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Abstract 

Objective: The main technical objective of the Camp Beale demonstration is to validate and 
substantially automate the SIG learning process using next-generation electromagnetic induction 
(EMI) sensor data for discriminating targets-of-interest.  This process includes three major 
components: feature extraction, site learning and excavation.  The end result of the 
discrimination is a list of classifications for all anomalies at a site.  Discrimination performance 
is increased by maximizing the number of unexploded ordnance (UXO) correctly identified, 
maximizing the number of non-UXO anomalies correctly identified, specifying an appropriate 
dig no-dig boundary, and minimizing the number of anomalies that cannot be analyzed. 
Technical Approach: SIG performed discriminations for three sensors across two datasets.  The 
first two sensors were the Berkeley UXO Discriminator (BUD) and the Time-domain 
Electromagnetic Multi-sensor Tower Array Detection System (TEMTADS) 2x2 at the ‘Beale 
Trees’ site. The third was the CH2MHILL MetalMapper sensor for the ‘Beale Open’ site.  SIG 
developed a sensor/target model using a multi-anomaly dipole inversion.  Feature selection was 
performed using the Bayesian Elastic Net which has the benefit of retaining correlated and 
informative features for classification.  Classification was performed using a semi-supervised, 
parametric Bayesian classifier.  An additional retrospective analysis was undertaken for the 
TEMTADS 2x2 sensor that included a ‘generative’ approach: where the classifier modeled UXO 
responses directly rather than discriminating between UXO and clutter. 
Results: Summarized by sensor and dataset 
TEMTADS 2x2, BealeTrees - All UXO except were captured in the dig list ~160 false alarms.  
Approximately 20% of the UXO were captured during training 
BUD, BealeTrees - The two methods for selecting a single sounding at an anomaly, ‘symmetric’ 
and ‘closest’, captured all the UXO (Figure 16).  The ‘closest’ method performed better than the 
‘symmetric’ method in the number of unnecessary digs required to reach the last UXO: 180 vs. 
200.. 
CH2MHILL MetalMapper, BealeOpen - The final dig list missed two 37mm, and one ISO.  An 
additional 150 digs would have been required to capture all these UXO. 
Benefits: 

A key improvement to the SIG Isolate Process was highlighted in this discrimination.  A 
generative, rather than a discriminative approach, could improve performance in special, easily 
discriminated sites. 
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Objective 

The main technical objective of the Camp Beale demonstration is to validate and substantially 
automate the SIG learning process using next-generation electromagnetic induction (EMI) sensor 
data for discriminating targets-of-interest.  All elements of human interpretation and intuition are 
being incrementally constrained or removed from the process, resulting in an automated process, 
where all algorithm parameters and thresholds will either be determined by specified site 
parameters (i.e., expected or inferred munitions types) or by data-driven inferences (i.e., cross-
validated operating threshold).  SIG applied and matured each of the three key process phases 
that constitutes the SIG statistical learning approach to UXO discrimination - called the “SIG 
Isolate” process.  The three phases of Isolate include: Phase I - feature extraction, Phase II – site 
learning, and Phase III – excavation.  Each of the phases is described in detail below.  Validation 
of Isolate entails meeting all of the discrimination performance objectives defined by the 
program office for each of the sites considered (Table 1). 
Table 1. Program Office Performance Objectives for Discrimination Analysis 

Performance 

Objective 
Metric Data Required Success Criteria 

Analysis and Classification Objectives 

Maximize correct 
classification of 
targets of interest 

Number of targets-of-
interest retained. 

 Prioritized anomaly 
lists 

 Scoring reports 
from the Institute 
for Defense 
Analyses (IDA) 

Approach correctly 
classifies all targets-
of-interest 

Maximize correct 
classification of non-
target of interest 
(UXO) 

Number of false 
alarms eliminated. 

 Prioritized anomaly 
lists 

 Scoring reports 
from IDA 

Reduction of false 
alarms by > 65% 
while retaining all 
targets of interest 

Specification of no-
dig threshold 

Probability of correct 
classification and 
number of false 
alarms at 
demonstrator 
operating point. 

 Demonstrator -
specified threshold 

 Scoring reports 
from IDA 

Threshold specified 
by the demonstrator to 
achieve criteria above 

Minimize number of 
anomalies that cannot 
be analyzed 

Number of anomalies 
that must be classified 
as “Unable to 
Analyze.” 

 Demonstrator target 
parameters 

Reliable target 
parameters can be 
estimated for > 98% 
of anomalies on each 
sensor’s detection list. 
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Background 

Using next-generation cued sensors, discrimination performance on real sites has shown the 
feasibility of advanced statistical analyses for distinguishing unexploded ordnance (UXO) from 
clutter. Signal Innovations Group, Inc. (SIG) has demonstrated the effectiveness of site-specific 
statistical learning for smartly selecting labeled training data to maximize target discrimination. 
This technology has been developed and validated under previous SERDP efforts by SIG and 
Duke University and was ready for application to ESTCP site demonstration at Camp Beale. 
Many current analysis approaches rely on expert scientists to make educated decisions at 
multiple points in the discrimination analysis process. This situation is not scalable, transferable, 
or cost effective. The SIG approach standardizes the options and creates a documented process 
flow that can be explicitly followed.  Key statistical technologies that were validated and 
automated during this effort include: physics-based target/sensor models, subspace denoising, 
automated and efficient feature extraction, data selection for classifier training. These techniques 
represent the state of the art in digital geophysics. 
SIG Isolate Process Overview 

The SIG Isolate process laid out in [5] can be summarized in the following ‘recipe’ (Figure 5):  
 Data Conditioning - First, raw, unlabeled anomaly data are received.  Then, quality 

control checks are performed. These include ensuring that the background subtractions 
are complete and determining if the raw sensor inputs need any scaling in order to be 
appropriate for the feature extraction software. 

