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Executive Summary

This report summarizes progress for the second two quarters of SERDP project MR-2226.
We detail progress on the following tasks:

(1) Classification performance prediction in multi-object scenarios. We extend perfor-
mance prediction methods to handle the effect of multi-object scenarios on classification
performance. We first use Monte Carlo (MC) simulations to investigate the dependence
of polarizability variance on target separation and show that a linear uncertainty analysis
cannot reproduce model uncertainty in multi-object scenarios. An approximate nonlinear
uncertainty analysis is therefore developed to account for variance in the polarizabilities aris-
ing from errors in target location estimates. This analysis produces better agreement with
MC results than our previous, linear approach. The polarizability variance is then used to
compute the distribution of the decision statistic for TOI and non-TOI, thereby allowing us
to predict the ROC. The ROCs generated via our analytic method agree with MC simula-
tions and reproduce the dependence of classification performance on: sensor noise, target
depth and orientation, the spatial separation between neighboring targets, and the subset of
polarizability features used to classify targets.

(2) Performance prediction using data and model quality metrics. Once EMI sensor data
have been collected and inverted, initial predictions of classification performance can be up-
dated with site-specific information. Here we use a number of data and model quality metrics
to assess the overall difficulty of the classification task. These include: mean polarizability
misfit with respect to library items, signal to noise ratio, and a “reliability” metric that
uses the point-to-point variability of soundings or polarizabilities to determine the number
of channels that can be used for classification. We combine these metrics into a “Dataset
Degree of Difficulty” (DDD) that categorizes the classification difficulty at the site. This
approach gives the data analyst an objective measure to assess the feasibility of classifica-
tion at a site using available information. We apply this analysis to all available ESTCP
MetalMapper datasets to produce a retrospective ranking of site difficulty. Finally, we show
that automated channel selection using polarizability reliability can improve classification
performance.

(3) Hypothesis tests of the ROC curve. We develop objective statistical tests for assigning
a confidence that all ordnance have been identified at the stop dig point. These tests fit
a “binormal” parametric model to the receiver operating characteristic and then use this
model to prescribe the number of additional digs required to achieve the desired confidence.
We first derive the approximate distribution of the point on the ROC at which all true
instances are found. Using binormal model parameters estimated from a partial ROC (i.e.
generated from a subset of the test data), this distribution can be integrated up to the
desired confidence level to define a critical false alarm rate. If the selected stop dig point is
before this critical point, then additional digs out to the critical point are required to achieve
the required confidence. The second approach uses the uncertainty in estimated binormal
model parameters to define a confidence interval on the expected false alarm rate. Again,
the desired confidence is achieved by ensuring all targets are labelled (dug) out to the upper
limit of the confidence interval. These hypothesis testing techniques are demonstrated on
ROCs derived from real UXO data sets.
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1. Introduction

In this project our first goal is to develop and validate the components of a statistical

decision support system (DSS). The DSS will help site-managers and teams design surveys

and data processing strategies to achieve optimal classification performance at the lowest

attainable cost for a given site. In Beran and Billings (2012), we reported progress on the

development of computational functionality underlying the DSS. We refer the reader to that

report for basic background on UXO detection and classification.

In past work, we used the distributions of industry standard objects (ISOs) in demon-

stration data sets as a barometer of the noise at each site. The ISO polarizabilities were

used to generate a posteriori estimates of the effective noise on sensor data. In contrast

with the simple noise model typically used in Monte Carlo simulations (e.g. Gaussian, in-

dependent noise), this approach produces a dense noise covariance representing correlated

noise that is consistent with field observations. We used a linearized analysis for efficient

prediction of polarizability distributions and receiver operating characteristic (ROC) curves.

We also developed methods for integrating over specified target location and orientation

distributions. This allows us to efficiently understand how target-sensor coupling affects

polarizability uncertainty and subsequent classification performance.

In additional work presented in this report, we examine how the DSS can predict classi-

fication performance for multi-object scenarios. For most data sets multi-object inversion is

necessary for a subset of detected targets in order to recover reliable polarizability estimates,

and standard processing workflows typically now include single, two, and three object in-

versions of all detected anomalies. This necessarily introduces additional variance into the

recovered polarizabilities and can degrade classification performance. Here we examine how

polarizability variance depends on target separation and extend DSS performance prediction

methods to handle spatial density of targets.

We envision the DSS for munitions response as a tool to assess the feasibility of classifica-

tion both prior to and during data collection. As geophysical data and groundtruth become

available, initial assessments should be updated to reflect the current state of knowledge. At

the point that all detected anomalies have been inverted, an experienced data analyst can

often get a qualitative sense of the site difficulty based on visual QC of inversion results and

inspection of the size vs. decay feature space. In section 3, we codify this subjective judge-

ment and experience into a metric that quantifies the degree of classification difficulty for a

dataset. This builds on previous work on figures of merit developed to assess the feasibility

of classification with data acquired over individual anomalies (e.g. Lhomme et al. (2008)).

As suggested by the title of this project, a second major goal of this work is the development

of techniques for risk assessment. In this context, we want to assess the risk that targets

of interest are left in the ground following remediation. The current standard for munitions
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response risk assessment is Visual Sample Plan (VSP, Hathaway et al. (2009)), which uses

random sampling to determine a numerical confidence that no ordnance have been missed.

At the 2013 ESTCP demonstrators meeting, progress on a standardized Quality Assurance

Project Plan (QAPP) for munitions response was presented. It was suggested in this talk

that we might “go deeper into the ROC” in order to assess risk. In appendix A, we pursue

this idea with hypothesis tests of the stop dig point using a parametric model that is fit

to the empirical ROC. The approach complements the random sampling mandated by VSP

with excavation of targets that have a high probability of being TOI.

2. Predicting classification performance for multi-object scenarios

Initial work on the DSS considered the effects of background noise and target-sensor cou-

pling on polarizability uncertainty. An additional and important contributor to parameter

uncertainty is target density. Multiple targets within the field of view of the sensor com-

plicate the inverse problem by adding a (typically unknown) number of parameters to the

model. Multi-target solvers are now routinely used to extract target locations and polariz-

abilities from multi-static EMI data. The dipole parameter estimation problem is usually

divided into two steps:

(1) Estimation of target locations. The predicted data depend nonlinearly on the model

(1) dpred = F (m) = G(r)G†(r)dobs

with the model m = r, and the forward modelling matrix G((r).

(2) Estimation of target orientations and source polarizabilities. At fixed locations recov-

ered in the previous step, the unique elements of the magnetic polarizability tensor(s)

at each time channel can be estimated via linear inversion. A single set of principal

polarizabilities at a fixed orientation can then be recovered via joint diagonalization

of the set of polarizability tensors (Cardoso, 1996).

Our multi-object solver is implemented in UXOLab using the above approach and is de-

scribed in detail in Song et al. (2011).

We begin our investigation of the effect of target density on polarizability uncertainty and

classification performance with Monte Carlo simulations. The results of extensive MetalMap-

per simulations were presented by Pasion (2012), figures 1 to 5 summarize the basic findings.

Figure 1 shows source locations for two targets (small ISO and 37 mm projectile) at an equal

depth of 25 cm below the surface and separated horizontally by a distance ∆x ranging be-

tween 10 cm and 30 cm. For these simulations we add zero mean uncorrelated Gaussian

noise with standard deviations defined by the average of standard deviations from Camp

Butner and Pole Mountain (figure 2).
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Figure 1. Source locations MetalMapper simulations with two horizontally
separated targets. MetalMapper receivers are indicated by open squares and
are at 7 cm above the ground.
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Figure 2. MetalMapper noise standard deviations estimated from back-
ground measurements at Camp Butner and Pole Mountain. Monte Carlo sim-
ulations in this section use the average of the Camp Butner and Pole Mountain
standard deviations at each time channel.

The resulting set of estimated polarizabilities recovered via two-object inversion of syn-

thetic MetalMapper data is shown in figure 3. As the horizontal separation between targets is

decreased there is a commensurate increase in the variability of the principal polarizabilities.

Figures 4 and 5 consider the same targets, now separated vertically by a distance ∆z.

