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This document presents a detailed description of our holographic imaging approach to improved
localization and discrimination of buried underwater UXO. The approach is based on a combination
of synthetic aperture sonar (SAS) for spatial localization, and acoustic resonance spectral signatures
for target discrimination. The approach is validated using simulated data based on the BOSS
platform sensor parameters, and with target models constructed from the exact analytic solution
for elastic spheres and spherical shells.

I. INTRODUCTION

This Interim Report describes our results to-date on
SERDP project Advanced SAS Imaging Methods for Res-
onating Underwater Acoustic Targets (MR-2322) in sup-
port of the Go/No-Go decision.

Buried underwater UXO resides in a challenging region
of the acoustic sensing trade space. Downward-looking
high frequency (& 100 kHz) real aperture sonar systems
can provide excellent, high resolution maps of the sedi-
ment surface, but attenuate strongly with depth, and fail
to provide definitive characterization of buried targets—
as quantified, e.g., by high probability of detection (PD)
and low probability of false alarm (PFA). Low frequencies
(. 10 kHz) penetrate the sediment, but provide much
poorer spatial resolution—a few “pixels” on a UXO-sized
target, but even then, only if a sufficiently large receiver
array (& 2 m diameter) is available. In terms of the
latter, for the purposes of validating our models and ap-
proach, during Year 2 of this program we will be gener-
ating and analyzing multiple data sets, collected under
increasingly realistic conditions, using the buried object
scanning sonar (BOSS) system [1].

Motivated, to some extent, by our past work on
EMI detection and discrimination of ground-based buried
UXO, where metal targets are easy to detect and local-
ize, but much more difficult to identify, our approach is to
seek additional spectral signatures in relatively low res-
olution images of targets that robustly distinguish UXO
from similarly sized clutter. Specifically, the holographic
technique takes advantage of the fact that hollow metal
shells exhibit multiple, distinctive acoustic resonances in
precisely the 3–10 kHz band of interest for sediment pen-
etration. Similarly sized solid objects, such as rocks, also
exhibit resonances, but generally above 10 kHz. It should
be emphasized that resonances of a shell surrounded by
sediment (or water) are much less sharp than those of a
shell in air (Q ∼ 5 vs. ∼ 102) due to the much lower
acoustic contrast, however our models will show that
highly distinctive spectral features still remain, and this
is borne out by existing measurements [2, 3].

Since validation, at this point in the program, is pri-
marily based on simulation results, our goal has been to
develop a model which is as faithful as possible to the

physics, but numerically efficient and easy to work with.
We do this by restricting attention to spherical shell tar-
gets, for which full exact analytic solutions exist. Al-
though missing some details specific to more elongated
UXO geometries, spherical shells nevertheless capture
the essential physics of acoustic resonance and target–
environment interactions, and provide complete, realistic
sonar responses in a computationally efficient manner.
They hence form an ideal testing ground for our target
imaging and discrimination algorithms. For full valida-
tion (in principle, nearly exact) correspondence with ex-
perimental data can be made using artificial spherical
targets.

We emphasize that, in direct contrast to the ground-
based EMI case, in which time domains signatures con-
sist of difficult to interpret, subtly featured power law
and multi-exponential decays [4], the target acoustic fin-
gerprint being sought here does not depend on detailed
matching to previously collected templates [5]. Rather,
we seek only the existence of certain sharp spectral fea-
tures within the 3–10 kHz bandwidth. As a conse-
quence, our approach lies in an interesting sweet spot,
in which the acoustic fingerprint lies in precisely the low
frequency band that is both favorable to sediment pene-
tration [6], and provides, through synthetic aperture pro-
cessing, enough spatial resolution to isolate individual
targets.

A. Outline

The outline of the remainder of this document is as
follows.

In Sec. II we introduce the acoustic model, including
sensor transmitter and receiver characteristics, acoustic
dynamics of elastic shells, and how that dynamics is ex-
cited by the transmitted wave, and then manifests in the
received signals. We show, in particular, that strong res-
onant features survive the coupling of the shell to the
sediment or water environment. Some technical details
are relegated to the appendices.

The exact solution for spherical targets exists only
when it is embedded in an infinite homogeneous back-
ground medium. Approximations are required to treat
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a target buried in sediment, which essentially involves
ignoring multiple scattering between the target and the
sediment surface. These are described in Sec. III.

In Sec. IV we describe the signal processing chain, in
which the real-plus-synthetic array data is used to form
2+1D space–frequency images back-projected to a given
fixed depth. The spatial image localizes targets at the
10 cm horizontal resolution level. Although detailed tar-
get features (e.g., tail fins) are not visible on this scale,
the frequency dimension clearly displays the spectral fin-
gerprint. We show as well that, although not directly
inferred, the true target depth may be estimated by op-
timizing over the assumed depth using an image focus
metric.

Using the results of the previous sections, in Sec. V
we describe simulation studies aimed at validating our
approach to UXO localization and discrimination. We
describe an automated resonance feature extraction al-
gorithm, and demonstrate its strong false alarm rejection
capability.

The reported results strongly support continuation of
this program to further validate the holographic method
through BOSS system data collects under progressively
more realistic field conditions.

II. ACOUSTIC MODEL

The water–sediment–target system includes both fluid
and elastic solids components. The water is obviously a
fluid, and in the low frequency regime the sediment may
be treated as fluid as well [7]. Rocks and metal shells are
elastic solids. Depending on its content, the explosive
content of the hollow portion of the shell could be either
fluid or solid. For simplicity, we will treat it as a fluid,
but the results below can easily be generalized if required
(the explosive is much less stiff than the metal shell, so
its effect on the shell resonances is, in any case, relatively
small). A reasonable fidelity physics-based model of this
system must include the interacting dynamics of all of
these components.

A. Elastodynamic equations

The linearized dynamics of a homogeneous elastic
medium (with fluids included as a special case) is gov-
erned by the equation [8]

ρ∂tv = ∇ · τ̂ , (2.1)

in which ρ is the (static) background mass density, v is
the velocity field and τ̂ is the elastic stress tensor. For
an isotropic medium, the latter takes the form

τ̂ = λ∇ · s11 + µ
[
∇s + (∇s)T

]
, (2.2)

where λ, µ are elastic constants, and s is the displacement
field, which sends the volume element at x to x + s(x),

and in terms of which v = ∂ts. We neglect frictional
dissipation here and in all that follows. This may be
modeled as well (via addition of viscous terms to τ ),
but at the lower frequencies of interest here, this is a
lower order effect. In component form one has τ̂αβ =
λ(∇· s)δαβ +µ [∂αsβ + ∂βsα]. The shear elastic constant
µ distinguishes solids and fluids, and vanishes for the
latter.

Substituting (2.2) into (2.1), one obtains the explicit
form

ρ∂2
t s = (λ+ µ)∇(∇ · s) + µ∇2s. (2.3)

If s = sT is transverse, ∇ · sT = 0, then (2.3) reduces to
the wave equation

∂2
t sT = c2T∇2sT , cT =

√
µ

ρ
. (2.4)

with transverse (shear) sound speed cT . There are two
independent transverse polarizations (i.e., displacement
orthogonal to the wavevector). Similarly, if s = sL is
longitudinal, ∇ × sL = 0, one finds ∇(∇ · sL) = ∇2sL,
and hence

∂2
t sL = c2L∇2sL, cL =

√
λ+ 2µ

ρ
, (2.5)

with longitudinal (compressional) sound speed cL. There
is only a single longitudinal polarization (displacement
collinear with wavevector).

For µ = 0, cT vanishes as well, and only the usual
longitudinal sound waves survive. Shear flow, for which
there is no elastic restoring force, may still exist but will
be neglected here—we will consider only acoustic excita-
tions of an otherwise (nearly) stationary fluid.

B. Boundary conditions

Equations (2.1)–(2.5) are valid in the interior of a ho-
mogeneous region. In order to describe the dynamics of
more complex media, composed of two or more different
homogeneous media, one must impose boundary condi-
tions at their interfaces. These are: (i) continuity of s
(the medium does not tear or cavitate), and (ii) conti-
nuity of the traction n̂ · τ̂ (consistency of the local body
forces across the boundary), in which n̂ is the local sur-
face normal.

For a boundary between elastic media, each of these
yields three conditions, for a total of six, consistent with
the three possible polarizations in each region. For a
fluid-elastic boundary, (i) is replaced by continuity only
of the normal displacement, s · n̂ (free slip boundary con-
dition). This a total of four conditions, consistent with
the absence of the two transverse polarizations in the
fluid.



