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Abstract 
UXO site characterization approaches are developed to assist decision makers in determining 
where additional characterization efforts need to be expended and where additional 
characterization is not effective.  These decisions are based on limited transect data and require 
that without 100 percent site characterization there is a finite probability of leaving some UXO 
behind.  One theoretical limitation of geostatistical approaches to estimation is the assumption 
that sample data exist in an unbounded domain.  Contiguous transect data, because of their close 
proximity to each other violate this assumption and can produce unwanted results in the 
estimates.  The extent of these unwanted results are checked for a variety of transect sample 
designs on three simulated sites and the results show that the effects of the finite domain 
associated with transect data are negligible and traditional geostatistical estimation techniques 
can be applied.   
 
Four example calculations are used here to demonstrate aspects of this spatial-statistics based 
approach to UXO site characterization.  The first example demonstrates the ability of the spatial 
estimation techniques to estimate different attributes that might be of interest in a site 
characterization activity: the total number of anomalies, the number of anomalies of interest and 
the probability of at least one anomaly of interest.  Prior to making the estimates, a cross-
validation process is used to check the applicability of the variogram and kriging model for the 
specific application.  These cross-validation results provide excellent predictions of the results of 
the final estimations.  The second example demonstrates the ability of probability mapping to 
define the edge of a UXO target from a limited number of parallel transects representing three 
percent of the entire site.  The third example extends the results of the first example by adding 
prior information in the form of discretizing the site into different strata each of which is thought 
to have undergone a similar site history.  This stratified approach is perhaps the simplest way to 
incorporate prior information into the site characterization approach and has not previously been 
applied to UXO sites.  Incorporation of the strata into the estimation procedure allows for 
extending the estimates made in the first example further away from the limited sample data to 
cover all portions of the site under the assumption that the mean values assigned to the strata are 
representative of each stratum all the way across the site.  Results show that the estimation 
results of the number of anomalies, anomalies of interest and probability of at least one anomaly 
of interest across the site are consistent with the estimates made on smaller portions of the site in 
the first example.  The fourth example demonstrates two methods for locating additional samples 
in a second phase of sampling.  The two approaches are meandering paths in the area of highest 
uncertainty to better define the edge of the target areas and infill sampling to better characterize 
the entire site.  Decision results between the two approaches are nearly identical even through the 
latter approach uses almost twice as many samples.  However, both sets of results are not 
significantly different from the decision results made with just the original set of samples. 
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Introduction 
This report documents work done in the third year of the UX-1200 SERDP project investigating 
the use of spatial statistical, or geostatistical, techniques to accomplish more efficient UXO site 
characterization.  This work is aimed at providing approaches to decreasing the amount of a large 
site that must undergo detailed geophysical surveys by extrapolating information from a limited 
amount, typically less than 10 percent of the site, of detailed surveying.  The extrapolation of this 
information must also include some indication of the confidence with which that extrapolation 
can be made.  Approaches to detailed survey area reduction done through geostatistical 
estimation are demonstrated in this report using four different example applications.  These 
example applications were chosen to demonstrate a broad range of calculations that can be made 
in support of site characterization decisions.  Results of these example estimations are assessed 
through comparison to additional data that were held back from the initial estimations.   
 
The techniques and the example applications presented in this report build on previous work 
done for this project.  The focus of the work done in 2001 was to define an approach to making 
site characterization decisions based on mapping the probability of at least one anomaly of 
interest with geostatistical techniques and coupling that map with a specified design reliability to 
make characterization decisions.  Prior information was incorporated into the mapping using 
both cokriging and kriging with a locally varying mean.  Example applications were done on 
simulated data sets, the N-10 target area at the Pueblo of Laguna in New Mexico and the 
Stronghold site in South Dakota.  Work in 2002 focused on the effect of the ROC curve on the 
final geostatistical estimations.  This work used both kriging with a locally varying mean and 
collocated cokriging to integrate prior information.  Example calculations were done using 
simulated sites and a surveyed target area from the Pueblo of Isleta in New Mexico. 
 
The techniques presented in this report are general in the sense that they can be applied to 
estimation of any measured attribute of interest.  In the characterization of UXO sites, the 
measured attribute of interest may be the total number of anomalies, the number of “anomalies of 
interest” or the probability of having at least one anomaly of interest at any unsampled location 
(Figure 1).  An anomaly of interest is defined here as some geophysical anomaly that has been 
identified as worthy of additional investigation.  These anomalies may be identified as being 
above some threshold geophysical signal (e.g., a magnetic gradient equal to or greater than 10 
nT/m) or possessing some degree of fit to a physical or statistical model of an ordnance item 
believed to be at the site (e.g., the measure of fitness computed through inverse modeling with 
comparison to the true UXO shape).  Research on defining these threshold or fitness measures 
for UXO discrimination is outside the scope of this work, but examples of such efforts are 
available (e.g., Tantum and Collins, 2001; Paison, et al., 2002). 
 
The samples collected at UXO sites are done along transects that have a fixed width, or footprint, 
and may be of varying length in a single direction along a straight transect or along a meandering 
path.  For the analyses presented here, the transect is broken up into equal area cells, either 
square or rectangular, where at least two sides of each cell are equal in length to the transect 
footprint.  Within each of these cells, the different attributes can be measured and a value 
assigned to the cell.  Unlike nearest neighbor approaches (e.g., Byers and Raftery, 1997) that 
utilize the spatial relationships between the locations of the individual objects, the geostatistical 
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approach presented here aggregates or summarizes all sub-cell information to the size of the 
sample cell.   
 
Figure 1 shows a conceptual model of this sampling and aggregation approach.  The sampling 
transect can be represented as a series of contiguous square or rectangular cells arranged in a 
line.  The geophysical anomalies in the area of the transect are shown as colored circles in Figure 
1.  The color of each circle represents the strength of the geophysical signal or the fitness of the 
anomaly with respect to its similarity to an ordnance model.  Here cooler colors represent lower 
signal strength / fitness and warmer colors represent higher values.  The same sample cells are 
shown in the middle of Figure 1 where the number in each cell represents the total number of 
anomalies within that cell.  The sample cells are shown again in the bottom of Figure 1 where the 
number within each cell now refers to the number of anomalies of interest found within each 
cell.  In Figure 1, anomalies of interest are those colored red at the top of the figure.  The 
information aggregated to the cell size is assigned spatial coordinates equal to those of the center 
of the cell.  These spatially referenced data can now be used in the geostatistical analyses 
conducted to characterize the site. 
 
There are three main areas of focus for the work done in 2003: 1) The controlled testing of the 
site characterization approaches developed in the project on simulated data sets created by 
Mitretek; 2) demonstration of the flexibility of the site characterization approach to create spatial 
estimates of different attributes that might be measured on a site; and 3) the use of probability 
mapping to define the edges of targets and to locate additional sampling transects.  The first area 
of focus is still ongoing and will be documented in a separate report.  The other two areas of 
focus are presented here through the use of four example calculations using a simulated site and 
data collected at the Pueblo of Laguna N-11 site in New Mexico.  The focus of these calculations 
is to provide a wide range of examples in which geostatistical methods can be applied to UXO 
site characterization problems.  In addition to these example applications, a theoretical limitation 
of the basic geostatistical estimation algorithm, kriging, caused by redundant data as collected 
along transects is investigated.  Compared to work of the past two years, more emphasis is 
placed on target edge delineation and locating second-phase sample transects and less emphasis 
is placed on techniques for integration of prior information, although a very simple and 
previously untested approach for prior information integration is examined. 
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Figure 1.  Conceptualization of the transect sampling and different approaches to the 
aggregation of information at the sample cell scale. 
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Geostatistics 
 
Geostatistics is the study of spatially correlated data as well as a set of tools developed to 
quantify the spatial variability of sample data and adaptations to regression theory to allow 
information on spatial variability to be used in estimating values at unsampled locations based on 
a finite number of existing sample data.  Originally developed for ore reserve estimation in the 
mining industry, geostatistical techniques have become widely accepted and deployed 
throughout the earth and environmental sciences.  Details on the theory and application of 
geostatistics to a wide variety of problems can be found in: Deutsch and Journel (1989) 
Goovaerts (1997) Isaaks and Srivastava (1989) Journel and Huijbregts (1978) and Olea (1999). 
 

Variogram 
The fundamental building block of a geostatistical analysis is the quantification of the variability 
of the sample data as a function of the average distance between any two data points.  This 
distance to variability relationship is captured by the variogram, or more formally, the semi-
variogram.  The variogram has been used for description of spatial patterns (Western and 
Blölschl, 1999), variance mapping (Rouhani, 1985), and generation of realizations of spatial 
processes (stochastic simulation) (McKenna, 1998). 
 
In practice the experimental variogram is computed as one-half the average squared difference 
between the components of data pairs: 
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where N(h) is the number of pairs of data locations a vector h apart.  The result of applying 
equation 1 to a data set is a set of discrete points that define γ as a function of the separation 
distance, h, or γ(h).  Multivariate geostatistics, which is an extension of univariate geostatistics, 
allows for incorporation of secondary variables into the variogram calculation and modeling, and 
the cross-semivariogram is usually required for further analysis (e.g., cokriging).  The cross-
semivariogram is a measure of joint variation of two attributes zi and zj, and the experimental 
cross semivariogram is computed as: 
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The experimental (direct- or cross-) semivariograms are used to describe spatial patterns of 
attributes, but it is rarely a final goal.   
 
While the discrete points of the variogram calculated with a single or with multiple variables, 
define the semi-variance of the data as a function of separation distance, they alone cannot be 
used for spatial estimation in kriging algorithms.  Spatial estimation requires that the variogram 
be defined at all separation distances.  Therefore a continuous model of the spatial variability is 
fit to the points of the experimental variogram.  Automatic model fitting algorithms exist (e.g., 
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Wingle et al., 1999); however, most practitioners rely upon fitting a variogram model to the 
points of the experimental variogram by hand.   
 
The choice of variogram model is, in practice, limited to a small number of analytical 
expressions.  A constraint on the function used to model the variogram is that it must produce a 
positive-definite covariance matrix in the system of kriging equations.  A positive definite 
covariance matrix ensures that there is a unique solution to the kriging equations and that the 
solution will produce non-negative kriging variance. 
 
The three most commonly used variogram models are the spherical, exponential and Gaussian 
models.  Each of these models is defined by two parameters: the sill, C, and the range, a. 
Theoretically, the sill is equal to the variance of the entire data set and represents the amount of 
variability between any two points that are uncorrelated.  Alternative notation for the sill is the 
covariance of the data at h=0, C(0).  The range is the separation distance beyond which the data 
are no longer positively correlated.   
 
The spherical model is: 

 
The Exponential model is: 
 

 
The Gaussian model is: 

 
Examples of all three variogram models with a range of 100 and a sill of 1.0 are compared in 
Figure 2.  The spherical model reaches the sill value at a distance equal to the range.  The 
exponential and Gaussian models reach 95 percent of the sill value at a distance equal to the 
range and then asymptotically approach the full value of the sill.  Typically, when referring to the 
exponential and Gaussian models, the distance at which the model reaches 95 percent of the sill 
is referred to as the “practical range” of the model.   The Gaussian model applies to data that 
vary smoothly at short separation distances.  The exponential model applies to data that exhibit 
stronger variability with increasing separation distance. 
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Figure 2.  Three different variogram models with the same parameters: nugget =0.0, sill = 1.0 
and range = 100.0. 

Figure 3 shows an example of an experimental variogram with a spherical model fitted.  Often 
the spatial correlation varies with direction, and such a case requires calculation of variograms in 
different directions and fitting of anisotropic (direction-dependent) models. 
 