Again, decreasing the distance between targets increases polarizability variability. The mean
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Trg 1
37 mm

Trg 2
Small
ISO

3: !x = 30 cm1: !x = 10 cm 2: !x = 20 cm

Figure 3. Estimated MetalMapper polarizabilities for Monte Carlo simula-
tions of two-object scenarios with horizontal separation ∆x. Numbers inset
into each plot are the mean misfit with respect to reference polarizabilities.

polarizability misfit for targets separated vertically by 10 cm is slightly larger than for the

equivalent horizontal case.

Figure 4. Source locations MetalMapper simulations with two vertically sep-
arated targets. We hold the depth of a 37 mm projectile (red circle) fixed at 30
cm depth and vary the depth of a small ISO (yellow circle) positioned directly
above the 37 mm. MetalMapper receivers are indicated by open squares.
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Small
ISO

3: !z = 10 cm1: !z = 20 cm 2: !z = 15 cm

37 mm
Projectile

Figure 5. Estimated MetalMapper polarizabilities for Monte Carlo simula-
tions of two-object scenarios with vertical separation ∆z. Numbers inset into
each plot are the mean misfit with respect to reference polarizabilities.

These simulation results illustrate how polarizability variability is affected by target den-

sity for two limiting cases - horizontal and vertical separation. Unfortunately, Monte Carlo

simulations are quite time-consuming and so are unsuitable for an efficient decision support

system, especially when multi-object inversions are required. Here we therefore extend our

linear uncertainty analysis, initially developed in Beran and Billings (2012), to multi-object

problems.

Assuming perfect recovery of target location, the covariance of the polarizability model at

the ith time channel can be expressed as

(2) cov(mi) = (G†)T cov(dobs
i )G†

with the pseudo-inverse denoted G†. For uncorrelated errors with constant standard devia-

tion σi at each time channel, the data covariance is cov(dobs
i ) = σ2

i I and the model covariance

simplifies to

(3) cov(mi) = σ2
i (GTG)−1.

For a multi-object scenario, the uncertainty in the polarizabilities can be computed by form-

ing a horizontal block matrix Γ comprised of the forward matrices Gj. In a two object

scenario, for example, we have

(4) Γ = [G1 G2].
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Substituting Γ in equation 3, we obtain a 12×12 model covariance matrix, with the diagonal

quantifying the variances of the polarizability tensor elements. To obtain the uncertainties in

the principal polarizabilities, we must transform the model covariance with the Euler rotation

matrix Ai for each target at a specified angle. In previous work, we obtained the expected

polarizability variance over a uniform distribution of target orientations by marginalizing

the covariance analytically over target dip and azimuth. In a two-object scenario, we must

integrate over both targets’ azimuth and dip to average over all possible orientations. A more

straightforward approach to quantifying polarizability variability for multi-object scenarios

is to compute the expected variance under all possible horizontal and vertical target orien-

tations. For an axisymmetric target there are three scenarios, corresponding to alignment

of the principal (L1) axis along x, y, or z geographic axes. This analysis therefore involves

permuting selected elements of the model covariance.

Figures 6 and 7 consider linear polarizability uncertainties for two-object scenarios with

horizontal and vertical target separations, respectively. For each target we display the 99%

confidence intervals on the polarizabilities for the three orientation scenarios. In this case a

normal confidence interval is not appropriate, since for a large standard deviation the lower

bound of a normal confidence interval may become negative. We can enforce a positivity

requirement by assuming the polarizabilities are lognormally distributed with standard de-

viation defined by equation 3. The critical points in each tail of the lognormal distribution,

corresponding to probabilities (1− α)/2 (for confidence level α/100), then define the upper

and lower bounds of the confidence interval.

The confidence intervals computed via linear uncertainty analysis show roughly the same

dependence on target separation as is observed in the Monte Carlo simulations, i.e. reduced

separation increases polarizability variance. Figures 8 and 9 compare Monte Carlo and

linear polarizability standard deviations as a function of target separation. As dictated by

equation 3, the model standard deviation from a linear analysis with uncorrelated noise is

simply a constant multiple of the assumed noise standard deviation (as shown in figure 2).

In contrast, the model standard deviations obtained from Monte Carlo simulations have

the character of the underlying principal polarizabilities, with a dominant, slow-decaying

standard deviation for the primary polarizability, and smaller amplitude standard deviations

for the transverse polarizabilities. We hypothesize that this result is the consequence of errors

in target location estimation, which in turn translate into correlated shifts in the estimated

polarizabilities. Figure 10 shows the errors in estimated target locations for Monte Carlo

simulations. As the targets are brought closer together, the variance in all estimated target

coordinates increases, with largest increase in variance in the coordinate with minimum

separation (x or z in these scenarios).
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Figure 6. Linear uncertainty analysis of two-object scenarios with horizonal
separation ∆x. Dashed lines indicate 99% lognormal confidence intervals for
estimated target polarizabilities and with average noise model depicted in fig-
ure 2. We consider each target in all possible horizontal and vertical orienta-
tions.
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from Monte Carlo simulations (black) and linear uncertainty analysis (dashed
blue), for two object scenarios with horizontal separation ∆x.
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two object scenarios with vertical separation ∆z.
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Figure 10. Estimated locations for two object Monte Carlo simulations

To account for the effects of errors in recovered target locations on polarizability estimates,

we can express the recovered polarizability tensor m̂ at estimated location r̂ as

(5) m̂ = G†(r̂)dobs = G†(r̂)G(rtrue)mtrue + ε

with ε additive noise. The covariance of the estimated model is then

(6) cov(m̂) = E(m̂m̂T ) = G†(r̂)G(rtrue)cov(ε)G(rtrue)T (G†(r̂))T

The expected polarizability covariance can then be obtained by marginalizing over r̂.

(7) E(cov(m̂)) =

∫
cov(m̂)p(r̂)dr̂.

The Laplace approximation gives us the required distribution (Tierney and Kadane, 1986)

(8) p(r̂) ∼ N (r, var(r̂)).

The variance of the estimated position r̂ is approximated as

(9) var(r̂) ≈ Hcov(x̂, ŷ, ẑ)HT ≈ H(JTJ)−1HT ,

with the ith row of the sensitivity matrix

(10) Ji =

[
∂dpredi

∂x̂
,
∂dpredi

∂ŷ
,
∂dpredi

∂ẑ

]
r̂=r
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and H is the sensitivity matrix for the relation r̂ =
√
x̂2 + ŷ + ẑ2. The above expressions

provide a formal way for accounting for the effect of recovered location on estimated polariz-

abilities. However, inspection of equation 6 shows that, for uncorrelated noise, the resulting

model standard deviation will again be a constant multiple of the noise standard deviation.

Hence this extended linear analysis cannot reproduce the polarizability variances observed

for Monte Carlo simulations in figures 8 and 9.

Alternatively, we can assume the following simple relationship between true and estimated

principal polarizabilities

(11) L̂ = Ltrue

(
r̂

rtrue

)6

,

so that a displacement of the estimated target location farther away from the sensor (r̂ >

rtrue) produces a commensurate increase in the estimated polarizabilities. The exponential

dependence is selected to account for the approximate 1/r6 decay of the secondary field. The

variance of the estimated polarizabilities is then

(12) var(L̂) = E(L̂2)− E(L̂)2 =
L̂2

(rtrue)6

(
E(r̂12)− E(r̂6)2

)
.

Again using the Laplace approximation for r̂, the required moments of the normal distribu-

tion can be computed using the moment generating function

(13) E(r̂n) =
∂n exp(µt+ σ2t2/2)

∂tn
t=0

with µ and σ the mean and standard deviation of r̂, respectively. Note that the effects of

target separation in multi-object scenarios are accounted for in this analysis by appending

sensitivity matrices Jk with respect to all target locations together, i.e.

(14) J = [J1 J2]

for a two object scenario. The sensitivities in turn depend upon target orientation; in our

implementation we average the variances over all horizontal and vertical permutations of

target orientation.

This approximate uncertainty nonlinear analysis accounts for correlated shifts in estimated

principal polarizabilities arising from errors in location estimates. We must still, however,

account for the jitter in estimated polarizabilities that arises in the presence of additive noise.

