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Executive Summary 
 
 
The Strategic Environmental Research and Development Program (SERDP) issued a statement of 
need for FY01 titled Statistical Sampling for Unexploded Ordnance (UXO) Site Characterization 
that solicited proposals to develop statistically valid sampling protocols for cost-effective, 
practical, and reliable investigation of sites contaminated with UXO; protocols that could be 
validated through subsequent field demonstrations.  The SERDP goal was the development of a 
sampling strategy for which a fraction of the site is initially surveyed by geophysical detectors to 
confidently identify clean areas and subsections (target areas, TAs) that had elevated densities of 
anomalous geophysical detector readings that could indicate the presence of UXO.  More detailed 
surveys could then be conducted to search the identified TAs for UXO. 
 
SERDP funded three projects:  those proposed by the Pacific Northwest National Laboratory 
(PNNL) (SERDP Project # UXO 1199), Sandia National Laboratory (SNL), and Oak Ridge 
National Laboratory (ORNL).  The projects were closely coordinated to minimize duplication of 
effort and facilitate use of shared algorithms where feasible.  This final report for PNNL Project 
1199 describes the methods developed by PNNL to address SERDP’s statement-of-need for the 
development of statistically-based geophysical survey methods for sites where 100% surveys are 
unattainable or cost prohibitive. 
 
This PNNL project focused on 4 objectives: 

• Finding target areas of anomalies 
• Compliance assessment  
• Dig list stopping rules 
• Validation of statistical tools developed for TA detection 

 
Figure 1 shows the relationship between these objectives and provides a brief summary of the 
main results, including developed software and sources of additional information. 
 
Objective 1:  Finding Target Areas of Anomalies  
 
This project developed statistically based designs for geophysical detector surveys conducted 
along transects (swaths) to achieve a specified high probability of traversing and detecting target 
areas (TAs) of critical size, shape, and density of detectable items of interest (anomalies), some of 
which may be UXO.  These methods were developed for when the density of anomalies in the TA 
has either a Uniform distribution (unchanging density over space) or a Bivariate Normal 
distribution for which the anomaly density increases in the shape of a two-dimensional bell curve 
to a location of maximum density. 
 
Our sampling design methods are consistent with systematic planning processes such as the Data 
Quality Objectives (DQO) process.  The target detection design methods focus on determining 
the number and spacing of transects (swaths) that will be required to have an acceptably high 
probability of traversing and detecting target areas of a critical size, shape, and anomaly density.  
Target areas are defined as areas where UXO are most probable and the number of geophysical 
anomalies is much higher than in the background.  
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Figure 1.  Objectives of the PNNL Project “Statistical Methods and Tools  
for UXO Characterization” 

 
There are several design parameters (DQOs) that affect the probability of detecting a target zone 
of interest and the feasibility of the sampling design.  These include: 

• The assumed shape (circular or elliptical) and size (area in m2 or ft2) of a target area that 
must be detected with high probability. 

• The required probability that at least one transect traverses some portion of the assumed 
target area. 

• The swath width or footprint of the geophysical sensor used to detect anomalies. 
• The transect pattern (we assume a parallel, square grid, or rectangular grid pattern). 
• The spatial orientation (N-S, E-W) of the transect pattern with respect to expected 

orientation of the target area. 
• The anomaly density patterns [we currently assume either a uniform pattern (unchanging 

density over the target area) or a bivariate normal pattern (highest density at the center of 
the target area with decreasing density in all directions)]. 

• The trigger anomaly density threshold value above which we will flag an area as being a 
potential target area. 

• The critical anomaly density threshold value above which we must have a very high 
probability of flagging as a target area. 

• The false negative detection error rate of the geophysical sensor instrument to be used. 
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• The costs for transect and geophysical sensor setup and sampling/evaluation costs per 
linear foot of transect.  

 
The effect of varying each of these parameters can be evaluated and the most feasible, cost-
effective sampling design can be determined.   
 
Given the design parameters, VSP will compute the required spacing of transects to achieve the 
specified probability of traversing the critical TA.  VSP also calculates the probability of both 
traversing and detecting the critical TA if it exists, lays the transects down on the site map and 
outputs the x, y coordinates of the transects.  The user can then conduct a sensitivity analysis by 
evaluating the effects of the input parameters and their required DQOs on VSP outputs.  These 
methods and tools allow the project team to balance DQOs against costs and other site 
constraints.  After analysis of the transect sampling data, if potential TAs are identified, then the 
next phase of sampling may focus on defining the boundary of the TA and developing a 
sufficiently accurate map of the anomaly or UXO density.  If no TAs are identified, the actions 
agreed upon and documented in site planning documents, e.g., “no further action” or long term 
monitoring, may be implemented.   
This effort included also developing   

• post-survey TA detection evaluation methods 
o to approximate the probability of both traversing and detecting a TA with 

meandering transects when the density of anomalies in the TA follows a Uniform 
or Bivariate Normal distribution 

o to analyze anomalies detected along transects to determine the boundary 
(perimeter) of areas within which TAs are most likely to exist 

• a Bayesian method to compute the probability that a TA exists when none was found 
using a geophysical survey 

 
These methods are described in Gilbert et al., (2003a) and have been coded into the Visual 
Sample Plan (VSP) software.  VSP is being developed by PNNL with funding from the U.S. 
Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), the U.S. 
Defense Department (DoD), and the U.S. Department of Homeland Security (DHS).  VSP and its 
User Guide are available for free download from http://dqp.pnl.gov/vsp. 
 
The demonstration and validation of these methods is discussed under Objective 4 below. 
 
Objective 2:  Compliance Assessment 
 
This objective focused on developing statistical methods for determining the number and location 
of transects for conducting geophysical surveys to achieve high confidence that few if any UXO 
are present in un-surveyed portions of sites that are (1) very large and not expected to contain 
UXO or (2) at sites or portions of sites that have undergone remediation to remove UXO.  Two 
statistical design methods from the statistical literature were adapted to achieve this objective: 

• Schilling’s method (1982), which is used to determine the fraction of an area that should 
be surveyed and be found to contain no UXO in order to be sufficiently confident that no 
more than an acceptably small fraction of the entire area could contain UXO, and 

• the Wright/Grieve method (Wright 1992, Grieve 1994) to determine the fraction of an 
area that should be surveyed and be found to contain no UXO in order to be sufficiently 
confident that the entire area contains no UXO. 
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The desired confidence statements for both methods can only be made if the geophysical survey 
finds no UXO in the transects that are surveyed.  Schilling’s method is an acceptance 
(compliance) sampling plan that is commonly used in industry to assess whether batches (lots) of 
manufactured products have a defect rate that is acceptably low.  Acceptance sampling methods 
are currently in use by DoD for other purposes.  For example, Part B of DoD (1999) provides 
guidance on the use of acceptance (compliance) sampling for product acceptance in support of the 
military standard MIL-STD-1916.       
 
The Wright/Grieve method is a statistical Bayesian approach originally developed for where it is 
important to be able to declare with high probability that there are no “defectives” present.  For 
UXO application, a given survey transect (swath) is “defective” if it contains UXO or indications 
that UXO may be present.  Both the Schilling and Wright/Grieve methods are coded into the VSP 
software for the case where each survey transect over the area of interest has approximately the 
same width and length. 
 
The Schilling and Wright/Grieve methods have not been validated by application at actual 
training ranges or using simulated data.  Although the methods look promising and are currently 
available for use in the VSP software tool, the methods should be validated by demonstrating 
their effectiveness at actual sites.  An assumption of both methods is that the geophysical sensor 
has negligibly small false negative and false positive error rates (probabilities).  Of course, this 
assumption is often not realistic in practice.  One way of mitigating the effects of false negative 
sensor error rates on the Schilling and Wright/Grieve methods is to compensate by surveying a 
larger fraction of the area than would otherwise be indicated by these methods.  A possible 
method of doing this for Schilling’s method is given in Section 4.2.1 of this report.  Additional 
attention to developing methods to adjust or compensate for false negative and false positive 
sensor error rates is recommended. 
 
Objective 3:  Dig List Stopping Rules 
 
The purpose of Objective 3 was to develop a statistical Bayesian methodology for deciding if and 
when to stop digging locations on the anomaly “dig list” such that there is only a small 
probability that un-dug locations on the list contain UXO.  Using the Bayesian methodology, if 
no UXO are found at the dug locations, then one can state with confidence that there is very little 
chance that remaining un-dug locations on the dig list contain UXO.  PNNL developed a 
promising maximum likelihood and Bayesian method, which is described in the “white paper” 
requested by SERDP (O’Brien, Heasler, and Anderson 2003).  The proposed method is also 
summarized later in this report (Section 4.3).  Further work to assess the practicality of the 
methodology over a broad range of sites and incorporate the methods into VSP has been funded 
by ESTCP.   
 
Objective 4:  Validation of Statistical Methods and Tools 
 
The purpose of Objective 4 is to demonstrate the applicability and validity of the TA detection 
tools developed by PNNL for Objective 1.  This was accomplished by working closely with 
Mitretek Systems, Inc. (MTS).  SERDP funded MTS to develop the SimRangE computer code 
for generating virtual range environments (spatial patterns of anomalies detected by geophysical 
surveys) that are representative of typical military ranges (Simmons 2003).   
 
The evaluations of PNNL’s tools were conducted during three validation exercises over two 
phases.  These evaluations were preceded by a data exchange phase to validate the format of the 
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data exchanged between MTS and PNNL and to identify the level of detail needed by PNNL for 
input into its statistical tools.   
 
Phase I built upon the basic SimRangE model that was used in the data exchange trial.  The first 
validation exercise in Phase I incorporated features such as background clutter along with 155mm 
projectiles and 4.2 inch mortar weapon systems.  The second validation exercise included 
modeling other weapons systems and delivery methods in order to evaluate the ability of the 
PNNL tools to differentiate between TAs with different dispersion characteristics. 
 
Phase 2 models incorporated and considered the effects of varying terrain, soil conditions, and 
topology and their effect on munition dispersion and sensor performance.  The features added 
additional complexity to the overall model and represented a more realistic representation of the 
challenges that might be encountered in a field sampling study conducted at an actual military 
range.  Phase 2 also included conducting a third validation exercise.  This exercise evaluated the 
ability of PNNL’s tools to delineate between frag and clutter of varying densities.   
 
The PNNL tools performed very well on these three validation exercises.  The tools identified 
100% of the TAs.  The tools also delineated boundaries that enclosed 100% of the UXO 
generated by SimRangE.  The PNNL tools also found isolated TAs and were shown to be 
effective at handling multiple transect survey areas and detection criteria.   
 