The nugget is a third parameter often used to define a variogram model.  The nugget is a non-
zero value of γ(h) when h = 0.  In Figure 2, all variogram models intercept the Y-axis at γ(0) = 
0.0.  In many cases, there will be some level of variability at zero separation distance.  This 
variability may be due to repeatability issues with the measurements and/or some level of spatial 
variability occurring at a scale that is smaller than the minimum sample spacing. The value of the 
nugget ranges between 0.0 and the value of the sill.  If the nugget is equal to the sill value, then 
there is no spatial correlation in the data and traditional statistical approaches, those that do not 
account for spatial correlation, can be applied. 
 
 
 
 
 
 
 
 
 
 

Figure 3: An example of experimental direct semivariogram of primary data with a spherical 
model fitted. 
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Kriging 
In general, kriging is the process of using the information on spatial correlation contained in the 
variogram to make estimates of the sampled attribute at unsampled locations.  Kriging is a 
“BLUE” process meaning that the kriging equations are formulated to provide the Best Linear 
Unbiased Estimate of a property at an unsampled location.  Specifically, “best” refers to the 
kriging estimates having a minimum variance about the unknown true value at each unsampled 
location and “ubiased” meaning that the kriging estimate is centered on the unknown true value 
at the unsampled location.  Solution of the kriging equations at any specific location may 
produce an estimate with a larger variance or some bias, but across all estimates, the minimum 
variance and unbiasedness properties hold true. 
 
There are a number of variations on the kriging estimator and how it is applied to different 
problems.  Those variants that are most applicable to UXO problems are discussed briefly below. 

Ordinary Kriging 
Consider the problem of estimating the value of a continuous attribute z (e.g. UXO intensity) at 
an unsampled location u, where u is a vector of spatial coordinates.  The information available 
consists of measurements of z at n locations uα, z(uα), α = 1,2, ..., n, that may have been obtained 
on a set of sample transects.  Kriging is a form of generalized least square regression.  All 
univariate kriging estimates are variants of the general linear regression estimate z*(u) defined 
as: 
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where λα1(u) is the weight assigned to the datum z(uα1) and m(u) is the trend component of the 
spatially varying attribute.  In practice only the observations closest to u being estimated are 
retained, that is the n(u) data within a given neighborhood or window W(u) centered on u.  If 
there is no trend in the data across the site, m is no longer a function of the spatial location u but 
is now the global mean of the data set, then Equation 3 defines the simple kriging, SK, estimator.  
In most practical applications of kriging, SK has proven to be overly restrictive and ordinary 
kriging is the preferred choice. 
 
The most common kriging estimator is ordinary kriging (OK), which estimates the unsampled 
value z(u) as a linear combination of neighboring observations without enforcing a global mean 
onto the estimate: 
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OK weights λα are determined so as to minimize the error or estimation variance σ2(u) = 
Var{Z*(u)-Z(u)} under the constraint of unbiasedness of the estimate (4).  These weights are 
obtained by solving a system of linear equations, which is known as the “ordinary kriging 
system”: 
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The unbiasedness of the OK estimator is ensured by constraining the weights to sum to one, 
which requires the definition of the Lagrange parameter µ(u) within the system of equations.  
The addition of the Lagrange parameter can be thought of as the addition of another unknown to 
the system to balance the additional equation added to the system to ensure unbiased estimates.  
The only information required by the system are the variogram values for different lags, and 
these are readily derived from the variogram model fit to experimental values. 

Indicator Kriging 
In the earth and environmental sciences, problems often arise where it is not necessary to 
estimate the value of an attribute directly at an unsampled location but only to estimate whether 
that value is above or below some threshold level.  For example, in a soil contamination problem 
it may only be necessary to estimate whether or not the contaminant concentration at an 
unsampled location exceeds, or does not exceed, the regulatory threshold.  Similarly in a UXO 
site characterization, the investigation team may only be interested in knowing if there is at least 
one UXO in an unsampled portion of the site.  These types of binary, yes or no, variables are 
referred to as indicators and indicator kriging is the application of a kriging algorithm to these 
indicator data. 
 
Indicator data are determined through an indicator transform of the original, continuously 
defined, sample data.  The resulting indicator datum, i(u,zk) is determined as: 
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where zk is a threshold value against which each sample value is compared.  The indicator 
transform as defined above is consistent with the definition of the cumulative probability 
distribution function for a discrete variable (e.g., Conover, 1980).  However, in many 
environmental applications, the inverse of the indicator transform is of more interest.  This 
inverse transformation is defined as: 
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This inverse statement of the indicator transform places emphasis on those values that exceed the 
threshold value zk.  Christakos and Hristopulos (1996) provide discussion of the utility of the 
indicator transform shown in 8 for characterizing the spatial distribution of a contaminant. 
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Data that have been indicator transformed can be directly interpreted as the probability of a 
certain condition being true at location u.  At a sample location where the value of the sampled 
attribute is known and can be compared directly to the threshold value, zk, this probability can 
only be 0 or 1.  In order to determine the probability of the condition being true at any unsampled 
location, the observation z(uα1) can be replaced by its indicator transform i(uα1;zk) in the simple 
or ordinary kriging systems.  This requires that the variogram also be calculated using the 
indicator transformed data.  Kriging with this type of indicator data that define probabilities is 
known as probability indicator kriging, PIK, and the resulting estimates are a map of the 
condition being true at any location. 

Finite Domain Kriging 
One of the inherent assumptions in the development of the kriging equations is that the domain 
in which the kriging estimates are made is essentially infinite.  This assumption stems from the 
use of a random function model as the basis for the kriging equations.  One of the advantages of 
kriging as an estimator is that it not only accounts for the distance between all existing data 
points used in the estimation and the location being estimated, but that it also accounts for 
clustering of the existing data in an estimation.  The covariances from each existing datum and 
the point being estimated are contained in a vector on the right hand side of the kriging equation 
(Equation 6).  The further the distance between an existing datum and the location being 
estimated, the smaller the covariance between these points as defined by the complement of the 
variogram.  The left hand side of the kriging equations contains a matrix with the spatial 
covariances between all existing data points.  When this matrix is inverted during solution for the 
values of the kriging weights, values that are close together and have high spatial covariance are 
inverted to provide a lower overall weight to these points.  This function of the left hand side of 
the kriging equations serves to filter out redundant information caused by data clustering. 
 
Data collected in close proximity, such as along a linear transect, provide redundant information 
due the fact that the data are close together and spatially correlated.  The kriging equations work 
to filter this redundancy by giving data at the far ends of the transect larger weights than those in 
the center of the transect.  These data at the far end of the transect are seen as being “less 
redundant” and are therefore more heavily weighted.  However, these data are also further from 
the estimation point and provide less direct information on the point being estimated.  Therefore, 
the kriging equations provide a counter-intuitive set of results for estimations made using 
transect data. 
 
The problem of kriging with transect data, or more generally, “strings of data” has been 
examined previously in two papers by Deutsch (1993 and 1994) where attention was focused on 
the application of kriging using data collected along vertical boreholes in subsurface 
investigations.  The solution to the kriging weights problem developed by Deutsch (1994) is 
briefly outlined here: 
 
The solution to the problem of kriging with a string of data (Deutsch 1994) is to replace the 
correlation function, ρ(h), used to populate the covariance matrix on the left-hand side of the 
kriging equations with a redundancy measure calculated as: 
 

))](,())(,'([)'()'()( nnr n uuuuuu ρρρ −+−=−       (9) 
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where (n) is the set of transect data used in the kriging, u and u′ are the coordinate vectors 
defining the location to be estimated and an existing data point, respectively and the overbar 
indicates the average value of a property – here the average correlation between an estimation 
location or data point and all other n data points along a transect.  The right hand side of the 
kriging equations containing the estimation location to existing data locations covariance values 
remains unchanged.  Deutsch (1994) points out that the redundancy measure in Equation 9 is a 
positive, semi-definite function as long as ρ is a positive, semi-definite correlation function. 
 
The estimator for the finite domain kriging (FDK) formulation is essentially the same as that for 
the OK estimator in equation 4; 
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with the replacement of the correlation function by the redundancy measure defined in 9 within 
the FDK system: 
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Because r(n) is a positive semi-definite function, the solution of the system in 11 is unique as long 
as each data point has a unique location.  One disadvantage of the FDK system, relative to the 
traditional kriging equations, is that it is not an exact interpolator (i.e., it will not necessarily 
return the measured data value at a measured location).  
 
The estimation variance, or kriging variance, of the FDK system is given by: 
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The calculated value of the FDK estimation variance is always positive, but due to the 
inexactitude of the FDK estimator, the FDK estimation variance is not necessarily equal to zero 
at the data locations. 
 
In the case where there are L transects each containing nl samples, the FDK estimator is modified 
from equation 10 and applied to each string of data: 
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where the nl locations, ul
α, in string l are used to make the estimate.  The corrected kriging 

system is: 
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The average value along a given transect is: 
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and an unsampled location can be estimated by considering each transect as a single data point 
represented by the average value of the data on that transect.  The kriging estimator for this type 
of estimate is: 
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The uncorrected kriging system for these estimates made with the transect averages is: 
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The final estimation step is to employ the weights calculated for each transect to recombine the 
corrected estimates made using values along each individual transect (equation 13) into a final 
estimate: 
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This final estimate at a given location, u, can also be written as the sum of the estimate using 
data along each transect multiplied by the sum of the weight assigned to each transect: 
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As an example of the FDK correction for an estimate at a single location using data from a single 
transect, Figure 4 shows the calculated kriging weights for data along the transect used to 
estimate a point with an X coordinate that is at the center of the transect and that is 875 units off 
of the transect.  The weights calculated with the OK system (top image) and the FDK system 
(lower image) are compared.  The variogram model used in this example is a Gaussian model 
with a range of 3900 units and no nugget effect.  The results of the FDK system are to 
significantly increase the values of the kriging weights assigned to the data closest to the 
estimation location and reduce the weight assigned to the values at the ends of the transect. 
 

Finite Domain Kriging Example 
The effect of the FDK formulation relative to using a straightforward OK approach in a UXO 
site characterization setting is examined systematically using three different 5000 × 5000 m 
Poisson fields, one homogeneous and two non-homogeneous (Figure 5).  The homogeneous field 
has a uniform intensity and variance of the point distribution over the site.  For the two non-
homogeneous fields, a non-uniform point distribution characterized by a single feature in the 
center of the domain having increased intensity is superimposed on the homogeneous field.  This 
feature represents a UXO target in a UXO site (McKenna et al., 2001) and the two non-
homogeneous fields have different shapes in the area of spatially varying intensity centered at the 
feature (i.e., target): the isotropic target and the anisotropic target (Figure 5).  In the remainder of 
this report, they are referred to as the “homogeneous,” “isotropic,” and “anisotropic” fields, 
respectively. 
 
The three different simulated anomaly fields are sampled with parallel, north-south transects.  
For a given sampling event, a fixed number of transects are selected at random locations along 
the east-west axis.  Four different transect widths are used: 10, 50, 100 and 200 meters.  Along 
each transect, the anomalies are counted within equal area sampling cells that are always 50 
meters long by 10, 50, 100 or 200 meters wide depending on the transect width selected.  
Different numbers of transects with randomly chosen locations are selected for the different 
sampling widths to sample different percentages of the total site.  A total of 180 different 
randomly selected transects are examined for each number of transects and transect width.  The 
sample cells along these transects provide the input data for both OK and FDK.  The variogram 
calculated from complete knowledge of the true distribution of the anomalies is used with both 
of the kriging algorithms.  Use of the same variogram for all sample designs ensures that 
differences in the results will be solely to differences in the kriging algorithms 
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Figure 4.  Kriging weights along a transect of data for estimation of a point off of the transect at 
a Y coordinate of 2500.0.  The upper figure shows the kriging weights calculated using ordinary 
kriging and the lower image shows the kriging weights calculated with the finite domain kriging 
algorithm. 