This is straightforward: we add the variances from the linear analysis and the approximate

nonlinear analysis to obtain the total polarizability variance. The approach is then a gen-

eralization of our previous method, i.e. when there is negligible error in location estimation

we revert to a linear uncertainty analysis.

Figures 11 and 12 show the resulting predictions for principal polarizability standard

deviations for the two-object scenarios considered in this section. With the exception of
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the vertical separation case ∆z = 0.1, there is a reasonable correspondence between the

predicted and Monte Carlo results. The agreement is certainly better than is obtained with

a linear analysis assuming perfect recovery of target location (figures 8 and 9)

We hypothesize that the discrepancy between simulations and our approximate nonlinear

appraisal in the ∆z = 0.1 case stem from the approximation of the inverse Hessian of the

likelihood function as (JTJ)−1 in equation 9. The full Hessian K can be expressed as

(15) K = JTJ + Q

with Q containing mixed partial derivatives of the likelihood. By neglecting Q we therefore

ignore correlations between estimated locations, which likely become more significant when

the separations between multiple targets are reduced. In ongoing work, we will investigate

whether numerical computation of the full Hessian can improve predictions of polarizability

uncertainty for multi-object scenarios.

The predicted polarizability variances generated by the approximate nonlinear uncertainty

analysis can be used compute the distribution of the decision statistic for TOI and non-TOI

classes. As before, we assume that the polarizabilities are lognormally distributed and that

the decision statistic is the misfit of the log-transformed polarizabilities with respect to a

reference polarizability (see Beran and Billings (2012)).

To validate this approach to performance prediction, in figure 13 we compare the ROCs

obtained via Monte Carlo simulations with those generated with analytic computations. In

these examples the TOI is a 37 mm projectile. The non-TOI item has the polarizabilities

of a 37 mm projectile scaled down by a factor α = 0.9. Each ROC is generated from 50

realizations of a two object scenario, with a specified depth (0.3 m or 0.4 m) and horizontal

separation (0.1 m or 0.2 m) in each of the four scenarios. Both targets are at the same depth

in each scenario, but orientation is randomized. Uncorrelated noise using the Butner/Pole

average noise model (figure 2) is added to each realization.
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Figure 11. Comparison of standard deviations of principal polarizabilities
from Monte Carlo simulations (black) and approximate nonlinear uncertainty
analysis (dashed red), for two object scenarios with horizontal separation ∆x.
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The correspondance between ROCs obtained by the two methods is quite good, indicating

that the analytic methods developed here can reproduce the dependence of the ROCs on

target depth and separation for these simple scenarios. We note that inclusion of secondary

and tertiary polarizabilities in the calculation of the decision statistic is detrimental to classi-

fication in this example. This is because the TOI and non-TOI differ by only a small scaling

factor and the relative uncertainty in the transverse polarizabilities is much larger than for

the primary polarizability. While this dependence on classification features is reproduced

with our analytic method, the predicted ROCs for classification using all polarizabilities are

somewhat optimistic relative to the Monte Carlo results. Nonetheless, the predicted ROCs

are reasonably representative of the actual (Monte Carlo) performance in these scenarios.

The analytic calculations for these examples were performed in less than 1 s, whereas two

object inversions of the 200 Monte Carlo data realizations took 45 minutes on the same

machine.
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The scenarios considered in figure 13 are for multi-object scenarios with fixed target sepa-

ration. At any site, the distance between a target and its nearest neighbor will be a random

variable that can be characterized by a probability distribution. As with target depth and

orientation, we can marginalize over the distribution of target separation to obtain the ex-

pected ROC. In previous work (Beran and Billings, 2012), we expressed the marginalization

over a spatial distribution of targets as

(16) cov(m) =

∫

r

cov(m)(r)p(r)dr.

For specified horizontal and vertical spatial distributions of targets with respect to the sensor,

we approximate the above integral at a discrete set of points, with each point weighted by

(17) P (rj) =
p(rj, )∑M
k=1 p(rk)

.

To account for the effect of multi-object scenarios on classification, we must also marginalize

over the scalar distance ∆rn between a target and its closest neighbor so that

(18) cov(m) =

∫

r

∫

∆rn

cov(m)(∆rn, r)p(∆rn)p(r)d∆rndr.

The above integral is approximated as a double sum, similar to equation 17. This incurs a

computational cost that grows as O(n2), since for all n source locations we must evaluate

the effect of neighboring targets averaged over all possible separations ∆rn. As depicted in
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Figure 14. Integration points for two-object scenarios: at each source loca-
tion (red square), we marginalize over a subset of locations for a second target
(blue circles) lying parallel to the geographic axes and intersecting the target
location.

figure 14, we reduce the grid by restricting the multi-object integral to the most difficult

cases at a subset of points where both targets have the same depth or horizontal location.
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A second source of computational overhead is evaluation of the sensitivity matrices (equa-

tion 10) via finite differences, which quadruples the number of forward modellings. In previ-

ous work, we implemented an efficient code for simultaneously forming the forward modeling

matrices for multiple source locations (Beran et al., 2013). This code avoids repeated com-

putations and thereby reduces the time for evaluation of finite differences by approximately

an order of magnitude. Alternatively, we can again exploit the approximate 1/r6 decay to

predict how the matrix G changes with target location. We wish to compute the finite

difference

(19)
∂di
∂rj
≈ di(rj + ε)− di(rj)

ε
,

with rj denoting the jth coordinate of the position vector. If we set the data

di(r) = Ar−6

di(r + ε) = A(r + ε)−6
(20)

with A a constant accounting for sensor geometry and polarizabilities, then we can express

the perturbed data as

(21) di(r + ε) = di(r)
(r + ε)

r

6

and substitute into equation 19. This obviates the need for additonal full forward modellings

in the computation of the finite difference and provides an approximate 3 times speedup in

the derivative calculation. The resulting approximation to the positional uncertainty is

biased to somewhat larger values than is obtained with the full model (figure 15), but may

nonetheless be useful when an efficient DSS is needed.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

Forward model

D
ip

ol
e 

ap
pr

ox
im

at
io

n

 

 

σ
x

σ
y

σ
z

Figure 15. Comparison of target location uncertainties computed using for-
ward modelings in the finite difference calculation, and using a dipolar approx-
imation to the forward model.
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Figure 16 illustrates performance prediction analysis for classification with the MetalMap-

per under various scenarios. Here we again define the non-TOI as an item with polarizabilities

of the selected TOI (37 mm projectile) scaled down by 10%. This tests our ability to discim-

inate difficult clutter items with the same decay rate as TOI. Both target density and depth

play an important role in classification performance. In contrast with the results presented

for the same targets in figure 13, classification with the primary polarizability gives essen-

tially perfect performance in all cases considered in figure 16. In the former case we consider

classification of targets in close proximity, whereas in these examples we average over all

separations. This averaging is dominated by easier cases with larger target separation, and

so classification performance is significantly improved in figure 16 relative to our previous

examples.
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Figure 16. Effect of target density and maximum depth (zmax) on classifica-
tion performance. Top row is for a uniform distribution of target separations,
bottom row is for a lower target density characterized by a normal distribution
on ∆rn with mean 0.2 m and standard deviation 0.05 m. Markers indicate the
point at which 99% of TOI are identified on each respective ROC.
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The predicted ROC using all polarizabilities is generally degraded with increased target

depth. However, in one case in figure 16 (top right plot showing classification with a uni-

form separation of targets), the ROC is actually improved when we increase the maximum

target depth from 30 cm to 40 cm. This counterintuitive result arises because the relative

uncertainties in the polarizabilities for the smaller, non-TOI item grow at a faster rate than

for the TOI. This is because the non-TOI polarizabilities become poorly constrained in dif-

ficult cases (i.e. deep, close proximity multi-object scenarios). The non-TOI therefore have

a higher expected misfit with respect to the reference polarizabilities, and hence the classi-

fication performance is somewhat improved. If we reduce mean target density by assuming

a normally-distributed target separation (bottom row of figure 16), then the predicted clas-

sification performance degrades monotonically with increased target depth.

These results highlights the requirement to tie predicted performance with expected cost.