3

FIG. 1: Lowest order resonant frequencies for a thin spherical shell (with b/a = 0.9, 0.95, 0.97, 0.99), computed from the
vanishing of the determinant of the 4×4 blockM(a, b) described below (B13). The membrane curves (δ = a− b→ 0; the same
in all plots) are computed from the vanishing of the determinant of (B22) (l > 0) or (B23) (l = 0). For l ≥ 2 there are two
branches, with the lower one corresponding to (volume preserving) flexural waves and the upper one to (acoustic) stretching
waves. For l = 0, 1 the flexural mode is absent. The acoustic mode is well approximated by corresponding 2D plate dispersion
(B26), which is independent of thickness. Consistent with (B28), with increasing l the shell flexural mode crosses over from
the essentially frequency independent membrane flexural mode to the quadratic flat plate dispersion (B27). For b/a = 0.9,
hence a/δ = 10, one indeed sees deviations from the flat plate form for l & 10 as the wavelength becomes smaller than the shell
thickness.

C. Exact solutions for spherical geometries

Exact solutions to the elastodynamic equation (2.3)
are few and far between, even more so due to the vector
nature of the displacement field s. Numerical implemen-
tation, even for relatively simple nontrivial target shapes,
is also challenging, given especially that the target inter-
acts strongly with its environment and a full description
of the measurement encompasses a broad range of spatial
scales, much larger than the target volume.

General concentric spherical shell structures are the
only compact targets for which exact solutions can be
constructed. Due to the high symmetry, the detailed res-
onant response spectrum of a spherical shell will never

accurately approximate that of an elongated shell. How-
ever, the complexity of the dependence of the coupling
to the environment, interaction with an incident wave,
etc., is fully captured. This allows one to explore the key
UXO detection and discrimination questions that lie at
the heart of the present effort. Higher fidelity modeling
of more realistic targets, e.g., to achieve greater insight
into the variability of the spectral signature, is of future
interest, but is not required to answer the more basic
questions pursued here.

In App. A we describe the Bessel–spherical harmonic
basis functions appropriate to spherical geometries, and
in App. B we use these to exhibit the detailed solution for
a hollow elastic spherical shell, with a fluid filled spherical
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void and a lying in an unbounded fluid background [9].
In App. C the results are used to compute the scattered
field generated by a known transmitted wave.

D. Free vibrational modes

In the limit in which the two fluids are treated as vac-
uum, the spherical shell has undamped modes of free vi-
bration. Some key features of these modes are shown in
Fig. 1, where results for a shell with outer radius a = 10
cm, and four different inner radii (b = 9, 9.5, 9.7, 9.9 cm),
are shown and compared to results for a spherical mem-
brane (thickness δ = a − b → 0), and for an infinite 2D
plate with the same thickness (see App. B 2 c). In all
cases, the same parameters ρ, λ, µ are used, derived from
assumed bulk sound speed values cT = 2 km/s, cL = 4
km/s, and mass density ρ = 4 g/cm3. In the plots one
should think of the spherical harmonic index as roughly
the number of wavelengths fitting within a perimeter, so
that λl ∼ 2πa/l.

The first feature to note is that there are two branches:
(a) a higher dilatation branch fd

l characterized mainly by
patterns of stretching and contraction of the shell; and
(b) a lower flexural branch ffl

l (beginning at l = 2, for
geometric reasons), corresponding to local bending, with
little stretching—essentially “ripples” on the shell. The
latter branch becomes almost completely flat, indepen-
dent of l, consistent with vanishing bending energy, in
the membrane limit (why the mode frequencies do not
then vanish identically is explained below).

The second feature to note is how weakly the lower
frequency modes depend on shell thickness. The lowest
frequency modes, which are the focus of the present work,
are nearly independent of the thickness (though not of
the radius, scaling rather as cL/a). The lowest flexural
mode frequency, ffl

2 ' 4 kHz, is less than half that of the
lowest acoustic mode, fd

0 ' 10 kHz. Moreover, even for
δ = 1 cm (which is in the range expected for UXO), there
are several flexural modes, out to about l = 6, that still
lie below 10 kHz, precisely within the range of interest.

The trend of these modes with δ and l may be un-
derstood by comparing them to those corresponding to
an infinite flat plate of the same thickness [8] (solid ma-
genta and cyan lines in the figure). Both of these ap-
proach zero frequency at small wavenumber k = 2π/λ ∼
l/a (the dilatation branch linearly as c0k, with c0 =

2cT
√

1− (cT /cL)2, the flexural branch quadratically as

D0k
2, with D0 = c0δ/2

√
3). The finite frequency for the

sphere reflects both the lower bound on the wavenum-
ber, ka & 1, and the finite bending modulus of even an
infinitely thin curved surface (due to “crinkling” effects
that forbid bending without some stretching). It is the
k2 scaling that also explains the flatness of the flexural
branch at low frequency, and hence the weak dependence
of the first few mode frequencies on l. This becomes in-
creasingly more pronounced as δ → 0.

The above features are to be contrasted with the re-

FIG. 2: Resonant frequencies for a solid sphere with radius
a = 10 cm. The membrane spectrum, identical to that in
Fig. 1, is still displayed for comparison. The multiplicity
of modes for each l is due to nonzero values of the radial
wavenumber, which are of much higher frequency for thin
shells (radial wavelength requirement λr . δ yields frequen-
cies f & cT /δ, cL/δ). The flexural and dilatational mode ana-
logues correspond, respectively, to the lowest and second low-
est line of green stars.

sults, shown in Fig. 2, for a solid sphere with the same
radius a = 10 cm, mimicking, say, a rock. The flexural
mode analogues are now pushed to much higher frequen-
cies, have linear rather than quadratic dispersion, and all
modes lie above 8 kHz.

Given the basic geometric origin of the shell mode
branches (dilatation and bending of a smooth, curved
surface), we expect the basic low frequency mode features
to survive to more realistic UXO shapes. Thus, even
though the breaking the spherical symmetry will split
the two branches into several sub-branches (the modes
in both Figs. 1 and 2 have the usual 2l + 1 degeneracy),
we still expect (i) the lowest dilatation mode frequency
to scale as c0/a, (ii) the lowest flexural mode frequency
to lie a factor of two or so lower, and (iii) several flex-
ural mode frequencies to lie near the lowest one, due to
the flatness of the band. These are key signatures that
will help distinguish hollow from solid targets. We em-
phasize that UXO-sized targets should be resolved in the
holographic images, to be described below, so that an a
priori size estimate will be available. This will help re-
move uncertainty based on comparing frequency spectra
for widely differing target sizes (e.g., a much larger rock
could have mode frequencies in the 4 kHz range).
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FIG. 3: Top row: Scattered wave amplitude spectra B3,l(f) for each angular momentum index in the range 0 ≤ l ≤ 6
(normalized to a unit incident wave amplitude, A3,l = 1; see App. B for definitions of the parameters). Left: Target is a
shell (with the same material parameters as in Fig. 1) with outer and inner radii a = 10 cm, b = 9 cm, and both the hollow
and background fluids are taken to be water (mass density ρ = 1 g/cm3, sound speed c = 1500 m/s). The remnants of the
low frequency free resonances still appear as sharp peaks (the downward pointing cusps are not singularities, but unresolved
zero-crossings on the log scale). The visible dilatation modes (l = 0, 1) are strongly broadened, but the flexural modes are
quite sharp (they radiate much less efficiently), and the first few (l = 2, 3, 4) lie below 5 kHz. The nominal resonant frequencies
are lower than those in the upper left panel of Fig. 1 due to the extra inertial mass provided by the coupled motion of the
surrounding fluid. Right: Target is now a radius a = 10 cm solid sphere. All resonant features below 10 kHz have disappeared
(the downward-pointing cusp is again an unresolved zero crossing). Bottom row: Total spectral response obtained from the
frequency dependence of the holographic imaging equation (4.1) at the target pixel using the BOSS parameters, with target
centered 3 m below the synthetic grid (the same parameters used to generate Fig. 4). The targets match those in the top row.
The dip near 8 kHz on the right is clearly a reflection of the l = 1 zero crossing on the left, but shifted in frequency due to the
added background provided by the other modes. One should therefore view it as a mode superposition interference effect, not
as a resonance feature.

E. Homogeneous background medium effects

Targets are not sensed in isolation, but embedded in a
dense (fluid and/or sediment) background medium. The
acoustic coupling to the environment enables but also
dampens the free oscillations by through radiation of
acoustic energy, broadening the resonant features. The
results shown in Fig. 3 demonstrate, however, that the
acoustic scattering response still exhibits sharp peaks in
the low frequency regime of interest. The top row shows
the normalized responses for a sequence of individual l
values. The bottom row shows the resulting holographic
image spectral response (Sec. IV) at the target pixel,
which contains a linear superposition of the individual

modes. The key feature is that first two peaks are very
strong, and would be expected to contribute to a robust
target fingerprint. The remaining peaks are of signifi-
cantly lower magnitude (note the logarithmic scale), and
might not stand out as well under realistic clutter condi-
tions.