 
For each site, the performance of the OK and FDK algorithms and sampling designs with respect 
to sampling density and transect width was investigated by estimating the object intensities at the 
unsampled sites and then comparing them to the true intensities through jackknifing.  Across all 
estimates, the mean error, ME, or bias, the mean absolute error (MAE), and the mean square 
error (MSE) were computed.  Since the variable of interest is the actual number of objects, errors 
are not comparable if the size of the cell is different.  To make the results comparable, all results 
are normalized to errors associated with 50 × 50 m cells.   
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Figure 5.  Distribution of anomalies simulated for testing finite domain kriging against ordinary 
kriging.  The three sites are referred to as homogeneous (top), isotropic (middle) and anisotropic 
(bottom).  The red dot in the lower two images shows the center of the target. 

Figure 6 shows, for each spatial field and kriging algorithm, the average normalized ME and 
MSE statistics as a function of the sampling intensity.  For the example results in Figure 6, 50-m 
wide sampling transects are shown.  As expected, when the homogenous field is examined, there 
is almost no impact of sampling intensity on either ME or MSE regardless of the kriging 
algorithm used.  The exhaustive semivariogram computed from the homogeneous shows a pure 
nugget effect and it makes the kriging estimate simply a local average.  On the other hand, on 
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average, object intensities are overestimated when three to ten transects (i.e. 3 to 10 % of the 
site) are sampled from either isotropic or anisotropic field.  Overestimation of object intensities 
happens when most sampling transects are located over the target area or near the target where 
the object intensity is higher than that of the background.  When enough numbers of transects are 
sampled to locate some transects in the region of background intensity the estimated intensities 
become unbiased.  This leads to higher MSE in this range of sampling intensity (3 to 10 % of the 
area sampled) but the MSE remains nearly constant as more than 10% of the site is sampled.  
Again there is no profound difference between OK and FDK in terms of MSE; FDK produces 
slightly higher MSE over the entire sampling intensity than OK.  The results obtained for the 
isotropic site and the anisotropic sites are similar and there is no significant difference between 
them in terms of estimation errors.  In addition, the same trend is observed for the MAE (not 
shown in this report). 
 

In summary, the difference in estimation errors between OK and FDK is much smaller than the 
impact of the choice of the sampling intensity or the transect width for all three sites.  One of the 
main reasons is that the impact of FDK is lessened when multiple transects are considered, as the 
number of data from the same transect decrease and data used in the kriging estimated are come 
from multiple transects.  In that case, data manipulation by FDK does not help improve the 
estimation and using OK appears to be justified.  Based on these results, the OK algorithm is 
used for the remainder of the estimation problems discussed in this report. 
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Figure 6.  Comparison of the mean error (bias) and the mean squared error, top and bottom 
images repectively for estimates made with OK and FDK as a function of the percent of the site 
sampled.  Results are presented for the homogeneous, isotropic and anisotropic sites shown in 
Figure 5. 
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 Model Evaluation 
For the example applications examined in this report it is desirable to assess the model 
predictions against the true spatial distribution of anomalies.  This is done through the general 
process of jackknifing where a large proportion of the available data are held back from the 
analysis and model building and only used to assess the results of the model after it is created.  
The only data that are used to make the estimations are those sampled along the transects. 
 
For the estimation of the total number of anomalies or the number of anomalies of interest at any 
location, it is possible to directly compare the estimates to the true values through the jackknifing 
procedure.  However, another approach that appears to offer benefits to the decision makers at a 
UXO site is to map the probability of having at least one anomaly of interest at any location.  
Estimates of probability cannot be directly compared to true probability values as those are only 
0.0 or 1.0.  Therefore, it is necessary to check the results of a decision that would be made using 
the probability map against the true presence or absence of anomalies of interest at every 
location to assess the results of this probability estimation.  In order to make a decision, it is 
necessary to determine at what probability the results will be compared.  This determination is 
done by examining the problem from the perspective of engineering reliability (e.g. Harr, 1987).  
The decision made at any spatial location is a function of both the estimated reliability, RE and 
the design reliability, RD, as specified by the decision maker.  The value of RE at every location is 
calculated directly from the estimated probabilities as: 
 
RE = 1.0 – P(at least one anomaly of interest)      (22) 
 
The value of RD is set by the decision maker to a level that is acceptable by all involved parties.  
The specific meaning of RD at any location is the probability of not having one or more 
anomalies of interest at that location. 
 
The four different results of decisions that can be made and their relationship to the actual 
presence or absence of at least one anomaly of interest are: 
 
Correct (A): )1(#)( <≥ anomalyDE andRR        (23) 
 
Correct (B): )1(#)( ≥< anomalyDE andRR        (24) 
 
False Positive: )1(#)( << anomalyDE andRR        (25) 
 
False Negative: )1(#)( ≥≥ anomalyDE andRR       (26) 
 
The two types of correct decisions (A and B) occur when the location is correctly left as is (RE ≥ 
RD and #anomaly < 1) or when the site is correctly assigned to an area requiring further 
investigation (RE < RD and #anomaly ≥ 1).  The two types of incorrect decisions arise when the 
location is unnecessarily slated for further surveying (False Positive) or when the location is not 
assigned to the region requiring further surveying, but in fact has at least one anomaly of interest 
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(False Negative).  It is the latter of the two incorrect decisions that can be of severe consequence 
in UXO remediation. 
 
For a given value of RD, there are two steps to assessing the results of the estimated probability 
values.  The first assessment step consists of using the estimated values of RE at each location to 
determine whether or not the RE is less than or greater than RD.  This determination is then 
combined with the true number of anomalies of interest at each model cell and the decision result 
(Equations 23 through 26) is determined.  The result of the decision is recorded for each location 
within the site and the final proportions of each type of result across the site are tabulated.   
 
It is recognized that the design reliability can be set to optimize different remediation objectives.  
For example, it may be desirable to select a value of RD that minimizes the number of false 
positive and false negative errors under a loss function that counts each false negative as being of 
equal importance to three false positives.  As another example, the objective may be simply to 
maximize the number of correct decisions.  In order to examine the changes in the decisions 
made as a function of RD, the model assessments shown in this report are conducted over a range 
of RD values. 
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Site Characterization Process 
The steps in the site characterization process used here are outlined below.  These steps assume 
that the goals of the site characterization have already been defined and agreed upon by the 
different parties involved in making decisions at the site.  The type of sample data that go into 
these analyses can be any combination of data collected at points, along straight transect and/or 
along meandering path transects 
 

1) Assembly of the spatially referenced site data.  These include the geophysical survey 
data, the site specific calibration of the geophysical instrument and any prior information 
on the site history.  Ideally these data are already contained in a data base and a GIS and 
are all spatially referenced and the quality of the spatial referencing has been assessed. 

2) The sample data and the site are discretized into sample cells and decision cells each of a 
finite areal extent.  The easiest approach is to make the sample cell size and the decision 
cell size equal; however, this is not always possible as the sample cell size is generally 
limited by the sensor footprint. 

3) The attribute of interest that will be used to make site characterization decisions is 
determined and aggregated to the size of the sample cell.  The spatial correlation of these 
data are calculates as an experimental variogram and a variogram model is fit to the 
points of the experimental variogram. 

4) The applicability of the variogram and the kriging procedure to the specific estimation 
problem is checked through a cross-validation procedure.  This cross-validation 
procedure is demonstrated in Example Application 1.   

5) Estimates of the attribute of interest are made for distances out to the range of the 
variogram.  These estimates are made at the scale of the decision cell using ordinary or 
probability indicator kriging. 

6) Decisions are made for each decision cell that has been estimated.  Typically, these 
decisions are to either apply more detailed surveying to the decision cell or to leave it as 
is.  The type of decision made and its effect on the final results will depend on the 
attribute that has been estimated (number of anomalies or probability). 

7) Based on the results of the estimation, locations for additional transect sampling can be 
identified.  These locations can be chosen to provide the greatest reduction in uncertainty 
or to meet other site characterization objectives.  After these additional samples are 
collected, the site characterization process starts over with step number 1. 

 
The calculations involved in this site characterization process are not overly time consuming and 
after the seven steps above have been completed once, it should be possible for a trained analyst 
to redo the steps with additional data in less than a day.  This short time frame will allow for near 
real time iteration of the data collection and decision making process.  
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Demonstration Applications 
Four different demonstration applications are presented.  Each application highlights a different 
aspect of the geostatistical approach to making UXO site characterization decisions: 

1) Application 1: This application demonstrates the flexibility of the kriging algorithm to 
estimate different properties that might be sampled on a UXO site such as the total 
number of anomalies per sample cell, the number of anomalies of interest within a 
sample cell, or the probability of at least one anomaly of interest within each sample cell.  
The ability to check the model setup prior to making estimates through a cross-validation 
process is demonstrated.  The sample data are extracted from a simulated site. 

2) Application 2: This example uses the Pueblo of Laguna N-11 target area as surveyed by 
Oak Ridge National Laboratories (ORNL) as the basis for demonstrating the probabilistic 
estimation of the target boundary from a limited number of parallel transects.  This 
transect sampling design is, in general, similar to what would be used to detect a target 
area of a known shape and size with a specified level of confidence. 

3) Application 3: This example is an extension of Application 1 that incorporates prior 
information on the site to extend the kriging estimates further away from the sample data.  
The stratum approach to incorporate prior information used here is probably the simplest 
means of incorporating prior information into kriging estimates and is well-suited for the 
types of prior information typically encountered at UXO sites. 

4) Application 4: compares the decision results made for the Laguna N-11 site for two 
different approaches to locating the second round of samples.  The two approaches 
considered are: 1) to locate a single meandering transect in the area of highest uncertainty 
surrounding the target area; 2) to infill with a new set of transects exactly midway 
between the existing transects. 

Application 1 
The first example application uses a simulated UXO site to demonstrate the ability of 
geostatistical estimation to predict the spatial distribution of three different attributes: the total 
number of anomalies, the number of anomalies of interest and the probability of having at least 
one anomaly of interest at all unsampled locations.  These estimations are made from initial 
transect data that were collected on two separate straight transects and on a single continuous 
meandering path transect.   

True Site and Sample Data 
The true site used in this example is created using the UXO simulator developed previously for 
this project (McKenna et al., 2001).  The distribution of all objects at the site is shown in Figure 
7.  Figure 7 shows a total of 59,467 objects within a 25 km2 area.  The average anomaly intensity 
is 2.38E-03 m-2.  As is true with the majority of UXO sites that have been geophysically 
surveyed, the anomalies are not distributed uniformly throughout the site, but show higher 
intensities near the two target areas.  The target area in the northeastern corner of the site was 
created to represent the result of two separate mortar firing locations sending ordnance onto two 
distinct yet overlapping target areas.  The higher anomaly intensity in the southwest corner of the 
site is representative of the anomaly distribution resulting from repeated aerial bombing of a 
target point with a preferential southwest to northeast flight path.   
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Figure 7.  Distribution of anomalies within the simulated site.  The axes dimensions are in 
meters. 

 
In the UXO simulator, each simulated anomaly is assigned a signal strength from one of two 
different, overlapping, log-normal distributions.  The distribution of signal strengths for the 
clutter and fragments has a geometric mean of 1.0 and ranges from 0.1 to 10.0.  The distribution 
of signal strength for the anomalies that are true UXO ranges from 1.0 to 100.0 with a geometric 
mean of 10.0.  It is noted, that there is significant overlap in the two distributions.  The 
distribution of signal strengths across all simulated objects is shown in Figure 8.   
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Figure 8.  Histogram showing the distribution of the simulated signal strengths for all objects 
within the site domain. 

 
The sample data are collected along three different transects: two straight transects that are 
orthogonal to each other and one meandering path transect in the southwestern portion of the 
site.  These transects have been located to intersect suspected target areas as well as to provide 
some coverage across the site.  The location of the meandering transect was set up to be limited 
by vegetation or other obstacles at the site.  Each transect has a constant width of 25 meters as 
might be obtained from back and forth passes of a helicopter mounted sensor system.  Figure 9 
shows the location of the transect data.  The color scale in Figure 9 indicates the total number of 
anomalies within each 25 x 25 meter cell along the transect.  A total of 706 cells, or 1.77 percent 
of the total site, are sampled along the three transects.   
 