 Subspace Denoising - The anomaly data is denoised to ensure robust performance for 
discriminating late time-gate features.   

 Feature Extraction - A robust multi-anomaly dipole model is fitted to the data.  The 
polarizability parameters from this fitting become the set from which features are drawn 
for classifier training.  In addition to the time-domain polarizabilities, a set of 9 ‘rate’ 
features were calculated.  These features were the calculated by fitting the time-domain 
polarizabilities of each axis to an exponential-decay model: 

           
  
    

where   {     } is the current axis,   is the polarizability,   is time and {        } are 
the fitted rate parameters.  Though     is unphysical, it is useful for adjusting for noise at 
late time gates and where odd responses would make the optimization difficult.  The 
optimized values of the rate parameters were found using non-linear least squares. 

 Basis Selection - A few of the many possible features are selected based on their physical 
interpretation as they relate to the anomaly, and, using these features, the most 
informative set of anomalies are selected via an information metric to begin classifier 
training.   

 Feature Set Augmentation - The feature set is then augmented by adding early, mid and 
late time polarizabilities values.   
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 Automated Features Selection - For the now larger feature set, the most relevant set of 
features is selected using BENet.  

 Semi-supervised PNBC Training (STL or MTL) - When the PNBC is trained only 
using data from the current site of interest, it is called Single Task Learning (STL).   
When the PNBC is trained for multiple sites simultaneously it is called multi-task 
learning (MTL).  

 Non-myopic Active Learning - Based on the estimates made with the PNBC classifier, a 
new set of anomalies will be selected for labeling using NMAL.  The goal at this step is 
to maximize the information gain from new labels requested from the set of unlabeled 
anomalies.  The process is repeated as the PNBC classifier adequately learns data 
manifold.   The stopping criteria for the learning process is apparent when the remaining 
unlabeled data points have approximately equal information for improving the classifier.  
At which point, labeling any one anomaly is no better than any other.    

 Excavation Adapted Threshold Selection - At this point, the highest probability UXO 
are selected for excavation and labels.  The classier continues to be retrained when new 
labels are revealed.  This process continues until the highest probability UXO items 
excavated are all found to be clutter at which point digging stops.   

The process outlined above falls into 3 broad phases: Feature Extraction, Site Learning, and 
Excavation.  Details on each phase are given in the next subsections.  The SIG Isolate process is 
relatively linear save for two feedback steps.  The first feedback is in training the semi-
supervised classifier, where additional anomaly labels are requested until the classifier reaches 
sufficient stability.  The second feedback is during the excavation of anomalies, where the 
classifier is retrained with additional labeled anomalies until either the UXO/clutter predictions 
become highly separable or until high probability anomalies are substantially revealed to be 
clutter upon excavation. 
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Figure 5. Flow diagram of the SIG Isolate process. 

Materials and Methods 

SIG applied the Isolate discrimination process at Camp Beale for three sensors across two sites.  
The first were the Berkeley UXO Discriminator (BUD) and the Time-domain Electromagnetic 
Multi-sensor Tower Array Detection System (TEMTADS) 2x2 sensors in the ‘Beale Trees’ site. 
The third was the CH2MHILL MetalMapper sensor for the ‘Beale Open’ site.  The process for 
each sensor involved the following key technologies, including: parametric target/sensor 
modeling, robust feature extraction and selection, semi-supervised classifier training using active 
selection of labeled data and multi-task learning incorporating past demonstration site data. Each 
of these technologies is described briefly in the following subsections. 
EMI Multi-Dipole Model and Feature Extraction 

SIG extracted features by fitting raw sensor data to a physics-based parametric model [1], [2] that 
was developed under SERDP support and has been successfully demonstrated and validated in 
Camp Sibert, Camp San Luis Obispo (SLO), and Camp Butner analyses. It has been shown [3], 
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[4] that the induction response of simple targets can be efficiently represented in terms of one or 
more time/frequency-dependent magnetic dipoles. In particular, the magnetic dipole moment   
of a target is represented as         , where      represents the incident (excitation) 
magnetic field and   is a tensor that relates      to  . Using reciprocity in wave propagation, 
the total magnetic field observed at the receiver coil,     , can represented as 