It was noted previously that SERDP funded the SNL to develop statistical tools.  The SNL tools 
were also validated using the simulated data generated by the SimRangE model.  A 
demonstration plan for the fourth and final evaluation of statistical tools using the SimRangeE 
model demonstration plan has been prepared for approval by the ESTCP.  This demonstration and 
evaluation will apply to a proposed integrated PNNL/SNL approach wherein the methods and 
tools of both PNNL and SNL are combined into a logical framework for improved and more 
complete characterization of anomaly density and the detection of UXO TAs.    
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1.0  Objectives 
 
 
The SERDP statement of need for FY01 titled “Statistical Sampling for Unexploded Ordnance 
(UXO) Site Characterization” solicited proposals to develop statistically valid sampling protocols 
for cost-effective, practical, and reliable investigation of sites contaminated with UXO; protocols 
that could be validated through subsequent field demonstrations.  The SERDP goal was the 
development of a sampling strategy for which a fraction of the site is initially investigated 
(sampled) to identify clean and contaminated subsections (TAs) with high confidence.  This 
strategy would appropriately direct detailed geophysical surveys in search of the UXO TAs.  The 
sampling protocols developed were to consider appropriate geophysical instrumentation, 
including towed arrays, which can cost-effectively sample extended linear transects (swaths).  
Also, the methods developed were to apply to a variety of site conditions with regard to geology, 
climate, terrain, vegetation, and history of use, and should consider various potential ordnance 
contamination (bombing targets to small arms ranges).   
 
SERDP funded the projects proposed by the Pacific Northwest National Laboratory (PNNL), 
Sandia National Laboratory (SNL) and Oak Ridge National Laboratory (ORNL).  The projects 
were closely coordinated to minimize duplication of effort and facilitate use of shared algorithms 
where feasible.  This final report focuses on the PNNL project.  
 
In response to the SERDP statement of need, the technical objective of this PNNL project was to 
develop statistically defensible sampling strategies and data analysis methods and tools to 

• guide planning of UXO site characterization and clean-up verification efforts, and to 
• permit balancing the risk and confidence in not finding existing UXO TAs versus 

unnecessary or non-optimal searches for UXO. 
 
The initial objectives (deliverables) of the PNNL project were: 
 
Finding Target Areas of Anomalies 

Develop a sampling strategy wherein straight-line or meandering transects (swaths) are 
surveyed by geophysical detectors to achieve a high probability of detecting TAs of 
critical size, shape, and density of detectable items of interest (anomalies), some of which 
may be UXO.  

 
Compliance Assessment 

Develop a strategy for conducting geophysical surveys along transects or in geographical 
units (areas) to achieve high confidence that no or very few UXO are present at large 
sites believed to have low potential for UXO, or that UXO remain at sites from which 
UXO have been removed during UXO cleanup operations. 

 
In FY03 the following two objectives were added to the PNNL project:  
 
Dig List Stopping Rules 

Develop a sampling strategy, data analysis methods, and a stopping rule for when to stop 
digging locations on the “dig list” while achieving confidence that un-dug locations on 
the list do not contain UXO.  If no UXO are found at the dug locations, the developed 
methods should allow one to state with confidence that there is very little chance that 
remaining un-dug locations on the dig list contain UXO.  
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Validation of Statistical Methods and Tools 
Use a simulated range environmental model (SimRangE) developed by Mitretek 
Systems, Inc. (MTS) to exercise and validate the statistical tools developed by PNNL for 
detecting and delineating UXO TAs.   
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2.0  Background 
 
 
Past military training and weapons testing activities have resulted in UXO being present at sites 
designated for base realignment and closure (BRAC) and at Formerly Used Defense Sites 
(FUDS).  It is not practical or economically feasible to conduct 100% geophysical surveys over 
the millions of acres of land that are potentially contaminated with UXO.    
 
Defensible statistical sampling strategies for surveying less than 100% of these areas are needed.  
In response, statistical software tools collectively known as SiteStats/GridStats were developed 
for UXO sampling and characterization by the U.S. Army Corps of Engineers for the U.S. Army.  
The software sought to guide sampling of underground anomalies to estimate the density of  
UXO and to delineate areas of homogeneous UXO density that can be used in the formulation of 
response actions.  However, problems arose in the use of SiteStats/GridStats.  A technical 
evaluation of the software tools by Ostrouchov, G., et al., (1999) states: 
 

“It was found that SiteStats/GridStats does adequately guide the sampling so that the 
UXO density estimator for a sector is unbiased.  However, the software’s techniques for 
delineation of homogeneous areas perform less well than visual inspection, which is 
frequently used to override the software in the overall sectorization methodology.  The 
main problems with the software lie in the criteria used to detect nonhomogeneity and 
those used to recommend the number of homogeneous subareas.” 

 
SiteStats/GridStats was also evaluated by Singh, Engelhardt and Singh (2000, 2001).  They found 
that SiteStats/GridStats yielded incorrect estimates of UXO densities and that one of the main 
reasons for this failure was the unrealistic assumption of homogeneous and uniform anomaly or 
UXO distribution within the area under study. 
   
These problems motivated the work of this PNNL project.  
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3.0  Methods and Materials 
 
 
PNNL organized a team of statisticians and other support personnel to achieve the objectives of 
this PNNL project.  The goal for the team was to develop methods that could be applied at 
specific DoD sites in the context of an iterative systematic planning process such as the Data 
Quality Objectives (DQO) process (USEPA 2000) and to code the developed methods into the 
VSP software tool.  Past and current sponsors of VSP are the U.S. Department of Energy (DOE), 
the U.S. Environmental Protection Agency (EPA), the U.S. Department of Defense (DoD), and 
the U.S. Department of Homeland Security (DHS).  The VSP software and user’s guide (Hassig 
et al., 2002) are available for free download at http://dqo.pnl.gov/vsp.   
 
Systematic planning for a site survey begins by carefully defining the goals and objectives of the 
geophysical survey, constructing the conceptual site model (CSM) (Lantzer et al., 2001), which is 
updated as additional information is obtained over time, and specifying the DQOs.  The CSM is 
particularly important because it provides the basis and rationale for the site-specific survey 
transect design developed via the systematic planning process. 
 
3.1  Objective 1: Finding Target Areas 
 
Initial activities included obtaining maps and other information that may be available about a site 
from an archive search report.  Information was obtained about the likely shape of TAs, firing 
points, and the safety fans, as well as CSM components that affect the UXO survey design.  This 
and other information obtained from persons knowledgeable about UXO characterization efforts 
at DoD training sites were used to learn the critical issues and practical constraints about 
geophysical surveys for anomalies and UXO.   
 
Next, we developed the mathematical methods needed to determine the amount of geophysical 
surveying required at a site to traverse and detect TAs of anomalies with sufficient confidence, as 
described in Gilbert et al. (2003a).  First, equations were developed to compute the maximum 
spacing between transects to achieve a required probability that a TA of specified size, shape, and 
orientation is traversed by one or more transects of specified width.  Equations were developed 
for three different transect patterns: parallel, square grid, or rectangular grid for circular or 
elliptical TAs.  Then, methods were developed for computing the probability that the geophysical 
detector not only traverses but also detects the TA, as documented in Section 3.0 of Gilbert et al. 
(2003a).    
 
Methods were developed for two different assumptions about the model of the density of 
anomalies over the spatial extent of the TA: a Uniform distribution (unchanging density 
throughout the TA) and a Bivariate Normal distribution (density increases in the shape of a two-
dimensional bell curve from the edge to the center of the TA).  The probability that the 
geophysical sensor detects the TA given that the TA was traversed was modeled as a binomial 
distribution where the probability that an anomaly in a transect being surveyed is not detected by 
the geophysical detector is the false negative detection error rate of the detector, which is 
assumed known.  This rate is assumed constant for all anomalies that are traversed.  A computer 
simulation algorithm was developed so that the randomness in the placement of the grid of 
transects over the site was taken into account.  Different placements will change the extent that 
the TA is traversed by one or more transects, which will change the number of anomalies that will 
be scanned by the geophysical detector, which will change the probability that the TA will be 
detected.  All of these methods were coded into the VSP software so that the VSP user can easily 
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determine the spacing between transects required to achieve the desired probability of traversing 
and detecting the TA.  In addition, a Bayesian method for computing the probability that a TA 
exists when none has been detected was also developed and coded into VSP (Gilbert et al, 2003a, 
Section 4.0), based on methodology in Gilbert (1987, pages 128-129). 
 
Next, methods for detecting TAs were developed to take into account that field crews may find 
that obstacles, dense vegetation, geographic features, and other factors can make it undesirable, 
difficult, or impossible to follow straight-line transects with geophysical sensors.  The methods, 
which were coded into VSP, approximate the probability that a TA would have been found using 
the straight-line or meandering transects that were actually used in the geophysical survey 
(Gilbert et al. 2003a, Sections 5.1, 5.2 and 5.3)  when the density distribution within the TA is 
Uniform or Bivariate Normal. 
 
The methods developed for this objective were validated as described in Section 3.4 of this 
report. 
 
3.2  Objective 2: Compliance Assessment 
 
The statistical design methods by Schilling (1982), Wright (1992) and Grieve (1994) were 
evaluated and selected.  These methods are proposed here for DoD sites where UXO remediation 
efforts have occurred or at very large DoD sites or portions of sites that are not expected to have 
UXO.  At the request of SERDP, a compliance assessment white paper (Gilbert et al., 2003b) was 
written that describes the methods and how they can be used, as discussed later in this report 
(Section 4.2).  The design methods determine the proportion of the site that must be surveyed and 
found to contain no UXO in order to achieve a required high confidence that few if any UXO are 
present in the un-surveyed area.  A proposed modification to Schilling’s method to account for 
false negative sensor error rates was developed. 
 
3.3  Objective 3: Dig List Stopping Rules 
 
A Bayesian methodology based on the Bayes Rule (Casella and Berger 1990) was proposed.  In 
practice, based on the analysis of anomalous readings obtained by a geophysical survey of the 
site, a dig list of N locations of anomalous readings is created.  These locations are assigned to k 
bins ranging from “most likely to contain UXO” to “least likely to be UXO” based on signal 
discrimination techniques and expert judgment.  In the absence of a stopping rule, all locations on 
the dig list are dug to determine if UXO is present at each location.  While this method is 
thorough and provides near 100% certainty that all locations on the dig list that contain UXO are 
identified, it can also be very expensive.  PNNL developed a statistical Bayesian methodology 
that can result in digging less than 100% of locations on the dig list while achieving a pre-
specified low probability that any of the un-dug locations on the dig list contain UXO.  At the 
request of SERDP, a “white paper” on the proposed dig list methodology (O’Brien, Heasler and 
Anderson 2003) was written.  This methodology is described in detail in Section 4.3 of this 
report, and more briefly in the next section. 
 
