0.67 0.791 0.842 1.21 1.68 2.19 3.17 4.07 8.90 
 - wire   75   0 1.86 0.826 0.62 0.784 0.954 1.25 1.82 2.25 2.86 3.58 4.64 
 
 
Parameter: Intrument height + calculated anomaly depth (m) [ihpd] 
           n n=0 Mean    SD  Min 0.05  0.1 0.25  0.5 0.75  0.9 0.95  Max 
Overall  345   0 2.49 0.916 0.99 1.28 1.41 1.81 2.38 3.03 3.68 4.10 6.49 
 - ord   180   0 2.70 0.812 0.99 1.45 1.70 2.16 2.57 3.24 3.75 4.14 5.47 
 - dirt   27   0 2.10 1.010 1.20 1.23 1.31 1.65 1.94 2.26 2.78 3.21 6.46 
 - scrap  63   0 2.37 1.040 1.08 1.21 1.30 1.47 2.18 3.01 3.40 4.49 5.94 
 - wire   75   0 2.24 0.893 1.17 1.22 1.34 1.55 2.01 2.79 3.38 3.66 6.49 
 
 
Parameter: Analytic signal approximation (nT/m) [as.approx] 
           n n=0 Mean   SD  Min 0.05  0.1 0.25   0.5 0.75   0.9  0.95   Max 
Overall  345   0 26.9 54.0 1.26 2.44 3.02 4.26  8.68 27.5  64.0 101.0 561.0 
 - ord   180   0 16.8 25.3 1.26 2.42 2.82 3.92  6.63 14.8  46.1  62.2 147.0 
 - dirt   27   0 15.4 22.0 1.83 3.28 3.48 4.28  7.09 13.3  37.5  64.5  93.5 
 - scrap  63   0 42.8 70.8 1.64 2.45 3.41 7.03 17.40 45.9 103.0 180.0 423.0 
 - wire   75   0 41.7 83.2 1.62 2.60 3.24 5.69 16.40 36.7  89.2 133.0 561.0 
 
 
Parameter: Ratio, as.grid : as.approx [rat.asg.asa] 
           n n=0  Mean    SD    Min  0.05   0.1  0.25   0.5 0.75  0.9 0.95  Max 
Overall  345   0 1.220 0.903 0.0957 0.125 0.173 0.443 1.100 1.80 2.46 2.78 4.91 
 - ord   180   0 1.380 0.944 0.0957 0.137 0.179 0.460 1.370 1.98 2.64 2.88 4.91 
 - dirt   27   0 0.859 0.461 0.1050 0.141 0.298 0.591 0.877 1.11 1.25 1.26 2.35 
 - scrap  63   0 1.160 1.000 0.1190 0.137 0.169 0.430 0.846 1.76 2.38 3.36 4.19 
 - wire   75   0 1.040 0.754 0.1110 0.124 0.134 0.362 1.030 1.45 2.22 2.49 2.87 
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Appendix 3.  Publications 
 

Poster Abstract 
 

Partners in Environmental Technology Technical Symposium and Workshop, Nov. 
27-29, 2001, Washington D. C., Sponsored by SERDP and ESTCP 

 
 
 

 
Spatial Point Pattern Statistical Models and Optimal Survey 

Design for Rapid UXO Site Characterization 
 

Dr. William E. Doll 
Environmental Sciences Division 
Oak Ridge National Laboratory 

Oak Ridge, TN  37831-6038 
(865)-576-9930, d8e@ornl.gov 

 
Co-Performers:  
 
Dr. George Ostrouchov, CSMD, ORNL 
Mr. T. Jeffrey Gamen, ESD, ORNL 
Dr. D.K. Butler, CEERDC 
Dr. Max D. Morris, Iowa State Univ. 
 
Modern sensor array technologies are being used to fully characterize large potential 
UXO sites around the world.  The cost per acre for these array-based surveys is often an 
order of magnitude better than conventional ground surveys.  However, the shear size of 
the problem is such that the volume of work is too great.  Statistically valid sampling 
approaches must be developed to further reduce the survey footprint. 
 