    ( )                 

where     is a unit vector directed from the source to the target and the     unitary matrix   
(that contains information about the target orientation) rotates the fields from the coordinate 
system of the sensor to the coordinate system of the target. To simplify the above expression, an 
assumption is made that the source responsible for the incident field      can be characterized by 

a dipole. This assumption is valid if the 
dimension of the transmitter coil is much 
smaller than its distance from any buried 
anomaly. While this may be appropriate for 
many sensors, it is not appropriate for the 
multi-coil multi-axis sensors (TEMTADS, 
MetalMapper, or BUD). SIG has developed a 
model to synthesize      for these systems; 
wherein the physical sizes/shapes of the 
transmitter and receiver coils are accounted 
for explicitly (this is done with a rigorous 
Biot-Savart analysis). This model has already 
been validated on both TEMTADS 
(supported by SERDP funding for Camp SLO 
analysis) and MetalMapper data (under 
SERDP contract MM-1708). 
Based on the generalized forward model 
described above, the three principal 
polarization terms in the magnetic 

polarization dyadic, the orientation angles in the rotation matrix, as well as the position of the 
object can be extracted directly from the field data by using a nonlinear least-square solver 
(Figure 1). It is well known that the trigonometric functions in the rotation matrix are nonlinear 
multi-valued functions that result in many local solutions. However, the tensor is a symmetric 
matrix, having only six independent elements (parameters), and the general magnetic 
polarization dyadic is a linear function of the measured field data. This fact is exploited by 
extracting the six parameters directly from the measured data (using least-square inversion), 
rather than extracting the three principal polarization components and three rotation angles 
directly. The number of non-linear parameters in the model is greatly reduced in this 
implementation, and the problem of local solutions is significantly relieved, resulting in reliable 
convergence of the feature inversion. This procedure is also capable of performing simultaneous 
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will be coincident; in this case M2 (red) and M3 (blue) 
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feature inversion for multiple co-located (or nearby) anomalies, which was validated during the 
SIG SLO demonstration. 
Subspace Denoising and Joint Diagonalization for Robust Feature Extraction 

SIG has developed a denoising technique for the TEMTADS data that exploits the co-located 
arrangement of transmitters and receivers (Figure 2). The technique employs the Singular Value 
Decomposition (SVD) to exploit the redundancy in the Tx/Rx pairs of multi-coil sensors to 
identify the principal contributors of the signal due to the buried anomaly and suppresses the 
contributions due to noise. This technique has been successfully implemented and validated on 
the Butner demonstration for the TEMTADS sensor. A similar subspace denoising technique has 
been developed and applied for the Metalmapper sensor using the Matrix-Pencil decomposition 

which is a generalization of SVD.  The benefit of 
this technique is particularly important for low 
SNR anomalies (i.e. deep or small objects) where 
much of the late time information is affected by 
noise but is important for accurate discrimination. 
Feature Selection with BENet 

Adaptive learning of a classifier in situ benefits 
from refining the appropriate set of extracted 
features for the targets under test.   This occurs 
because of the ‘curse of dimensionality’ where the 
number of data points required to cover the breadth 
of a features space grows exponentially with the 
number of features considered.  If the amount of 
training data does not sufficiently sample the 
feature space, then the learned classifier will lack 
statistical support and class estimate uncertainty is 
large.  At SLO in particular, feature selection 
played a key role in classifier performance (Figure 
3). Bayesian classification models perform feature 

selection by placing a sparseness prior on the inferred feature weights. The Bayesian elastic net 
(BENet) regression model used for feature selection employs a sparseness prior equivalent to a 
convex combination of L1-norm and L2-norm penalties in a least squares optimization 
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Figure 2:  Denoising results from the TEMTADS sensor taken at Camp Butner.  The polarizability curves for the 

denoised data are more consistent with this axial symmetric object. 

Figure 3.. Receiver operating characteristic (ROC) 

curves for UXO classifier at SLO site with features 

selection using the BENet algorithm (red line) and 

without feature selection (blue line). The number 

of false alarms is lower for the classifier where 

feature selection was used. 
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formulation [5], [2].  The sparseness prior of the BENet model jointly infers the essential subset 
of relevant features, including correlated features, for a given classification task. Rather than 
encouraging the selection of a single feature in a set of correlated important features (like similar 
approaches such as RVM), the BENet model encourages the selection of all correlated important 
features. By performing sparse and grouped feature selection, the BENet algorithm provides a 
more robust approach to feature adaptability and the interpretation of important features, 
ultimately requiring fewer training data samples to achieve robust statistical support. 
Semi-Supervised Classification 

Semi-supervised learning is applicable to any sensing problem for which all of the labeled and 
unlabeled data are available at the same time, and 
therefore, particularly for the current 
demonstration study. In most practical 
applications (including the recent demonstration 
at Camp Butner), semi-supervised learning has 
been found to yield superior performance relative 
to widely applied supervised algorithms. Figure 4 
depicts the advantage of a semi-supervised 
approach to classification over its supervised 
counterpart. A classifier trained purely on labeled 
data (depicted as red and green circles) is shown 
as a purple dashed line and generates 
classification errors. In contrast, a semi-
supervised classifier trained on both labeled and 
unlabeled data will generate perfect classification 
(depicted by the blue line). Note that the context 
provided by the unlabeled data was crucial in 
improving the classification performance in this 
case, since the labeled data were not 
representative of the two class distributions. As 
the number of training samples increases, the 
supervised classifier should approximate the 
semi-supervised classifier.  Semi-supervised 
formulation treats the dataset (labeled and 

unlabeled) as a set of connected nodes, where the affinity     between any two feature vectors 
(nodes)    and    is defined in terms of a radial basis function [6].  Based on the above 
formulation, one can design a Markov transition matrix     [   ]   

 that represents the 
probability of transitioning from node    to   . Assuming   {        } represents the set of 
labeled data indices, the likelihood functional can be written as 