As maximum clearance depth is increased, the number of detected targets will grow expo-

nentially and the total number of false positives will necessarily increase. Hence while the

predicted false positive rate may decrease with increased depth, the total number of exca-

vations may significantly increase, thereby driving up total cost. In ongoing work we will

study how to couple ROC predictions with expected cost.

While these examples are particular to the targets, sensor and distributions considered

in this example, the analytic performance prediction method is quite efficient and so can

be readily used to investigate classification performance under a variety of user-specified

conditions.
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3. Classification performance prediction using data and model quality

metrics

Our approach to predicting classification performance uses physical modeling, a noise

model inferred from past measurements, and marginalization over uncertain parameters

(target location, orientation and density) to predict the receiver operating characteristic

under assumed conditions. This allows a user of our proposed DSS to demonstrate the

feasibility of advanced classification for a particular munitions response problem prior to a

field deployment. Once dynamic and, optionally, cued interrogation data sets have been

collected at a munitions response site, considerable information can be incorporated into the

DSS to further constrain performance predictions. In this section, we show how measures of

data and polarizability quality can be correlated with past classification performance. These

measures can therefore be used to bound the ROC given field data, but with little or no

ground truth.

3.1. Measures of data and polarizability quality. Walker et al. (2007) proposed a Fig-

ure of Merit (FOM) for assessing the quality of mono-static data for classification. This

metric combines SNR and line spacing of dynamic mono-static data to generate a single

number that is inversely correlated with polarizability misfit (i.e. a high FOM indicates the

data can likely support classification). Lhomme et al. (2008) extended the FOM approach

with a number of data and model quality measures incorporating information such as anom-

aly coverage, instrument noise, and model variance. Rather than combining these into a

single metric, simulations were used to define bounds on a set of quality parameters. Data

or models that fell outside of prescribed bounds were then flagged as “can’t analyze” anom-

alies, i.e. the data did not support reliable classification of the detected target. Application

of this approach to mono-static EM data identified outlying TOI that would otherwise be

missed with a classification approach based purely on model features.

In subsequent work we have developed a number of quality metrics that are applicable

to multi-static data. In all cases these metrics can be computed for an individual cued

interrogation (data cell), or, in the case of model quality metrics, for each model in a cell.

Whereas previously our goal was to use the FOM and related metrics to identify individual

cells with poor data and/or model quality, here we wish to arrive at an overall measure of the

difficulty of classification at a site. We therefore take the best value of each metric in each

cell, and then average the best values over all cells. The data and model quality metrics used

in this study are described in table 1. Table 2 shows these metrics applied to MetalMapper

data sets dating back to 2010. This table is best viewed in a digital format.
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Metric Data/Model
Optimal
value

Description

Zelt Measure of Shoddi-
ness (ZMOS)

Both Low An ad hoc measure of data/model inferior-
ity. ZMOS combines several different measures:
(1) data misfit (residual divided by observed);
(2) correlation between observed and predicted
data; (3) jitter (point-to-point difference) in the
observed data; (4) fraction of data above the
standard deviation; and (5) size of the differ-
ence between secondary and tertiary polariz-
abilities (L2 and L3).

Model Signal-to-Noise
Ratio (MSNR)

Both High Metric involving the ratio of predicted data and
residual (observed - predicted) data.

Polarizability uncer-
tainty

Model Low Percent uncertainty in the estimated principal
polarizabilities computed via linear uncertainty
analysis, averaged over all time channels.

Polarizability reliability Model High Reliability is defined by the earliest time chan-
nel at which the deviations (∆Li = |Li−1 +
Li+1|/2 − Li) measured at two consecutive
channels exceed a tolerance value tol. Reliabil-
ity values lie between 2 and nch-2, where nch
is the number of time channels.

Polarizability jitter Model Low Sum of the point to point difference in
(log-transformed) estimated polarizabilities:∑N−1

i=1

∑3
j=1 log(|Lj(ti+1)|)− log(|Lj(ti)|)

Data misfit Both Low Mean absolute deviation between log-
transformed observed and predicted data

(
∑

i | log10(|dobsi |)− log10(|dpredi |)|)
Data reliability Data High As with polarizability reliability, data reliabil-

ity is computed as the earliest time channel at
which the deviation (∆di = |di−1+di+1|/2−di)
exceeds a tolerance on two consecutive chan-
nels.

Data noise Data Low A measure of noise combining average point
to point variation of data with the propor-
tion of data in each sounding that are non-
monotonically decreasing.

Data badness Data Low Measure combining data misfit with the mean
rate of decay of data soundings. Penalizes noisy
soundings which have unphysical decays (e.g.
increasing in time).

L123 misfit Model Low Polarizability misfit calculated using all three
polarizabilities. For each estimated model we
use the minimum misfit over all TOI in the ref-
erence library.

Table 1. Description of model and data quality metrics. Data/Model col-
umn indicates whether metric is computed using data or model (or both).
Optimal value column indicates whether the metric is optimized with a low
or high value.
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� � � � � � � � � � �

Year Site

Number 

of cells

ZMOS 

best

MSNR 

best

Pol unc 

best

Pol rel 

best

Pol jitter 

best

Data 

misfit best

Data 

reliab.

Data 

noise

Data 

badness

L123 

misfit 

best

Dataset 

degree of 

difficulty

Number 

targets TOI L1 last dig L123 last dig

Smallest 

Ord. Type

Largest Ord. 

Type

2011 Pole Mtn 2370 0.66 144.44 1.49 36.81 18.03 0.16 30.31 0.63 0.36 1.80 0.50 2368 160 313 103 37mm Stokes

2012 Spencer U Dyn 339 0.67 143.73 1.54 36.35 18.30 0.12 28.45 0.62 0.35 1.43 0.73 339 23 56 32 37mm 155mm

2012 Spencer N 1286 0.55 150.20 1.54 37.55 13.46 0.13 29.95 0.53 0.41 1.06 0.97 1068 86 295 236 37mm 155mm

2013 Ellis 1233 0.37 169.45 1.47 37.01 15.00 0.12 31.24 0.50 0.52 0.96 1.03 1195 H. Grenade 2.36" Rocket

2012 Spencer U 1104 0.53 137.84 1.51 37.50 13.64 0.13 30.45 0.50 0.65 1.08 1.18 1069 86 248 226 37mm 155mm2012 Spencer U 1104 0.53 137.84 1.51 37.50 13.64 0.13 30.45 0.50 0.65 1.08 1.18 1069 86 248 226 37mm 155mm

2012 MMR 1 892 0.53 159.06 1.37 39.47 11.57 0.12 35.20 0.18 0.20 0.52 1.25 825 116 117 193 60mm 155mm

2012 MMR 2 1410 0.62 149.17 1.41 39.46 11.91 0.13 34.34 0.21 0.21 0.53 1.60 1390 60mm 155mm

2011 Beale P 1547 1.15 82.78 1.62 34.19 22.26 0.21 25.77 0.80 0.70 1.29 3.80 1438 131 265 729 37mm 105mm

2011 Beale C 1507 1.37 57.90 1.58 33.79 22.65 0.25 25.73 0.75 0.82 1.58 3.93 1436 131 95 711 37mm 105mm

2010 Butner 2672 1.00 77.24 1.61 32.44 19.79 0.25 25.48 0.95 1.22 1.17 6.92 2302 171 412 538 37mm 105mm

2013 Bellows best 7044 1.51 80.19 1.57 26.37 33.48 0.24 19.89 2.28 0.75 1.62 8.43 Mk-23 Cooper

2012 Vieques 1124 1.33 87.61 1.65 32.15 21.74 0.24 23.01 1.62 1.17 1.01 14.14 931 88 516 567 20mm 155mm

2013 Bellows worst 2451 2.46 8.91 1.77 12.68 55.82 0.39 9.47 8.03 1.94 1.25 568.91 Mk-23 Cooper

Table 2. Analysis of MetalMapper data sets with data and model quality metrics. Column colors group metrics by model-based (green), data-based (blue) or both data and model-based
(purple). See table 1 for further description of each metric. Triangle symbols above columns N,H indicate that high/low values for a metric are optimal, respectively. Initials after particular
sites (e.g. Beale P), denote the following industry performers who collected each data set: CH2M Hill (C), Naeva (N), Parsons (P), URS (U). Data from Bellows Air Force Station, HI were
collected for USACE, all other datasets are from the ESTCP live sites demonstration program. Bellows best/worst denotes processing with analyst-identified geologic false alarms removed
(best) or included (worst). Blank cells or blue font (e.g. Number of targets at MMR 2) indicate full ground truth is not yet available.
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We remark that for the polarizability misfit (denoted L123 misfit in table 2), a high

mean value at a site is considered optimal. At most sites the non-TOI far outnumber the

targets of interest, and the classification task is easiest when the non-TOI polarizabilities

are very different from the library polarizabilities. Hence, a high mean polarizability misfit

is diagnostic of an easier classification problem.