3.4  Objective 4: Validation of Statistical Tools 
 
Mitretek Systems, Inc. (MTS) developed a SimRangE Development and Analysis Plan (Simmons 
2003) to exercise and validate the statistical tools developed by PNNL.  The goal of the 
SimRangeE exercise was to develop virtual range environments representative of typical military 
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ranges.  SimRangeE was used to develop, analyze, and validate the statistical methods and tools 
developed by this PNNL project for enhancing UXO site characterization.   
 
SimRangE is a numerically based model that was developed primarily using Microsoft© Excel.  
The evaluations of PNNL’s tools were conducted in two phases, which were preceded by a data 
exchange phase to validate the format of the data exchanged between MTS and PNNL and to 
identify the level of detail needed for input into PNNL’s statistical tools that had been developed.   
 
Phase I built upon the basic SimRangE model that was used in the data exchange trial.  The first 
exercise in Phase I incorporated features such as background clutter along with 155 mm 
projectiles and 4.2 inch mortar weapon systems.  The second exercise included modeling other 
weapons systems and delivery methods in order to evaluate the ability of the PNNL methods and 
tools to differentiate between TAs with different dispersion characteristics. 
 
Phase 2 models considered the effects of varying terrain, soil conditions, and topology and their 
effect on munition dispersion and geophysical sensor performance.  The features added additional 
complexity to the site model and represented a more realistic representation of the challenges that 
might be encountered in surveying an actual military range with geophysical sensors.  Two 
exercises were conducted to evaluate the ability of PNNL’s methods and tools to delineate 
between frag and clutter of varying densities.  Additional information on the goals and design of 
SimRangE is provided by Simmons (2003) 
 
Each validation exercise began by MTS constructing a model of the effects on a simulated 
training range of conducting military training activities using various weapons systems over a 
long period of time.  MTS supplied PNNL with a site map and some information relative to past 
site practices.  Based on required detection probability rates and likely fragmentation dispersion 
patterns, PNNL determined the optimal transect spacing and selected a set of geophysical 
transects.  MTS used the SimRangE software to generate all locations along the requested 
transects where anomalies were detected.  PNNL applied the VSP density search algorithm to 
these anomalies to identify the location of TAs.   
 
The VSP search algorithm searches along all the transects checking each search window for an 
elevated anomaly density.  If the density exceeds the trigger density specified by the VSP user, 
then the center of the window is marked on the site map.  The VSP user can also specify a 
“change in density search.”  For this option, if the change in density of adjacent windows exceeds 
the trigger density, then the center of the window is marked on the map.  When the search is 
complete, a histogram of the frequency of windows at various densities is displayed. 
 
The VSP user can specify either a circular or linear search window.  A circular window radiates 
out from the window center and may include more than one transect.  The linear search window 
extends down a single swath and is the width of the swath itself.  The VSP user inputs the length 
of the linear window or the diameter of the circular window.  The algorithm steps 1/6 this 
distance for each new window to check for an elevated anomaly density.  The VSP code will plot 
on the site map all search windows for which the density exceeds the trigger density.  
Alternatively, the VSP user can specify that VSP color each window based on the density present 
in the window. 
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4.0  Results and Accomplishments 
 
 
4.1  Objective 1: Finding Target Areas of Anomalies 
 
PNNL’s methods for detecting TAs of anomalies allows stakeholders to explicitly balance the 
risk of not finding areas of potential UXO contamination when they may be present and the cost 
of unnecessary or non-optimal searches.  It is assumed that geophysical sensors will be used 
along transects laid over the site to look for TAs, i.e., areas where the anomaly density is greater 
than the background density; an indication that UXO may be present.  Objective 1 focuses on 
designing a transect scheme that will have a high probability of traversing and detecting a higher 
than normal anomaly density area that would be characteristic of the size, shape, and density that 
might be expected for a TA of concern.  At the design stage it is not known whether the 
anomalies represent clutter, scrap, ordnance and explosives (OE), or UXO.  Detected TAs would 
require further characterization and digging to identify any UXO that are present.  
 
Separate surveys, perhaps using different geophysical sensors or distances between transects, may 
be conducted for subsections of the site.  For example, based on the type of activities that 
occurred in a subsection of a military base, it may be expected to contain no TAs, whereas 
another subsection may be expected or known to contain one or more TAs, perhaps at unknown 
locations.  The amount of geophysical surveying needed will typically vary from section to 
section.  The division of a site into subsections should be made on the basis of expert opinion and 
the CSM.  The design methods developed in this PNNL project can then be separately applied to 
each subsection. 
 
4.1.1 Straight-Line Transects 
 
PNNL first considered geophysical surveys that would be conducted along straight line transects 
(swaths) laid out in parallel or in a square or rectangular grid pattern.  Later, the use of 
meandering transects was considered, as discussed in Section 4.1.2.   
 
The TA detection design methods focus on determining the number and spacing of transects 
required to achieve an acceptably high probability of traversing and detecting a TA of anomalies 
of a critical size, shape, and anomaly density.  The methods developed, which are used in the 
VSP software tool discussed later in this section, are documented in Gilbert et al. (2003a).  
Section 2.0 and Appendix A of that report provide the equations developed to compute the 
spacing between transects that is required to traverse circular or elliptical TAs with specified high 
probability.  Section 3.0 of Gilbert et al. (2003a) provides the following equation developed by 
PNNL to compute the probability, PTD , of traversing and detecting a TA: 
 
  ( )P PTD D T= −1 β             (1) 
 
where 
 
            1− β  =    probability required that the TA is traversed by one or more  
                                          transects 
   PD T     =   mean probability that the survey detects the TA given that the  
                                          TA is traversed by one or more transects 
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The algorithms developed to compute PD T  are provided in Gilbert et al. (2003a, pages 8-9).  
These algorithms depend on several design parameters (DQOs): 
 

• The assumed shape (circular or elliptical) and size (area in m2 or ft2) of a TA that must be 
detected with high probability. 

• The density of anomalies (number/unit area) in the TA.   
o Two anomaly density distributions were considered:  the Uniform and Bivariate 

Normal distributions.   
o The Uniform distribution applies when the anomaly density remains the same 

throughout the TA.   
o The Bivariate Normal distribution applies when the anomaly density is lowest at 

the edge of the TA and increases to a maximum at the center of the TA.  An 
example of a bivariate normal distribution is shown in Figure 2. 

• The probability required that at least one transect traverses the TA to some extent. 
• The transect width (“footprint” of the geophysical sensor used). 
• The transect pattern that is specified (parallel, square grid, or rectangular grid pattern). 
• The spatial orientation (N-S, E-W) of the transect pattern with respect to the expected 

orientation of the TA. 
• The site-specific trigger anomaly density value above which an area is flagged as being a 

potential UXO TA.  The trigger density is the lowest anomaly density of concern, that is, 
there is no need to find a TA that has an anomaly density that is less than the trigger 
density.  In practice, the trigger density might be equal to or somewhat larger than the 
background anomaly density of clutter and non-OE materials.   

• The site-specific critical density value, which is the anomaly density for which an area 
must be flagged as a potential UXO TA with a very high probability so that the TA can 
be searched more closely for UXO.  The critical density is larger than the trigger density. 

• The false negative detection error rate (probability) of the geophysical sensor that will be 
used at the site.   

• The costs per linear foot of transect for transect and geophysical sensor setup and 
surveying. 
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Figure 2.  Example of an Elliptical Bivariate Normal Distribution as a  
Model for a Target Area 

 
 
The process used to compute PTD  (Equation 1) depends on whether the density is specified to be a 
Uniform or Bivariate Normal distribution.  These computations, which are discussed in detail in 
Gilbert et al. (2003a, pages 8 and 9), are conducted in the VSP software discussed below.  First, 
VSP places the TA at a random location within the study site.  Then, for the Uniform distribution, 
the survey transect design (pattern and spacing of transects) determined by VSP is laid over the 
site at a random starting position.  If any portion of the TA is traversed by one or more transects, 
then the Binomial distribution is used to compute the probability that the geophysical sensor 
detects one or more of the anomalies that are expected to occur in the traversed portion of the TA 
based on the specified trigger and critical anomaly densities.  This probability is computed using 
Equations 11 and 12 in Gilbert et. al. (2003a).   
 
Next, the same survey transect design is again laid over the site starting at a new random position 
and the Binomial distribution is again used to compute the probability that the geophysical sensor 
detects one or more of the anomalies that are expected to occur in the traversed portion of the TA.  
This random process is repeated 10,000 times to obtain 10,000 estimates of PD T .  The 10,000 
estimates of PD T  differ from one another because the fraction of the randomly placed TA of 
specified size and shape that is traversed differs for each of the 10,000 iterations.  The arithmetic 
average of these 10,000 estimates, denoted by PD T , is then used in Equation (1) above to obtain 

the value of PTD  that is reported by VSP.    
 
It should be noted that Gilbert et al. (2003a, page 8) indicate, as just explained, that the number of 
anomalies in the portion of a TA that is traversed by one or more transects randomly differ for 
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each of the 10,000 iterations.  However, in order to reduce computation time, that method was 
changed.  Now the VSP software uses the mathematical expected number of anomalies rather 
than the random number of anomalies for each of the 10,000 iterations, where the expected 
number in each iteration varies from that computed using the trigger density to that using the 
critical density of anomalies.   
 
If the VSP user specifies that the anomaly density is a Bivariate Normal distribution, VSP 
computes the volume, V, of that distribution that lies along the one or more transects that transect 
the TA.  This volume is used to compute the expected number of anomalies that lie in the 
transects that cross the TA when the anomaly density is the trigger anomaly density and then the 
critical anomaly density. Then Equations 11 and 12 in Gilbert et al. (2003a) are used to 
compute PD T   This process is repeated 10,000 times to obtain 10,000 values of PD T , which are 

averaged to obtain PD T .   This value of PD T  is then used in Equation (1) above to compute PTD . 
 