Inherent in the geostatistical estimation approach is the conceptualization of the site as a discrete 
set of equal size model cells.  Ideally, the scale of the samples and the scale at which the 
variables are estimated will be the same.  For this work, all samples have a size of 25x25 meters 
and the estimates are also made on cells of similar size.  The site considered in this application is 
5000 by 5000 meters and has a total of 40,000 cells.  A total of 706 of these cells have been 
sampled and estimates are made at the remaining 39,294 cells. 
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Figure 9.  Locations of sampling transects on the simulated site.  The color scale denotes the 
total number of anomalies within each 25x25 meter cell along the transects 

Variograms 
 
The sample data collected along the transects are used as input for the variogram calculations.  
For each of the 706 sample cells contained in the transects, several summary data are recorded 
including the total number of anomalies, the total number of UXO (assumes that all anomalies in 
each cell were excavated), the number of anomalies above signal strength thresholds of 3, 4 and 
10 nT/m and the average signal strength of all anomalies within the cell.  At this point in the site 
characterization process, the site characterization team must determine the variable in which they 
are most interested in mapping.  Ideally, all anomalies in the sample transects would be 
excavated and the spatial distribution of UXO would then be estimated across the site.  In reality, 
especially at a large site, this amount of excavation will not occur during the site characterization 
phase.   
 
In lieu of the exact information provided by excavation, the spatial distribution of all anomalies, 
or all anomalies of interest (e.g., those with a signal strength above 3 nT/m) is considered.  
Estimating the former will provide information on the locations of increased anomaly density 
that correlate with target areas.  Estimation of the latter property, anomalies of interest, is done 
under the assumption that, in general, the set of anomalies with larger signal strengths include 
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the true UXO.  In this report, uncertainty in the signal strength and its relation to true UXO, for 
example as defined through a ROC curve, is not considered.  The effect of different ROC curves 
on the site characterization process has been discussed in (REFERNECE FOR LAST YEAR 
REPORT) and is also being examined in a set of controlled tests administered by SERDP 
through the Mitretek Corporation that will be documented in a future report. 
 
Three variograms are calculated on the transect data using: 1) the total number of anomalies; 2) 
the number of anomalies with signal strengths greater than or equal to 3 nT/m (an anomaly of 
interest) and 3) the probability of having at least one anomaly of interest at every location.  The 
variograms calculated for this exercise are done using the VarioWin software (Pannatier, 1996) 
that is freely available at: http://www-sst.unil.ch/research/variowin/index.html.  Analysis of the 
sample data did not reveal any preferential direction of spatial correlation and therefore all 
variograms were calculated as omnidirectional variograms (i.e., spatial correlation in all 
directions is averaged into a single variogram value for each separation distance). 
 
The variogram of the total number of anomalies is shown in Figure 10.  The parameters of the 
model variogram fit to the experimental variogram points are given in the first line of Table 1.  
Figure 10 shows that there is considerable small-scale variability in the number of anomalies 
from one cell to the next.  The nugget value of 1.9 accounts for 67 percent of the total variance 
(total variance = nugget + sill = 2.82).  The relative value of the nugget is controlled by the 
intensity of the anomalies and the sample cell size with larger cells providing a greater 
smoothing effect and thus a relatively lower nugget.  The range of the total anomaly variogram is 
425 meters, or roughly 1/12th of the length of the site. 
 
The variogram for the anomalies of interest, those above 3.0 nT/m, is shown in Figure 11.  The 
variogram model parameters for this variogram are given in the middle row of Table 1.  Similar 
to the variogram of the total number of anomalies, there is a relatively large nugget effect.  For 
the anomalies of interest variogram, the nugget represents 55 percent of the total variability.  The 
range of the anomalies of interest variogram is 250 meters, or five percent of the total domain 
length.  This range is shorter than that of the total number of anomalies as expected due to the 
more localized nature of the anomalies of interest.   
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Figure 10.  Experimental and model variogram fit to the total number of anomaly data obtained 
on the transects. 

 

 

Figure 11.  Experimental and model variogram fit to the number of anomaly data with 
geophysical signals above 3.0 nT/m obtained on the transects. 

 
The third variogram is calculated on an indicator transform of the sample data.  Those cells 
containing at least one anomaly with a signal strength of 3.0 nT/m or greater are assigned a 1.0 
and those without such an anomaly are assigned a value of zero.  These indicator values are 
directly interpretable as the probability of at least one anomaly of interest existing within each 
cell.  A total of 121 cells, or roughly 17 percent of the sample data, contain at least one anomaly 
with a signal strength of 3.0 nT/m or larger.  The variogram calculated on these indicator data is 
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shown in Figure 12 and the variogram model parameters are given in the bottom line of Table 1.  
This indicator variogram has a nugget that accounts for 52 percent of the total variability in the 
data and has a range of 800 meters.  This longer range value, relative to the other two variograms 
is, in a large part, due to the large number of contiguous cells with 0.0 indicator values where the 
sample transects cover areas of the site without any anomalies of interest.   
 

Figure 12.  Experimental and model variogram fit to indicator data created for a 
geophysical signal threshold of 3.0 nT/m. 

 

Table 1.  Variogram model parameters for the three different data sets. 

 Model Type Nugget Sill Range (m) 
Total Anomalies Spherical 1.9 0.92 425 
Number of Anomalies 
>= 3 nT/m 

Spherical 0.30 0.25 250 

Probability of one 
anomaly >= 3 nT/m 

Spherical 0.075 0.068 800 

 

Model Validation 
A considerable amount of literature has appeared in recent years arguing that it is impossible to 
validate or verify predictive models and that such models can only be disproved and even then 
they can only be disproved for the specific application that is considered (e.g., Konikow and 
Bredehoeft, 1992).  Several authors have argued that such phrases as model “validation” or 
“verification” be replaced with less philosophically loaded terms such as “model checking” or 
“model evaluation”.  Arguing the philosophy of such issues and the correct semantics is beyond 
the scope of this report.  Here we use the historically popular form of “cross-validation” as a 
model checking technique and use the consistent term “model validation” to describe the 
process. 
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A standard procedure for checking the applicability of any statistical prediction model to a given 
problem is the cross-validation technique.  Cross-validation consists of deleting one datum from 
the original data set containing n points, estimating the value of the deleted datum using the 
remaining (n-1) data, comparing the estimated value to the deleted true value, calculating one or 
more performance measures on the results of this comparison (e.g., the error or absolute error) 
and then averaging the value of the performance measure over all n deletions of a datum.  An 
excellent review of cross-validation and other model evaluation techniques is provided by Efron 
and Gong (1983).  As pointed out by Efron and Gong (1983), a distinct advantage of the cross-
validation technique is that it can be applied to predictions made through any type of estimation 
algorithm of arbitrary complexity. 
 
In the assessment of estimates made through kriging, an existing datum at a location is removed 
and the kriging algorithm is used to estimate the value of that datum using the remaining data.  
The use of a search window that includes a finite number of sample data less than the total 
number of sample data means the same number of data are used to estimate the value at the 
deleted location as at any other location when a value is not deleted.  In other words, in the 
definition of cross-validation given by Efron and Wong (1983) the n-1 remaining data are used 
to make the estimate.  In cross-validation of the kriging results in this report, the full number of 
data in the search window are used to make this estimate; however, the datum at the estimation 
location is not included in this estimate.   
 
Cross-validation is conducted for estimates of all three quantities being considered.  The results 
of the cross-validation are presented as tables showing the proportions of different type of results 
for the estimation of the total number of anomalies and the number of anomalies of interest and 
as a graph for decisions made from the probability map. 
 
The kriging program, kt3d, developed by Deutsch and Journel (1998) is used to create estimates 
of all three properties from the sample data.  In the case of estimating the total number of 
anomalies, kt3d produces non-integer estimates of the number of anomalies at each cell.  A 
fraction of an anomaly is not a realistic estimate and therefore the estimates are adjusted to be 
whole integer estimates of the number of anomalies by rounding each estimate up to the next 
integer value.  This adjustment imparts additional conservatism to the estimates by increasing the 
estimated number of anomalies in any one cell by as much as 0.99 and forcing there to be at least 
one anomaly in every cell.  The results of the estimation of total number of anomalies are 
summarized in the matrix in Table 2.  In Table 2, the different estimated numbers of anomalies 
are shown in the rows and the different numbers of true anomalies are shown in the columns.  In 
Table 2, values on the diagonal are the number cells in the domain where the total number of 
anomalies was correctly estimated.  Values in the cells above the diagonal are where the 
estimated number of anomalies is less than the true number of anomalies and these cells can be 
thought of as false negative results.  Entries in the matrix of Table 2 below the diagonal contain 
the number of cells where the estimated number of total anomalies is greater than the true 
number.  These results are, in a sense, false positive results 
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Table 2.  Cross-validation results of estimation of total number of anomalies. 

 
The results in Table 2 show how well the chosen variogram model and kriging algorithm work in 
cross-validation mode.  These results represent a self-consistent check on the estimation process 
without having to collect any additional data.  The percent of the estimates that are correct are 
21.4, 57.5 percent of the estimates are false positives and 20.7 percent are false negatives.  Table 
2 shows that no cells were reestimated as containing zero anomalies and this result is due to the 
post-estimation modification of rounding the estimated fractional anomaly amount up to the next 
highest whole integer.  This upward adjustment also biases the overall estimates towards the 
conservative end of the spectrum as evidenced by the larger number estimates below the 
diagonal (false positives) than above the diagonal (false negatives).  Evidence of the smoothing 
nature of the kriging algorithm is seen by the results tending to overestimate lower true values 
and underestimate higher true values  (Table 2). 
 
The results of the cross-validation estimation of the number of anomalies of interest are 
summarized in Table 3.  Again, the proportion of correct decisions for each number of anomalies 
are shown in the diagonal of the matrix, false negatives are above the diagonal and false positive 
results are below the diagonal.  For these estimates, 8.9 percent were correct, 86.8 percent are 
false positives and 4.2 percent are false negatives.  The large number of false positives is 
influenced by the conservative decision of rounding up the fractional estimates to the next 
integer value.  Almost all of the false positives occur at locations where one anomaly of interest 
is estimated but none exist. 

Table 3.  Cross-validation results of estimation of the number of anomalies of interest. 

 
For the estimation of the probability of having at least one anomaly of interest, the cross-
validation step is not as straightforward as in the case of the total number of anomalies and the 
number of anomalies of interest.  For probability mapping, there can only be two correct 

0 1 2 3 4 5 6 7
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.807 0.082 0.021 0.004 0.001 0.000 0.000 0.000
2 0.017 0.024 0.004 0.006 0.003 0.001 0.000 0.001
3 0.004 0.011 0.004 0.003 0.001 0.003 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0 1 2 3 4 5 6 7
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.047 0.033 0.031 0.004 0.001 0.003 0.001 0.000
2 0.166 0.200 0.144 0.068 0.016 0.013 0.003 0.001
3 0.016 0.034 0.042 0.025 0.025 0.008 0.006 0.003
4 0.006 0.003 0.007 0.020 0.006 0.006 0.007 0.003
5 0.000 0.003 0.004 0.007 0.008 0.006 0.001 0.001
6 0.000 0.000 0.001 0.004 0.003 0.004 0.000 0.004
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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answers: “0” or “1” corresponding to either none or at least one anomaly of interest existing at a 
location, respectively.  However, the estimation procedure produces a full range of probabilities 
within [0,1] and therefore it is necessary to apply some sort of decision rule to the estimated 
probabilities before comparing them to the true values.  The decision rule approach that has been 
developed and tested in this work is that of design reliability, RD, as defined above. 
 