Various statistical analyses (e.g. logistic regression) can be applied to the above metrics to

determine a subset that is most predictive of classification performance. Our approach has

instead been to define an ad hoc combination of metrics, which we term the “Dataset Degree

of Difficulty” (DDD). The DDD encodes our experience working with EMI data sets and

thereby allows a novice data analyst to understand the relative difficulty of the classification

task at their site. Lower values of DDD suggest easier classification, and in table 3 we divide

the DDD scale into descriptive categories

DDD range Site description
DDD < 1 Easy site.
1 < DDD < 2 Minimally challenging site.
2 < DDD < 5 Somewhat tricky site.
5 < DDD < 10 Difficult site.
10 < DDD < 20 Very difficult site.
DDD > 20 Impossible site.

Table 3. Dataset Degree of Difficulty categories

We have implemented the DDD analysis in our UXOLab classification software. Figure 17

shows an example output for the 2013 ESTCP Fort Rucker MetalMapper data. Based on

the DDD analysis, we expect classification performance at this site that is intermediate to

MMR and Camp Beale.



2
2

Site Year Cells ZMOS MSNR Pol
unc

Pol
rel

 Pol  
jitter

 Data 
misfit

Data
 rel

Data 
noise

  Data 
badness

 L123 
misfit

   DDD    
(Kingdons)

Pole Mtn 2011 2370 0.66 144.44 1.49 36.81 18.03 0.16 30.31 0.63 0.36 1.80 0.50

Spencer U Dyn 2012 339 0.67 143.73 1.54 36.35 18.30 0.12 28.45 0.62 0.35 1.43 0.73

Spencer N 2012 1286 0.55 150.20 1.54 37.55 13.46 0.13 29.95 0.53 0.41 1.06 0.97

Ellis 2013 1233 0.37 169.45 1.47 37.01 15.00 0.12 31.24 0.50 0.52 0.96 1.03

Spencer U 2012 1104 0.53 137.84 1.51 37.50 13.64 0.13 30.45 0.50 0.65 1.08 1.18

MMR 1 2012 892 0.53 159.06 1.37 39.47 11.57 0.12 35.20 0.18 0.20 0.52 1.25

MMR 2 2012 1410 0.62 149.17 1.41 39.46 11.91 0.13 34.34 0.21 0.21 0.53 1.60

Current site −−−− 413 0.54 165.27 1.51 37.04 9.84 0.11 30.71 0.48 0.23 0.53 2.04

Beale P 2011 1547 1.15 82.78 1.62 34.19 22.26 0.20 25.77 0.80 0.70 1.29 3.80

Beale C 2011 1507 1.37 57.90 1.58 33.79 22.65 0.25 25.73 0.75 0.82 1.58 3.93

Butner 2010 2672 1.00 77.24 1.61 32.44 19.79 0.25 25.48 0.95 1.22 1.17 6.92

Bellows best 2013 7044 1.50 80.19 1.56 26.37 33.48 0.24 19.89 2.28 0.75 1.62 8.44

Vieques 2012 1124 1.33 87.61 1.65 32.15 21.74 0.24 23.01 1.62 1.17 1.01 14.14

Bellows worst 2013 2451 2.46 8.91 1.77 12.68 55.82 0.39 9.47 8.03 1.94 1.25 568.91

Figure 17. DDD analysis applied to 2013 Ft. Rucker data (denoted “Current Site”’) in UXOLab.
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3.2. Data and polarizability reliability analysis. In the absence of an assumed func-

tional form for the polarizability decays (e.g. the “Pasion-Oldenburg” model (Pasion and

Oldenburg, 2001)) or an explicit regularization for smoothness as in Beran et al. (2013), the

recovered polarizabilities are affected by noise at late times and become non-monotonic. By

tracking the deviation of neighboring time channels, the polarizability reliability identifies

the earliest channel at which the noise exceeds a predefined threshold (see table 1). Figure 18

further illustrates the calculation of polarizability reliability. Averaging the polarizability re-

liability over all targets produces a metric that correlates with the mean SNR at the site.
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Figure 18. Calculation of polarizability reliability. Left: Primary polariz-
ability estimated for a target in the Beale Parsons MetalMapper dataset (blue
markers). Reliability analysis excludes channels after the vertical dashed line.
Right: polarizability reliability values for L1 decay in left plot. Cutoff indi-
cated by vertical line corresponds to the first channel at which the reliability
metric exceeds tol > 0.1.

In addition to providing a metric for overall site characterization, we have found that

polarizability reliability is a useful metric for selecting the number of time channels to use

in classification. When analysing ESTCP demonstration data sets, our experience has been

that better classification performance can sometimes be achieved by eliminating late time

channels from the computation of the polarizability misfit with respect to reference items.

Our software allows the user to specify the range of channels to use for each of the three

polarizabilities in the classification stage, and we often use a reduced range for secondary

and tertiary polarizabilities. At present, however, the choice of channel range is made by an

analyst manually tuning a diglist to achieve optimal expected performance.

We have retrospectively analysed a number of ESTCP MetalMapper data sets using po-

larizability reliability to automatically define the range of time channels in the polarizability

misfit. Figure 19 shows a comparison for the Beale Parsons MetalMapper data. With the
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Figure 19. ROC curves for Beale Parsons data illustrating channel selection
with polarizability reliability. Left: ROC generated with polarizability mis-
fit computed using all channels. Right: ROC generated with polarizability
misfit computed using 35,30, and 24 channels for L1,L2, and L3, respectively.
Channel ranges are determined using the mean polarizability reliability at the
site.

Figure 20. ROC curves for Spencer URS data illustrating channel selection
with polarizability reliability. Left: ROC generated with polarizability mis-
fit computed using all channels. Right: ROC generated with polarizability
misfit computed using 38,34, and 27 channels for L1,L2, and L3, respectively.
Channel ranges are determined using the mean polarizability reliability at the
site.

exception of two outlying TOI that cannot be found with automated criteria, all TOI are

identified earlier using a reduced channel range determined with polarizability reliability. A

similar improvement in classification performance is obtained in figure 20 for the Spencer

URS MetalMapper data set.
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As described in table 1, reliability analysis can also be applied directly to the observed

data. Figure 21 shows the reliability for each measured decay from a MetalMapper sounding

at Camp Beale. In general, the selected reliability threshold corresponds with the point on

the decay curve where the noise dominates the signal. We also remark that in this case the

received vertical components tend to have higher reliability than horizontal components.

Figure 21. Data reliabilities for observed MetalMapper decays over a Camp
Beale target. Cutoff indicated by vertical line corresponds to the first channel
at which the reliability metric exceeds tol > 0.2. Number in the lower left of
each plot is the data reliability, received decays with data reliability less than
20 are highlighted in a red box. The highest reliability value for this cued
interrogation is highlighted in yellow.
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Extending the polarizability and data reliability analysis to all MetalMapper data sets

in table 4, we find that the Z component data received with the MetalMapper consistently

have the highest data reliability for all data sets. As expected, the polarizability reliability is

always largest for L1, followed by transverse polarizabilities L2 and L3. In these examples,

polarizability reliability is always higher than data reliability. This is because the dipole

model cannot fit the data to an arbitrary degree, so that there is some regularization of the

recovered model implicit in the inversion process.