III. BURIED TARGET MODELS

We next consider generalization of the model to the
case of a buried target. Analytic results are no longer
available, even for spherical scatterers, so we limit our-
selves to approximate models which should still capture
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FIG. 4: The transmitter-receiver grid, using BOSS param-
eters, corresponding to the synthetic aperture that is used
to construct the holographic image, plotted vs. transmitter-
target-receiver scattering angle θRST for a target centered at
x = y = 0, 3 m below the receiver plane. The green stars
correspond to the sequence of 10 cm spaced transmitter po-
sitions along the platform line of motion, taken as the y-axis.
Each set of 40 blue stars sharing the same y-coordinate cor-
respond to the receiver positions along the two BOSS wings.
A received scattered signal is measured (only) for each of the
40 Tx-Rx pairs sharing the same platform position. As dis-
cussed in the text, the variation in cos(θRST) across the grid
quantifies the possible influence of bistatic scattering effects
that are neglected in the imaging equation.

the essential phenomenology. The two effects of main in-
terest are (a) changes in the effective path lengths from
transmitter to scatterer, and back to receiver, and (b)
background contributions to the signal from the direct
scattering from the sediment surface. The effects (c)
of reverberation (multiple scattering) between the tar-
get and the sediment surface, which are what forbids an
exact solution, are neglected.

We treat the sediment as a fluid, defined by sound
speed csed ' 1700 m/s, and density ρsed ' 1.9 g/cm3.
In a more general treatment, porous medium dynamics
results in a frequency-dependent sound speed csed(ω) [14–
16].

We will ignore the effects of back-reflections from the
sediment boundary on the intrinsic dynamics of the elas-
tic target [12]. Thus, we will assume that the local Bessel-
spherical harmonic expansion (B2) of the transmitted
wave (see below) continues to determine the local out-
going wave expansion (C5). The sediment is therefore
treated, for this aspect of the calculation, as homoge-
neous and infinite.

To summarize, the measured signal estimation is com-
prised of the following key steps (see Fig. 5): (1) A ray
tracing (geometrical optics) approach, including appro-
priate transmission and reflection coefficients at the sed-
iment surface, will be used to estimate the transmitted
field, in the form of a local plane wave, in the neigh-

borhood of the buried scatterer. (2) The expansion of
this plane wave, according to (B3) and (C2), then leads
to a local scattered wave expansion of the form (C5).
(3) A ray tracing approach is again used to propagate
this local scattered wave back to the receiver, includ-
ing the reverse transmission coefficient through the sedi-
ment surface. (4) The direct reflection of the transmitted
wave from the sediment will generate a background sig-
nal. The backprojection image (4.1) should attenuate the
dominant direct reflection, but for a rough surface there
will be non-specular returns (with similar transit times)
that will be enhanced. The latter should ultimately be
included as part of the clutter model.

A. Transmitted wave in target neighborhood

We continue to model the transmitted wave, prior to
interaction with the sediment, as an outgoing spherical
wave

sT =
A0

ik
∇ eik|x−xT |

4π|x− xT |
, (3.1)

in which the amplitude A0 (with dimensions of area) is
determined by the physical properties of the transmit-
ter. In the vicinity of the target center xS one may then
approximate

sT = A0T (xT ,xS)k̂T eik
T ·(x−xS) (3.2)

in which the transmission coefficient is given by

T (xT ,xS) = T0e
i(k|xT−xI |+kT |xS−xI |) (3.3)

where T0 is an amplitude [see (3.10)] and xI is the point
where the ray intersects the sediment surface. The latter
is derived from Fermat’s principle, which minimizes the
propagation time t = |xT −xI |/cw + |xT −xI |/csed. The
result is Snell’s law of refraction,

sin(θw)

sin(θsed)
=

cw
csed

, (3.4)

in which θw, θsed are, respectively, the incident and re-
fracted ray angles relative to the sediment surface normal
(see Fig. 5). This result can be converted into a quartic
equation for the unknown horizontal position of xI :[

1− c2w
c2sed

]
x2(L−x)2+h2

Sx
2− c2w

c2sed

h2
T (L−x)2 = 0. (3.5)

Here hS = zsed − zS is the target center depth, hT =
zT − zsed the transmitter height (both relative to the
sediment surface zsed), L the horizontal distance between
transmitter and target, and x is the unknown horizontal
distance of xI from xT . One has the relationships

sin(θw) =
x√

x2 + h2
w

, sin(θsed) =
L− x√

(L− x)2 + h2
S

.

(3.6)
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FIG. 5: Ray tracing geometry underlying the received signal
calculation. The incident ray (left) is refracted at the sedi-
ment surface, and scatters from the target. The return ray
(right) is again refracted before arriving at the receiver. The
refraction angles obey Snell’s law (3.4), and the scattering
angle enters (3.13).

An identical calculation (see below) determines the ray
path of the scattered wave, from xS back to the receiver
xR.

The reflection and transmission coefficients are ob-
tained from continuity of the normal components of the
displacement and the traction. In the neighborhood of
the point xI one has a local plane wave expansion

sT ≈ A0
eik|xI−xT |

4π|xI − xT |
(3.7)

×

{
k̂eik·(x−xI) +RI k̂

Reik
R·(x−xI), z > zsed

TI k̂
T eik

T ·(x−xI), z < zsed,

in which k is parallel to xI − xT and kT is paral-
lel to xS − xI . Thus, one may write k = (k⊥, kz),

kR = (k⊥,−kz), kT = (k⊥, k
T
z ), kz =

√
(ω/cw)2 − k2

⊥,

kTz =
√

(ω/csed)2 − k2
⊥, and k⊥/k = sin(θw), k⊥/k

T =
sin(θsed). Defining the combination

Z =
cos(θ)

ρc
, (3.8)

one obtains

RI =
Zw − Zsed

Zw + Zsed

TI =
ρwcw
ρsedcsed

2Zw
Zw + Zsed

. (3.9)

In terms of these quantities, one obtains for the coeffi-
cient T0 in (3.2):

T0 =
TI

4π|xT − xS |
, (3.10)

in which the geometric spreading factor in the denom-
inator is only approximate, but is adequate for shallow

targets, not too off-normal incidence, and cw/csed not too
different from unity. Refraction of the ray is a nonlinear,
anisotropic process, and in general entails a much more
complicated dependence of (3.10) on xS − xI [17].

B. Scattered wave

The scattered wave in the neighborhood of the target,
prior to its interaction with the sediment surface, takes
a form similar to (C5):

ssc(x) =
∑
l,m

Alm(kT )B3,l(k
T )sL,lm[h

(1)
l (kT |x− xS |)],

(3.11)
in which the scattered wave amplitudes B3,l(k

T ) are com-
puted from (B11)–(B13) using the sediment parameters
for the background medium. The incident wave ampli-
tudes are given by

Alm(kT ) = 4πA0(−i)l+1T (xT ,xS)Y ∗lm(θT , φT ), (3.12)

in which θT , φT are the polar angles associated with the
direction −kT (parallel to xI − xS), and T is given by
(3.3), (3.9) and (3.10).

The pressure signal, generalizing (C6), takes the form:

psc(x) = A0ρsedc
2
sedk

TT (xT ,xS)
∑
l

(2l + 1)(−i)l+1

× B3,l(k
T )h

(1)
l (kT |x− xS |)Pl[cos(γ)],

(3.13)

in which γ is the angle between −kT (hence, xI − xS)
and x− xS .

C. Received wave

Using hl(x) ≈ (−i)l+1eix/x, valid for large x, and trac-
ing the outgoing wave back to the receiver, one obtains

psc(xR) ≈ 4πA0ρwcwcsedT (xT ,xS)T̄ (xS ,xR)

×
∑
l

(−1)l+1(2l + 1)B3,l(k
T )Pl[cos(γ)],

(3.14)

in which

T̄ (xS ,xR) = T̄0e
i(kT |x̄I−xS |+k|xR−x̄I |) (3.15)

with return intersection point x̄I , amplitude [compare
(3.10)]

T̄0 =
T̄I

4π|xR − xS |
(3.16)

and coefficients [compare (3.9)]

R̄I =
Z̄sed − Z̄w
Z̄w + Z̄sed

T̄I =
ρsedcsed

ρwcw

2Z̄sed

Z̄w + Z̄sed
. (3.17)
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FIG. 6: Scattering amplitudes B3,l(f) for a buried spherical
shell, with parameters the same as those used in the left col-
umn of Fig. 3. As described in Sec. III, these are computed
as if the sediment were infinite and homogeneous, and then
inserted into (3.13) to propagate them through the sediment
surface and compute the received signal. The sediment prop-
erties are csed = 1700 m/s, ρsed = 1.9 g/cm3. The hollow
portion is still treated as water. The resonant features re-
main sharp, though they are shifted in frequency due to the
changed background.

The bars indicate that the diffraction angles θ̄w, θ̄sed re-
fer to the return path (see Fig. 5), calculated according
to (3.5), but with L now referring to the horizontal sep-
aration of xS and xR, and x to the horizontal distance
between xS and x̄I . The angle γ is between the directions
x̄I − xS and xI − xS (see Fig. 5).