PNNL incorporated its statistical design and data analysis methods for TA detection into the VSP 
software, which is being developed for environmental contamination characterization of soils, 
sediments, and surfaces in buildings (Hassig et al., 2002).  [The report by Hassig et al, 2002, is 
currently being updated to apply to Version 3.0 of VSP.  Version 3.0 and the new report should 
be available for download from http://dqo.pnl.gov/vsp within a few months.]  The development of 
VSP is being co-sponsored by DOE, EPA, DoD, and DHS.  VSP allows the user to import or 
draw a map of the site to be surveyed.  Figure 3 shows a screen shot from the VSP UXO TA 
detection sampling module depicting a hypothetical site with the area where transect sampling is 
planned.  Figures 4a and 4b illustrate the VSP dialog box that allows the user to input the DQOs 
listed above and other relevant design parameters.  VSP calculates the required transect spacing 
to achieve the specified probability of traversing the critical TA of the specified size and shape 
(Figure 5), calculates the probability of both traversing and detecting the critical TA of the 
specified anomaly density if it exists, lays down the transects on the site map and outputs the x, y 
coordinates of the transects.  Also, VSP automatically produces a report that summarizes the 
design and the outputs of VSP, which can be copied and pasted into project documents, technical 
papers, and publications. 
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Figure 3.  VSP Screen Shot Showing Site Map and Area to be Surveyed 
 
 

 
 

Figure 4a.  VSP Dialog Box for Specifying 
the Target Area of Concern 
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Figure 4b.  VSP Dialog Box Showing DQO 
Inputs with Probability and Spacing 

Calculations 
 
 

 
 

Figure 5.  Site Map with Recommended Transect Locations 
 
 
The VSP report includes a sensitivity analysis to show the effects of changing the VSP input 
parameters (DQOs) on the transect spacing required, percent coverage of the area, and cost.  
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These methods and tools allow for balancing DQO requirements against costs and other site 
constraints.  If no TAs are identified, then plans for no further action might be considered.  If 
potential TAs are identified by the geophysical survey, then the next phase of sampling may focus 
on defining the boundary of the TAs, developing a sufficiently accurate map of the 
anomaly/UXO density, and preparing a dig list.   
 
4.1.2  Meandering Transects 
 
The transect sampling plans in the previous section assume that perfect straight-line transects are 
spaced at regular intervals.  However, when field crews implement a geophysical sensor survey, 
they may find that obstacles, dense vegetation, geographic features, and other factors make it 
undesirable, difficult, or impossible to follow straight lines with the geophysical sensors.  Section 
5.0 in Gilbert et al. (2003a) documents the methods developed by PNNL and used in VSP to 
approximate the probability that a TA of specified size and shape would be found using the 
straight-line or meandering transects that were actually used in the geophysical survey.  Section 
5.1 documents the methods developed to compute the probability that meandering transects 
traverse a TA.  Sections 5.2 and 5.3 document the methods PNNL developed to compute the 
probability of both traversing and detecting the TA with meandering transects when the density of 
anomalies in the TA has a Uniform or Bivariate Normal distribution, respectively.   
 
PNNL implemented in VSP the methods documented in Gilbert et al. (2003a) for computing the 
probability of traversing or of traversing and detecting an unknown TA of concern given a 
meandering or non-parallel characterization pattern.  Figure 6 shows a combined meandering and 
somewhat parallel swathing pattern over the same site as previously illustrated in Figure 5.  
Simulations in VSP were used to determine that the probability is approximately 0.96 that the 
meandering pathway shown in Figure 6 would have traversed an elliptical target area that has a 
100-foot major axis radius.  The clusters of “Xs” shown on the map in Figure 6 are locations 
where a 100-foot elliptical TA could be present without being traversed (and hence not detected) 
by the meandering pathway.   
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Prob. of Traversing = 0.96 

 
Figure 6.  Meandering Pathway Performance Evaluation in VSP 

 
 
4.2  Objective 2: Compliance Assessment 
 
The compliance assessment objective was to develop a sampling strategy to achieve high 
confidence that no or very few UXO are present at a very large site or high confidence that no or 
few UXO remain at a site after UXO cleanup operations.  After a review of the statistics literature 
PNNL selected two statistical approaches for incorporation into the VSP software tool: 
Schilling’s method (Schilling 1982) and the Wright/Grieve approach (Wright 1992, Grieve 1994).  
These methods are described below. 

 
4.2.1  Schilling’s Method 

 
Suppose there are N possible survey units (e.g., equal-length parallel transects or 100m by 100m 
plots) at a military base, but N is so large that only a fraction of the N units can be surveyed, 
given practical constraints.  How should the number of survey units to survey, n, be determined?  
Schilling (1982) developed an acceptance sampling plan called “compliance sampling” for 
determining n that is widely used for industrial applications, e.g., by DoD (1999) to assess the 
acceptance of products in support of military standard MIL-STD-1916.  
 
Schilling’s method is implemented in the VSP software tool for when the survey unit is a transect 
(swath) and all transects have the same, or approximately the same, length.  The procedure is as 
follows:    
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• The VSP user specifies the width of the transects (all transects have the same width). 
• VSP uses the transect width and the map of the site to compute the total number, N, of 

potential parallel transects that could be surveyed in the study area. 
• The VSP user specifies an upper limit, PL , on the true fraction of the N transects that are 

“defective” that can be allowed.  That is, if no more than 100 PL  percent of the N 
transects are “defective,” then the site will be considered acceptable, although an 
“acceptable” site may still require certain actions to reduce risk from exposure to UXO.   

• The VSP user specifies the 100(1-ε) percent confidence required that less than 100 PL  
percent of the N transects are defective, where 0.01 < ε ≤ 0.5.  

• VSP uses the method provided in Schilling (1982, pages 474 - 482) to compute the 
number, n, of the N transects that must be selected and geophysically surveyed, assuming 
zero false negative and false positive geophysical sensor error rates. 

• If none of the n units that are surveyed are found to be defective, then it can be stated that 
the probability is 0.90 (90% confidence) that less than 100 PL  percent of the N transects 
are defective.    

 
As explained in Schilling (1982, pages 474 - 482), n is determined by first computing     D = N 
x PL  , where D is taken from a special table and used to find the fraction, f, of the N transects that 
must be surveyed.  Then the number of transects is computed as n = f x N.  The fractions, f, in 
Schilling’s table are only appropriate when the required confidence is 90% (ε = 0.10).  However, 
Schilling (1982, pages 478 - 479) shows how to determine the fraction, f, for any other 
confidence level desired.  Verification that VSP is correctly computing n using Schilling’s 
method is provided in Section 6.2 of Gilbert et al. (2003a). 
 
Figure 7 illustrates Schilling’s method for a simple, small rectangular study area that contains 
only N = 15 transects of equal width and length.  In the VSP dialogue box the VSP user has 
specified that each transect is 5 feet wide and that 90% confidence is required that no more than 
10 percent of the N = 15 transects are defective (that is,          PL = 0.10).  VSP computes that n = 
12 of the N = 15 transects must be surveyed and found to not be defective in order to make this 
confidence statement. 
 
As indicated above, an assumption of Schilling’s method is that the geophysical detector has a 
negligibly small false negative error rate (probability).  Of course, this assumption is never fully 
applicable in practice.  One possible approach to take into account the false negative error rate is 
to survey a larger number of the N transects than would be indicated under the assumption that 
false negative errors never occur.  This approach can be implemented as follows: 
 

Specify the best estimate of the probability, Pfn , that the geophysical sensor being used at the site 
will make a false negative error as it passes over a metal object of concern.   

Compute PEL , which is the “effective tolerable upper limit on the true fraction of the transects that 
are defective that can be allowed” (from Schilling 1982, page 85): 

 

                                                      P P PEL L fn= −( )1  
 

Use PEL  rather than PL  in the dialog box for Schilling’s method in the VSP software.  
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PEL is always smaller than PL because Pfn is always positive.  This means that the number of 
transects that need to be surveyed and found not to be defective must be larger than when Pfn is 
assumed to be zero.  That is, we compensate for the false negative error rate by surveying more 
transects in order to achieve the required confidence desired. 
 
To illustrate, using the example above, suppose that the false negative error rate of the sensor 
is Pfn = 0.05 (5%), that no more than 10 percent of the N transects are “defective,” i.e., PL  = 0.10. 
and we desire 90% confidence.  First, compute  
 
                            P P PEL L fn= −( )1  =  0.10 (1 – 0.05) = 0.95  
 
If we enter PEL  = 9.5 % rather than PL  = 10 % into the VSP dialogue box for Schilling’s method 
(Figure 7), VSP computes that n = 13 rather than 12 transects should be surveyed.  If all 13 
transects are not defective, then we have 90% confidence that the percentage of defective 
transects does not exceed 100 PL  = 10%. 
 
Schilling’s method also assumes that there is a negligibly small false positive error rate.  It is 
possible to compute PEL  when both false positive and false negative error rates are greater than 
zero (see Schilling 1982, page 85).  However, a non-zero false positive rate has the effect of 
reducing the number of transects to be surveyed in order to compensate for false positive 
detections.  This non-conservative approach does not seem wise.  False positive errors increase 
cost by increasing the number of locations that need to be dug or investigated, but at least false 
positive errors can, in that way, be identified.  Of course, improvements in the discrimination 
ability of geophysical sensors would reduce the number of false positive errors. 
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Study Area

Dialogue Box 

 
Figure 7.  Illustration of Schilling’s Method (from VSP Software) 

 
 

4.2.2  Wright/Grieve Method 
 

Grieve (1994) expanded on the method in Wright (1992) to develop an equation (his Equation 
2.5) that can be used to compute the number of survey units (e.g., transects), n, that should be 
selected from the total set of N transects and found to be non-defective in order to be 100(1-ε) 
percent confident that all transects not surveyed are also not defective.  Grieve’s equation is used 
in the VSP software.   
 
Wright and Grieve’s method is “Bayesian” because it requires that the stakeholders provide a 
quantitative measure of their belief that the study area contains no defective survey units.  This 
belief should be based on all information and data collected about the study area and the 
conceptual site model (CSM) developed for the area.  The stakeholders quantify their “belief” by 
choosing a specific Beta probability distribution for the fraction, f, of the N units that are 
defective.  [The Beta distribution is described in, e.g., Rothschild and Logothetis (1986, pages 50-
51), Patel et al (1976) and Johnson and Kotz (1970).]  In other words, the stakeholders are 
uncertain about the fraction, f, of transects that are defective, but they can agree that the 
probability that this fraction takes on various values can be modeled by a specific Beta 
distribution, the shape of which is determined by the value of the two parameters of the 
distribution: a and b.  The expected (true average) value,δ , of f for a Beta distribution with 
parameter values a and b is δ = +a a b/ ( ) .   
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The VSP software allows the VSP user to choose among 7 possible Beta distributions.  These 
distributions are listed in Table 1.0 and are illustrated in Figures 8-14.  The shape of each 
distribution and the expected value δ for each distribution is determined by the values of the two 
parameters, a and b.   
 