The estimated probabilities of having at least one anomaly of interest are interpreted as the 
complement of the estimated reliability: RE = 1.0 – P(anomaly).  Any location on the site where 
1.0 - P(anomaly) is less than a specified design reliability, RD, must be surveyed in more detail, 
and any location where 1.0 - P(anomaly) exceeds RD can be left as is.  The higher the specified 
value of RD, the more conservative are the site characterization decisions.  The results of the 
decisions made using this strategy can be evaluated through cross-validation in the same way the 
estimates of total number of anomalies and number of anomalies of interest have been evaluated. 
 
Results of decisions made using the cross-validation estimates of the probability of at least one 
anomaly of interest are shown in Figure 13 for a range of RD values.  At higher values of RD, the 
proportion of correct decisions decreases and the proportion of false positive decisions increases.  
For all values of RD shown in Figure 13, the proportion of false positive decisions remains less 
than or equal to 0.05.  These results demonstrate the ability of the probability mapping to make 
relatively refined decisions compared to just estimating the total number of anomalies or the 
number of anomalies of interest.  As an example, the proportion of correct decisions made with 
the probability map remains over 0.50 for all values of RD, whereas in the estimation of the total 
number of anomalies and the number of anomalies of interest, the proportion of correct decisions 
were 0.214 and 0.089 respectively. 
 
The cross-validation process is meant to recreate the mechanics of the estimation process as 
closely as possible.  Therefore, the results of the actual estimation should be consistent with the 
results observed in the cross-validation step.  In a practical application, it is possible to examine 
the cross-validation results and determine whether or not the variogram model and kriging are 
adequate for the application.  Different variogram models and options within the kriging 
algorithm can be test ed using cross-validation before the final estimates are made.  In a practical 
application, the cross-validation results are the only thing that will be available; however, for this 
hypothetical site, the actual results of the estimation can be compared to the underlying “true” 
distribution of the anomalies.  This comparison to the true data held back from the estimation 
process is termed “jackknifing”. 
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Figure 13.  Proportions of different decision results as a function of the design reliability for the 
cross-validation results. 

Estimation Results 
After the variogram model has been estimated and has been deemed satisfactory through a cross-
validation exercise, it can be used in a kriging process to estimate values of the chosen attribute 
at unsampled locations.  The three variograms modeled above are now used to estimate the total 
number of anomalies, the number of anomalies of interest and the probability of at least one 
anomaly of interest at unsampled locations within the domain.  The estimations are limited to 
being within the distance equal to the range of the variogram from the sample data.   
 
The estimates of the total number of anomalies are shown in Figure 14.  A total of 23,582 
estimates are made.  The estimated values show the highest number of anomalies in the upper 
left (NE) corner corresponding to one of the suspected target areas.  The estimates made from the 
meandering path data also show relatively high numbers of anomalies, but not to the same level 
as in the NE corner of the site.  The discontinuities along the transects are caused by the 
relatively large nugget effect in the variogram.  Each sample data point is honored exactly, but 
this is accomplished in the kriging algorithm by creating a relatively sharp inflection in the 
estimated values at the data points. 
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Figure 14.  Estimates of the total number of anomalies within each model cell. 

 
The accuracy of the estimates of the total number of anomalies are evaluated in Table 4.  These 
results are in the same format as those used in the cross-validation exercise above and can be 
directly compared with those results.  Across the 23,582 estimations, 22.9 percent are correct; 
59.1 percent are false positive and 18.0 percent are false negatives.  Each of these results are 
within +/- three percent of the values obtained in the cross-validation.   
 
The results in Table 4 show that the majority of the cells are estimated to contain two anomalies 
and this creates the majority of false positives in areas where the actual number of anomalies of 
interest are zero or one.  The majority of the false negatives, those cells above the diagonal, 
occur when kriging under estimates the number of total anomalies by one when there are two or 
three total anomalies actually in the cell. 

Table 4.  Results of the jackknifing assessment of the total number of anomalies estimation. 

 
A similar set of results is produced for the estimation of the number of anomalies of interest 
within each cell.  The estimated values are shown in Figure 15, and the estimation results are 

0 1 2 3 4 5 6 7
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.039 0.042 0.025 0.011 0.003 0.001 0.000 0.000
2 0.164 0.224 0.147 0.064 0.022 0.007 0.002 0.001
3 0.023 0.044 0.049 0.030 0.017 0.009 0.003 0.001
4 0.003 0.008 0.010 0.015 0.007 0.005 0.003 0.002
5 0.000 0.001 0.002 0.002 0.004 0.002 0.001 0.001
6 0.000 0.000 0.000 0.001 0.000 0.002 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
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summarized in Table 5.  The shorter range of the anomalies of interest variogram leads to 
considerably fewer locations being estimated, 13,275 estimates, when compared to the estimates 
of the total number of anomalies (Figure 14).  These estimates are in a relatively tight band 
around the data locations on the straight and meandering transects.  Of the 13,275 total 
estimations, 9.2 percent are correct, 87.6 percent are false positives and 3.2 percent are false 
negatives.  All of these estimated percentages are within +/- 1 percent of the values obtained in 
the cross-validation. 

Figure 15.  Estimated number of anomalies of interest.   

Examination of Table 5 shows that almost all of the false positive estimates (83.5 percent of all 
estimates) occur when one anomaly of interest is estimated, but no anomalies of interest exist at 
that location.  The high number of false positives, in this case are a direct consequence of the 
decision to round all fractional estimates up to the next highest integer number of anomalies.  
The majority of the false negative results (1.7 percent of all estimates) occur when one anomaly 
of interest is estimated and two actually exist at that location.  This type of false negative result 
goes away when the estimation problem is turned to estimating the probability of at least one 
anomaly of interest as the actual number of anomalies of interest becomes irrelevant as long as 
there is at least one of them. 

Table 5.  Estimation results for the anomalies of interest. 

0 1 2 3 4 5 6 7
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.835 0.083 0.017 0.005 0.001 0.000 0.000 0.000
2 0.011 0.021 0.008 0.004 0.002 0.001 0.000 0.000
3 0.002 0.002 0.004 0.002 0.001 0.000 0.000 0.000
4 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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The final attribute to be estimated in this exercise is the probability of at least one anomaly of 
interest at every location.  The results of this estimation cannot be shown in a simple table, as 
were the previous two sets of estimations, because the results are in the form of a decision that is 
a function of the specified value of the design reliability.  The estimates of the probability of at 
least one anomaly of interest are shown in Figure 16 and the decision results as a function of RD 
are shown in Figure 17. 
 
The indicator variogram calculated on 0,1 values defining the absence or presence of at least one 
anomaly of interest at every sample location provides the longest range of any of the three 
variograms calculated in this example application.  The effect of this longer range is that 36,814 
probability estimates are made which is a significantly larger number than those created in 
estimating either the total number of anomalies or the number of anomalies of interest.  From 
Figure 16, the highest probability of at least one anomaly of interest occurs in the NE corner of 
the site where a target area is suspected.  The decision results as a function of RD show declining 
proportions of correct values as RD increases made up for by an increasing proportion of false 
negatives.  These results show that even at a relatively high RD of 0.95, the proportion of 
decisions that are false negatives is still less than 0.4.  The proportion of decisions that are false 
negatives at this same level of RD is approximately 2 percent.  Figure 17 can be compared to the 
same curve created in the cross-validation exercise (Figure 13).  The two graphs are nearly 
identical. 
 

Figure 16.  Estimated values of the probability of at least one anomaly of interest. 
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Figure 17.  Proportions of different decision results based on the map in Figure 16 for a range of 
RD. 

Application 1: Summary 
The main conclusions from this example application are: 1) the probability mapping approach 
provided superior decision making results when compared to the two different anomaly mapping 
approaches; and 2) that the cross-validation exercise done using only the existing sample data 
provided excellent predictions of the results of the actual estimations.   
 
The probability mapping approach provided higher levels of correct decisions and lower levels 
of false positive decisions when compared to mapping the total number of anomalies or mapping 
the number of anomalies of interest.  To some extent this result is due to the decision to round up 
any fractional estimates of number of anomalies to the next integer value in the two anomaly 
mapping approaches.  This decision creates artificially high levels of false positive results.  
However, mapping the number of anomalies requires that some type of fairly arbitrary decision 
be made as to what fraction of an estimated anomaly should be counted as a full anomaly.  For 
this work, the most conservative possible approach was taken.  The probability mapping 
approach avoids having to make the decision as to what fractional value needs to be counted as a 
true anomaly by requiring a decision on the acceptable reliability to which a site needs to be 
characterized.  Another approach to estimating numbers of anomalies that avoids the arbitrary 
decision making would be to use indicator kriging to estimate the probability of having a 
particular integer value of anomalies at any location.  However, the decision making focus is 
generally on whether or not there is at least one anomaly of interest, not whether there are three, 
four or five and therefore, the current probability mapping approach gets at the issue of 
importance directly. 
 
The cross-validation step provided excellent predictions of the results that were obtained in the 
actual estimations.  This step is generally used to compare different variogram models and 
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options in the setup of the kriging algorithm.  Additionally, cross-validation could be used to 
assess the impacts of different decisions made in the site characterization.  For example, the 
choice of the optimal value of RD for the making decisions off the probability map, or the effect 
of choosing different fractions of a true anomaly above which to round up to next integer value.  
Different values of these two thresholds could be compared in the cross-validation stage and then 
applied in the decision making that uses the final estimations.   
 
The excellent correlation between the cross-validation results and the final prediction results 
obtained in this example depend on the available samples being fully representative of the site 
conditions.   
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Application 2 
The second example application uses magnetometer data collected at the Pueblo of Laguna site 
in New Mexico in the spring of 2002 to demonstrate the ability of geostatistical estimation to 
estimate the probability of having at least one anomaly of interest at all unsampled locations.  
These estimations are made from initial transect data that were collected on multiple straight and 
parallel transects and the final goal is to determine the extent of the target areas as defined by the 
locations of the anomalies of interest. 

Pueblo of Laguna Site and Sample Data  
The N-11 target area in west-central New Mexico is selected from several different target areas 
that have been geophysically surveyed at the Pueblo of Laguna to serve as an example site for 
this application.  The N-11 site is arid grassland at an elevation of approximately 1750 meters 
above sea level.  The site is roughly 6900 feet by 6500 feet (area of 1030 acres or 417 ha).  The 
N-11 Target Area was used as a practice range for precision aerial bombing training for an 
indeterminate amount of time between the end of WW II and 1990.  Previous work (McKenna, 
2001) used the N-10 target area at the Pueblo of Laguna to develop initial ideas on the use of 
spatial statistics to characterizing UXO sites.  The surveyed area of the N-11 site is nearly an 
order of magnitude larger than that of the previously examined N-10 area. 
 
The data used in this example were collected in the spring of 2002 by the geophysics group at 
Oak Ridge National Laboratory (ORNL) using a set of eight helicopter mounted magnetometers.  
More details on the surveying equipment and its capabilities can be found in Doll et al. (2003).  
The magnetic anomaly data were reported as the analytical model signal in nT/m on a 3x3 foot 
grid.  The original footprint of the airborne sensor platform is approximately 25 feet, yet this 
footprint width is not seen in the final data as reported on the 3x3 foot grid.  The original 
dimensions of the surveyed area at the site are roughly 7000x7000 feet resulting in over 5.5E+06 
grid nodes for the analytical magnetometer signals.  Not all of these locations contained actual 
signal data, as much as 50 percent of these node locations were not surveyed and were reported 
as “missing” data.  For this exercise, the site is trimmed to dimensions of 6900x6500 feet and all 
of the grid nodes with missing data are removed.  This smaller domain and removal of the nodes 
without a magnetometer signal data results in approximately 2.2E+06 grid nodes with 
magnetometer signals remaining.   
 
The basis of this approach is that characterization decisions will be made over areas of the site 
with a finite size.  While it is possible to make geostatistical predictions on 3x3 foot cells, 
corresponding directly to the support of the survey data, this spatial resolution would most likely 
be too fine for practical use in making characterization decisions.  For this example, we use a 
15x48 foot cell size for making decisions.  This decision cell size is the minimum area over 
which a decision (i.e., schedule for detailed surveying or leave as is) will be made.  This 
rectangular shape is chosen to be consistent with a sensor having a 15-foot wide footprint that is 
considerably smaller than that used by ORNL in the actual survey, but is somewhat larger than 
the widths of other sensor platforms often used in UXO characterization studies.   
 