Equation (3.14) is derived from (3.11) by expanding
the gradient of the Hankel function in a local longitudi-
nal plane wave in the neighborhood of x̄I [analogous to
(3.7)], and neglecting the gradient of the spherical har-
monic factor (consistent with the large argument approx-
imation). It may also be derived directly from (3.13) if

FIG. 7: Slices through the space-frequency holographic image
cube generated by (4.1) and (4.2) for a target in the water col-
umn. The target lies at the horizontal origin, x = y = 0, and
the image is backprojected to the plane z = −3 m, coinciding
with the target depth. The fixed frequency slices are at the
first three peaks (f = 2.54, 3.32, 4.08 kHz) in the lower left
plot in Fig. 3. As in that figure, the colorbar represents a
logarithmic scale.

one notes that the pressure wave transmission coefficient
is obtained by dropping the ρsedcsed/ρwcw prefactor in
T̄I . The denominator in (3.16) is again approximate—
see the comments below (3.10).

D. Nonspecular surface reflection

Note that the reflection coefficient RI in (3.9) defines
the received ground bounce, but at a different sediment
surface point defined by direct reflection back to the re-
ceiver. For a rough surface, reflection is also nonspec-
ular, and this will lead to background clutter contribu-
tions that will be incorporated in a later iterations of the
model.

IV. HOLOGRAPHIC IMAGE FORMATION

We now describe the methodology for creating 2+1D
space-frequency images that lie at the heart of our UXO
detection and discrimination approach. We will first con-
sider the simpler case of targets in the water column, and
then generalize to buried targets.



9

A. Proud target imaging equation

The expression (C6) derived in App. C for the scat-
tered acoustic pressure field psc(r) determines the re-
ceived signal for a target in a homogeneous background
medium. In a scattering measurement, the variables
r, θ, φ in (C6) correspond to the polar coordinates of the
receiver position xR relative to the sphere center. In an
imaging modality, measurements are taken for a large
set of transmitter-receiver pairs {xT,n,xR,n}Nn=1 over a
band of frequencies ω = 2πf . The BOSS platform mea-
surement grid is described in Fig. 4. The objective is
to use these results to characterize and spatially localize
the scatterer. Note that the intrinsic target resonance
features are contained in the scattered wave amplitudes
B3,l(k), and should therefore produce sharp features as
function of frequency ω = ck in the measured signals.

The actual measured signals φn(ω) = psc(xR;xT , ω)
are assumed to be directly related to the local pressure
field. However, this relationship is often achieved only
after substantial calibration of the raw voltage signals.
The latter depend on the spatial distribution of pressure
psc(r) over the physical receiver elements. The result-
ing receiver sensitivity pattern will, in general, depend
on both frequency and the direction of arrival (e.g., via
the relative direction between the receiver element sur-
face normal n̂ and the pressure gradient, n̂ · ∇psc). This
dependence must be carefully calibrated in advance in or-
der to for the resulting data products to be quantitatively
meaningful.

Specializing to the point transmitter model (C3), the
holographic (fixed frequency) backprojection takes the
form:

I(x, ω) =

N∑
n=1

φn(ω)An(x)e−ikρn(x), (4.1)

in which

ρn(x) = |xT,n − x|+ |xR,n − x| (4.2)

is the two-way distance from transmitter to the nominal
scatterer position x, and the amplitude

An(x) = (4π)2|xT,n − x||xR,n − x| (4.3)

compensates for the two-way geometrical spreading. In
the far field limit (large Bessel function arguments) the
product

Al(k)h
(1)
l (kxR) ≈ 4πA0(−i)l+1 e

ik(xT +xR)

xTxR
(4.4)

is seen to cancel the factor (4.1) when x = 0, coinciding
with the sphere center. This should lead to a strong
peak in I(x, ω) near the origin, and, in addition, a strong
spectral variability of that peak through the amplitudes
B3,l(k).

Note that for l > 0 the angular dependence of the Leg-
endre polynomials in (C6) enters and will quantitatively

FIG. 8: Slices through the space-frequency holographic image
cube generated by (4.1) using the acoustic path length (4.5)
appropriate to a buried target. The target lies at the hori-
zontal origin, x = y = 0, and the image is backprojected to
the plane z = −3 m, coinciding with the target depth, with
sediment surface at z = −2.5 m. The fixed frequency slices
are at the first five peaks (f = 2.29, 3.0, 3.71, 4.60, 5.77 kHz)
in the lower plot in Fig. 6. The color bar again represents a
logarithmic scale.

modify the result. However, since Pl(1) ≡ 1, the modifi-
cation will only be substantial if the transmitter-receiver
separation |xT −xR| becomes a significant fraction of the
standoff distance, i.e., for close-in, wide-angle (T -matrix
style) measurements [12, 13]. To quantify this, the verti-
cal axis in Fig. 4 shows the variation in cos(θRST) across
the array for a target centered 3 m below the measure-
ment grid, where θRST is the angle between the transmit-
ted and received rays. The fact that it so close to unity
indicates that bistatic effects should be negligible.

In Fig. 7 we show slices through the image cube gen-
erated by the same model as in the left column of Fig.
3, backprojected to the true 3 m target depth. Spatial
localization of the target, lying at the horizontal origin, is
consistent with the predicted ∼20 cm resolution based on
the wavelength c/f (which then improves with increasing
frequency). The “hot spots” due to the first two resonant
features are evident. The third resonant feature is vis-
ible as well, but much less distinctive. Images for solid
targets show no such features.
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FIG. 9: Fixed frequency slices of the holographic image cube (f = 2299, 3005, 5796 Hz, left to right, corresponding to the three
strongest peaks in the measured response of 10 cm hollow shell—bottom panel of Fig. 6). The images are created using four
buried targets, placed on the corners, (x, y) = (±0.5,±0.5) m, of a centered 1 m square, all at 0.5 m depth, 3 m below the
receiver grid. The data is backprojected to this same z = −3 m image plane. Targets 1, 4 are the same 10 cm radius shells
used in Fig. 6; target 2 is a 5 cm radius solid “rock”; target 3 is a 10 cm radius solid “rock”. The targets are clearly resolved,
though some outwards “bleeding” of amplitude in the x-coordinate is observed due to the limited 2 m physical aperture (BOSS
wingspan) in this direction. In a “video” scan through frequency (not shown), the two shells “flash” at the frequencies exhibited
here, while the rocks exhibit a smoothly varying frequency response.

B. Buried target imaging equation

The generalization of (4.1) to buried targets replaces
(4.2) by the total acoustic path length

ρn = |xT,n − xI,n|+ |xR,n − x̄I,n|

+
cw
csed

(|x− xI,n|+ |x− x̄I,n|), (4.5)

which is computed based on assumed sediment parameter
values. These may be viewed then as fitting parameters,
along with the target vertical coordinate zS , that may
be tuned, e.g., for optimal image focus. The amplitude
factor (4.3) may be left unchanged for shallow targets—
the key dependence is in the phase.

The sum over transmitter–receiver pairs enhances re-
turns with matching path length over all such pairs. The
direct specular reflection occurs at a different surface
point for each such pair, and so leads to a reduced signal.

In Fig. 8 we show slices through the image cube gener-
ated by the same target model as in Fig. 6. The sediment
surface is at 2.5 m depth, and the image is backprojected
to the true 3 m target depth using (4.5). The the resonant
feature “hot spots” are again evident for the stronger
peaks. The direct reflection from the sediment surface is
not yet included in the signal. It is likely that sediment
heterogeneity (inhomogeneous, or poorly estimated, csed)
and surface roughness will lead to a more defocused im-
age with real data, but for the expected shallow buried
targets this should not be a major problem. In fact,
we find that backprojecting using the water column form
(4.2) still produces good images (mainly because the sed-
iment and water sound speeds differ by less than 15%).
This is, in fact, likely the best strategy when surveying
areas with little or no prior sediment knowledge.

FIG. 10: Spectral responses at the target positions, to-
gether with extracted resonant peak characteristics based on
a Lorentzian fit (5.1), about the neighborhood of each local
maximum f0. The quality factor Q-values for the hollow shell
are at least an order of magnitude larger than those for the
solid targets. The latter do not even correspond to true reso-
nances, which all lie outside the plotted frequency band, but
to broad maxima in the variation of the scattering response.

V. RESONANCE-BASED FEATURE
EXTRACTION AND DETECTION METRICS

We end the main part of this report with a simulation
study that combines the essential physics of the previ-
ous analysis with an illustration of a basic target feature
extraction and discrimination algorithm that is based on
reasonable assumptions about the rough statistical char-
acter of the classes of targets and clutter that might be
encountered.
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FIG. 11: Left: Plot of peak characteristics, labeled in Fig. 10, in the A0-Q feature space. The essential hollow target
discriminator is seen to be the much larger Q-values (circled points) compared to those of solid targets. We expect this to remain
robust, even if reduced somewhat by real world effects (e.g., sensor dynamic range, actual UXO target geometries, intrinsic
dissipation). Center: Statistical spread of target Q-values modeled, for illustration purposes, as a Rayleigh distribution with
the given mean b. The true distribution will be strongly site dependent, and characterized through future data collects. Right:
ROC curves (detection vs. false alarm probability as a function of threshold) derived from this statistical model using bcltr = 1
and bUXO = 5, 10, 20. Annotations show the threshold value Qthr at various points along the curves.