Table 1.  The Seven Beta Distributions Available for Selection in VSP Software to  
Model the Uncertainty in the Fraction of Transects that are Defective 

Parameter Values of the 
Seven Beta Distributions  
              in VSP 

Expected Value, δ, of the 
Fraction, f, of Transects 

that are Defective* 

English Characterization 
of the Beta Distribution 
used in the VSP Software    

1.       a = 1,    b = 999                 0.001   Extremely low fraction 
2.       a = 1,    b = 99                 0.01   Very low fraction 
3.       a = 1,    b = 9                 0.1   Low fraction 
4.       a = 1,    b = 1                 0.5   All fractions equally  

  likely  
5.       a = 9,    b = 1                 0.9   High fraction 
6.       a = 99,  b = 1                 0.99   Very high fraction 
7.       a= 999, b = 1                 0.999   Extremely high fraction 
* δ = a/(a+b) 
 
 
The VSP user selects one of the seven distributions and VSP computes n using the following 
equation (derived from Equation 2.5 in Grieve 1994): 
 

  ( ) ( )( ) ( ){ }n N N b b≥ − + − − −1 1 1ε δ δ/        (2) 
 
where N, a, b, δ, and 1-ε have been defined above.  If the geophysical sensor survey does not find 
any defective survey units among the n randomly selected transects, then one can state with 
100(1-ε) percent confidence that there are also no defective units in any of the N-n transects that 
were not surveyed.  As is the case for Schilling’s method, it is assumed that all survey units (e.g., 
transects) are equal in size.   
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Figure 8.  Beta Distribution with Parameters a = 1, b = 999 and Expected δ =  0.001 
 

 
Figure 9.  Beta Distribution with Parameters a = 1, b = 99 and Expected Value δ = 0.01 
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Figure10.  Beta Distribution with Parameters a = 1, b = 9 and Expected Value δ = 0.1 

 
 

 
Figure 11.  Beta Distribution with Parameters a = 1, b = 1 and Expected Value δ = 0.5 
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Figure 12.  Beta Distribution with Parameters a = 9, b = 1 and Expected Value δ = 0.9 

 

 
Figure 13.  Beta Distribution with Parameters a = 99, b = 1 and Expected Value δ = 0.99 
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Figure 14.  Beta Distribution with Parameters a = 999, b = 1 and Expected Value δ = 0.999 

 
Figure 15 illustrates the Wright/Grieve method.  A rectangular study area is shown; the same one 
as shown in Figure 7 for Schilling’s method.  In the dialogue box the VSP user has specified that 
each transect (survey unit) is 5 feet wide, that he/she believes that 10% of the transects in the 
study area may be defective, and that 95% confidence is required that there are no defective units 
in the study area if no defective units are found in the n transects surveyed. With these 
specifications, VSP computes that 14 of the 15 transects must be surveyed and found to not be 
defective in order to have 95% confidence that no transects in the study area are defective, i.e., 
that the single remaining un-surveyed transect is also not defective. 

 
As was the case for Schilling’s method, the Wright/Grieve method assumes that the geophysical 
detector used in the field has negligibly small false negative and false positive error rates.  
However, no adjustments to the number of survey units that should be surveyed to account for 
sensor errors have been developed by this PNNL project.  Additional research is recommended. 
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Study Area Dialogue Box 

 
 

Figure 15.  Illustration of the Wright-Grieve Method in VSP for Determining the  
Number of Transects (Survey Units) to Survey 

 
 

4.3  Objective 3: Dig List Stopping Rules 
 
The problem addressed by PNNL was to develop statistical methodologies to determine an early 
stopping rule such that, after n sample dig locations (n < N) have been observed, the upper bound 
on the probability that there is any UXO left in the remaining N – n un-sampled locations is 
small.  (Note that in this section of the report the notations N and n denote the number of specific 
field locations, whereas in Section 3.0 above they denote the number of potential and surveyed 
survey units (e.g., transects in the area.)  PNNL developed a Bayesian statistical formulation to 
the problem and proposed a Bayesian estimator and bound which account for the site-dependent 
probability that a possible UXO location actually contains UXO. 
 
4.3.1  Proposed Bayesian Methodologies 
 
Wright (1992) gives a stopping rule when each location has the same probability of containing 
UXO and when no UXO has been found in an initial sample of n locations.  However, this 
methodology does not take into account that the N locations have been characterized from “most 
likely” to “least likely” to be UXO based on a geophysical survey and expert judgment.  The 
probability that a location contains UXO changes depending on which bin that location is 
assigned.  Further, as shown below, the probability that a location contains UXO also depends on 
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the true proportion of UXO on the site.  This site-dependent UXO proportion is a “prior 
probability” that can be estimated from the results of the initial samples. 
 
A Bayesian formulation takes into account the binning scheme of the locations and the site-
dependent prior probability in estimating the probability that the remaining un-sampled locations 
contain any UXO.  The Bayesian methodology described here puts no restrictions on the number 
of UXO found in the initial sample.  Therefore, the method is applicable if 0, 1, 2 or more UXO 
are found in the initial sample. 
 
The Bayesian formulation assumes the following for the site of interest: 
 

1. The performance of the binning scheme at the site is available, that is, the 
probabilities of UXO and non-UXO locations being assigned into each of the k bins 
are fixed (estimated from instrument performance studies or experience from a 
similar site), 

2. Without knowing their bin assignments, the locations at the site of interest have the 
same prior probability of containing UXO, 

3. Any spatial trends for UXO distribution across the site are incorporated into the 
binning scheme. 

 
The performance probabilities of Assumption 1 are put into a performance matrix.  The 
performance matrix can be estimated using real calibration data such as that in McDonald et al. 
(2001).  It is reasonable to assume that the estimated performance matrix is appropriate for 
similar sites.  If not, it would need to be adjusted for the particular site of interest. 
 
In Section 4.3.2 below a Bayesian methodology is proposed that takes into account the 
geophysical measurement and expert judgment characterizations and the performance matrix.  In 
Section 4.3.3, Bayes Rule (Casella and Berger 1990) is used to calculate the probabilities that the 
unobserved locations contain UXO.  These individual probabilities are then combined to give the 
probability that the site contains any UXO.  Section 4.3.4 contains a simple two-bin illustration of 
the methodology and Section 4.3.5 contains a more realistic six-bin example.  Section 4.3.6 
provides a summary and conclusions. 
 
4.3.2  Mathematical Formulation of the Problem 
 
Assume that there are N suspected UXO locations on the initial dig list for the site of 
interest.  The true state of each location is given by Xi, which is a random variable defined as 
 

 N. ,, ,i   
  
  

X i K21for
presentnot  is  UXOif0

present is  UXOif1
=

⎩
⎨
⎧

=  (3) 

 
Before the geophysical measurements have been taken, each Xi can be considered to be a random 
sample from a Bernoulli distribution with probability determined by its expectation: 
 
 ( ) ( ) ,pXPrXE ii === 1  (4) 
 
where p is the proportion of identified locations on the site that contain UXO.  Of course, this p is 
unknown until all locations have been dug, but it is an important quantity we want to estimate. 
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Let Yi represent the binning response from the geophysical measurement system at the ith location.  
The response Yi is a discrete random variable with k possible outcomes ordered from 1 to k, 
where 1 means “most likely” to contain UXO and k means “least likely” to contain UXO.  The 
conditional probability distribution of the response Yi given the true state Xi is determined by the 
geophysical measurement system performance matrix, which is denoted here as Matrix A.  That 
is, there is a (k ×  2) matrix A with (j, l)-element Ajl, such that 
 
 ( ) 1 ,0l andk ,,2 ,1jfor           Pr ===== KlXjYA iijl  (5) 
 
This A matrix is shown in Table 2. 
 

Table 2.  Performance Matrix A for the Bayesian Dig List Method 
 

Bin 

Probability that a 
Location that is 

Truly Not UXO is 
Assigned to this 

Bin 

Probability that a 
Location that is 
Truly UXO is 

Assigned to this 
Bin 

1 - Highest Likelihood of UXO A10 A11 
2 - High Likelihood of UXO A20 A21 

M  M  M  
k - Lowest Likelihood of UXO Ak0 Ak1 

 
The problem is to use the geophysical measurement system responses to identify a set of n 
locations to be dug up and then, based on what is observed, to estimate the probability that there 
are no UXO in the N - n remaining locations.  If this probability, P0, is large enough, then digging 
can be stopped.  The risk of any UXO remaining in the un-sampled dig list locations is 1 - P0.  
Mathematically, P0 is represented as follows. 
 
Let Y = ( Y1 , Y2 , … , YN ) be the vector of binning responses that is based on the geophysical 
measurement system; Nj of which are equal to j, for j = 1, 2, … , k.  Let D be the set of n indices 
of the locations that are dug up and R be the set of indices of the remaining locations (so that D 
∪  R = { 1, 2, …, N }).  The probability P0 of no UXO in the remaining locations given the 
available information is the conditional probability 
 

 { }⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∈== ∑

∈Rj
ij Di;X and   XP Y0Pr0 . (6) 

 
The probability that any of the remaining locations contain UXO is 1 - P0.  
 