ORNL has recently developed techniques for statistical characterization of UXO 
contamination that are based on spatial stochastic models for point pattern data.  There 
are two kinds of spatial data.  Geostatistical data are quantities that can be measured at 
any point of a given region of interest.  Examples of such data are magnetic or 
electromagnetic ground response signal or concentration of a soil contaminant.  Point 
pattern data are quantities that are obtained by surveying an area within a region of 
interest.  Examples of such data are UXO locations or tree locations.  The UXO 
characterization problem begins with geostatistical data (magnetic or EM response), 
which is then converted to point pattern data (anomaly locations).  Here we report on 
preliminary methods to delineate contaminated areas through contamination intensity 
estimation by statistical point process models.  Results of this method of contamination 
intensity estimation are presented for data from the Badlands Bombing Range in South 
Dakota as well as for simulated data. 
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Poster Abstract 
 

Partners in Environmental Technology Technical Symposium and Workshop, 
Nov., 2002, Washington D. C., Sponsored by SERDP and ESTCP 

 
Point Process Analysis of Geophysical Data for Characterization 

of UXO Sites 
 
Dr. George Ostrouchov 
Oak Ridge National Laboratory 
PO Box 2008 
Oak Ridge, TN 37831 
  
Co-Performers: 

Dr. W. E. Doll, Dr. D. Wolf, Mr. T. J. Gamey, Dr. Les P. Beard, ORNL 
Dr. M. Morris, Iowa State University 
Dr. D. K. Butler, ERDC 

 
Characterization of sites potentially contaminated with UXO has often used 
SiteStats/GridStats and UXO Calculator methodology.  Although better tools are not 
readily available, these tools have been shown to have some serious drawbacks 
including unrealistic assumptions, arbitrary stopping rules, and absence of spatial 
information.  We report on a project that addresses methods for spatial statistical 
characterization of a site based on samples of geophysical measurements.  We 
emphasize rigorous assessment of uncertainty that is present in the spatial 
characterization.  Our approach is to apply model-based methods for Poisson count data 
to point patterns derived from geophysical data.  Bayesian estimation of all model 
parameters from the count data provides predictions for areas not sampled along with a 
complete distribution estimate for each pixel.  The estimation and prediction proceeds 
via Markov chain Monte Carlo and requires substantial computation that can be 
completed in reasonable time with current PC technology.  The computation allows us to 
make fewer and more realistic assumptions to generate uncertainty estimates. 
 
Our conceptual site model emphasizes three independent sources of correlation: 
instrument response correlation (electromagnetic and/or magnetic response for a single 
ordnance scale), ordnance placement correlation (single target, multiple ordnance 
scale), and target placement correlation (site or multiple target scale).  We represent 
information in our estimates by three components that roughly correspond to the 
correlation scales: the ordnance list (OL), the ordnance intensity map (OIM), and the 
target intensity map (TIM).  We recommend two or more iterations where an initial site 
model based on an Archive Search Report and related information is updated with 
optimally designed samples until a site-specific criterion is met. 
 
Survey design methods are incorporated in this project.  The projected performance of 
geophysical sensors and platforms is considered in development of the first survey, and 
dig results from each iterative survey are used to refine statistical parameters  (e.g. ROC 
curves) for improved accuracy in the OIMs and TIMs. Information about topography, 
vegetation, and geology can also be used in the survey design for sample location and 
selection of sampling technology. 
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Extended abstract, presented at 2003 Symposium on the Application of Geophysics 
to Engineering and Environmental Problems 

 
Rapid screening of large-area magnetic data for unexploded ordnance 

L.P. Beard, D.A. Wolf, B. Spurgeon*, T.J. Gamey, W.E. Doll 
Oak Ridge National Laboratory, Oak Ridge, TN 

*Geosoft Europe Ltd., Wallington, Oxfordshire, UK 
 
Abstract 
 
Airborne magnetic surveys can cover hundreds of hectares with very close sensor spacing 
in a single day.  Over unexploded ordnance (UXO) contaminated areas this can translate 
to thousands of anomalies.  Any tool that permits one to rapidly classify anomalies as 
probable non-UXO and probable UXO is useful.  Several geophysical characteristics can 
be exploited to sort the anomalies, among them signal amplitudes, estimated source 
depth, and indicators of magnetic remanence.  We have developed a grid-based technique 
that combines information from the total field residual anomaly, the analytic signal, and 
sensor height to estimate source depth and remanent magnetization.  We can then use 
these and other indicators in statistical schemes to predict whether the source of an 
anomaly is or is not ordnance. 
 