The previous analysis presented closed form solutions
for scattering from sediment emplaced objects, such as
elastic shells and naturally occurring clutter. In particu-
lar, rocks of various sizes form the most challenging clut-
ter case (and the primary motivation for this work) in
that (1) their spatially localized returns (of similar size
to a UXO) are routinely confused with underwater UXO,
and (2) the relatively homogenous sediment does not pro-
vide nearly the same return intensity per unit volume. In
Fig. 9 we show 2D spatial slices of the holographic im-
age, at a sequence of frequencies corresponding to the
shell resonances, created using four buried targets—two
shells and two “rocks”.

A. Feature extraction

The first point to note as that the image resolution
is more than sufficient, at this physically reasonable 3
m vertical standoff, to individually localize the targets.
This localization is critical because it is the basis for iso-
lating individual target spectral responses. The latter,
in the form of the frequency dependence at the target
pixel, are shown in Fig. 10. The contrast between the
multi-peaked, resonant response of the hollow shell, and
the smooth solid target response, is abundantly clear in
the low frequency band of interest. We quantify these
differences by performing a Lorentzian fit

|S(f)| ≈ A0

Q2(f/f0 − 1)2 + 1
(5.1)

in the neighborhood of each local maximum f0. The re-
sults are annotated on the plot. The hollow shell quality
factor values (inverse relative peak widths Q) are seen
to be at least an order of magnitude larger for the shell.
This physical characteristic has been noted in previous

work [2, 3], and forms the basis for our discrimination
algorithm.

Figure 11 demonstrates the significant discrimination
power of this resonance based feature. In the left panel
we plot these extracted features in the (A0, Q) plane. The
key discriminator is again seen to be Q, and classifying a
target as a shell is then based simply on drawing a vertical
line at some threshold value of Q (e.g., Qthr = 2), and
declaring all targets to the left of it as clutter, and all
targets to the right as UXO-like shells.

B. ROC curve and detection metrics

Feature extraction from real survey data with many
targets will lead to much more populous clusters of
points. Based on the previously described physics, how-
ever we expect two reasonably separated clusters, one at
larger Q due to UXO shells in the size range of interest,
and one at much smaller Q due to rocks of various sizes.
The separation will not necessarily be perfect: (1) There
could be smaller, thicker UXO present with unusually
high resonant frequencies above 10 kHz, and are there-
fore either not detected at all or are mistaken for rocks,
or (2) there could be larger, or more highly compressible,
rocks with sharp resonances below 10 kHz that are then
mistaken for UXO.

This uncertainty, leading to missed detections and
false alarms, may be quantified statistically using a ROC
curve, illustrated in center and right panels of Fig. 11.
The UXO and clutter point clusters are assumed to be
described by distributions pUXO(Q), and pcltr(Q), re-
spectively. These are, in general, site characteristic,
and depend on the distribution of rock sizes, UXO sizes
and types, etc. Thus, for example, if UXO items are
metal shells with some range of sizes, geometries, mate-
rial types, inner and outer radii, etc., lying in sediment
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characterized as well by some distribution of density and
sound speed, then the result of a measurement will be a
response curve similar in character to the hollow target
curve in Fig. 10, but with a different distribution of res-
onance peaks depending on the exact target. Similarly,
the clutter items will be represented by a distribution
of solid rock (or perhaps other man made item) sizes,
geometries, and surrounding sediment properties. The
result of the feature extraction algorithm will be a set of
points different from those in the left panel of Fig. 11,
but still strongly distinguished in Q.

The detection probability PD(Qthr) depends on the
chosen threshold, and is defined by the area under
pUXO(Q) for Q > Qthr (and the missed detections are
quantified by the complementary area under Q < Qthr).
Similarly, the false alarm probability PFA(Qthr) is defined
by the area under pcltr(Q) for Q > Qthr.

Purely for illustrative purposes, suppose that pcltr(Q),
pUXO(Q) are modeled as simple Rayleigh distributions

pR(x;σ) = (x/σ2)e−x
2/2σ2

, (5.2)

characterized by two different values of the mean b =
σ
√
π/2. The choices b = 1, 5, 10 are shown in the center

panel of Fig. 11. The Rayleigh choice is actually likely
quite conservative, as the spread in Q for bUXO = 10, 20
is much broader than actually suggested by either our
physics analysis or earlier data collects. Thus, the il-
lustrated distributions assumed likely overstate both the
probability of a UXO having a broad, rock-like response
as well as the probability that a rock will having a nar-
row UXO-like response. Using bcltr = 1 for the clutter,
the resulting ROC curve (plot of PD vs. PFA as Qthr is
varied) is shown in the right panel of Fig. 11 for the three
different UXO distribution choices, bUXO = 5, 10, 20. Us-
ing Qthr = 2 the false alarm rate is below 2%, and the
detection rate is above 85%.

Although the true distributions pUXO and pcltr for
a given UXO survey area will likely differ substan-
tially from the Rayleigh choices, the results in Fig.
11—especially the robust separation in Q between UXO
and clutter, and well informed estimates of their ex-
pected values—are nevertheless derived from the essen-
tial physics of our models.

C. Conclusions

In designing our physics-based model and holographic
image-based target detection and discrimination algo-
rithm, we have attempted to capture as accurately as
possible the key physical features of the sensor param-
eters, measurement grid geometry, water and sediment
acoustic propagation characteristics, and target elastic
response. Certain elements can be captured only qualita-
tively (e.g., realistic UXO resonant responses), but given
the correctness of the basic physics, we do not believe
that this will affect the key conclusions of the analysis.

Thus, by focusing on the 3–10 kHz sediment-penetrating
frequency range, we expect physical buried UXO-sized
shells to indeed exhibit sharp resonant features, with
Q & 10 (and this is supported by some existing data
[2, 3]), in strong contrast to typical clutter responses with
Q . 1.

Thus, with sufficiently high quality, geolocated data,
lying within the capabilities of a carefully fielded BOSS
platform, the illustrative ROC curves shown in Fig. 11
may even represent conservative estimates of the ulti-
mate UXO discrimination capability of such a system.

APPENDIX A: BASIS FUNCTIONS FOR A
SPHERICAL SHELL

1. Spherical harmonic expansion

In this appendix we construct exact solutions to (2.4)
for spherical geometries, using a basis function expan-
sion in vector spherical harmonics. These are analogous
to plane waves in horizontally stratified media. The vec-
tor harmonics Xlm(θ, φ) are constructed from the usual
scalar harmonics Ylm(θ, φ) via the relation [10]

Xlm =
1√

l(l + 1)
L̂Ylm

=
1√

l(l + 1)

[
1

2
clmYl,m+1 +

1

2
cl,−mYl,m−1,

1

2i
clmYl,m+1 −

1

2i
cl,−mYl,m−1, mYlm

]
(A1)

in which clm =
√

(l −m)(l +m+ 1), and the angular
momentum operator

L̂ = −ir×∇

= −iφ̂∂θ + iθ̂
1

sin(θ)
∂φ (A2)

depends only on θ, φ and derivatives with respect to them
[10, 11]. It follows that

r̂ ·Xlm = 0, ∇ ·Xlm = 0. (A3)

Note that X00 = 0: the vector harmonics are defined
only for l ≥ 1.

At fixed frequency ω, the longitudinal basis functions
are given, for each l,m (including l = 0), by

sL =
1

kL
∇[zl(kLr)Ylm], (A4)

in which kL = ω/cL and zl(x) is a spherical Bessel func-
tion [10, 11] satisfying the defining equation

z′′l +
2

x
z′l +

[
1− l(l + 1)

x2

]
zl = 0. (A5)

They are related to the usual cylindrical Bessel functions
by zl(x) =

√
π/2xZl+1/2(x). In what follows, the regular
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Bessel function jl(x) and outgoing wave Hankel function

h
(1)
l (x) will be substituted. The harmonic form sLe

−iωt

satisfies (A5).
The two transverse basis functions are given by

sT,1 = zl(kT r)Xlm

sT,2 =
1

kT
∇× [zl(kT r)Xlm], (A6)

for l ≥ 1, in which kT = ω/cT . From the relations

∇ · sT,α = 0

1

kT
∇× sT,2 = − 1

k2
T

∇2sT,1 = sT,1 (A7)

it follows that the harmonic forms sT,αe
−iωt satisfy (A4).

The additional identities required to manipulate these
expressions are as follows. The gradient operator may be
decomposed into radial and angular components

∇ = r̂
∂

∂r
− i

r
r̂× L̂, (A8)

and it follows that for any function f(r) of the radial
coordinate only,

∇[f(r)Ylm] = r̂(∂rf)Ylm − i
√
l(l + 1)

f

r
r̂×Xlm. (A9)

Similarly, one obtains

∇× [f(r)Xlm] = i
√
l(l + 1)r̂

f

r
Ylm +

1

r
∂r(rf)r̂×Xlm.