Table 4. Polarizability reliability (pr) and data reliability (dr) analysis of
MetalMapper data sets. Tolerances for each metric are indicated in the rele-
vant “tol” column

In recent work presented in Beran et al. (2013), we developed a “Temporal Orthogonal

Projection Inversion” (TOPI) algorithm that projects the time decay data onto temporal

eigenvalues. This automates the selection of time channels for the initial step of target

location estimation. Reliability analysis of the polarizabilities now provides an automated

approach to channel selection in the classification stage, with retrospective tests indicating

that the method can improve classification performance relative to using all channels.
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4. Conclusions and further work

In this report we have extended our statistical performance prediction analysis to handle

the effects of target density on polarizability uncertainty. Monte Carlo simulations indicate

that polarizability variance cannot be fully described with a linear uncertainty appraisal that

assumes perfect recovery of target location. We therefore developed an approximate, nonlin-

ear appraisal technique that translates errors in estimated target location to correlated shifts

in the recovered polarizabilities. With the exception of difficult multi-object scenarios with

small target separation (< 10 cm), the method produces good agreement with MC simula-

tion results. Analytic prediction of the ROC also reproduces the dependence of classification

performance on site-specific parameters (noise, target depth and separation, etc.) Further

investigation is required to determine whether inclusion of mixed second derivatives in the

model covariance calculation can improve variance prediction in these difficult cases. In

addition, coupling of performance predictions with expected cost must still be incorporated

into the DSS functionality.

We have also examined using metrics of data and model quality to predict the dataset

degree of difficulty (DDD). The heuristic DDD measure categorizes the classification prob-

lem from easy to hard - providing the analyst with guidance on the feasibility of advanced

classification with the available data and features. DDD analysis has been applied to almost

all ESTCP MetalMapper datasets, and the utility of the approach is being assessed with

current datasets (e.g. Ft. Rucker and Camp Ellis). A more formal statistical categoriza-

tion of classification difficulty using logistic regression should be compared with the current

approach. We will also work on correlating the discrete DDD categories with the expected

range of the false alarm rate.

Finaly, in appendix A we have developed hypothesis tests of the false alarm rate. These

tests output an objective confidence that all true positives (UXO) have been identified on

the receiver operating characteristic. These techniques are not designed to make the initial

specification of the stop dig point on the ROC. Rather, they will prescribe additional digs

past a specified dig point in order to achieve a desired confidence. Given the variability of

data quality and classification difficulty encountered throughout the ESTCP demonstration

program, automated criteria for selecting the stop dig point are unlikely to be universally

applicable and this judgement is often best left to the analyst. We therefore recommend that

the emphasis in the design of a QAPP for munitions response be on verification of the stop

dig point with objective statistical tests, rather than on the initial criteria for choosing the

stop dig point. The latter should be clearly documented, but need not use the same criteria

from site to site. Hypothesis tests of the ROC developed here should be used in conjuction

with the random sampling of targets mandated by Visual Sample Plan.



28

References

L. Beran and S. Billings. Interim report: Decisions support tools for munitions response
performance prediction and risk assessment. SERDP project MR-2226. Technical report,
SERDP, 2012.

L. Beran, L. P. Song, S. Billings, B. Zelt, and D. Oldenburg. Addendum to final report:
Robust statistics and regularization for feature extraction and uxo discrimination, SERDP
project MR-1629. Technical report, SERDP, 2013.

J. F. Cardoso. Jacobi angles for simultaneous diagonalization. SIAM journal on matrix
analysis and applications, 17:161–163, 1996.

J. Hathaway, R. Gilbert, J. Wilson, and B. Pulsipher. Evaluation of spatially clustered
ordnance when using compliance sampling surveys after clean-up at military training sites.
Stoch. Environ. Res. Risk. Assess., 23:253–261, 2009.

N. Lhomme, D. W. Oldenburg, L. R. Pasion, D. Sinex, and S. D. Billings. Assessing the
quality of electromagnetic data for the discrimination of UXO using figures of merit.
Journal of Engineering and Environmental Geophysics, 13:165–176, 2008.

L. R. Pasion. Selecting optimal models for inverting EMI data. In SERDP In-progress
Review Meeting, 2012.

L. R. Pasion and D. W. Oldenburg. A discrimination algorithm for UXO using time domain
electromagnetic induction. Journal of Environmental and Engineering Geophysics, 6:91–
102, 2001.

L. P. Song, L. R. Pasion, S. D. Billings, and D. W. Oldenburg. Nonlinear inversion for
multiple objects in transient electromagnetic induction sensing of unexploded ordnance:
Technique and applications. IEEE Trans. Geosci. Remote Sensing, 49(10):4007 –4020,
2011.

L. Tierney and J. B. Kadane. Accurate approximations for posterior moments and marginal
densities. Journal of the American Statistical Association, 81(393):82–86, 1986.

S. E. Walker, L. R. Pasion, D. W. Oldenburg, and S. D. Billings. Investigating the ef-
fect of data quality on time domain electromagnetic discrimination. Journal of Applied
Geophysics, 61:254278, 2007.



29

Appendix A. Hypothesis tests for determining if all true positives have
been identified on a receiver operating characteristic curve

Article for submission to Journal of Applied Statistics.



Hypothesis tests for determining if all true positives have been

identified on a receiver operating characteristic curve

Laurens Beran∗

Abstract

This article considers the point on a receiver operating characteristic (ROC) curve
at which all true positives are identified. In the context of unexploded ordnance (UXO)
classification, this corresponds to a “stop dig” point in an ordered dig list; all remain-
ing items in the ground are false positives (i.e. non-UXO). In practice, ground truth
is available only for excavated items that occur before a stop-dig point specified by
an analyst. Here objective techniques are therefore developed for testing, at a given
confidence level, that the selected stop dig point has in fact identified all true positives
in a data set.

The ROC is generated by thresholding on the output of a decision statistic. For
example, the decision statistic might be the probability that a target is a UXO, as
computed by a classifier. A binormal ROC is assumed: the underlying populations of
true and false instances (UXO and non-UXO) are normal distributions with respect
to the decision statistic. The likelihood of the observed ROC given binormal model
parameters is derived using order statistics, leading to a nonlinear parameter estimation
problem.

Two approaches to hypothesis testing at the stop dig point are then developed.
First, I derive the approximate distribution of the point on the ROC at which all true
instances are found. Using binormal model parameters estimated from a partial ROC
(i.e. generated from a subset of the test data), this distribution can be integrated up
to the desired confidence level to define a critical false alarm rate. If the selected stop
dig point is before this critical point, then additional digs out to the critical point are
required to achieve the required confidence. The second approach uses the uncertainty
in estimated binormal model parameters to define a confidence interval on the expected
false alarm rate. Again, the desired confidence is achieved by ensuring all targets are
labelled (dug) out to the upper limit of the confidence interval. These hypothesis testing
techniques are demonstrated on ROCs derived from real UXO data sets.

1 Introduction

The receiver operating characteristic (ROC) curve is a tool for displaying the performance of a

binary decision process and is used in applications such as medical diagnosis, economics, and

machine learning. The curve is generated by varying the threshold of the decision algorithm

and plotting the resulting true positive fraction (TPF) as a function of the false positive fraction

∗Black Tusk Geophysics, Inc. email: laurens.beran@btgeophysics.com
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(FPF), as depicted in figure 1. For medical studies a true positive denotes correctly predicting

that a condition is present, while a false positive denotes incorrectly predicting the presence of the

condition. The decision statistic, or score, is a continuous or discrete value which corresponds to

the output of a diagnostic test.
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Figure 1: (a) The ROC is generated by integrating the distributions of T and F classes with respect
to the decision statistic x. (b) The resulting ROC with operating point d.

This article focuses on the application of receiver operating characteristics to unexploded ord-

nance (UXO) classification. Recent publications describing the sensors, data processing, and clas-

sification techniques used for this problem include: Shamatava et al. (2012); Grzegorczyk et al.

(2012) and Beran et al. (2012). Although the emphasis will be on a specific application, the hy-

pothesis tests developed herein can be used for any binary classification problem where the test

data are labelled sequentially.

In UXO classification a true positive indicates a successful prediction that an ordnance belongs

to the class of UXO targets (T ), while a false positive is a non-ordnance item (F ) that has been

predicted as T . The decision statistic might be the probability of membership in the UXO class

predicted by a classifier. As the decision statistic is varied monotonically for a test data set, we

generate a sequence of true and false positives which cumulatively generate points on the ROC.