The initial survey data are resampled onto the 15x48 foot decision cells.  Each decision cell 
contains a maximum of 720 original 3x3 foot survey cells.  Some decision cells will have fewer 
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original survey cells due to the less than 100 percent survey coverage.  For each decision cell, the 
maximum signal value across all 720 or fewer survey cells is found and shown in Figure 18.  The 
data shown in Figure 18 serve as the ground truth for this exercise. 

 

Figure 18.  Survey data for the Pueblo of Laguna N-11 target area site as sampled on the 15x48 
foot decision cells.  The maximum signal value within each decision cell is shown here. 

The N-11 target area data upscaled to the 15x48 foot scale are then sampled along 14 parallel 
transects with a constant spacing of 480 feet.  The sampling transect locations and the maximum 
signal value for each decision cell along those transects are shown in Figure 19.  Note that not all 
of the transects in Figure 19 are continuous across the domain.  This is a result of the original 
sampling coverage shown in Figure 18 above, but it is also consistent with a parallel transect 
survey design where topography, vegetation or infrastructure precludes surveying in some areas 
of the site.  These 14 transects cover roughly 3 percent of the site. 

Mapping Signal Strength 
As an initial test, or validation, of the effectiveness of the geostatistical approach to mapping 
from limited transect information, the data shown in Figure 19 are used to compute the 
variogram of the maximum signal strength.  This variogram is fit using a spherical model with a 
range of 2800 feet and a nugget value of 3.0 (Figure 20).  This variogram is used with the 
transect data and ordinary kriging to estimate the maximum signal value at the same locations for 
which the original sampled data were obtained.  The results of this estimation are shown in 
Figure 21.  Visual comparison of Figures 18 and 21 indicates that geostatistical techniques are 
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capable of making accurate predictions of spatially distributed anomaly signal values from 
limited transect data. 
 

Figure 19.  Sample transect data for the Pueblo of Laguna N-11 site.  Along each transect, the 
maximum analytic signal within each 15x48 foot decision cell is shown. 



  45 

 

Figure 20.  Variogram of the maximum analytic signal as calculated from the N-11 target area 
transect data. 

Figure 21.  Estimated maximum analytical signal values made using ordinary kriging and the 
transect data and variogram shown in Figures 19 and 20 respectively.  Compare to the actual 
sampled data in shown in Figure 18. 
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Probability Mapping 
The estimation of the maximum signal strength across the site from the limited transect data is 
one type of geostatistical mapping that can be employed in UXO studies.  This type of map could 
then be used to determine the locations of all estimates above a certain geophysical signal 
threshold (e.g., 5 nT/m) and these locations could be scheduled for more detailed geophysical 
surveying.  The drawback of this approach is that is does not directly account for uncertainty in 
the estimates of the maximum signal.  Accounting for uncertainty in these estimates would 
require combining the estimated signal values with the kriging variance map.  However, this 
approach would only account for uncertainty as a function of the distance away from any 
existing transect data and does not directly take into account any uncertainty with respect to the 
decision being made (e.g., uncertainty with respect to being above or below the 5 nT/m 
threshold).  This type of uncertainty could also be accounted by kriging under the multiGaussian 
model (e.g., Goovaerts, 1997), but a simpler approach that does not require the transformation of 
the data to a Gaussian distribution and that has proven useful in previous studies is to map the 
probability of having at least one anomaly of interest across the site.  This is the same approach 
as the third demonstration used in the first example application. 
 
The transect data are reclassified as binary indicators (equation 8) using a threshold of 5.0 nT/m.  
An indicator value of 1.0 defines a location with an anomaly above 5.0 nT/m and is also the 
probability of at least one anomaly above this threshold existing within the decision cell at that 
location.  An indicator value of 0.0 denotes a location with no anomalies, zero probability, above 
the 5.0 nT/m threshold.  These indicator data are used to calculate and model an indicator 
variogram for the site.  This variogram is shown in Figure 22.  The indicator variogram was fit 
with a nugget value of 0.013 and two spherical models having ranges of 600 and 2800 feet and 
sills of 0.009 and 0.043. 
 
 

Figure 22.  Indicator variogram for the N-11 target area site and a geophysical signal threshold 
of 5.0 nT/m. 
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The indicator data along the transects and the indicator variogram in Figure 22 are used to map 
the probability of having at least one geophysical anomaly with an analytic signal value above 
5.0 nT/m within all decision cells across the site.  The resulting estimated probability map is 
shown in Figure 23.  Probabilities range from 0.0 to 1.0 and can only be one of these two values 
at the sample locations along the sample transects.  At unsampled locations within the domain, 
the probability value can range anywhere in the [0,1] range.  The map in Figure 23 shows high 
probability of at least one anomaly of interest in the center of the site as well as along the 
northern boundary near the center of the site.   
 
Relative to the map of maximum signal strength in Figure 21, the probability map in Figure 23 
provides the basis for a probabilistic interpretation of the extent of the boundary of the target 
area.  The extent of the target boundary is determined by selecting an acceptable value of RD and 
then slating every point within the chosen RD contour for detailed surveying.   

 
 

Figure 23.  Probability of at least one geophysical anomaly with a signal strength greater than 
5.0 nT/m across the site as estimated through indicator kriging. 

Figure 24 shows example target boundaries for four different values of RD.  In addition, the 
location of all anomalies of interest outside of the estimated target area are shown in red in 
Figure 24.  The locations of these anomalies of interest are known from the original geophysical 
survey data collected by ORNL.  As the design reliability increases, the characterization decision 
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becomes more conservative and the size of the estimated target region increases to cover more of 
the site.  This increase in size results in more of the anomalies of interest being contained within 
the estimated target region, but also increases the amount of the site that must undergo a detailed 
survey.  These two results tend to decrease the number of false negative characterization 
decisions and increase the number of false positive decisions, respectively. 

 

Figure 24.  The estimated target boundaries (blue) for four different levels of RD.  The anomalies 
of interest lying outside of the estimated target area are shown in red. 

The results of the decisions made for all values of RD between 0.7 and 1.0 are calculated and 
shown in Figure 25.  The image on the left side of Figure 25 shows the proportion of correct 
decisions, false positive and false negative decisions as well as the proportion of the anomalies of 
interest that are found as well as those that still remain.  The decisions results are at the scale of 
the decision cells (15x48) while the proportion of anomalies found and remaining are calculated 
for the individual anomalies.  The right image of Figure 25 shows an expanded view of the lower 
portion of the image on the left.  From Figure 25, it can be seen that as the value of RD increases, 
the proportion of correct decisions decreases while the proportion of false positive decisions 
increases.  The proportion of false negatives decreases monotonically as a function of increasing 
RD and is 2 percent or less for all values of RD shown.  The false negatives define the proportion 
of decision cells remaining that contain at least one anomaly of interest while the number of 
anomalies left behind refers to the number of individual anomalies remaining.  The reason that 
the proportions of the false negatives and the anomalies of interest are not equal for a given RD, 
is that more than one anomaly of interest can remain in a single decision cell.   
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Figure 25.  Proportions of decision results and anomalies of interest found and left behind for RD 
values between 0.70 and 1.00. 

Application 2 Summary 
This example application demonstrated the ability of geostatistical mapping techniques to 

estimate a fourth attribute, maximum signal strength, from a limited number of equally 
spaced parallel transects with a 15 foot width.  These same data were also used to map the 
probability of one anomaly of interest across the site and these results were used to map the 
extent of the target area where the target area is defined by the locations of the anomalies of 
interest.  The results show (Figure 24) that this technique is able to efficiently identify the 
outlines of the target without including large areas of the site without anomalies of interest 
within the estimated target region.  Additionally, the definition of the target acknowledges 
the uncertainty inherent in making decisions across a large site from limited information.  
The decision maker determines the reliability that is necessary for the characterization 
decision and this reliability defines the extent of the target areas.  As seen in Figure 24, this 
approach is not limited to defining only a single target, but will define the individual extent 
of multiple targets provided there are some sample data within those targets.  Results for this 
example, show that fewer than three percent of the remaining decision cells contained 
anomalies of interest for any value of RD above 0.70. 
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Application 3 
The third example application builds on the first application by extending the estimates with 
secondary information.  The stratified approach to developing the secondary information has not 
previously been applied to UXO site characterization problems and may prove extremely useful 
because of its simplicity. 

Incorporating Secondary Information 
A distinct advantage of geostatistical approaches to estimating spatially distributed properties is 
the flexibility with which these approaches can incorporate secondary information into the 
estimation of the primary variable.  These approaches include cokriging (Wackernagel, 1998; 
Goovaerts, 1997), kriging with a locally varying mean (Deutsch and Journel, 1998), kriging with 
an external drift (Journel and Huijbregts, 1978), collocated cokriging (Xu, et al., 1992; Almeida 
and Journel, 1994) and stratified kriging (Stein et al., 1988; Stein, 1994).  For the problem of 
UXO site characterization, we would like to incorporate secondary information that is quantified 
from an archival search report, or airborne imagery, with the primary data collected along sample 
transects.  Previous work on this project has investigated the use of cokriging, kriging with a 
locally varying mean and collocated cokriging to integrate prior information with transect sample 
data. 
 
The choice of which approach to use to incorporate secondary information into kriging estimates 
is based mainly on the character of this secondary data relative to the primary data.  Three 
aspects of the secondary data must be considered: 1) the spatial extent of the secondary data; 2) 
the units of measurement of the secondary data as compared to the units of the primary variable; 
and 3) the number of secondary variables.  The practical application of traditional cokriging 
approaches is generally limited to the case where the secondary data are oversampled with 
respect to the primary variable but are not available at all locations to be estimated.  This 
situation of the secondary data existing at the same locations as the primary data as well as at 
additional locations is the “partially heterotopic” case as defined by (Wackernagel, 1998).  If the 
secondary data are available at all estimation locations, then the spatial correlation of the 
secondary variable will filter that of the primary variable under traditional cokriging.  
Additionally, numerical instability in the solution of the cokriging system can occur (Goovaerts, 
1997). 
 
If the units of the secondary data match those of the primary variable, then kriging with a locally 
varying mean is an excellent choice for data integration.  Kriging with a locally varying mean 
replaces the stationary mean in the simple kriging formulation (equation 8) with one that varies 
spatially.  The variation in this locally varying mean must be smooth without sharp 
discontinuities (Deutsch and Journel, 1998).  Generally if the secondary data are obtained from a 
geophysical sensor that locally averages the signals of the subsurface anomalies, then this 
smoothly varying condition will be met.  Kriging with a trend (KT) does not require that the 
units of the primary and secondary data be the same.  KT limits the trend model to two terms that 
can be thought of as the value of the trend when the value of the primary data is equal to zero 
and a scaled version of the secondary data.  As in the case of kriging with a locally variable 
mean, the secondary data need to be smoothly varying.  Collocated cokriging allows for the 
incorporation of more than one secondary variable in the estimation of the primary variable. 
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For the problems of UXO site characterization, secondary data that exist at all locations to be 
estimated are of most interest.  The utility of both kriging with a locally varying mean and 
collocated cokriging with spatially exhaustive secondary information have been previously 
examined for applications to UXO site characterization problems as part of this project (Saito et 
al., 2002). 
 