(A10)
Similar to the fact that the set of scalar harmonics

{Ylm} form an orthonormal basis for scalar functions on
the unit sphere, the set of locally orthogonal vector pairs
{Xlm, r̂×Xlm} form an orthonormal basis for transverse
vector fields on the unit sphere [10].

Using (A9) and (A10) one may write out the basis
functions explicitly in the form

sL = r̂z′l(xL)Ylm − i
√
l(l + 1)

zl(xL)

xL
r̂×Xlm

sT,1 = zl(xT )Xlm (A11)

sT,2 = i
√
l(l + 1)r̂

zl(xT )

xT
Ylm +

[xT zl(xT )]′

xT
r̂×Xlm,

in which we have defined xα = kαr, and the primes indi-
cate differentiation with respect to one these arguments,
as appropriate from context.

2. Traction boundary condition inputs

Using (A2), the required radial traction is given by

r̂ · τ̂ = λr̂∇ · s + µ[(r̂ · ∇)s + (∇s) · r̂] (A12)

= λr̂∇ · s + µ

[
∂rs +∇(s · r̂)− 1

r
(11− r̂r̂)s

]
.

Substituting (A11), the required inputs to the boundary
conditions are as follows. (a) Divergence term:

1

kL
∇ · sL =

1

k2
L

∇2[zl(xL)Ylm] = −zl(xL)Ylm

∇ · sT,α = 0. (A13)

The first line follows from the fact that zl(xL)Ylm is a
solution to the Helmholtz equation, (∇2 + k2

L)φ = 0. (b)
Radial derivative term:

1

kL
∂rsL = r̂z′′l (xL)Ylm

− i
√
l(l + 1)

[
zl(xL)

xL

]′
r̂×Xlm

1

kT
∂rsT,1 = z′l(xT )Xlm

1

kT
∂rsT,2 = i

√
l(l + 1)r̂

[
zl(xT )

xT

]′
Ylm

+

{
[xT zl(xT )]′

xT

}′
r̂×Xlm. (A14)

In what follows, the Bessel function second derivatives
will ultimately be expressed in terms of lower order
derivatives using the defining equation (A5). (c) Gra-
dient of radial component term:

1

kL
∇(sL · r̂) =

1

kL
∇[z′l(xL)Ylm]

= r̂z′′l (xL)Ylm

− i
√
l(l + 1)

z′l(xL)

xL
r̂×Xlm

1

kT
∇(sT,1 · r̂) = 0

1

kT
∇(sT,2 · r̂) = i

√
l(l + 1)

1

kT
∇
[
zl(xT )

xT
Ylm

]
= i

√
l(l + 1)r̂

[
zl(xT )

xT

]′
Ylm

+ l(l + 1)
zl(xT )

x2
T

r̂×Xlm. (A15)

(d) Transverse projection term (which simply suppresses
the r̂Ylm term in each basis function):

(11− r̂r̂)sL = −i
√
l(l + 1)

zl(xL)

xL
r̂×Xlm

(11− r̂r̂)sT,1 = sT,1 = zl(xT )Xlm

(11− r̂r̂)sT,2 =
[xT zl(xT )]′

xT
r̂×Xlm. (A16)

The key point to note here is that all of these terms are
superpositions of r̂Ylm,Xlm, r̂ ×Xlm, and hence remain
diagonal in the space defined by fixed values of the an-
gular momentum indices l,m: the boundary conditions
do not mix different spherical harmonic orders (although
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they do mix the three different polarizations). Assem-
bling all of the terms, one obtains

1

kL
r̂ · τ̂L = [2µz′′l (xL)− λzl(xL)] r̂Ylm

− 2iµ
√
l(l + 1)

[
zl(xL)

xL

]′
r̂×Xlm

1

kT
r̂ · τ̂T,1 = µxT

[
zl(xT )

xT

]′
Xlm (A17)

1

kT
r̂ · τ̂T,2 = 2iµ

√
l(l + 1)

[
zl(xT )

xT

]′
r̂Ylm

+ µ

[
z′′l (xT ) + (l + 2)(l − 1)

zL(xT )

x2
T

]
r̂×Xlm.

In addition to (A5), the recursion relations

z′l(x) =
1

2l + 1
[lzl−1(x)− (l + 1)zl+1(x)]

zl(x)

x
=

1

2l + 1
[zl−1(x) + zl+1(x)] (A18)

are useful for simplifying expressions for numerical im-
plementation.

APPENDIX B: SOLUTIONS TO THE ELASTIC
EQUATIONS WITH SPHERICAL GEOMETRY

The general approach to constructing solutions in a
spherical geometry, comprised of N concentric spherical
shells, is to expand s in each shell j = 1, 2, . . . , N in the
form

s(r) = AjsL[jl(x
j
L)] +BjsL[h

(1)
l (xjT )] + CjsT,1[jl(x

j
T )]

+ DjsT,1[h
(1)
l (xjT )] + EjsT,2[jl(x

j
T )]

+ FjsT,2[h
(1)
l (xjT )], aj−1 ≤ r < aj , (B1)

where the notation indicates the Bessel function form to
be substituted for zl in (A4) or (A11), and xjα = kjαr =
(ω/cjα)r, where cjα are the sound speeds in shell j with
outer radius aj . We define a0 = 0 (innermost shell is
a sphere of radius a1) and aN = ∞ (outermost shell is
an infinite background). Regularity at the origin, r = 0,
requires D1 = E1 = F1 = 0, and any fluid layer requires
Bj = Cj = Ej = Fj = 0.

We will assume that the system is driven by an incident
transmitted wave sin in the background, with a known
expansion

sin(r) =
∑
l,m

{
AlmsL[jl(x

N
L )] + ClmsT,1[jl(x

N
T )]

+ ElmsT,2[jl(x
N
T )]
}

(B2)

in the neighborhood of the target.

For example, a plane wave has the expansion [10, 11]

eik·x = 4π
∑
l,m

iljl(kr)Y
∗
lm(θ′, φ′)Ylm(θ, φ), (B3)

where θ′, φ′ define the polar angles of the wavevector k.
Using k̂eik·x = −(i/k)∇eik·x and (A4), one obtains the
expansion of a longitudinal wave. Alternatively, for a
spherical wave originating from x′ one obtains

eik|x−x
′|

4π|x− x′|
= ik

∑
l,m

jl(kr<)h
(1)
l (kr>)Y ∗lm(θ′, φ′)Ylm(θ, φ),

(B4)
where r> = max{r, r′}, r< = min{r, r′}, and the longi-
tudinal wave solution is again given by −(i/k)∇ acting
on both sides. Somewhat more complicated manipula-
tions produce vector harmonic expansions for transverse
polarized waves [10]. However, in all that follows we will
consider only a fluid background, and (B3), (B4) then
suffice.

For each l,m one then substitutes Alm, Clm, Elm for
AN , CN , EN in (B1), which then produces the mathe-
matically consistent problem of 6(N − 1) equations (one
for each of the 6 boundary conditions at each shell bound-
ary a1, a2, . . . , aN−1) in 6(N − 1) unknowns. These two
numbers are reduced appropriately if there are fluid lay-
ers, but remain equal.

1. Elastic shell in a fluid background

We consider now the specific problem of a single elastic
shell with fluid void and background. The mode expan-
sion (B1) in the fluid regions takes the explicit form

s(r) =

{
A1sL[jl(x

1
L)], r < b

sL[jl(x
3
L)] +B3sL[h

(1)
l (x3

L)], r ≥ a (B5)

where we have defined a1 = b and a2 = a and normalized
A3 = 1 as the known excitation coefficient. For b < r ≤ a
all six terms are present.

Continuity of s·r̂ at r = a, b involves only the matching
of the r̂Ylm coefficients, and yields the two equations
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0 = −A1j
′
l(b

1
L) +A2j

′
l(bL) +B2h

(1)′
l (bL) +

i
√
l(l + 1)

bT

[
E2jl(bT ) + F2h

(1)
l (bT )

]
j′l(a

3
L) = A2j

′
l(aL) +B2h

(1)′
l (aL) +

i
√
l(l + 1)

aT

[
E2jl(aT ) + F2h

(1)
l (aT )

]
−B3h

(1)′
l (a3

L). (B6)

where bjα = kjαb, a
j
α = kjαa, except that, for the remainder of this section, to avoid notational clutter we will drop the

label index ‘2’ on all elastic shell quantities: µ2 = µ, λ2 = λ, a2
L = aL, b2L = bL, etc.