Figure 4:  A comparison between supervised and 

semi-supervised classifiers for a 2. Labeled data from 

both classes (red and green circles) are shown, along 

with unlabeled data (black dots). The supervised 

classifier is trained on only the labeled data and the 

decision boundary is shown (dotted line).  The semi-

supervised classifier is trained on both the labeled 

and unlabeled data and the decision boundary (solid 

line) makes the two classes linearly separable. 
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where  ( ) defines the neighborhood of  . Estimation of classifier parameters   can be 
achieved by maximizing the log-likelihood via an Expectation-Maximization algorithm [7]. To 
enforce sparseness of   (enforcing most of the components of the parameter vector   to be zero), 
one may impose a zero- mean Gaussian prior on  . A zero-mean Gaussian prior with appropriate 
variance can strongly bias the algorithm in choosing parameter weights that are most likely very 
small (close to zero).  This technique is known as a parameterized neighborhood-based classifier 
(PNBC). 
Non-Myopic Active Learning 

Given that available training data labels at the beginning of a demonstration are not available and 
that excavations must be performed to reveal training data labels, one may ask in which order 
anomalies should be excavated to maximally improve the performance of the classifier 
algorithm.  One useful criterion is to use the confidence on the estimated identity of the 
anomalies that are yet to be excavated. Specifically, one may ask which unlabeled anomaly label 
would be most informative to improve classifier performance if the associated label could be 
made available. It has been shown [8] that this question can be answered in a quantitative 
information-theoretic manner. 
For active label selection, posterior distribution of the classifier is approximated as a Gaussian 
distribution centered on the maximum a posteriori (MAP) estimate. The uncertainty of the 
classifier is quantified in terms of the posterior precision matrix. The objective of AL is to choose 
a feature vector for labeling that maximizes the mutual information ( ) between the classifier   
and the new data point to be labeled. The mutual information can be quantified as the expected 
decrease of the entropy of   after new sample     and its label     are observed. 

  
 

 
   

|  |

| |
 

 

 
   {   (   |     )  [   (   |     )]   

       } 

It is important to note that the mutual information   is large when  (   |     )     . Hence, the 
AL prefers to acquire labels on those unlabeled samples for which the current classifier is most 
confused or uncertain. In this fashion the classifier learns quickly by not excavating anomalies 
that reveal redundant information.  The process continues as new labels are revealed until the 
expected information gain for the remaining anomalies is approximately uniformly low. At that 
point the classifier is adequately trained and target inference on the remaining unlabeled 
anomalies can be reliably performed.  By invoking the principle of submodularity in the 
algorithm optimization, the approach has been adapted to allow for the selection of multiple 
simultaneous labels at one time, making the technique operationally practical.   
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Figure 6. The BENet weights from round 7 with 90 

labeled anomalies. 

Results and Discussion 

TEMTADS 2x2 – Beale TREES 
Training Steps 

There were 45 features in the TEMTADS 2x2 dataset.  These included polarizabilities for 12 
time-gates on the three axes (features 1-36), and 3 rate feature for each axis (features 37-45).  30 
initial labels were requested from the program office.  These features were selected based on 
their sequential Fisher Information gain.  Nine of these 30 labels were UXO, and the type of 
UXO was quite varied.  In fact, from this initial selection a label was acquired for each of the 
UXO types.  This suggested two things.  First, the UXO were not clustered in feature space 
relative to the distribution of clutter.  Second, the UXO distribution was likely multi-modal.  In 
other words, Beale Trees would require additional training data. 

 

10 additional labels were requested for each round of training after the initial selection of 30 
labels.  These new labels were selected using NMAL.  5 rounds of training were performed in 
addition to the initial basis selection for a total of 80 labels acquired at the end of training.  The 
decision to end training was based on a decrease in Fisher Information gain (Figure 6). 
A new non-linear PNBC classifier was created for each round of training.  The features used to 
create the non-linear kernel were selected based on BENet.  As training proceeded the features 
selected by BENet became fixed.  The dominant features at the end of training were the decay-
rates of the x-axes and y-axes (Figure 7). 

Figure 5. Fisher Information gain from training rounds 

2-7. 
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Dig Lists 

A PNBC classifier was training on all the labels acquired during training.  Using this classifier, 
the predicted probability of being UXO was calculated for the remaining anomalies (Figure 8).  
These anomalies were sorted from most-likely UXO to most-likely clutter and the top 30% 
(including the training labels) were selected for digging.  The total number of additional 
anomalies marked for digging was 188. 
23 anomalies were deemed ‘can’t analyze’ and marked for digging because their inversion fits 
were poor.  Of the 23 bad fits, none were UXO, and 10 had no contact with an object when dug.  
In the retrospective analysis, no ‘can’t analyze’ anomalies were separated.  Instead difficult 
anomalies were simply placed in with the full dataset, and they were classified as clutter by the 
discrimination process.  This improved discrimination performance. 
A dig list was submitted to the program office and the labels for the dug anomalies were 
returned.  No QC seeds were missing from this list.  The PNBC classifier was retrained with the 
labels from anomalies that were marked as ‘likely UXO’ or ‘can’t decide’.  Additional labels 
were requested for all anomalies whose predicted probability of being UXO was greater than 0.5.  
15 new anomalies were requested in a ‘stage 2’ dig list.  The procedure was repeated to generate 
a stage 3 list, where another 15 labels were requested.  Digging stopped at this point because no 
anomalies existed whose predicted probability of being UXO was greater than 0.5. 
Performance  