For this demonstration, we use a prior classification of the site into three strata as the secondary 
information.  This type of classification could readily be generated from archival search reports 
available at many sites.  This approach does not require any prior knowledge of the data or site 
history within the strata, but only the geometric definition of portions of the site that may have 
different histories.  Estimation within strata proceeds as follows.  The site is divided into a 
number of strata and the mean value of the sample data lying within each stratum is calculated.  
For every data location, the residual between the sampled value and the stratum mean are 
calculated.  These residuals are used to construct a single residual variogram for the whole site 
and the spatial estimation of the residuals is then completed across the site.  For each location, 
the estimated residual is added back to the corresponding stratum mean to get the final estimate 
of the primary variable.  This technique is chosen because it is well suited to information 
contained in archival search reports.  Previous applications of this stratum method for spatial 
estimation include Stein (1994) and Stein et al. (1998).  The use of prior information to simply 
define different strata with assumed differences in anomaly/UXO intensity is perhaps the most 
simple use of secondary data to aid in spatial estimation. 
 
Based on the available historical information, the example hypothetical site is divided into three 
strata defining the probability of UXO within each: Low, Medium and High.  The spatial extent 
of these three zones are shown schematically in Figure 26.  These three zones are used to define 
the secondary information for each of the three quantities being estimated: total number of 
anomalies, number of anomalies of interest, and the probability of having at least one anomaly of 
interest.  It is noted that it is not necessary to determine the actual values defining “low”, 
“medium” and “high” but only to determine the spatial extent of the regions with presumed 
similar behavior. 
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Figure 26.  Schematic representation of the hypothetical site with three different strata 
representing: low (blue), medium (green) or high (red) suspected relative intensities of anomalies 
based on historical data. 

The mean value of each quantity being estimated within each of the strata is calculated from the 
sampling transects as they intersect the three different strata.  These mean values and the total 
number of 25x25 meter transect sample cells lying within each zone are shown in Table 6.  An 
inherent assumption in using the stratum approach to secondary data is that there are enough 
samples available within each stratum to estimate a mean value that is representative of the true 
distribution of anomalies within the stratum. 
 

Table 6.  Means of each quantity within the three different strata. 

 

Residual Variograms 
Each sample value along the transect is subtracted from the corresponding stratum mean to 
produce a residual value.  These residuals are then used to calculate and model residual 
variograms.  The residual variograms for each of the three attributes being modeled are shown in 
Figure 27 and the parameters of the models fit to these residual variograms are given in Table 7.  
For the residual values, the indicator variogram is fit with two nested models to better 

Total Anomalies Number of
Stratum Anomalies of Interest Indicator Samples
Low 1.357 0.066 0.057 457
Medium 1.966 0.291 0.217 175
High 4.149 1.473 0.77 74
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approximate the experimental variogram data.  These residual variograms show significantly 
higher nugget effects and shorter ranges than the variograms calculated on the raw sample data.  
This behavior is expected as the residuals should represent the uncorrelated random variability 
about the subtracted model.  The small amount of spatial correlation remaining is due to the 
model, the mean values within each zone, being an approximation and not a perfect description 
of the sample data.  This behavior is what would be expected for transect sampling at a field site. 
 

Table 7.  Variogram model parameters used to fit the variograms of the residuals. 

 Model Type Nugget Sill Range (m) 
Total Anomalies Spherical 1.8 0.31 90 
Number of Anomalies 
>= 3 nT/m 

Spherical 0.25 0.117 40 

Spherical 0.058 0.016 30 Probability of one 
anomaly >= 3 nT/m Exponential NA 0.022 350 
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Figure 27.  Residual variograms for the total number of anomalies (upper image), anomalies of 
interest (middle image) and indicator (lower image) values.   
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Estimation 
The estimates of the residuals are shown in Figures 28, 29 and 30.  The most notable difference 
between these estimates and the estimates shown in Figures 14, 15 and 16 is that the area of 
estimation is smaller.  This is due to the shorter range values of the residual variograms relative 
to the raw value variograms. 
 
The residual values at any location, x, are calculated as: 
 
residual(x) = stratum_mean(x) – data(x)       (27) 
 
therefore a positive residual means that the average within the stratum over estimates the actual 
value at that location and a negative residual under estimates the actual value at that location.  
The majority of the areas of estimated residuals shown in Figures 28, 29 and 30 have values near 
0.0 meaning that at these locations the mean value of the stratum will prevail as the estimate.   
 

Figure 28.  Estimated residual values for the total number of anomalies. 
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Figure 29.  Estimated residuals for the anomalies of interest.   

 

Figure 30.  Estimated residuals for the probability at least one anomaly of interest. 
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The estimated residuals are added back to the mean value of each property within each of the 
zones defined as prior information.  The final estimates are the sum of the estimated residuals 
and the zone means.  These final estimates are shown in Figures 31, 32 and 33.  As was done for 
the cross-validation and the estimation results in example application 1, the results of the 
estimation are summarized in tables for the total number of anomalies and the number of 
anomalies of interest and in a graph for the probability of at least one anomaly of interest.   
 
The estimation results in Figures 31, 32 and 33 clearly show the locations of the different stratum 
and the effect that the mean values in each stratum have on the resulting estimates.  The 
incorporation of the secondary information provided by using the strata allows for estimates at 
all locations.  However, for locations that are further away from a sample point than the range of 
the residual variogram, the estimated value reverts to the stratum mean.  This effect places 
considerable importance on being able to determine representative mean stratum values from the 
available transect data.  For the “low” and “medium” strata, the mean values are 1.36 and 1.97 
respectively.  For locations that are beyond the variogram range from any sample point, these 
means are used to make the estimate and any values corresponding to these means will then be 
rounded up to the next highest integer, 2, prior to evaluating the results of the estimation through 
jackknifing.   
 
The jackknifing results for the estimation of the total number of anomalies are given in Table 8.  
Across all estimates, 22.3 percent are correct, 59.9 percent are false positive and 17.7 percent are 
false negative.  These results are within +/- one percent of the results obtained for the estimates 
in the first example application with the major difference being that the use of the strata allows 
for estimations across the entire site.  The majority of the false positive estimates are where two 
anomalies were estimated but there were zero or one actual anomalies in those locations.  These 
false positives are a direct result of the mean values in the “low” and “medium” strata (Table 8) 
and the decision to round each estimate up to the next highest integer value.  All estimates in 
these two strata that are beyond the variogram range from the nearest sample point are estimated 
as having two anomalies.  However, the reality is that much of this area has only one, or no 
anomalies at all and therefore a large number of false positives are estimated.  The majority of 
the false negative results occur where two anomalies are estimated in the low and medium strata, 
but three or four anomalies actually exist.   

Table 8.  Results of the estimation of the total number of anomalies using prior information as 
determined through jackknifing. 

0 1 2 3 4 5 6 7 8 9
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.004 0.006 0.007 0.004 0.001 0.001 0.000 0.000 0.000 0.000
2 0.237 0.314 0.212 0.098 0.037 0.014 0.004 0.002 0.000 0.000
3 0.008 0.008 0.006 0.003 0.002 0.000 0.000 0.000 0.000 0.000
4 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000
5 0.001 0.003 0.005 0.006 0.004 0.002 0.002 0.001 0.001 0.000
6 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Figure 31.  Estimates of the total number of anomalies as created using prior information. 

The results of the estimation of the number of anomalies of interest using the prior information 
are shown in Figure 32 and Table 9.  The effect of dividing the site into strata is clearly evident 
in the map of estimates in Figure 32.  Across all 40,000 estimates, the correct estimates account 
for 7.0 percent, the false positives account for 91.1 percent and the false negatives account for 
just 1.9 percent.  These results are within +/- four percent of the estimates made without using 
the strata, but using the strata allows for estimates across the entire site.  The large number of 
false positives is due to the mean value estimated for the low and medium strata and the 
conservative decision to round each estimate up to the next highest integer value.  The means of 
the low and medium strata are 0.07 and 0.29 respectively (Table 6) and for any location where 
the stratum mean serves as the estimate, these values will both be rounded up to 1.0.  These 
means and the rounding up decision lead to a large number of locations were one anomaly of 
interest is estimated, but no anomalies of interest exist (Table 9).  The larger percentage of false 
positives results in a low percentage of false negative decisions.  The majority of these false 
negatives occur when one anomaly is estimated and two actually exist (Table 9). 
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Figure 32.  Estimates of the number of anomalies of interest as created using prior information. 

 

Table 9.  Results of the estimation of the number of anomalies of interest using prior information 
as determined through jackknifing 

0 1 2 3 4 5 6 7 8 9
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.889 0.067 0.012 0.003 0.001 0.000 0.000 0.000 0.000 0.000
2 0.010 0.009 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000
3 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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The final attribute to be estimated is the probability of having at least one anomaly of interest at 
every location.  This is done using the variogram calculated on the residuals of the indicator data 
and the discretization of the site into three strata.  The results of the estimation are shown in 
Figure 33 and the evaluation of these estimates using jackknifing is summarized across a range 
of RD values in Figure 33.  As seen in the estimation results for the other two attributes, the 
segmentation of the site domain into strata has a strong effect on the final estimates.  High 
probabilities of at least one anomaly of interest occur mainly in the suspected target area in the 
southwest portion of the site.  The suspected target region in the northeast corner of the site has 
probabilities in the 0.5 to 1.0 range. 
 

Figure 33.  Estimates of the probability of at least one anomaly of interest as created using prior 
information. 

 
The results of the decisions made at different levels of RD (Figure 34) show a stepped behavior 
that has not been seen in previous results (e.g., Figure 17).  The discrete jumps or drops in the 
proportions of different decisions are the result of stratifying the site into three distinct zones.  
For example near an RD value of 0.95, there is a large increase in the number of false positive 
results and a corresponding decrease in the number of correct decisions.  Below this level of RD, 
the “low” stratum is not slated for additional surveying, but at RD values about approximately 
0.95, it becomes necessary to do detailed surveying throughout the low stratum area.  Detailed 
surveys across the entire low area do find additional anomalies of interest (drop in false 
negatives for RD > 0.95 in Figure 34) but they are generally inefficient and the number of false 
positives increases dramatically as this region is surveyed.  The other jumps in the curves 
correspond with the values of RD at which the high and medium strata are also slated for detailed 
surveying. 
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Figure 34.  Proportions of different decision results based on the map in Figure 33 for a range of 
RD. 

Application 3 Summary 
This example application demonstrates a simple approach for incorporating prior information 
into UXO site characterization activities.  Results of dividing the site into strata based on 
archival information allows for estimations across the entire site, but the majority of these 
estimates are simply the stratum mean.  The results of this example show that estimates can be 
made across the entire site and the results are comparable to estimates that can only be made 
across much smaller portions of the site when prior information is not used.  Unfortunately, these 
results only hold for the estimates of the total number of anomalies and the number of anomalies 
of interest while the proportion of correct and false positive results based on the probability 
estimates are degraded relative to results when the strata are not used.   
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Application 4 
The fourth example application builds on the second application by examining two different 
approaches to identifying the second iteration of sampling.  These two approaches are: 1) take a 
single meandering path transect within the regions of highest target boundary uncertainty as 
defined using the initial sampling and probability indicator kriging; and 2) locate additional 
straight, parallel transects in areas midway between the existing transects.  The results of the 
decisions are again compared to the underlying true values using a jackknifing procedure to 
determine how well both cases of additional sampling did in improving the results. 

Second-Phase Samples: Meandering Path 
The first approach uses the results of using PIK on the original 14 transect samples to estimate 
the probability of at least one anomaly of interest at every location (Figure 23).  For these 
examples, anomalies of interest are those above 5.0 nT/m and the locations with high probability 
of these anomalies are believed to correspond to target locations.  In the original probability map 
(Figure 23), regions of maximum uncertainty correspond to areas with a probability near 0.50 of 
having at least one anomaly of interest.  For this example, the maximum uncertainty regions are 
defined as those with probabilities between 0.4 and 0.6 and these are shown in Figure 35.   
 
 

Figure 35.  Locations of maximum uncertainty in the presence or absence of an anomaly of 
interst at the Laguna N11 site.  The red regions contain cells with probabilities of at least one 
anomaly of interest between 0.4 and 0.6. 
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The areas shown in red in Figure 35 correspond to the areas in which the second round of 
samples should be located to achieve the maximum reduction in uncertainty with respect to the 
location of anomalies of interest.  This entire high uncertainty region, including the area near the 
northern boundary of the site is sampled with meandering path transects as shown along with the 
original straight sampling transects in Figure 36. 
 