Introduction 

 
The problem of clearance of UXO from current or former military gunnery or bombing 
ranges requires a thorough knowledge of where the ordnance is located, and geophysical 
methods, particularly magnetic and electromagnetic methods, have been widely used for 
mapping ordnance.  Airborne geophysics is increasingly becoming accepted as a way to 
screen areas of hundreds or thousands of hectares for UXO (Doll, Gamey, and Holladay, 
2001).  Such surveys typically produce thousands or tens of thousands of anomalies that 
could be produced by UXO.  Early on it was recognized that the vast majority of these 
anomalies are not caused by hazardous ordnance, but by exploded ordnance fragments or 
from lost or discarded ferrous articles (e.g., tools, wire, vehicle parts).  Methods that 
reliably discriminate ordnance from non-ordnance can thus save a great deal of time and 
expense on subsequent cleanup by reducing the number of items to be investigated.  To 
date, model-fitting methods such as the dipole-fitting approach used in the MTADS DAS 
software (Nelson and McDonald, 1999) have been successfully applied to ordnance 
discrimination.  However, the software in its current state requires the user to choose one 
anomaly at a time from a grid of total field magnetic data isolate a zone around it, and 
then performs the inversion.  Although results are generally reliable for isolated 
anomalies, it is ill suited for dealing with dense UXO concentrations, such as occur in the 
center of a target.  Furthermore, the procedure can quickly become tedious for analysis of 
the considerable number of anomalies resulting from a low level airborne survey.  In this 
paper we describe two alternate approaches based on statistical analysis by which large 
airborne data sets can be examined quickly for discrimination of UXO.     
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Statistically based UXO discrimination 
 
We have only recently begun investigating statistically based discrimination methods, 
after an analysis of dig results based on data collected at the former Badlands Bombing 
Range (BBR) in South Dakota showed statistical differences between ordnance and non-
ordnance.  In no instance was the statistical difference so strong that a single parameter 
could predict whether the source of an anomaly was UXO or not, but the possibility for 
discrimination increased as more parameters were considered.  We used a routine 
developed to our specifications by Geosoft to rapidly identify and characterize anomalies 
above a given threshold from an analytic signal map.  From these peaks we identified the 
associated magnetic field anomaly and sensor altitude, and computed a number of 
parameters that could be used directly or otherwise combined as statistically relevant 
predictors.  From this point we used two different approaches for discrimination—a 
univariate and a multivariate methods.  
 
Univariate method        
 
What we call the univariate method relies on correlations from dig results based on 
airborne magnetic data collected at two different sites: an East Coast site and BBR.  Both 
sites were geologically ‘clean’ in that neither contained basaltic rock or magnetic soils 
that could complicate any interpretations.  We chose six parameters showing correlation 
with known UXO, and at each anomaly location evaluated whether the parameters fell 
within the range of the majority of known measured UXO.  Each of the six parameters 
was scored zero if the parameter fell outside a specified range, and one if it fell within the 
range.  For example, almost all ordnance in our known sample pool yielded peak-to-peak 
magnetic anomalies between 1.0 and 80 nT.  Any anomaly falling outside this range was 
scored zero, as non-UXO.  The six characteristics were scored and summed, so that items 
could have a sum total ranging from 6 (all characteristics in the range of UXO) or zero 
(all characteristics outside the range for UXO).  The six parameters used in the univariate 
analysis were analytic signal amplitude, magnetic anomaly peak-to-peak magnitude, the 
distance between the magnetic anomaly peak and low, the ratio of the positive magnetic 
anomaly lobe to the peak-to-peak magnitude, the estimated source depth, and the angle 
between magnetic north and the line connecting the positive and negative lobes of the 
magnetic anomaly (denoted theta).         
 
Multivariate method      
 
Multivariate analysis should provide more information than the univariate approach 
described above so long as some or all of the variables are correlated, and if the number 
of known samples is large enough to obtain reliable statistics.  The parameters must also 
be appropriately normalized to remove the effects of different magnitudes for the given 
parameters.  We derived a vector of standard mean parameters µ0 from a set of 
measurements over known ordnance items, and compute the symmetric covariance 
matrix S from the covariances computed for the different variable combinations.  The 
statistical similarity between the known ordnance and the parameter vector x associated 
with an unknown is given by the Mahalanobis distance (Swan and Sandilands, 1995)  
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                                              D = {(x - µ0)T S-1 (x - µ0)} 1/2.                                                         
(1) 
 
The smaller the Mahalanobis distance the more closely the unknown resembles ordnance 
from the known pool of items.  The vectors x and µ0 each have five entries: analytic 
signal peak, the magnitude of the negative lobe of the magnetic anomaly, the ratio of the 
positive magnetic anomaly lobe to the peak-to-peak magnitude, the ratio of the distance 
between the magnetic anomaly positive peak and the analytic signal peak to the 
instrument height added to the estimated source depth, and theta, as described in the 
univariate section.  The differences in the variables used in the two methods of analysis 
occurred because the univariate analysis was done prior to a more complete statistical 
look at the data led to the multivariate approach.   
 