The results from this final digging were that all the UXO were capture with ~160 false alarms 
(Figure 10).  Approximately 20% of the UXO were captured during training.  For final scoring 
the fuzes were considered to be inert and not counted as UXO. 
Retrospective 

There are three distinct approaches to classification: 1) the generative approach, 2) the 
discriminative approach, and 3) the functional approach.  In the context of UXO, the generative 

Figure 8. Predicted probabilities for the remaining 

anomalies at the end of training.  The predicted 

probabilities of the labeled data are shown as 

shapes.  Reference lines for predicted probability 

0.5 (black) and 70th quantile of the anomalies (gray) 

are shown. 

Figure 7. Predicted probabilities for the remaining 

anomalies at the end of digging.  The predicted 

probabilities of the labeled data are shown as shapes. 
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approach models the probability of being a target directly, without considering the distribution of 
clutter.  The discriminative approach models the probability of being a target against the 
probability of being clutter.  This is the technique we have used for classifying UXO in the 
performance assessment.  The functional approach maps inversion values directly onto UXO 
based on training data and does not account for uncertainty in the sensor responses.  This 
technique would be used in the case where sensor responses were perfect and anomalies could be 
classified with no uncertainty.  At other sites, like the Pole Mountain Target Area, the functional 
approach may be sufficient, but this was not the case for Camp Beale.  So, it receives no further 
consideration here. 
One of the key benefits of using a generative approach is that digging can begin immediately 
from test pit data.  In other words, no responses from clutter are necessary to train the model.  
The weakness of the generative approach is the possibility of missing hidden modes (in feature 
space) of UXO.  Such modes would only be elucidated by exploring the clutter space as in the 
discriminative approach.  In performance assessment the ROC curve for generative approaches 
will always be steeper initially than a discriminative approach.  This is because training of 
generative models seeks only to find representative responses for UXO, whereas the 
discriminative approach seeks to find the boundary between UXO and clutter and explore areas 
of the feature space where little prior information is available.  The generative approach is 
completely dependent on the library of UXO responses.  So, if a hidden mode of UXO that do 
not exist in the library is present, then the number of false positives required to capture the last 
UXO will be greater than the discriminative approach.  Given a generative model and a 
discriminative model with similar numbers of total clutter dug, the discriminative approach will 
tend to dig clutter during training and the generative approach will dig clutter during the ‘dig 
phase’.  This is obvious in ROC for the demonstration (Figure 10) where training accounts for 
half of the unnecessary digs. 
The advantage of the discriminative approach is that the feature space can be explored in a 
structured way in order not to miss any UXO types that have odd responses.  Taken together, the 
discriminative approach should be more effective in hard sites and the generative approach 

Figure 9.  Final ROC curve for TEMTADS 2x2 in Beale Trees where Fuzes were considered UXO (left) and as clutter 

(right). 
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should be better in easy sites.   
To compare the generative and discriminative approaches for the Beale Trees dataset the 
generative approach was applied to the TEMTADS 2x2 sensor data.  Two generative scenarios 
were considered (Figure 11) and both treated fuzes as UXO.  This represented the most difficult 
case for classification, even though in then end fuzes were deemed inert.  In the first scenario the 
data were censored to only those anomalies whose inversion model had a low fit error (< 0.01).  
In the second, the data were uncensored.  For the generative model on censored data, the number 
of unnecessary digs was drastically reduced over the original discrimination.  The generative 
model applied to all the data, however, underperformed relative to the original discrimination.  
These results highlight the efficacy of the generative approach at ‘easy’ sites, where the 
inversion results are very good.  It also demonstrates the inefficiency of the generative model on 
sites that have increased difficulty.  In future demonstrations, SIG will develop an approach that 
is adaptively generative or discriminative based on the characteristics of the site. 
BUD – Beale Trees 
Training Steps 

The SIG inversion model was not used for the BUD sensor data.  Instead these inversions were 
provided by Erika Gasperikova (Lawrence Berkeley National Laboratory). 
The BUD sensor was placed in multiple locations at each anomaly flag following a template.  
This resulted in multiple inversion results for each anomaly.  Sometimes there were three 
template positions, but for most anomalies there were five.  Initially, the mean response of all 
template positions was used to represent the anomaly polarizabilities.  The UXO responses were 
masked using this technique, though, because the variance in inversion results between template 
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Figure 10.  ROC curves for the generative model applied to the TEMTADS 2x2 sensor data from the BealeTrees site.  The 

left graph shows the performance when the data are censored to only those anomalies with low error inversion models.  