Continuity of the traction yields three equations at each boundary, one each for the independent coefficients of
r̂Ylm,Xlm, r̂ ×Xlm. Since µ1 = µ3 = 0, from (A16), only longitudinal terms appear in the fluid regions, and these
produce the pair of equations

0 = A1λ1b
1
Ljl(b

1
L) +A2bL [2µj′′l (bL)− λjl(bL)] +B2bL

[
2µh

(1)′′
l (bL)− λh(1)

l (bL)
]

+ 2iµ
√
l(l + 1)bT

{
E2

[
jl(bT )

bT

]′
+ F2

[
h

(1)
l (bT )

bT

]′}
−λ3a

3
Ljl(a

3
L) = A2aL [2µj′′l (aL)− λjl(aL)] +B2aL

[
2µh

(1)′′
l (aL)− λh(1)

l (aL)
]

+ 2iµ
√
l(l + 1)aT

{
E2

[
jl(aT )

aT

]′
+ F2

[
h

(1)
l (aT )

aT

]′}
+B3λ3a

3
Lh

(1)
l (a3

L) (B7)

On the other hand, the transverse terms are completely absent in the fluid region, and the other four equations
therefore involve only the coefficients in the elastic shell. The continuity of the Xlm terms yields the pair

0 = C2

[
jl(bT )

bT

]′
+D2

[
h

(1)
l (bT )

bT

]′
, 0 = C2

[
jl(aT )

aT

]′
+D2

[
h

(1)
l (aT )

aT

]′
(B8)

while continuity of the r̂×Xlm terms yields the pair

0 = −2i
√
l(l + 1)bL

{
A2

[
jl(bL)

bL

]′
+B2

[
h

(1)
l (bL)

bL

]′}

+ E2

[
bT j
′′
l (bT ) + (l + 2)(l − 1)

jl(bT )

bT

]
+ F2

[
bTh

(1)′′
l (bT ) + (l + 2)(l − 1)

h
(1)
l (bT )

bT

]

0 = −2i
√
l(l + 1)aL

{
A2

[
jl(aL)

aL

]′
+B2

[
h

(1)
l (aL)

aL

]′}

+ E2

[
aT j

′′
l (aT ) + (l + 2)(l − 1)

jl(aT )

aT

]
+ F2

[
aTh

(1)′′
l (aT ) + (l + 2)(l − 1)

h
(1)
l (aT )

aT

]
(B9)

Recall that for l = 0 only the longitudinal terms
are present. Equations (B6) and (B7) then determine
A1, A2, B2, B3, and equation (B9) becomes vacuous.

It is apparent that C2, D2, appearing only in (B8), are
completely decoupled from the rest of the system. The
solution to (B8) is C2 = D2 = 0, except at certain eigen-

frequencies where the corresponding determinant

DT,1(ω) =

[
jl(bT )

bT

]′ [
h

(1)
l (aT )

aT

]′

−

[
h

(1)
l (bT )

bT

]′ [
jl(aT )

aT

]′
(B10)

vanishes. Thus, only the L and T2 modes are excited by
the incident wave. The T1 shear mode lives completely
inside the elastic shell, and will be present only if the
eigenmodes have been previously excited, and live on in-
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definitely in this dissipation free model. In the presence
of dissipation, these will die away, and we may simply
take C2 = D2 = 0.

The remaining six coefficients A ≡
[A1, A2, B2, E2, F2, B3]T are then determined (B6),
(B7), and (B9), which may be represented in the matrix

form

M̂(a, b)A = V, (B11)

in which the matrix entries may be read off from these
three equations (in the order written):

M̂(a, b) =


−J1(b1L) J1(bL) H1(bL) J2(bT ) H2(bT ) 0

0 J1(aL) H1(aL) J2(aT ) H2(aT ) −H1(a3
L)

−J6(b1L) J3(bL) H3(bL) J4(bT ) H4(bT ) 0
0 J3(aL) H3(aL) J4(aT ) H4(aT ) −H7(a3

L)
0 −J4(bL) −H4(bL) J5(bT ) H5(bT ) 0
0 −J4(aL) −H4(aL) J5(aT ) H5(aT ) 0

 , V =



0
J1(a3

L)
0

J7(a3
L)

0
0
0


, (B12)

where we define

J1(x) = j′l(x), J2(x) = i
√
l(l + 1)jl(x)/x, J3(x) = x[2µj′′l (x)− λjl(x)]

H1(x) = h
(1)′
l (x), H2(x) = i

√
l(l + 1)h

(1)
l (x)/x, H3(x) = x[2µh

(1)′′
l (x)− λh(1)

l (x)]

J4(x) = 2iµ
√
l(l + 1)x[jl(x)/x)]′, J5(x) = µx

[
j′′l (x) + (l + 2)(l − 1)jl(x)/x2

]
H4(x) = 2iµ

√
l(l + 1)x[h

(1)
l (x)/x)]′, H5(x) = µx

[
h

(1)′′
l (x) + (l + 2)(l − 1)h

(1)
l (x)/x2

]
J6(x) = −λ1xjl(x), J7(x) = −λ3xjl(x), H7(x) = −λ3xh

(1)
l (x) (B13)

Note that if one sets λ1 = λ3 = 0, then A1, B3 and the
driving term drop out of (B7). Equations (B7) and (B9)
then become homogeneous equations for A2, B2, E2, F2

(represented by the 4×4 block consisting of the last four
rows and central four columns of M), whose solution
must be zero unless the corresponding determinant van-
ishes. This limit corresponds to free ringing modes of
the shell. The coefficients A1, B3 are determined by (B6)
(with the driving term dropped) in terms of the (arbi-
trary) shell mode amplitudes. To obtain sensible solu-
tions, one should take both λ1, λ3 → 0 and ρ1, ρ2 → 0 in
such a way that their ratio in c1L, c

3
L remains finite. One

is then taking the limit of a very dilute background fluid
which has negligible effect on the now freely oscillating
(and non-radiating) elastic modes of the shell.

2. Special cases

We Consider now some limiting cases where analytic
results can be obtained. We will focus mainly on the free
ringing modes, defined by equations (B7) and (B9) with
λ1 = λ3 = 0.

a. Solid elastic sphere

First consider the solid elastic sphere limit, b = 0. Reg-
ularity at the origin then requires that B2 = F2 = 0, and
the boundary conditions at r = a [second of each of equa-
tions (B6), (B7) and (B9)] reduce to the matrix equation J1(aL) J2(aL) −H1(a3

L)
J3(aL) J4(aT ) −H7(a3

L)
−J4(aL) J5(aT ) 0

 A2

E2

B3

 =

 J1(a3
L)

J7(a3
L)

0

 .
(B14)

The vanishing of the corresponding determinant

Dsph(ω) = J3(aL)J5(aT ) + J4(aL)J4(aT ), (B15)

constructed from the last two rows of (B14), yields the
free mode frequencies. For l = 0, E2 is absent, and the
second row of (B14) produces the constraint J3(aL) = 0,
i.e.,

2µj′′l (aL)− λjl(aL) = 0. (B16)

For µ = 0 this reduces to the usual fluid acoustic “pres-
sure release” boundary condition j0(aL) = 0. The exact
relation j0(x) = sin(x)/x, then implies

tan(aL)

aL
=

4µ

4µ− (λ+ 2µ)a2
L

=
1

1− (cLaL/2cT )2
,

(B17)
which reduces to aL = ωa/cL = nπ, n ≥ 1, in the fluid
limit, µ = 0.
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b. Thin elastic shell

Next consider the opposite limit of free modes in a very
thin elastic shell, δ = a − b � a. For δ = 0 many ma-
trix elements of M̂(a, a) are equal (in particular, the last
two rows are identical) and the linear system of equations
becomes singular. To obtain sensible results, one must
expand the equations to linear order in δ. After some sim-

plifications obtained by subtracting the even rows from
the odd rows, one may write the resulting equations in
the form [

M̂0(a) +
δ

a
M̂1(a)

]
A = Ṽ (B18)

in which

M̂0(a) =


J1(a1

L) 0 0 0 0 −H1(a3
L)

0 J1(aL) H1(aL) J2(aT ) H2(aT ) −H1(a3
L)

J6(a1
L) 0 0 0 0 −H7(a3

L)
0 J3(aL) H3(aL) J4(aT ) H4(aT ) −H7(a3

L)
0 −aLJ ′4(aL) −aLH ′4(aL) aTJ

′
5(aT ) aTH

′
5(aT ) 0

0 −J4(aL) −H4(aL) J5(aT ) H5(aT ) 0

 , Ṽ =


J1(a3

L)
J1(a3

L)
J7(a3

L)
J7(a3

L)
0
0



M̂1(a) =


−a1

LJ
′
1(a1

L) aLJ
′
1(aL) aLH

′
1(aL) aTJ

′
2(aT ) aTH

′
2(aT ) 0

0 0 0 0 0 0
−a1

LJ
′
6(a1

L) aLJ
′
3(aL) aLH

′
3(aL) aTJ

′
4(aT ) aTH

′
4(aT ) 0

0 0 0 0 0 0
0 1

2a
2
LJ
′′
4 (aL) 1

2a
2
LH
′′
4 (aL) − 1

2a
2
TJ
′′
5 (aT ) − 1

2a
2
TH
′′
5 (aT ) 0

0 0 0 0 0 0

 (B19)

Note that the fifth row was nominally of linear order, but
since equations (B9) are homogeneous, δ/a was divided
out after the subtraction to generate a new leading order
equation. The first order term then requires a second
derivative.