Field results 

 
The methods were applied to a data set acquired by Oak Ridge National Laboratory 
(ORNL) at an artillery test range in the continental U.S.  At one site ordnance was buried 
for instrument calibration purposes in an area not used as a firing range, and we were 
given information on ordnance type and location.  Descriptions of the ten ordnance items 
are given in Table 1.  Figure 1 shows the residual magnetic field anomaly from a low 
level survey, flown at a nominal 1.5 m sensor height above ground level using a system 
developed at ORNL (Doll, Gamey, and Holladay, 2001).  Overlain and marked by ‘+’ 
symbols are locations of ten inert, intact ordnance items commonly found at the test 
ranges.  The smallest items were 60 mm illumination rounds (items 1, 2), followed by 81 
mm shells (items 3, 4), 2.75 in rockets (items 5, 6), 105 mm shells (items 7, 8), and the 
largest targets, 155 mm shells (items 9, 10).  The ordnance was buried in two rows, with 
the items on the west (left) side having an east-west orientation for the long axis of the 
UXO, and the east (right) row oriented north-south.  Shown in Figure 2 is the analytic 
signal map derived from the magnetic residual.  For the 73 analytic signal anomalies in 
the entire map area at or above 2.0 nT/m, univariate and multivariate statistical analyses 
were applied.  The circle symbols represent the 22 anomalies that were chosen using the 
univariate classification system as being in the top two categories of probable UXO, i.e. 
anomalies in which at least five of the six UXO predictors were positive for UXO.  Of 
these 22 anomalies predicted to be UXO, eight occur at or very near the known UXO.  
Item 2, a 60 mm shell, did not produce enough of an anomaly to register above the 2-
nT/m cutoff.  The anomaly from item 6, a 2.75 in rocket, is obscured by the large 
backgrounds anomaly of unknown origin.  The triangle symbols represent the same 
number of items (22) ranked at the top of the multivariate analysis list as most probable 
UXO.  This method ranked nine of the ten known UXO items in the top 22 candidates.  
The only item missed was item 2, which as previously mentioned, failed the 2.0 nT/m 
analytic signal cutoff, and so was not included in the pool for statistical analysis.  Both 
methods chose other items as probable UXO as well, and the methods coincided on six of 
these choices.  These anomalies have not been investigated, so we do not know what their 
sources are.  Possibly a few are UXO, but as this site was not in a test firing range, it is 
more likely they represent non-ordnance: scrap metal, lost tools, or infrastructure.   
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Table 1.  Ordnance description and results of statistical predictions. 

 
 

Item 
Number 

Ordnance 
description 

Long axis 
orientation 

Univariate 
prediction 

Multivariate 
prediction 

1 60-mm round E-W UXO UXO 
2 60-mm round N-S undetected undetected 
3 81-mm shell E-W UXO UXO 
4 81-mm shell N-S UXO UXO 
5 2.75 in rocket E-W UXO UXO 
6 2.75 in rocket N-S Non-UXO UXO 
7 105-mm shell E-W UXO UXO 
8 105-mm shell N-S UXO UXO 
9 155-mm shell E-W UXO UXO 
10 155-mm shell N-S UXO UXO 
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Figure 1.  Magnetic anomaly map of helicopter data over calibration grid with known 
ordnance items overlain. 
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Figure 2.  Analytic signal map of calibration grid showing ordnance items and predicted 
UXO from the univariate approach (circles) and the multivariate approach (triangles). 

 
 
Discussion and Conclusions 

 
It is difficult to reach any firm conclusion regarding the efficacy of statistical ordnance 
discrimination at this early stage of work.  We have used both inverse model fitting and 
univariate and multivariate statistical methods for assigning dig locations at several 
different sites, but at the present time digging has not been done at some sites, and results 
from digs at the other sites have not been made available as yet.  From areas where 
known items have been buried, each of the three methods reliably predicts known 



 89  

ordnance to be ordnance, but also predicts some of the unknown anomalies to be 
ordnance as well.  It is distinctly possible that some of these anomalies are produced by 
ordnance, but we do not yet have information with which to address this matter.  The 
primary difference between the dipole fitting approach in its current state and the 
statistical approaches is the number of anomalies picked.  Our statistical methods pick 
anomalies from analytic signal peaks that exceed a certain threshold, whereas using the 
dipole-fitting algorithm the interpreter must choose likely candidates from total field 
magnetic data.  The statistical methods pick on the order of ten times more anomalies for 
evaluation than is typically chosen by an interpreter using model fitting because so many 
of the anomalies appear too weak or are insufficiently isolated for inversion.  If the highly 
ranked items on the dig lists produced by statistical methods prove to be mostly real 
ordnance, then more is good.  As dig results become available, we should be able to 
improve our pool of characteristics of known ordnance items and improve the reliability 
of the statistical methods.   
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