The right graph shows the performance on all data. 
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positions was high.  This suggested that the sensor was focused on different anomalies at each 
template position.  Or, one or more of the template positions was too far from the anomaly to 
provide reliable inversion results. 
Instead of using some linear combination of all the template positions like the mean, two 
methods were explored for selecting a single template position to represent the anomaly.  The 
first method selected the template position where the anomaly was estimated to be closest to the 
sensor, hereafter referred to as the ‘closest’ method.  That is, the inversion estimate of the 
horizontal distance from the anomaly to the sensor was smallest.  If the flag location were 
correct, template position 2, the central template position, should have been selected most 
frequently.  However, template positions 1 and 4 were selected more frequently than template 
position 2 (Figure 12).  This suggests that the flag locations relative to the anomaly were 
frequently beyond the distance that a single, centered sounding could illuminate. 
The second method for selecting a single template position to represent the anomaly was to 
select the sounding that most symmetric along the transverse axes, hereafter referred to as the 
‘symmetric’ method.  Symmetry using the mean squared difference between log polarizabilities 
for the 2nd and 3rd axes: 

   √∑ (             )
  

   

 
 

where   {    } is the template 
position,   is the log polarizability 
at time   {    } for the 
transverse axes   and  . 

Figure 11. Histogram of the selected template position for the BUD 

sensor across all anomalies in BealeTrees for the ‘symmetric’ method 

(left) and the ‘closest’ method (right).  Template position 2 is the 

central template position. 
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Figure 12. The Fisher Information gain through all training rounds for the 'symmetric' method (left) and the ‘closest’ 

method (right). 
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Having selected a single template position for each flag using these two methods, training 
proceeded according to the procedure outlined in the SIG Isolate Process Overview.  An initial 
basis of 30 vectors was selected maximizing Fisher Information gain.  This initial selection was 
the same for both the ‘closest’ and ‘symmetric’ methods.  From this initial sample a set of 
relevant features was selected using BENet, and a non-linear PNBC classifier trained on these 
features.  Then, a new set of 10 unlabeled anomalies were selected using NMAL.  The labels for 
these anomalies were requested and the training process was repeated until new labels did not 
provide a substantial amount of new information.  The total number of training rounds for the 
‘closest’ was 11 and the total number for the ‘symmetric’ method was 10 (Figure 13).  At the end 
of training there were many more features that were relevant for discrimination in the ‘closest’ 
method than the ‘symmetric’ method. This is likely due to the fact that the ‘closest’ method 
selected the wrong template position to represent an anomly more frequently than the 
‘symmetric’ method did (See retrospective 4.2.3). 
At the end of training the distribution of posterior probabilities of unlabeled samples was 
examined (Figure 14).  The ‘closest’ method was not as separable as the ‘symmetric’ method at 
this stage; some predicted probabilities for the previously labeled UXO were less than 0.5.  
Unlabeled anomalies were selected for digging, beginning from the highest posterior probability 
and proceeding until 30% of the site was selected (including training data).  There were three 
‘can’t analyze’ anomalies, whose positions were too far from the sensor to be reliable (BE-0609, 
BE-0879, and BE-0887). 
These stage 1 dig lists, where 30% of the site was marked for digging, were sent to the program 
office and after receiving the labels back for this first round.  The initial list missed 8 QC seeds 
in the ‘closest’ method and 3 seeds in the ‘symmetric’ method.  The PNBC classifier was 
retrained based on these missed seeds.  An additional 43 labels were requested for the ‘closest’ 
method and an additional 8 for the ‘symmetric’ method.  These requests comprised the stage 2 
dig lists.  When labels were received the decision was made to stop digging the ‘closest’ method 
and to continue digging the ‘symmetric’ method .  An additional 8 labels was requested in a 

Figure 13.  Distribution of posteriors for the 'symmetric' method (left) and the ‘closest’ method (right) at the end of 

training. 
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stage 3 list for the ‘symmetric’ method and then 22 labels.  The final list was stage 5 and an 
additional 22 labels were request in this dig list.  The total number of ranked anomalies (those 
dug but not counted in the training or ‘can’t analyze’ sets) at the end of digging was 208 for the 
‘symmetric’ method and 184 for the ‘closest’ method.  The decision to stop digging the ‘closest’ 
method was based on the fact that the final 50 ranked anomalies were clutter, even though  there 
remained 20 anomalies with a posterior probability greater than 0.5 (Figure 15).  In retrospect, 
digging these remaining anomalies would not have revealed any UXO. 
Performance 

Both the ‘symmetric’ and ‘closest’ methods ended digging up all the UXO (Figure 16).  The 
‘closest’ method performed better than the ‘symmetric’ method in the number of unnecessary 
digs required to reach the last UXO: 180 vs. 200.  Both methods are conservative given the fact 
that approximately 50 extra clutter were dug after all the non-fuze UXO had been revealed.  
Further, the features space had been thoroughly explored by NMAL.  Over 100 training labels 
were acquired using NMAL in both methods.  The ‘closest’ method, though, missed 3 fuzes and 
the ‘symmetric’ method missed 4 fuzes when these items were considered UXO.  Both methods 
missed BE-0482, BE-558, and BE-0805, and the ‘symmetric’ method additionally missed BE-
0697.   The reasons why these fuzes were missed are described in the retrospective analysis. 
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Figure 14. Posteriors distributions at the end of digging for the 'symmetric' method (left) and the 'closest' method (right). 
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Figure 16. ROC curves for the ‘symmetric’ method (top) and the ‘closest’ method (bottom).  Fuzes are treated as UXO 

(left) and clutter (right). 