 

Figure 36.  Original straight transects and the meandering path transect obtained in the second 
round of sampling.  The log10 color scale shows the maximum analytic signal strength in nT/m 
within each sample cell. 

 
The samples obtained by surveying this high uncertainty region show little spatial correlation 
when transformed to the indicator [0,1] space.  This result is expected as these samples were 
specifically located in an area with estimated probabilities of at least one anomaly of interest 
near 0.5.  Given these estimates and the fact that a sample can only take the values 0.0 or 1.0, it 
is expected that nearly every other sample cell would be a 1.0 with the other half of the sample 
cells containing a 0.0.  This independence from one cell to the next along the meandering path 
creates a nugget effect variogram (i.e., no spatial correlation) and therefore the original indicator 
variogram (Figure 22) as calculated off of the straight transects is used in the PIK process to 
create the updated estimates of the probability of at least one anomaly of interest.  This updated 
probability map is shown in Figure 37 and this map can be compared to Figure 23 to asses the 
impact of the meandering path transect on the overall estimation of probabilities.  The location of 
the larger meandering path transect in Figure 36 is readily apparent near the center of Figure 37. 
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Figure 37.  Updated probability map showing the probability of at least one anomaly of interest 
at every location.  This map was updated from the original map by incorporating a meandering 
path transect in the region of greatest uncertainty. 

Second-Phase Samples: Straight Transects 
A second approach to locating additional transects is to locate a single straight transect midway 
between the existing straight and parallel transects obtained in the initial round of sampling.  
This approach would result in an increase in the probability of detecting a target of a given size, 
or a large decrease in the size of a target area that could be detected for the same level of 
confidence used in the initial transect design.  This approach of “infilling” with additional 
straight transects was applied to the Laguna N11 site and the transects resulting from the initial 
and the second iteration of sampling are shown in Figure 38.  The additional transects could not 
be located exactly midway between the original transects for this example due to the gaps in the 
original field survey data, but they were located as close to midway between the existing 
transects as possible.  
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Figure 38.  Straight and parallel sampling transects obtained in the original and second round of 
sampling.  The log10 color scale shows the maximum analytic signal strength in nT/m within 
each sample cell. 

 
The additional transect data are transformed to the 0,1 indicator values based on whether or not 
at least one anomaly of interest is found within each sample cell and the indicator variogram is 
calculated and modeled using both the original and second-round sample data.  Unlike the first 
approach of locating a meandering path in the area of highest uncertainty, this second approach 
of infilling additional straight transects across the entire site does not preferentially sample 
regions with low spatial correlation.  Therefore, the indicator variogram calculated using all the 
sample data does display spatial correlation and can be used directly in the estimation of the 
probability values for the updated probability map.  The indicator variogram constructed using 
all the straight transect data and the updated probability map created with this variogram and the 
second round of straight transects are shown in Figures 39 and 40 respectively. 
 
The variogram fit to the full set of indicator data has a nugget value of 0.015, and is fit with two 
nested spherical variogram models having ranges of 400 and 2800 feet and sill values of 0.013 
and 0.05.  The variogram model fit to both sets of straight transect data is very similar to that fit 
to the original transect data.  This similarity indicates that the 14 original transects were adequate 
to recover the spatial variation across the entire site. 
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Figure 39.  Updated indictor variogram calculated from the original and second round of straight 
transects. 

 

Figure 40.  Updated map showing the probability of at least one anomaly of interest everywhere 
at the site based on the original and second round of straight transects. 
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Second-Phase Sampling Results 
The final comparison between the two methods of locating second-phase samples is done by 
comparing the results of the site characterization decisions that would be made using the two 
different probability maps (Figures 37 and 40).  This is done in the same way as in the previous 
example applications by making decisions for a range of RD values and comparing the decisions 
to the known data that were held back from the analysis and then reporting the proportions of the 
different decision results.  Also, the proportions of anomalies of interest found or left behind 
using the different sampling designs are examined.  These comparisons are shown in Figure 41. 
 
The top graph in Figure 41 shows the proportion of the total anomalies that are found and that 
are left behind as a function of the chosen RD.  These graphs are calculated using the actual 
anomalies and their locations.  Although the decisions are made at the 15x48 decision cell scale, 
no aggregation of the true anomalies into the decisions cells is considered in this top graph.  
Therefore, if a false negative decision is made for a decision cell and that cell contains 5 
anomalies of interest, this will lead to 5 anomalies being left behind.  The results in the top graph 
of Figure 41 show that at levels of RD >= 0.95, 93 percent or more of all anomalies of interest are 
found and 7 percent or less are left behind.  The sampling design that uses two sets of straight 
transects produces the highest proportion of anomalies found across all values of RD, although at 
the highest values of RD, there is little difference in the results when using just the original 14 
transects or the original transects combined with either the meandering path or the 13 additional 
straight transects. 
 
The middle graph on Figure 41 shows the proportion of correct and false positive decisions made 
as a function of RD for each of the three sampling designs.  These results are calculated by 
comparing the decisions made at the decision cell scale to the true decision that would be made 
at the same decision cell scale if the site were perfectly characterized.  For these results, the 
original 14 transects combined with the meandering path give the highest proportion of correct 
decisions and the lowest proportion of false positive decisions across values of RD from 0.70 to 
approximately 0.97.  For design reliabilities above 0.97, the 14 original transects combined with 
the 13 additional straight transects produce the highest proportions of correct decisions and the 
lowest proportions of false positive decisions.  However, the differences in the proportions of 
correct and false positive decisions across the three different sampling designs are minimal for 
all values of RD considered.  These results indicate that little improvement in the decisions 
resulted from adding the second round of sampling.  This result is true for either the meandering 
path or the additional straight transect second-phase sampling designs. 
 
The bottom image in Figure 41 shows the proportion of false negative decisions made for each of 
the three different sampling designs across the full, 0.0 to 1.0, range of RD values.  This lower 
graph shows that the addition of second phase samples, either the single meandering path or 
multiple straight transects, decreases the number of false negative decisions relative to just using 
the original 14 straight transects.  For different values of RD, the second-phase sampling 
approach that gives the lowest proportion of false negative results varies as a function of RD.  For 
values of RD greater than 0.95, the choice of sampling design is nearly inconsequential with 
respect to the number of false negative decisions with the original sampling design and the two 
second-phase designs all achieving a false negative proportion of approximately 4.0E-03 or less. 
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Another way to view the decision results for this example application is to map the extent of the 
site that is slated for additional surveying versus that which is left as requiring no further action.  
These maps are compared for four different levels of RD: 0.70, 0.80, 0.90 and 0.95 in Figure 42.  
The results for the second iteration samples being obtained along thirteen straight transects are 
shown on the left and the results obtained with a single meandering path as the second iteration 
are shown in the right column.  The two approaches are fundamentally different in that the 
additional straight transects are designed to learn more about the entire site while the meandering 
path is specifically designed to better resolve the extent of the target area.  As the RD increases, 
the straight transect sampling results in more isolated areas outside the main target area being 
scheduled for detailed surveying, while the results based on the additional meandering transect 
generally produces changes in and around the main target areas.  The lack of spatial correlation 
in the samples along the meandering path transect limits the ability of these data to inform 
nearby locations that were not sampled and thus limits the effect of these samples to the actual 
sample locations. 

Application 4 Summary 
The major result of the fourth example application is that the original 14 transects provide 
enough information to characterize the site and in particular, these transects provide enough data 
to adequately define the boundaries of the target regions.  The 13 additional transects, or the 
meandering path transect, taken as a second-phase of sampling do not significantly alter the 
results from those obtained with the original 14 transects.  The different approaches to the 
second-phase of sampling do define slightly different areas for additional surveying; however, 
the decision results across the entire site are essentially identical.  
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Figure 41.  Decision results as a function of RD for the initial sampling and two different 
approaches to the second iteration of sampling for the Laguna N-11 site. 
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Figure 42.  Decision maps for four different levels of RD: 0.70 (top); 0.80 (second from top), 
0.90 (second from bottom), 0.95 (bottom).  The results in the left column are for the straight 
transects.  The right column has the results for the meandering path. 
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Conclusions 
This report has addressed one potential limitation in the spatial estimation procedure and has 
provided a number of simple applications of different aspects of the site characterization 
approach across four different examples.  The results of the investigation into whether or not it is 
necessary to correct the kriging procedure to account for the finite domain effect associated with 
transect data has been answered.  All results examined over multiple different transects, transect 
widths and proportions of site sampling coverage show that there is no appreciable difference 
between finite domain kriging and traditional ordinary kriging.  Therefore it is possible to make 
accurate estimates from transect data using the readily available ordinary kriging algorithm. 
 
In general all four example applications looked at sites where less than 10 percent of the was 
sampled and the site characterization tools were able to produce decision results that limited the 
number of false negatives to 5 percent or less.  Significant differences in the amount of correct 
and false positive decisions exist across the different attributes that are estimated and the 
different approaches to decision making.  The specific conclusions that can be drawn from each 
of the example applications are: 
1) The probability mapping approach provided superior decision making results when compared 

to mapping the total number of anomalies or mapping the number of anomalies of interest.  
To some extent this result was due to the decision to round up any fractional estimates of 
number of anomalies to the next integer value in the two anomaly mapping approaches.  
This decision creates artificially high levels of false positive results.  However, mapping the 
number of anomalies requires that some type of fairly arbitrary decision be made as to what 
fraction of an estimated anomaly should be counted as a full anomaly.  For this work, the 
most conservative possible approach was taken.  The probability mapping approach avoids 
having to make the decision as to what fractional value needs to be counted as a true 
anomaly by requiring a decision on the acceptable reliability to which a site needs to be 
characterized.  The cross-validation step provided excellent predictions of the results that 
were obtained in the actual estimations.  This step can is generally used to compare different 
variogram models and options in the setup of the kriging algorithm, but the results obtained 
here demonstrate that cross-validation can also be used to gain confidence in the accuracy of 
the estimates across a site using just the data that have already been collected. 

 
2) This example application demonstrated the ability of geostatistical mapping techniques to 

estimate a fourth attribute, maximum signal strength, from a limited number of equally 
spaced parallel transects with a 15 foot width.  These same data were also used to map the 
probability of one anomaly of interest across the site and these results were used to map the 
extent of the target area where the target area is defined by the locations of the anomalies of 
interest.  The results show that this technique is able to efficiently identify the outlines of the 
target without including large areas of the site without anomalies of interest within the 
estimated target region.  Additionally, the definition of the target acknowledges the 
uncertainty inherent in making decisions across a large site from limited information.  The 
decision maker determines the reliability that is necessary for the characterization decision 
and this reliability defines the extent of the target areas.  This approach is not limited to 
defining only a single target, but will define the individual extent of multiple targets provided 
there are some sample data within those targets.   
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3) This example application demonstrated the utility of a simple approach for incorporating 
prior information into UXO site characterization activities.  Results of dividing the site into 
strata based on archival information allows for estimations across the entire site, but the 
majority of these estimates are simply the stratum mean.  The results of this example show 
that estimates can be made across the entire site and the results are comparable to estimates 
that can only be made across much smaller portions of the site when prior information is not 
used.  These results only hold for the estimates of the total number of anomalies and the 
number of anomalies of interest while the proportion of correct and false positive results 
based on the probability estimates are degraded relative to results when the strata are not 
used.   

4) The major result of the fourth example application is that the original 14 transects provide 
enough information to characterize the site and in particular, these transects provide enough 
data to adequately define the boundaries of the target regions.  The 13 additional transects, or 
the meandering path transect, taken as a second-phase of sampling do not significantly alter 
the results from those obtained with the original 14 transects.  The different approaches to the 
second-phase of sampling do define slightly different areas for additional surveying; 
however, the decision results across the entire site are essentially identical. 
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