The matrix M0 is invertible, and so can be used to
produce leading order results for the coefficients A0 =
M−1

0 Ṽ. The first and third rows provide closed solutions
for A1, B3,[

J1(aL) −H1(a3
L)

J6(a1
L −H7(a3

L)

] [
A1,0

B3,0

]
=

[
J1(a3

L)
J7(a3

L)

]
. (B20)

which are identical to the fluid equations in the ab-
sence of the elastic membrane. Thus, the leading or-
der scattered wave arises purely from scattering off the
fluid sphere. The membrane then moves passively in re-
sponse to the fluid motion: this is quantified by the re-
maining four rows, in which the driving vector [J1(a3

L) +
B3H1(a3

L), J7(a3
L) +B3H7(a3

L), 0, 0]T now includes the

known B3 terms (last column).
There is a subtlety if one chooses λ1 = λ3 and ρ1 =

ρ3 (hence c1L = c3L and a1
L = a3

L) [9]. The two fluids
are identical, and there is no scattering: equation (B21)
produces A1 = 1 and B3 = 0. To obtain the leading
B3 = (δ/a)B̃3 scattering, which is due to the dynamical
effect of the membrane, one must include M1, which
yields A = A0 + (δ/a)A1 with

A1 = −M̂−1
0 M̂1A0. (B21)

c. Thin shell free modes

Setting λ1 = λ3 = 0, hence J6 = J7 = H7 = 0, the free
shell dynamics is defined by the last four rows, and mid-
dle four columns, of M. Since the third row of M0 van-
ishes identically in this limit, the third row ofM1 enters
at leading order, and the free modes are then determined
by the vanishing of the “membrane determinant” of the
matrix

M̂fs(a) =

 aLJ
′
3(aL) aLH

′
3(aL) aTJ

′
4(aT ) aTH

′
4(aT )

J3(aL) H3(aL) J4(aT ) H4(aT )
−aLJ ′4(aL) −aLH ′4(aL) aTJ

′
5(aT ) aTH

′
5(aT )

−J4(aL) −H4(aL) J5(aT ) H5(aT )

 . (B22)

For l = 0, only A2, B2 enter, and only the first two
rows and columns of (B23) survive. The membrane de-

terminant reduces to

Dmem
0 (ω) = J ′3(aL)H3(aL)− J3(aL)H ′3(aL), (B23)
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whose vanishing determines the fundamental acoustic
“breathing” mode. Substituting the definitions (B13),
and using the defining equation (A5) to eliminate second
and higher derivatives, one may reduce (B23) to

Dmem
0 (ω) =

1

aL
[(2µ+ λ)2a2

L − 4µ(2µ+ 3λ)]W
[
j0, h

(1)
0

]
(B24)

in which the Wronskian W
[
jl, h

(1)
l

]
= jl(x)h

(1)′
l (x) −

j′l(x)h
(1)
l (x) = i/x2 never vanishes. The fundamental

breathing mode frequency is therefore given by

ωmem
0 =

2

a

√
µ(2µ+ 3λ)

ρ(2µ+ λ)
=

2cT
a

√
3−

(
2cT
cL

)2

. (B25)

Interestingly, this vanishes in the fluid limit µ = 0. This
is because a pure fluid membrane can expand or con-
tract, while thinning or thickening to maintain constant
volume, at no energy cost.

For large values of l (but not so large that the require-
ment that the horizontal wavelength λ = 2πa/l remain
larger than the shell thickness, λ/δ > 1), the breath-
ing mode should be well approximated by the flat plate
acoustic dispersion relation

ωa = c0k, c0 = 2cT
√

1− (cT /cL)2, (B26)

in which one substitutes k = l/a. This is confirmed by
the numerical solutions shown in Fig. 1.

For l ≥ 2, in addition to the acoustic breathing mode,
there is also a flexural/bending wave solution. It is per-
haps surprising that, as also seen in Fig. 1, the frequency
of this mode remains nonzero as δ → 0. For λ/δ > 1,
flexural waves on an infinite planar slab have a quadratic
dispersion relation

ωf = D0k
2, D0 =

c0δ

2
√

3
(B27)

which vanishes as δ → 0. This occurs because the only
restoring force is due to bending of the membrane, with-
out net stretching, whose energy vanishes with δ.

On a curved surface, however, it is not possible to fully
separate bending and stretching degrees of freedom in
this way (without tearing the membrane), and this is re-
flected in the finite mode frequency resulting from (B21).
The plane slab result must be recovered for small but fi-
nite kδ, in the limit ka � 1 where the bending energy
dominates the curvature-induced stretching energy. The
latter scales as 1/a2, and is basically independent of k.
This limit therefore obtains roughly when D0k

2 > c0/a,

but still kδ < 1, hence 1/δ > k > 121/4/
√
aδ. In terms

of l, this corresponds to the range

a/δ > l > l0 ≡ 121/4
√
a/δ. (B28)

For l < l0, one predicts that the free mode frequency
will be essentially dependent of l (at least for l not too

small, so that the mode shape is sensitive mostly to local
curvature, rather than the global geometry), while for
a/δ > l > l0 the frequency increases quadratically with k
or l. This analysis is confirmed by the numerical results
in Fig. 1.

APPENDIX C: SCATTERED FIELD

We consider now the quantitative calculation of the
scattered signal from an incident transmitted wave. Of
special interest are distinguishable features in the signal
due to intrinsic shell resonances.

We consider the specific problem of the elastic shell
in a fluid background, with incident wave (B2) therefore
specialized to the form

sin(r) =
∑
l,m

AlmsL,lm[jl(kr)], (C1)

where k = ω/c is the wavenumber in the background
fluid with sound speed c, and sL,lm is defined by (A4)
and (A11) (with indices now exhibited explicitly). If the
incident acoustic wave is modeled as a simple plane wave
in the neighborhood of the sphere, the expansion (B3)
leads to coefficients

Alm = 4πA0(−i)lY ∗lm(θT , φT ), (C2)

in which A0 is an overall amplitude (see below), and
θT = π − θ′, φT = π + φ′ correspond, for physical con-
venience, to the direction from the sphere center towards
the transmitter location (i.e., the direction −k opposite
to the wavevector). Alternatively, if one models the wave
as the result of an outgoing spherical wave generated by
an isotropic transmitter at point x′ = xT , the expansion
(B4) yields

Alm = A0ki
l+1h

(1)
l (kxT )Y ∗lm(θT , φT ), (C3)

in which θT , φT again correspond to the direction toward
the transmitter (along xT ). This form follows from the
observation that for the scattering problem, with standoff
transmitter and origin taken at the center of the sphere,
one has r< = x and r> = xT . Note that the physical
units of A0 actually differ between (C2) and (C3) (by
an inverse length factor) due to the spherical spreading
factor in the latter.

The scalar waves (B3) and (B4) represent perturba-
tions in the pressure p or density ρ, and the overall ampli-
tude A0 is determined by the thermodynamic coefficients
relating these to the displacement s: δρ/ρ = δp/ρc2 =
−∇ · s, where c2 = K/ρ, with K = λ = ρ(∂p/∂ρ)S the
(adiabatic) bulk modulus. This leads to

A0 = Aρ/ρk = Ap/ρc
2k, (C4)

in which Aρ and Ap = Aρc
2 are the physical density

or pressure perturbation amplitudes multiplying (B3) or
(B4).
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Given Alm, using linearity of (B5), the solution for the
scattered wave is given by

ssc(r) =
∑
l,m

Alm(k)B3,l(k)sL,lm[h
(1)
l (kr)], (C5)

where B3,l is the scattering coefficient (which is inde-
pendent of m) obtained from the solution of (B11)–
(B13) (with indices again now exhibited explicitly). The
receiver sensitivity is most likely calibrated directly in
terms of the pressure wave, for which one obtains

psc(r) = −ρc2∇ · ssc (C6)

= ρc2k
∑
l,m

Alm(k)B3,l(k)h
(1)
l (kr)Ylm(θ, φ)

=
ρc2k

4π

∑
l

(2l + 1)Al(k)B3,l(k)h
(1)
l (kr)Pl[cos(γ)],

in which

Al = A0ki
l+1h

(1)
l (kxT ) (C7)

is defined by Alm = AlY
∗
lm(θT , φT ). The last line follows

from the spherical harmonic addition theorem [10, 11],
where Pl(x) is the standard Legendre polynomial, and γ
is the relative angle between directions θT , φT and θ, φ,
i.e., cos(γ) = −k̂ · x̂ for (B3) and (C2), or cos(γ) = x̂ · x̂′
for (B4) and (C3).
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