Retrospective 

A group of fuzes were missed that, in retrospect, were fairly similar in feature space.  Though, 
ultimately classified as inert, fuzes are representative of more ‘difficult’ UXO in that they don’t 
have a typical munitions shape and are small.  The primary reason for missing this mode of 
targets lies in the feature selection process.  Each time a classifier was built, the feature space 
was pruned to only those features that were linearly discriminative of UXO and clutter.  The set 
of features that was discriminative for most of the 
UXO, though, was not the same set of features that 
was discriminative for fuzes (Figure 17).  A solution 
to this problem would be to create a separate 
classification for fuzes. 
A secondary reason for missing these fuzes was that 
they were surrounded in feature space by clutter.  
Figure 18 shows that while the missed fuzes show 
clustering along the primary axes of feature variation, 
there are also many clutter close to them.  During 
active learning labels were acquired via NMAL that 
were very close to this cluster of fuzes, and they were 
all clutter.  So, any model fit to those labels would 
assign a low probability of being UXO to the fuzes.  

Figure 15.  Feature weights from BENet on 

all labeled anomalies for all UXO (blue) and 

fuzes only (red). 
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Again, this could be remedied by using features that were uniquely discriminative for fuzes 
rather than being discriminative of the entire dataset (as in Figure 18) or all UXO combined (as 
in the BENet feature selection during the demonstration) 
In terms of selection algorithm performance, the ‘symmetric’ algorithm tended to have fewer 
incorrectly selected template positions than the ‘closest’ method.  There are a few lines of 
evidence for this.  The first is based on the variance of features for UXO which was lower for the 
‘symmetric’ method than the ‘closest’ method.  So, the feature space for the ‘closest’ method 
was compressed relative to the ‘symmetric’ method. 
The second line of evidence for the ineffectiveness of the ‘closest’ method was the spread of 
UXO in the two dimensional ordination for the ‘closest’ method (Figure 18).  There were 
noticeable UXO outliers in the dominant feature axes suggesting the polarizability responses for 
these UXO are substantially different from the mean responses of UXO.  These outliers were not 
present in the ‘symmetric’ method, leading to the conclusion that these outliers were the result of 
selecting an incorrect template position in the ‘closest’ method.  An example of inappropriate 
selection is shown in Figure 19.  For this UXO (an ISO) every other template position had a 
‘UXO-like’ response except the one chosen by the ‘closest’ method.  The reason for such 
inappropriate selection is straight-forward.  There was a piece of clutter underneath template 
position 4; one not associated with the flagged anomaly.  This piece of clutter is closer to the 
sensor than the UXO was to any of the other template positions.  So, the ‘closest’ method 
selected it. 

Figure 16.  MAP estimates along two dimensions of a non-linear ordination of the anomaly features for the ‘closest’ 

method (top) and the ‘symmetric’ method (bottom).  The anomalies that were marked as ‘dig’ in the dig list are 

shown (UXO in white, clutter in black).  The missed fuzes for each method are also shown (red circles). 
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MetalMapper – Beale Open 

SIG performed discrimination analysis on the “Beale Open” site for the MetalMapper sensor 
operated by CH2MHill.  There were 1470 flags to discriminate.  Munitions included 3in, 75m,, 
60mm, 57mm, and 37mm, mortars; ISOs.  Fuzes, though included in the discrimination, were 
considered inert in the final scoring. 
Training Steps 

There were 45 features in the MetalMapper dataset used for discrimination.  These included 
polarizabilities for 12 time-gates on the three axes (features 1-36), and 3 rate feature for each 
axis (features 37-45).  Initially, 30 labels were requested from the program office.  These features 
were selected based on their sequential Fisher Information gain.  Four of these 30 labels were 
UXO.  This included a 60mm mortar, two ISO, and one Fuze.  As with the TEMTADS 2x2 data, 
this suggested that the different UXO likely were clustered along multi-modes in feature space 
and that those clusters of UXO were interspersed within the clutter.  This dataset required 
additional training data. 
10 new labels were requested at each round of training after the initial request for 30 labels.  
These new labels were selected using NMAL. 9 rounds of training in addition to the initial basis 
selection were performed for a total of 120 labels acquired at the end of training.  The decision to 
end training was based on a decrease in Fisher Information gain (Figure 20). 
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Figure 17. Polarizabilities for flag BE-0671 which is an ISO.  The 'closest' method selected template position 4 (black 

box).  when all other responses are more UXO-like. 
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A new classifier was created for each round of training.  These classifiers were based on features 
that were selected specifically for that round using BENet.  As training proceeded the features 
that were selected by BENet became relatively fixed.  The dominant feature at the end of training 

was the decay-rate of the primary polarizability axis 
(Figure 21). 
Dig Lists 

A PNBC classifier was trained using all the labels that were acquired during training.  The 
posterior predicted probability of being UXO was calculated for the remaining anomalies (Figure 
22).  These anomalies were sorted from most-likely UXO to most-likely clutter and the top 30% 
(including the training labels) were selected for digging.  The total number of additional 
anomalies marked for digging was 285. 
Additionally, 56 anomalies were deemed ‘can’t analyze’ and marked for digging because their 
inversion fits were poor.  Of the 56 ‘can’t analyze’ anomalies, two were UXO (ID 1951: 37mm  
and ID 2040: ISO).  The initial dig list requested a total of 441 digs including all the training data 
and ‘can’t analyze’ anomalies.  This list missed 17 seeds.  The missed seeds were of all sizes 
including 1, 81mm; 3, 60mm; 8, 37mm; and 4, ISOs. 
With the labels for the missed seeds, the PNBC classifier was retrained and a second dig list was 
submitted.  An additional 118 digs were requested for 559 total digs.  A third and fourth stages 
were performed requesting an additional 90 and 37 digs.  The final number of digs was 685.  The 
decision to continue digging was based on the distribution of predicted probabilities for the 
remaining anomalies and the rate at which new UXO were found in the partial ROC curves.  The 
distribution of predicted probabilities at the end of digging showed two things (Figure 23).  First, 
the remaining anomalies were clustered around low probabilities.  Second, the resubstituted 
probabilities of labeled anomalies were well-separated from the remaining anomalies. 