4.3.3  Estimating and Bounding P0 
 
A first step in estimating P0 is to use Bayes Rule to determine the distribution of Xi given Yi from 
matrix A and p (Equation 4).  That is, explicitly, 
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and similarly, 
 

 ( ) ( ) pApA
pA

jY  X
jj

j
ii

10

1

1
1Pr

+−
=== . (8) 

 
We estimate P0 by first using the bin information Y and the dig information {Xj; j ∈ D} to obtain 
an estimate, p̂ , of the site UXO proportion p, and then estimate 
 

 ( )jY  P̂ ii
Ri

^
===

∈

0XPr0 C , (9) 

 
Then, also use p̂ in Equation (7) to obtain 
 

 ( ) ( )
( ) .

p̂Ap̂A
p̂A

jY  X
jj

j
ii

^

10

0

1
1

0Pr
+−

−
===  (10) 

 
The estimation of p is Bayesian.  In general, a Bayesian analysis provides a framework for 
assessing the information regarding the parameters that is contained in the available data.  In this 
case, the parameter is p and the data are the binning information and the results from the locations 
that have been dug up.  The information is expressed in terms of the posterior conditional density 
function of p ∈ (0, 1) given Y and { Xi; i ∈ D}.  Suppose that the set of indices D corresponds to 
the N1 bin 1 locations, those that the geophysical measurement system gives the highest 
likelihood of containing UXO.  Then the posterior density function is 
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where 
 

 ( ) ( ) ( )( )∏
=

−+=
k

j

N
jj ,pApA, ;pBYpg j

1
01 1βα  (12) 

 
n10 and n11 are the number of Yi = 1 locations which have Xi = 0 and Xi = 1, respectively, n10 + n11 
= N1, and B(p; α , β) is the prior Beta distribution density function with parameters α and β, 
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 ( )
( )
( ) ( ) ( )

⎪⎩

⎪
⎨
⎧ <<−
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+Γ

=
−−

otherwise0

10 for1, ;
11 ppppB

βα

βα
βα

βα . (13) 

 
The constant of proportionality in Equation (11) is determined by numerical integration so that 
the integral of ( )⋅f  over (0, 1) equals one.  The function ( )⋅g , properly normalized, gives the 
posterior density for p given Y before digging up any locations. 
 
The family of Beta distributions is extremely flexible.  For instance, a uniform distribution, 
typically chosen to reflect a non-informative prior, is obtained by setting  
α = β = 1.  Analysis using the uniform distribution produces the Maximum Likelihood Estimation 
(MLE) of p.  Choice of α and β for real prior information is made easy using the expressions for 
the mean and variance of the Beta distribution:  
 

 
( ) ( )

.   
1

 and 2
2

+++
=

+
=

βαβα
αβσ

βα
αµ  (14) 

 
So if prior information on p is represented as a mean µ and a variance σ2, then Equation (14) 
provides the values of α and β for the Beta prior distribution in Equations (12) and (13). 
 
An estimate of p is the value ∈p̂  (0, 1) that maximizes the posterior density function       f (p Y   
and { Xj; j D).  If α = β = 1 then p̂  is the Maximum Likelihood Estimate (MLE).  A 95% 
confidence upper bound, 95p̂ , can be found such that 
 

 { }( ) ..dpDj;X   | pf
p̂

j 950and95

0
=∈∫ Y  (15) 

 
This upper bound 95p̂  is used to determine a 95% confidence lower bound for P0 through 
Equations (9) and (10).  A lower bound for P0 is obtained because the probabilities in Equation 
(7) are monotone decreasing functions of p. 
 
Information from other locations is accounted for by multiplying the right-hand side of Equation 
(11) with terms like 
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where nj0 and nj1 are the number of bin j locations dug up and observed to have Xi = 0 (not UXO) 
and Xi = 1 (UXO), respectively. 
 
4.3.4 Two-Bin Examples 
 
This section presents example numerical results of the methodology in Sections 4.3.1, 4.3.2, and 
4.3.3.  These examples are not realistic, but are presented to illustrate in the simplest terms the 
mathematical approach.  We consider a geophysical measurement system with responses in just k 
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= 2 bins.  For a first example, consider the hypothetical results of a calibration study given in 
Table 3.  Such a study would consist of seeding a site with UXO and non-UXO and running the 
geophysical measurement system over it.   
 

Table 3.  Two Bin Example 1:  Calibration Data Matrix 
 

Bin # Not UXO # UXO
1 - High Likelihood of UXO 
2 - Low Likelihood of UXO 

10 
90 

76 
4 

Totals 100 80 
 
From Table 3.0 we can calculate two sets of conditioned probabilities.  These two sets are: 
 
Set 1: 

Probability of being placed in high likelihood UXO bin | It is UXO = 0.95 
Probability of being placed in low likelihood UXO bin | It is not UXO = 0.90 
Probability of being placed in high likelihood UXO bin | It is not UXO = 0.10 (false 
positive) 
Probability of being placed in low likelihood UXO bin | It is UXO = 0.05 (false negative) 

 
Set 2: 

Probability of being UXO | It was placed in high likelihood UXO bin = 0.88 
Probability of being non UXO | It was placed in low likelihood UXO bin = 0.96 
Probability of Not being UXO | It was placed in high likelihood UXO bin = 0.12 
Probability of Not being UXO | It was placed in low likelihood UXO bin = 0.04 

 
The probabilities in Set 2 are completely dependent on how many UXO and non-UXO were 
seeded in the calibration experiment and do not reflect the performance of the binning procedure.  
Moreover they are variant depending on the calibration site setup. 
 
However, the probabilities in Set 1 are invariant and would be expected to remain fairly 
consistent across several calibration sites.  The probabilities in Set 1 measure the performance of 
the binning procedure and provide the Prob(Yi = j | Xi = l) = jlA  needed for the Bayesian 
formulation shown in Equation (8).  The resulting estimated A matrix is given in Table 4. 
 

Table 4:  Two Bin Example 1:  Matrix A 
 

Bin 

Probability that a 
Location that is 

Truly Not UXO is 
Assigned to this 

Bin 

Probability that a 
Location that is 
Truly UXO is 

Assigned to this 
Bin 

1 - High Likelihood of UXO 
2 - Low Likelihood of UXO 

0.10 
0.90 

0.95 
0.05 

 
Assume that 200 locations were identified at a new site and that p = 10% of them contain UXO.  
Data were simulated using the model of Section 4.3.2 (following the random distributions in 
Equations 3-5.  The binning yielded 33 bin 1 locations and 167 bin 2 locations (see Table 5).  
Three stages of analysis were considered to illustrate the methodology in Sections 4.3.1, 4.3.2 and 
4.3.3.  The first stage was to dig up the bin 1 locations.  The resulting UXO/Not UXO counts for 
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each stage are given in Table 6.  The second stage was to sample 67 of the bin 2 locations to bring 
the total to 100 locations dug up.  The third stage was to sample 50 more of the bin 2 locations to 
bring the total to 150 locations dug up.  A uniform (noninformative) prior on p (that is, a Beta (α 
= 1, β = 1) distribution) was used to in the analysis to estimate 0P̂  and the 95% lower bound 
(using the 95% upper bound for p) after each stage of sampling; see the results in Table 6.  After 
the third stage, the probability of no UXO in the 50 remaining locations was estimated to be > 
64.3% (with 95% confidence).  Digging up more locations would be required to reduce the risk of 
leaving UXO at the site.           
 

Table 5. Two Bin Example 1: Simulated Data 
 

First Stage Second Stage Third Stage Bin Counts 
Nj Not UXO UXO Not UXO UXO Not UXO UXO

1 - High Likelihood 33 14 19 14 19 14 19 
2 - Low Likelihood 167   67 0 117 0 

 
Table 6. Two Bin Example 1: Analysis Results 

 

Stage Number 
Dug Up 

Total 
Dug Up 0P̂  

Probability of No UXO Remaining 
95% Confidence 

Lower Bound 
First 
Second 
Third 

33 
67 
50 

33 
100 
150 

0.357 
0.548 
0.744

0.214 
0.407 
0.643 

 
The second two-bin example used the “better” A matrix given in Table 7.  A lower false negative 
rate (the probability of assigning a UXO location to the “Low Likelihood” bin) of 1% was 
considered, compared to 5% in the first example.  Using the same p = 10% and noninformative 
prior, the data in Table 8 were simulated and the results in Table 9 were calculated.  After the 
third stage, the probability of no UXO in the 50 remaining locations was estimated to be > 91.6% 
(with 95% confidence).  This is much higher than the probability from the first example.  
 
The limitations of these examples are evident and can be attributed to the oversimplification of 
binning into only two bins.  The next section illustrates the practicality and potential for justifying 
no further digs when the binning procedure involves a more realistic 6 bins. 
 

Table 7.  Two Bin Example 2:  Matrix A 
 

Bin 

Probability that a 
Location that is 

Truly Not UXO is 
Assigned to this 

Bin 

Probability that a 
Location that is 
Truly UXO is 

Assigned to this 
Bin 

1 - High Likelihood of UXO 
2 - Low Likelihood of UXO 

0.10 
0.90 

0.99 
0.01 
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Table 8.  Two Bin Example 2:  Simulated Data 
 

First Stage Second Stage Third Stage Bin Counts 
Nj Not UXO UXO Not UXO UXO Not UXO UXO

1 - High Likelihood 31 13 18 13 18 13 18 
2 - Low Likelihood 169   68 1 118 1 

 
Table 9. Two Bin Example 2: Analysis Results 

 
Stage # Dug Up Total Dug Up

0P̂  95% Confidence 
Lower Bound for P0 

First 
Second 
Third 

31 
69 
50 

31 
100 
150 

0.829 
0.889 
0.943

0.753 
0.839 
0.916 

 
4.3.5 Six-Bin Methodology Using Badlands Performance Matrix 
 
This section presents example numerical results of the methodology in Sections 4.3.1, 4.3.2, and 
4.3.3 applied to a six-bin scheme.  The performance matrix used for the calculations in this 
section is based on a study performed on the Badlands Bombing Range (BBR) discussed in 
McDonald et al. (2001).  Data from this study were used to create a performance matrix, A, so 
that this example used here had some basis in reality.  Some modifications were made to the data 
set such as rounding the count of dig locations and interpretation of the study results to form the 
performance matrix A.  This was done because the objective of the McDonald et al. study was to 
compare the results of two technologies used to detect UXO, not to determine the performance 
matrix A.  
 
For this example, a 6 category binning strategy is illustrated, i.e., anomaly locations are placed 
into 6 categories.  Data from McDonald et al. (2001), which describes a study of a Multi-Sensor 
Towed Array at the BBR, was used to construct the performance matrix A for this binning 
strategy.  This performance matrix was formed using the BBR data, with some modifications, and 
will be referred to herein as the “Test” A matrix.  This matrix was formed solely to perform the 
calculations described in this paper to demonstrate the stopping rule methodology, so that the 
results had some basis in reality.  This “Test” A matrix is in no manner an analysis or statement 
concerning the discrimination capability used in the BBR study.  
 
The “Test A” matrix was formed from the BBR data from observations recovered from a 100% 
analysis of anomalies in the “Seed Target Area” that was seeded with inert UXO (page 47 of 
McDonald et al. 2001).  The count of UXO and non-UXO was first put into a matrix shown in 
Table 10. 
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Table 10.  Badlands Bombing Range Test Results for  
the Bayesian Dig List Method 

 

Category

Count of  
Locations

 Truly  
Not UXO 

Count of  
Locations

 Truly 
UXO 

1 –High 6 18 
2 10 5 
3 36 0 
4 3 0 
5 36 1 

6 – Low 54 1 
Total 145 25 

 
The conditional probabilities were calculated as shown in Table 11. 
 