Of particular importance in the context of UXO classification is the operating point on the

ROC at which all true positives are found (i.e. TPF = 1). The false positive fraction at this point

is termed the false alarm rate (FAR). A smaller FAR is desirable, and modern UXO classification

technologies can typically achieve a FAR < 0.1 (Shubitidze et al., 2011; Beran et al., 2012).

In practice, we are never certain that all ordnance have been recovered at any point during

ordered excavation of targets. Complete confidence can only be achieved by digging all detected

targets, though of course this will defeat the purpose of classification. We must therefore specify a

“stop-dig” point, or operating point, at which we believe all ordnance have been found.

The selection of this operating point is critical to the success of a UXO remediation project and

2



typically relies on expert judgement. For example, Bayesian decision theory selects an operating

point by minimizing the expected risk van Trees (2001)). This requires specification of the relative

costs of false negatives and false positives and yields a criterion on the slope of the ROC (Kanungo

and Haralack, 1995). The Bayesian approach then reduces down to specifying a threshold on the

number non-ordnance items encountered sequentially in an ordered dig list. Once this threshold is

attained, target excavation ceases. More commonly, a stop-dig point is selected by visual inspection

of target features and subjectively choosing a point at which features no longer appear similar to

those of known UXO. New sensors and data processing techniques often make this point in the

ordered dig list obvious.

Regardless of how the stop-dig point is selected, a regulator may ultimately require a numerical

confidence level that all buried ordnance at the site have been identified following remediation. To

meet this requirement, the power analysis approach developed in Hathaway et al. (2009) prescribes

random sampling of a given number of anomalies. If none of the sampled targets are ordnance,

then with confidence level 1 − β no more than NT UXO remain in the ground. This method

makes minimal assumptions about the generating distributions of ordnance and clutter: targets

are modelled as discrete samples from a hypergeometric distribution. However, random sampling

makes no use of the information gained during geophysical data processing or excavation of targets

up to the stop dig point.

In this article objective methods are developed for assigning a confidence that all ordnance

have been found at the stop-dig point. The focus is not on how this point is selected: experience

with real data sets has shown that this decision is best left to expert judgement. Instead, this

work develops objective procedures for testing the null hypothesis that all ordnance have been

found at a specified operating point. In the next section I present the binormal ROC model,

which is extensively used in medical decision-making (Dorfman and Alf, 1968; Lusted, 1971). A

new method for maximum likelihood estimation of binormal model parameters is then derived.

Next, the approximate sampling distribution of the false alarm rate is derived and compared with

numerical simulations. Finally, two hypothesis tests of the stop dig point are presented and applied

to ROC curves arising from classification of UXO data sets.
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2 The binormal model

The binormal model assumes that the observed ROC can be represented as a sample from two

normal distributions, as shown in figure 1. The true and false positive fractions at decision statistic

x are

TPF (x) = 1− Φ((x− µT )/σT )

FPF (x) = 1− Φ((x− µF )/σF )
(1)

with Φ denoting the standard cumulative normal distribution, with means and standard deviations

of T and F classes denoted by µ and σ, respectively. Solving for x yields

x = µT − σTΦ−1(TPF ) = µF − σFΦ−1(FPF ). (2)

The true positive fraction can then be expressed as a function of the false positive fraction

TPF = Φ[a+ bΦ−1(FPF )] (3)

with

a =
µT − µF
σT

b =
σF
σT

.
(4)

The binormal parameters (a, b) can be determined by maximum likelihood estimation of the means

and variances of T and F classes using the available sample data. However, in practice the decision

statistic for the T and F classes is rarely normally distributed (Macskassy et al., 2005), and this

approach will yield a poor fit to the observed ROC. It is therefore preferable to estimate the

binormal model by treating the points on the observed ROC as the data to be fit. This generally

works better because the ROC is invariant to arbitrary monotonic transformations of the decision

variable (Metz et al., 1988). Hence even when the decision statistic for a class is not normally

distributed, there is often a monotonic mapping that can satisfy this requirement. Hanley (1988)

showed that the binormal model can produce good fits to ROCs generated from a wide-variety of

non-normal distributions of the underlying decision statistic.

Metz et al. (1988) develop algorithms for maximum likelihood estimation of the parameters

(a, b) from empirical ROC curves derived from continous decision statistics. Their formulation also

requires estimation of cutpoints that divide the decision statistic into discrete intervals. These

additional parameters are, however, not essential to inferences using the binormal model. In the

next section I develop an algorithm that maximizes the likelihood function without extraneous

parameters.
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3 Estimation of binormal model parameters with order statistics

The decision statistic x for a test data set is a pooled sample of size N = NT +NF from T and F

classes

p(x) = p(x|T )P (T ) + p(x|F )P (F ). (5)

In the binormal model the true class is normally-distributed (p(x|T ) = φ((x − µT )/σT ), with φ

denoting the standard normal distribution) with prior probability p(T ). The analogous quantities

are similarly defined for the F class. The empirical ROC is generated by ordering the sample data

from smallest to largest score (decision statistic). The ith item in this ordered list of N samples

(the ith order statistic x(i)) has the probability distribution (Balakrishnan and Cohen, 1956)

p(x|x(i)) =
N !

(i− 1)!(N − i)!P (x)(i−1)(1− P (x))(N−i)p(x). (6)

The probability of observing a sample from the T class at x is given by Bayes rule

P (T |x) =
p(x|T )P (T )

p(x|T )p(T ) + p(x|F )p(F )
. (7)

Marginalizing over x we obtain the probability that the ith order statistic in the test data belongs

to the T class

P (T |x(i)) =

xmax∫

xmin

P (T |x)p(x|x(i))dx (8)

with the decision statistic defined on the domain x ∈ [xmin xmax]. The complement for the F class

is P (F |x(i)) = 1−P (T |x(i)). Figure 2 verifies numerical computation of equation 8 via trapezoidal

integration for the distributions shown in figure 1 with equal priors and a sample size N = 800.

Now for an ROC generated from a sequence of true and false positives, such as

S = {T T F F F T T}, (9)

the corresponding likelihood is

L = P (T |x(1))P (T |x(2))P (F |x(3))P (F |x(4))P (F |x(5))P (T |x(6))P (T |x(7)). (10)

More generally, the negative log-likelihood for an ROC generated from a sample of size N can be

expressed as

l = −
[

N∑

i=1

log(P (T |x(i)))1T (ωi) +
N∑

i=1

log(P (F |x(i)))1F (ωi)

]
(11)

with the indicator function

1T (ωi) =





1 if ωi = T

0 if ωi = F
(12)
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Figure 2: Computing the probability P (T |x(i)) of a T instance given the ith order statistic. Points
are generated by repeated sampling from the distribution p(x), ordering the sample, and then
determining the proportion of realizations for which the i/N th item is T . Solid line is the prediction
from equation 8, with the required integrals evaluated numerically.

and ωi ∈ [T, F ] denoting the class of the ith target in the ordered dig list. The negative log-

likelihood is minimized with respect to the binormal model parameters using the Matlab function

fmincon (Coleman and Li, 1996), with derivatives evaluated numerically. While this method

circumvents estimation the extra cutoff parameters in Metz et al. (1988), computation of equation 8

over all order statistics can be quite slow. Some speedup is achieved by evaluating these integrals

in parallel.

Figure 3 compares binormal model estimates obtained using the program LABROC4 described

in Metz et al. (1988) and the order statistics method developed here, for a synthetic sample drawn

from the normal distributions shown in figure 1. Both methods produce a good fit to the empirical

ROC, and all estimated binormal parameters are within two standard deviations of true values.

Model uncertainty and confidence intervals on the ROC are computed by evaluation of the Hessian

at the maximum likelihood model estimate, as described in Metz et al. (1988).
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Figure 3: Synthetic observed ROC (black line) and estimated binormal fits generated using
LABROC4 program and order statistics approach developed here. Dashed lines are 95% confidence
intervals on the binormal ROC. Square marker indicates empirical false alarm rate (FAR = 0.23).