Figure 18. BENET weights at the end of training for the 

MetalMapper sensor in the BealeOpen dataset.  The selected 

feature is shown in red. Figure 19. Scaled Fisher Information gain for 9 

rounds of aquiring training labels via active learning 

for the MetalMapper sensor at the BealeOpen 

dataset. 
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Performance  

The results for MetalMapper discrimination were not as good as the performance results for the 
Beale Trees dataset with the TEMTADS 2x2 and the BUD sensors (Figure 24).  The final dig list 
missed two 37mm, and one ISO.  An additional 150 digs would have been required to capture all 
these UXO. 
Retrospective 

The UXO missed in the dig lists showed marked differences from the standard responses for the 
UXO type (Figure 26).  It is unlikely that any of these UXO would be captured by an automated 
discrimination method.  The exception to this would be if these responses, though different from 
the standard UXO, were also different from the standard clutter response.  In this case, the initial 
basis selection could capture them.  During initial basis selection, the feature space is explored 
and outlier responses should be captured.  To see if this were true, we examined how many basis 
selections were needed, (based on the gain in Fisher Information) to capture the anomalies 
missed in the original dig list.  We selected 200 initial basis vectors instead of the original 30.  
This sample only captured one of the missed UXO (ID 2091, an ISO stats seed).  So, the fuzes 
and the 37mm that were missed are not markedly different from clutter responses. 
A retrospective discrimination was undertaken to see if performance could be improved.  Five 
changes were made to the previous model.  First, 35 time gates were used instead of the original 
12.  This resulted in better estimates of anomaly position.  Second, the fuzes were classified 
separately from the clutter.  This makes sense because the shapes of fuzes are different than the 
shape of other UXO.  The third change that was made was in the number of training data that 
were acquired.  Only 40 training labels were acquired.  Fourth, there were no ‘can’t analyze’ 
anomalies.  For any anomaly that had poor fits, a two anomaly model was fit and the most-uxo-
like of the two anomalies was used. two anomaly fits Finally, there was only a single dig stage, 
which means that there was no retraining and no ‘missed QC seeds’. 

Figure 20. Histogram of predicted probabilities of 

being UXO for unlabled MetalMapper data at the end 

of training.  Resubstituted predicted probabilities for 

the training data are shown as symbols: clutter (blue) 

and UXO (red). 

Figure 21. Histogram of predicted probabilities of being 

UXO unlabeled MetalMapper data at the end of digging. 
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The performance of this classifier was better than that of the original dataset (Figure 25.  
However, two anomalies were difficult to discriminate.  The first was ID 2091.  This was the 
same ISO Stats seed that was missed by the original discrimination, and had an odd, clutter-like 
response (Figure 26).  The second anomaly that was difficult to discriminate was 2277.  This was 
an anomaly that we received as a Missed QC Seed in the original demonstration and should have 
been modeled as a multi-dipole anomaly.  Barring these two, the retrospective analysis 
discriminated all the non-Fuze UXO with only 40 training labels, and 450 clutter digs, a 
significant improvement over the original 
performance of the classifier. 

Figure 22. ROC Curve for MetalMapper sensor, BealeOpen dataset where fuzes are counted among the UXO (right) 

and where they are counted as clutter (left). 
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Figure 23. ROC Curve for the MetalMapper retrospective 

discrimination of the Belae Open dataset.  Only 40 training 

samples were used. 
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Figure 24.  Archetypal responses for the missed UXO type (left column) along with the responses for the UXO 

that were missed in the dig lists (center and right columns).  The responses are significantly different from the 

standard response and are unlikely to be capture by an automated discrimination method. 
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Conclusions and Implications for Future Research/Implementation 

The SIG Isolate process has proven effective at providing efficient site discrimination with 
minimal training data.  Camp Beale provides another example of this.  The discrimination at 
Camp Beale also highlighted a key area where the SIG Isolate process can be improved.  A 
generative, rather than a discriminative approach, could improve performance in special, easily-
discriminated sites.  There are two distinct advantages to the generative approach.  The first is 
that it requires no training data per se and digging UXO can begin immediately.  The second is 
that each UXO type can comprise its own model, relieving the aforementioned difficulty of 
classifying fuzes in a single class with all the other UXO types. 
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Appendices 

Appendix A: Points of Contact 

POINT OF 
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Address 
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E-mail 
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4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919 660-5270 
919-323-4811 
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Principal 
Investigator 

Levi Kennedy Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-3456 
919-287-2578 

lkennedy@siginnovations.com 

Project 
Management 

Todd Jobe Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-4811 
919-287-2578 

tjobe@siginnovations.com 

Engineer 

Xianyang Zhu Signal Innovations Group, Inc. 
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919-323-4811 
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