Table 11.  Conditional Probabilities for Badlands Bombing Range Test Results 
 

 
 
 
 
 
 
 
 
 
 
 
The conditional probabilities in Table 11 were then adjusted to yield the “Test” A matrix in Table 
12.  The adjustment was carried out so that each conditional probability was greater than zero.  It 
was assumed that the UXO found in category 6 was uncharacteristic of the binning performance 
because of remnant magnetic effects in using inert UXO in seeding the site.  This is discussed in 
McDonald et al. (2001).   
 

Table 12. “Test” Matrix A Based on Adjusted Badlands Bombing Range Results 
 

Category 
Probability Assigned to 

Category i Given that the 
Location is Truly Not UXO 

Probability Assigned to 
Category i Given that the 
Location is Truly UXO 

1 -High 0.04 0.720 
2 0.07 0.200 
3 0.25 0.038 
4 0.02 0.001 
5 0.25 0.040 
6 - Low 0.37 0.001 

 
It should be noted that the “Test” matrix A is not a random variable.  Rather, it is the actual 
ability of the geophysical device and expert judgment to discriminate the locations into high and 

Category 
Probability Assigned to 

Category i Given that the 
Location is Truly Not UXO 

Probability Assigned to 
Category i Given that the 
Location is Truly UXO 

1 -High  6/145 = 0.04 18/25 = 0.720 
2 10/145 = 0.07  5/25 = 0.200 
3 36/145 = 0.25  0/25 = 0.000 
4  3/145 = 0.02  0/25 = 0.000 
5 36/145 = 0.25  1/25 = 0.040 
6 - Low 54/145 = 0.37  1/25 = 0.040 
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low probability categories that contain UXO.  The better the ability of the performance matrix to 
not place “true” UXO into the lower categories (false negatives), the “better” the discrimination 
method will perform and the sooner one will be able to stop digging.  Thus, for purposes of 
illustration, the adjusted “Test” A performance matrix was used rather than the observed BBR 
performance matrix.  If the observed performance matrix was used, the probability of UXO being 
present in the un-dug locations would seldom reach an acceptable level and 100% digging would 
usually be required because of the 0.04 probability in the low likelihood bin.   
 
Stopping Rule 
 
For this example, the stopping rule is determined by computing a lower 95% confidence bound 
on the probability that no UXO remains in the locations not in the initial dig set.  If this 95% 
lower bound is greater than 95% after the data from the initial dig set is used, then digging up 
locations can cease.  If the 95% lower bound computed from the initial dig set is less than 95%, 
then supplemental digging from the prioritized dig list is required.  This supplemental digging 
scheme is based on answering the question:  “If no UXO are found in the supplemental dig list, 
how many more dig locations are necessary until the 95% upper bound on the probability that no 
UXO remains in the un-dug locations is greater than 95%?”  The supplemental dig list is drawn 
from the remaining un-dug locations in the “most likely UXO” category sequentially stepping 
down through the categories as needed.  This is done so that in most situations the estimated 
lower bound will be as small as possible.  
 
The stopping rule above is arbitrary and was chosen for demonstration purposes.  The choice of 
whether to use a 90%, 95%, or 99% lower bound on the probability of no remaining UXO is a 
risk based decision, as is the choice of using a critical value of 5% to compare to the lower bound.  
This critical value could be any percentage that would provide an acceptable risk. 
 
Example Results 
 
Two examples are presented below using the performance matrix described as the “Test” A 
Matrix in Section 4.3.5 (Table 12).   In each example a non-informative beta prior was used, i.e., 
α = β = 1. 
 
In the first example, assume that 490 anomaly locations were identified at a site through 
geophysical characterization.  Also assume that the 490 locations are binned into the six bins as 
shown in Table 12.  Assuming that roughly 5% of 490 locations were UXO, a simulated data set 
using the model of Section 4.3.2 yielded the true UXO/Non-UXO distribution shown in Table 13.  
In practice, this UXO/Non-UXO distribution would not be known until after digging but because 
this is simulated, we know which locations are UXO and which are not UXO.   
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Table 13.  Binning and UXO Distribution in Simulated Site Assuming 5% UXO 
 

Category 

Total 
Locations

Count of  
Locations
that are 
Truly  

Not UXO 

Count of  
Locations
that are 
Truly 
UXO 

1 -High 37 19 18 
2 38 33 5 
3 117 116 1 
4 10 10 0 
5 116 116 0 

6 - Low 172 172 0 
Total 490 466 24 

 
Several stages of sampling and analysis were considered to illustrate the methodology in Section 
4.3.1.  In the first stage all locations in bins 1-3 were dug up.  In stages 2 – 4, locations were dug 
up in increments of 50 locations at a time, starting in bin 4, until the stopping rule was achieved.  
As illustrated in Table 14, the stopping rule was achieved in stage 4 after 342 locations were dug 
up (or about 70% of all locations). 
 

Table 14.  Results of Hypothetical Sampling Scheme on the 5% UXO Site 
 

Stage Number Dug Up Total Dug 
Up 

95% 
Confidence 

Lower Bound 

Recommendation 
after Sampling 

Stage 
1 ( 37, 38, 117,   0,     0,    0) 192 of 490 

(39%) 
0.04 Continue Digging 

2 ( 37, 38, 117, 10,   40,    0) 242 of 490 
(49%) 

0.26 Continue Digging 

3 ( 37, 38, 117, 10,   90,    0) 292 of 490 
(60%) 

0.67 Continue Digging 

4 ( 37, 38, 117, 10, 116,   24) 342 of 490 
(70%) 

0.97 Stop Digging 

 
In the second example again assume that 490 locations were identified at a site and that less than 
1% of them were UXO.  A simulated data set using the model of Section 4.3.2 yielded the site 
shown in Table 15. 
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Table 15.  Binning and UXO Distribution in Simulated Site 
Assuming 1% UXO 

 

Category 

Total 
Locations

Count of  
Locations
that are 
Truly  

Not UXO 

Count of  
Locations 
that are 
 Truly 
UXO 

1 -High 21 19 2 
2 35 34 1 
3 121 121 0 
4 12 12 0 
5 121 121 0 

6 - Low 180 180 0 
Total 490 487 3 

 
Several stages of sampling and analysis were again considered to illustrate the methodology in 
Section 4.3.1.  In the first stage all locations in bins 1-3 were dug up. In stages 2 – 3, locations 
were dug up in increments of 50 locations at a time, starting in bin 4.  Because the 95% 
confidence lower bound was approaching the decision rule limit of 0.95 after the third stage, the 
last digging increment was 33 locations, the remaining locations in bin 5.  In this case, as shown 
in Table 16, the stopping rule was achieved in stage 4 after 310 locations were dug up (or about 
63% of all locations). 
 

Table 16.  Results of Hypothetical Sampling Scheme on the 1% UXO Site 
 

Stage Number Dug Up Total Dug Up
95% 

Confidence 
Lower Bound 

Recommendation 
After Sampling 

Stage 
1 ( 21, 35, 121,   0,    0,    0) 177 of 490 

(36%) 
0.40 Continue Digging 

2 ( 21, 35, 121, 12,  38,    0) 227 of 490 
(46%) 

0.76 Continue Digging 

3 ( 21, 35, 121, 12,  88,    0) 277 of 490 
(57%) 

0.92 Continue Digging 

4 ( 37, 38, 117, 12, 121,   0) 310 of 490 
(63%) 

0.99 Stop Digging 

 
A slightly higher low bound was achieved in the second example in fewer stages with slightly 
fewer samples dug up.  This is due to the fact that little UXO is present in the second six-bin 
example.  
 
Further improvements should be achievable if the performance matrix had monotonically 
increasing and decreasing probabilities in columns 1 and 2 respectively.  This would mean that 
fewer non-UXO locations would be binned in bins 1-3 and more would be binned in bins 4-6, 
thus eliminating needless sampling of locations that are non-UXO that were binned as more likely 
to be UXO.  Addition gains, in terms of digging up fewer locations, could also be achieved in 
both examples if a stronger prior Beta distribution was used with α = 1 and β > 100.  
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4.3.6  Summary and Conclusions 
 
The number of locations that need to be dug up is dependent upon the binning performance 
matrix, the number of bins that are used for categorizing the anomalies, the sampling/digging 
scheme, and the stated stopping rule.  
 
In the two examples presented in this paper, for the six category case, roughly a total of 60% to 
70% of the locations needed to be dug up using the performance matrix presented and a stopping 
rule to insure that the 95% lower bound on the probability that no UXO remains in the un-dug 
locations is greater than 95%.  The stopping rule used here was generic and for illustrative 
purposes only.  If however, the conditions on the stopping rule are relaxed (i.e., lowering required 
confidence level or increasing the percent of UXO that can remain), then the expected number of 
digs required will decrease.  On the other hand, if the stopping rule is made more stringent then 
the expected number of digs required will increase. 
 
The Bayesian method used in the examples has the potential to significantly reduce the number of 
required digs if the prior Beta distribution is chosen so that the β parameter is 100 or greater, 
especially if an improved performance matrix were available.  On the other hand, the Bayesian 
method requires some agreed upon prior distribution, which can affect the results.  If the choice 
of the prior distribution is a difficult issue for decision makers to address, then the uninformed 
prior Beta distribution of α = β = 1 used in this paper is the best choice because that distribution 
would yield results equivalent to a methodology that uses a maximum likelihood approach to 
estimate the probability of no UXO remaining in the un-dug locations. 
 
The illustrated statistical procedure will work with any performance matrix, but the gains 
achieved over 100% sampling is most influenced by the performance matrix.  Coupling this 
statistical methodology for stopping digging with improvements in UXO discrimination (reducing 
false negatives and positives) as well as improved geophysical calibration in the field will yield 
the biggest savings in terms of digging up unnecessary locations. 
 
It is recommended that further research be conducted to evaluate the performance of the 
methodology and the sensitivity to the binning performance matrix, sequential digging schemes, 
number of bins, and confidence requirements.  The methods should be programmed into easily 
used software (VSP) and tested in the field with recommendations for when the methods would 
be most/least beneficial for reducing unnecessary digging at a site.  
 
4.4  Objective 4:  Validation of Statistical Methods and Tools 

 
Three simulated site demonstrations were performed.  They are described in the following 
sections. 
 