4 The distribution of the false alarm rate

We now consider the first point on the ROC curve at which all true positives are identified. The

FPF at this point is here termed the false alarm rate (FAR), which is itself a discrete random

variable. The sampling distribution P (FAR) can be estimated by computing the probability

that each order statistic x(i) is the last T instance in the ordered sample. To do this, we must

enumerate all permutations for which this outcome can occur and compute the probability of each

permutation. This quickly becomes prohibitively expensive for even modest sample sizes, and so

here we approximate the distribution of P (FAR) as follows. If the ith order statistic is the last T

item in the sample, then the remaining i + 1 through N order statistics must all be F . So for a

sample of size N , the probability that TPF = 1 after digging i/N items is approximately equal to

P (FAR) = P (TPF = 1) ≈ P (T |x(i))P (F |x(i+ 1))P (F |x(i+ 2))...P (F |x(N)), i ≥ NT (13)

The false alarm rate at this point is

FAR =
i−NT

NF
. (14)

Figure 4 shows computation of equation 13 for the normal distributions shown in figure 1, with

equal priors and for sample sizes ranging from N = 100 to 400.

As the sample size is increased, the expected value of the false alarm rate in figure 4 increases.

Indeed, limN→∞ FAR = 1. For smaller sample sizes (i.e. N = 200), the approximate distribution
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Figure 4: The approximate distribution (solid lines) of the false alarm rate for sample size N . Dots
show simulation results and vertical lines indicate the expected value of the FAR estimated from
the approximate distributions.

of the FAR is biased to larger values than the simulation results. When constructing a confidence

interval for the FAR using the approximate distribution - as described in the next section - the

hypothesis test will therefore err conservatively for smaller samples. That is, we will tend to label

slightly more instances in the test data than necessary in order to achieve a desired confidence that

TPF = 1.
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5 Testing whether all true instances have been found

In this section, two methods for testing whether all UXO have been identified are proposed. First,

the approximate distribution of the false alarm rate is integrated up to the specified confidence

level:

Test 1

1. Generate the partial empirical ROC up to the selected operating point and assume, as a null

hypothesis, that all remaining instances are true negatives.

2. Fit a binormal model to the empirical ROC with hypothesized true negatives appended to the

curve.

3. Compute the distribution of the false alarm rate, and integrate this distribution up to a specified

confidence level 1− α, defining a critical value of the FAR.

4. Test the null hypothesis by labelling items (digging targets) out to the critical value, if necessary.

If none of these items are T , then we retain the null hypothesis.

A second approach to defining a critical value for the false alarm rate uses the binormal confi-

dence interval:

Test 2

1. Again generate the partial empirical ROC up to the selected operating point and assume, as a

null hypothesis, that all remaining instances are true negatives.

2. Fit a binormal model to the empirical ROC with hypothesized true negatives appended to the

curve. Generate 1−α confidence bounds for the binormal fit, as displayed, for example, in figure 3.

3. For a sample of size NT from the generating distribution p(x|T ), the last T instance is expected

to occur in an interval x > xc, with xc a critical point corresponding to the probability 1/NT in

the tail of distribution p(x|T ) (see figure 5). We can therefore define a 1− α confidence interval

on the FAR by identifying the corresponding critical false positive fraction at which the lower and

upper confidence bounds on the ROC both achieve TPF = 1− 1/NT .

4. Test the null hypothesis by labelling items out to the rightmost point of the confidence interval.

If none of these items are T , then we retain the null hypothesis.

Figure 5 illustrates these procedures.

9



0 25 50 75
0

20

40

60

80

# of non−UXO

# 
of

 U
X

O

(a)

0 0.5 1
0

0.5

1

FPF

T
P

F

(b)

0 0.1 0.2
0

0.5

1

FPF

T
P

F

(c)

Test 
1

Test 2

0 0.1 0.2
0

0.01

FAR

p(
F

A
R

)

(d1)

0 1 2 3
0

0.05

0.1

x

p(
x)

(d2)

1/N
T

0 0.1 0.2
0

0.5

1

FPF

T
P

F

(e1)

0 0.1 0.2
0

0.5

1

FPF

T
P

F

(e2)

Figure 5: Illustration of hypothesis tests of the stop dig point. (a) The partial ROC curve is generated from excavated targets up
to the stop dig point (red marker). (b) The null hypothesis assumes that all remaining targets are true negatives (non-UXO). These
hypothesized true negatives are appended to the ROC. (c) The binormal model is fit to the empirical ROC (solid green line). (d1) The
approximate distribution of the false alarm rate, generated from the maximum likelihood estimate of binormal parameters, is integrated
up to a specified confidence level 1− α. This defines a critical value of the FAR, shown as a green square marker in (e1). If the critical
FAR is after the selected stop dig point, as in (e1), additional digs out to the critical FAR are required to test the null hypothesis. (d2)
For a sample of size NT from the generating distribution p(x|T ) (blue line), the last T instance is expected to occur in an interval x > xc,
with xc a critical point corresponding to the probability 1/NT in the tail of distribution p(x|T ). Red line is the distribution p(x|F ). (e2)
The 1 − α confidence interval of the binormal model is interpolated to identify the critical FAR=FPF(TPF=1 − 1/NT ). As before, if
the critical FAR (green triangle) is after the selected stop dig point, additional digs out to the critical FAR are required to test the null
hypothesis.

10



Both methods should be used to test an empirical ROC, with the larger of the two critical FARs

determining the required number of additional digs. These testing procedures have been applied to

a number of real ROC curves derived from classification of UXO with geophysical data sets, figure 6

shows two examples from a recent demonstration project. The fit of the binormal model to the
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Figure 6: Binormal ROC fits (solid green lines) to empirical ROC curves (black lines) generated by
classification of two UXO data sets. Dashed green lines are 0.99 confidence interval on estimated
binormal ROC. Critical FARs from hypothesis tests are both at the 0.99 confidence level. “cc”
denotes corelation coefficient between the empirical ROC and the predicted binormal ROC.

empirical ROC curves is quite good, in both cases achieving a correlation coefficient greater than

0.95. Figure 6(a) is representative of the ROCs achieved with modern sensors and classification

techniques. In this case the stop dig point specified by the analyst must be supplemented with

additional digs, with Test 2 requiring FPF ≈ 0.12 at the 0.99 confidence level. Figure 6(b) is a

poorer classification result derived from an older sensor. The selected stop dig point in this case is

well past the FPF indicated by both tests, and so in this case no additional digs are necessary to

ensure that all UXO have been identified at the specified confidence.

6 Conclusion

In this article two hypothesis tests are developed for determining whether all true positives have

been identified in a test data set. Both tests use maximum likelihood estimates of binormal

model parameters to define a critical false alarm rate. Either the LABROC4 algorithm of Metz

et al. (1988), or the order statistics approach proposed here can be used to estimate the binormal

parameters and associated uncertainties. The predicted binormal ROC has quite a high correlation

coefficient (cc > 0.98 with the empirical ROC for the real data examples presented here. However,

in the case of a poor fit (e.g. cc < 0.95), the estimated binormal model should not be used to

subsequently test the stop dig point.
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The first test treats the false alarm rate as a discrete random variable. The critical FAR is

determined by summing the approximate distribution of the FAR for a given sample size up to a

specified confidence. The second test uses the confidence interval of the estimated binormal model,

together with the critical value of the TPF for the last T instance, to determine the corresponding

critical FAR. It is recommended that both tests be applied and the maximum of the two critical

values be used to test the stop dig point. If the stop dig point occurs before this maximum critical

FAR, then additional digs out to the critical FAR are necessary to test the null hypothesis at a

given confidence level. The null hypothesis is retained if no more T instances (UXO) are found

with these additional digs. On the other hand, if more UXO are identified then the stop dig point

must be adjusted and the testing procedure should be repeated.

These hypothesis tests allow a data analyst to assign an objective numerical confidence to the

stop dig point. Because the ROC is the end product of extensive data processing, any additional

digs mandated by the tests implicitly use all available information extracted from the geophysical

data. This is in contrast with the compliance sampling techniques of Hathaway et al. (2009), which

use random sampling of detected targets. The two approaches should be used in conjunction,

with compliance sampling providing independent verification of the ROC generated via advanced

classification.
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