4.4.1  First Simulated Site Demonstration 
 
A large Army firing range (10 km x 7 km) was simulated.  It was assumed that the range had 
been used over a period of 50 years for battery targeting practice utilizing 155mm projectiles and 
4.2-inch mortars.  Potential target positions were expected to be randomly positioned within an 
impact area that is estimated to be located near the center of the range.  An EM-61 Time Domain 
Metal Detector (TDMD) was selected as the instrument that would be used for conducting a 
survey of the range for locating potential UXO.  In order to characterize the expected sensor 
performance, it was assumed that a preliminary baseline study was conducted with metal objects 
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designed to represent 155mm projectiles and 4.2 in. mortars buried at known depths.  Results of 
the survey indicated a probability of detection (PD) of 90% and a false alarm ratio (FAR) of 1.96.   
The site map is shown in Figure 16.   
 

 
 

Figure 16.  Map of the First Simulated Site Demonstration 
 
 
To determine the transect spacing required, the following assumptions were derived from firing 
tables and lethal area dispersion calculations and used to determine the typical dispersion pattern 
for a 4.2” mortar.  The probable errors in range and deflection from firing tables (FM 7-90, FM 
23-91) are 27m and 6m respectively and the lethal area is 600 square meters represented by a 
28m diameter circle.  This resulted in the elliptical target area of concern of 218 m x 70 m.     
 
The flagged TAs and boundaries are shown in Figure 17 and the true UXO locations are shown in 
Figure 18.   
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Figure 17.  Flagged Target Areas and Boundaries for First Simulated Site Demonstration 

 

 
Figure 18. True UXO Locations for First Simulated Site Demonstration 
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The results from PNNL’s portion of this demonstration show that  

• 100% of targets were identified 
• Derived target boundaries enclosed 100% of the UXO 
• Isolated targets were found and delineated 
• Assumed frag dispersion model may have been too conservative. 

 
4.4.2  Second Simulated Site Demonstration 
 
This site consisted of an Army firing range primarily used for battery targeting practice utilizing 
155mm projectiles and 4.2 in. mortars over a 50 year period.  A significant portion of the facility 
is believed to have been utilized as a training area and is thought to include a range with one or 
more impact areas located within the range.  
 
The historical training area was estimated to cover an area of the installation approximately 21 
km by 16 km. Historical information on the installation is minimal, however, there are indications 
that artillery and mortar firing points were located within the training area.  Typically, munitions 
were fired into one or more impact areas located within the range.  However their locations are 
unknown. In addition, no clear boundaries are known for the training area or the range.  However, 
the archive search has provided some indication of the size and location of the training area.  The 
site map is shown in Figure 19. 
 
An EM-61 TDMD was selected as the instrument that would be used for conducting a survey of 
the training facility for locating potential UXO.  In order to characterize the expected sensor 
performance, preliminary baseline studies were conducted in pre-selected 1 hectare grids with 10 
metal objects designed to represent 155mm projectiles and 4.2 in. mortars buried at known depths 
in similar soil conditions as the suspect training area.  

 
Results of the survey indicated a probability of detection (PD) of between 60% and 90% and a 
false alarm ratio between 1.5 and 5.18.  Many factors can affect the performance of the sensor.  
However, it is assumed for this exercise that these values represent the range of sensor 
performance across the terrain to be surveyed. 
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Figure 19.  Map of Second Simulated Site Demonstration 

 
To determine the transect spacing required, the following assumptions were derived from firing 
tables and used to determine the typical dispersion pattern for a 4.2 in. mortar.  The same range 
and deflection parameters were used as those in the first simulated site demonstration, but this 
time the dispersion pattern was increased significantly (119m circles) to reflect calculated 
dispersion patterns for  50% of the frag materials, not just the lethal circles as shown in Figure 20.   
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Figure 20.  Diagram of Derivation of Target Area Size/Shape of Concern for the  
Second Simulated Site Demonstration 

 
 
VSP was used to derive transect requirements.  Then the transects were requested and suspected 
TAs were identified and delineated.  Next, Mitretek, Inc. provided truth data.  Figure 21 shows 
the true UXO locations (blue x’s) encompassed by our bounded areas of concern.   
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Figure 21.  Map Showing Bounded Target Areas and UXO Clusters for the Second  
Simulated Site Demonstration 

 
 
The results from PNNL’s evaluation demonstrated that 

• 100% of targets were identified 
• Derived target boundaries enclosed 100% of the UXO 
• Isolated targets were found and delineated 
• Tools can handle gridded transects oriented as defined by the user. 

 
4.4.3  Third Simulated Site Demonstration 
 
The site consists of an Army firing range primarily used for battery targeting practice utilizing 
155mm projectiles and 4.2 inch mortars.  A significant portion of the facility is believed to have 
been utilized as a training area and is thought to include a range with one or more impact areas 
located within the range.  
 
The historical training area is estimated to cover an area of the installation approximately 11 
kilometers by 12 kilometers.  Historical information on the installation is minimal, however, there 
are indications that artillery and mortar firing points were located within the training area. 
Typically, munitions were fired into the Impact areas located within the range.  No clear 
boundaries are provided for the training area or the range, however, the archive search has 
provided some indication of the boundaries of the range area and those boundaries are provided.  
The simulation assumes that the range has been used primarily for artillery training with 155mm 
projectiles and 4.2 in. mortars.  These are estimated to have been fired over a 50 year time period 
from firing points located within the range area at random targets located within the suspect 
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impact area(s).  Specific locations of the firing points and targets are unknown.  The exact size 
and number of Impact areas used for training are unknown.  Available historical information 
indicates that artillery and mortar firing positions used for training exercises were primarily 
located towards the center of the impact area(s), however, this information has not been 
confirmed as accurate. 
 
An EM-61 Time Domain Metal Detector (TDMD) was selected as the instrument that would be 
used for conducting a survey of the training facility for locating potential UXO.  In order to 
characterize the expected sensor performance, preliminary baseline studies were conducted in 
pre-selected 1 hectare grids with metal objects designed to represent 155mm projectiles and 4.2 
in. mortars buried at known depths in similar soil conditions as the suspect training area.  
 
Results of the survey indicated a probability of detection (PD) of between 60% and 90% and a 
false alarm ratio (FAR) between 1.5 and 5.18.  Many factors can affect the performance of the 
sensor, however, it is assumed for this exercise that these values represent the range of sensor 
performance across the various terrain to be surveyed.  The equipment utilized for performing a 
transect survey is limited to an overall individual swath width of either 1m or 2m.  The cost of 
conducting a survey that is 1m wide is estimated to be $10 per meter.  A 2m wide transect is $20 
per meter. 
 
The site map is shown in Figure 22 below.  
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Figure 22.  Map of the Third Simulated Site Demonstration 

 
 
To determine the transect spacing required, the same assumptions were used as those 
shown for the second simulated site demonstration.   We also developed a separate 
transect design for the suspected impact areas and the areas outside the suspected area.  
Inside the suspected area, we designed transects to ensure 98% probability of traversing 
and detecting TAs of concern if they existed.  Outside the suspected area, we designed 
the transects to ensure 80% probability of traversing and detecting TAs of concern.  After 
the anomaly data were received for the initial set of transects, additional transects were 
requested to better determine whether some potential TAs were indeed TAs of concern.  
The map with the original and added transects is shown in Figure 23.  The resulting 
estimated target boundaries and actual UXO locations are shown in Figure 24.   
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Figure 23:  Anomalies Along Transects and Flagged Suspected Target Areas for the  

Third Simulated Site Demonstration 
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Figure 24:  Bounded UXO Locations for the Third Simulated Site Demonstration 

 
The results from PNNL’s evaluation demonstrated that 

• 100% of targets were identified 
• Derived target boundaries enclosed 100% of the UXO 
• Isolated targets were found and delineated 
• Tools can handle multiple transect designs with different transect spacing and 

orientation.   
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5.0  Conclusions 
 
 
This project has developed methods and tools to aid in finding unknown high-likelihood UXO 
areas, providing confidence that large un-surveyed areas are unlikely to contain UXO (i.e., are in 
compliance), and determining when it is acceptable to conclude that continued digging at 
locations on the dig list is unlikely to uncover any additional UXO.  It is particularly significant 
that the target area detection and compliance methods developed have been incorporated into the 
Visual Sample Plan software code so that non-statisticians can implement the survey design 
methods in a systematic planning, DQO, framework.  Also, the validation and demonstration 
efforts for the target area detection objectives conducted to date indicate that the survey design 
methods developed can indeed be used effectively to find target areas that are likely to contain 
UXO.   
 
The close interaction of this PNNL project with the SNL SERDP project, which focused on the 
development of statistical anomaly density estimation methods, has produced an integrated 
methods and tools approach that is currently being demonstrated and evaluated with funding from 
ESTCP.  Demonstration plans have been prepared for a validation exercise of the PNNL/SNL 
integrated approach on both a simulated site (using the SimRangE model developed by MTS) and 
also at the Isleta Pueblo S1 target area site in New Mexico.  Demonstrations of the method at 
other actual training facilities are also anticipated.   
 
The demonstrations of the methods are expected to result in improved design and analysis 
approaches.  In addition, PNNL is currently reevaluating (for ESTCP) how the critical and trigger 
anomaly densities are defined and used in determining the required spacing of transects for 
detecting target areas.  The idea is to explicitly define these density thresholds relative to the 
expected background clutter and to achieve a high probability of traversing, detecting, and 
flagging areas where the anomaly density is significantly higher than the average background 
density.  This approach would be consistent with the DQO design process that is currently used in 
most other (non-UXO) modules in the VSP software.   
 
Another need is to evaluate and demonstrate the utility and practicality of the Shilling and 
Wright/Grieve methods for determining the proportion of a site that must be surveyed in order to 
be confident that few if any UXO are present in large un-surveyed areas of a site or in areas that 
have undergone UXO removal actions.  The Wright/Grieve approach is of particular interest 
because it involves the use of expert opinion to select a particular Beta distribution to model the 
degree of belief that an area does not contain UXO.  Guidance on how this should be done should 
be developed.   
 
It is important that those interested in using the methods receive training in the use of the VSP 
software.  Although UXO modules in VSP are reasonably easy to use, a one or two-day course 
attended by practitioners is recommended.  In addition to the UXO models in VSP, other current 
VSP modules might be used to design soil or sediment sampling studies to sample areas 
contaminated with explosives residues from detonation of various munition items.  Indeed, one of 
the current VSP modules helps develop soil composite sampling designs to sample the perimeter 
of training areas to evaluate if munition residues in soil have migrated beyond the current 
boundary.   
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