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Abstract 

Objectives:  The primary purpose of the process described and illustrated in this SEED study is 
to confirm that the detection and classification decisions made prior to and during a remedial 
effort remain reasonable once ground truth information is garnered and taken into account.  
Specific objectives were to investigate (i) a practical method for assessing target detections and 
(ii) procedures for determining the likelihood of false negatives given some amount of ground 
truth information. 

Technical Approach:  The problem of UXO residual risk is naturally divided into the issues of 
target detection and, once detected, classification.  With regards to the assessment of missed 
UXO detections, we present a practical and straight forward tool that involves inserting synthetic 
signatures, appropriately chosen for the UXO types actually recovered, into the reconnaissance 
survey data, processing using standard detection schemes and thresholds, and evaluating the 
results in the light of ground truth information.  This approach is attractive because it naturally 
incorporates site-specific realistic noise levels and sampling schemes. 

The second issue, that of classification failures, results when TOI targets ”look” more like what 
they are not than what they are, and are classified accordingly.  In fact, because the decision 
metric is based on a library of expected TOI signatures, the target does not look “enough like” a 
TOI to be considered TOI.  To investigate the possibility of classification failures, we (i) 
performed a probabilistic risk assessment using polarizabilities and ground truth information 
from Camp San Luis Obispo, Camp Butner, and Camp Beale, (ii) conducted a cluster analysis to 
look for groups of targets with similar signatures, and (iii) calculated a decision metric based on 
clutter signatures and compared it with the decision metric based on the library of expected TOI 
signatures. 

Results: Based on a comparison of the actual depth distribution of the UXO recovered at San 
Luis Obispo and results of the synthetic seed study, we conclude that all of the UXO, at least 
with regard to the four included in the study, were successfully detected.  The deepest target that 
we know of, based on the available dig results, was an 81mm at a depth of 0.52m.  The synthetic 
seed exercise suggests, however, that 100% of the 81mm mortar seeds would have been 
detected, using the same detection scheme, for burial depths of up to 0.77m.  Thus, the detection 
process applied to ESTCP’s Classification Study at San Luis Obispo, CA, was validated, given 
all available ground truth information resulting from excavations. 

Using data and ground truth information from Pole Mountain, we found that roughly half of the 
clutter would be dug at a threshold corresponding to a 1% residual risk of misclassified TOI, if 
extreme value theory is used to estimate the likelihood that one or more TOI may be 
misclassified.  This application of statistics appears misguided. The mathematical formulations 
are correct but the logic is not.  The outliers that dominate the risk calculations do not reflect 
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random sample variations in the decision metric, but rather are due to inversion failures or other 
pathological events.  To pursue the nature of the outliers, we used a cluster analyses and the 
calculation of a decision metric based on clutter signatures to show that, with the exception of a 
single TOI at Camp Beale that doesn’t match anything (a singleton), the TOI versus non-TOI 
classification decisions were reasonable. 

Benefits:  Although assumptions can be made based on land use, expected munitions, expected 
clutter, and site conditions prior to conducting a geophysical survey, significantly more 
information is available after the geophysical survey and characterization is complete.  
Information about the site is learned during all phases of the effort; from the reconnaissance 
survey, to the anomaly characterizations, through the classification, and finally, when ground 
truth information is gathered.  This additional information can and should be exploited, using the 
processes and methods presented in this report, to re-evaluate the detection thresholds and 
classification decisions prior to site closure.  By adopting such procedures, stakeholder 
confidence and acceptance can be increased. 
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Objective 

The technical objective of this SEED project was to investigate a practical method that facilitates 
the assessment of residual UXO risk, expressed in terms of probability that one or more targets 
of interest remain onsite after a geophysical survey and cleanup operation is complete.  Within 
this context, we investigated a practical method for assessing target detections and devised 
procedures for determining the likelihood of misclassifying a UXO as clutter. 
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Background 

New technologies for identifying and classifying UXO from non-UXO have been developed 
during the recent past with SERDP and/or ESTCP funding.  Successful classification results have 
been realized by multiple firms, using a variety of advanced electromagnetic induction sensors, 
at multiple live site demonstrations.  As a result of the success, these hardware and software 
technologies are also being introduced and incorporated into active site cleanup projects because 
they offer the potential to substantially reduce overall remediation costs.  The full impact of 
UXO classification will be realized, however, only if the wider community of stakeholders, 
regulators, and site managers accepts their usage. 

In order for human health hazard of munitions to be successfully mitigated, the munitions 
present at a site must be detected, then classified correctly, and disposed of properly.  Each of 
these three tasks are made increasingly more difficult if a wide variety of munitions types are 
present, it the site is highly cluttered with non-UXO metal or fragments, or if the geologic 
background response is strong.  Although assumptions can be made based on prior land use, 
expected munitions, and site conditions prior to conducting a remediation, significantly more 
information is available once the area is surveyed, characterized, and ground truth information is 
garnered.  This additional information can and should be used prior to site closure to re-evaluate 
the detection thresholds and classification decisions.  The detection thresholds and classification 
decisions may change, for example, if one or more unexpected munitions types are recovered 
during the course of remedial investigation. 

To encourage stakeholder acceptance, we believe that a principled assessment of residual UXO 
risk, defined as the probability that one or more buried UXO remain onsite after a geophysical 
survey and cleanup operation is complete, is required.  Our approach for assessing residual UXO 
was to explicitly address two essential and fundamental questions during site closure discussions; 
namely, if given all available geophysical and ground truth data collected at the site in question: 

(i) Is it reasonable to believe that all UXO were detected? 
(ii) Does it appear that any potential UXO were misclassified as clutter? 

We use data from ESTCP Live Site Demonstration sites to illustrate the concepts and methods. 
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Missed Detections 

The primary goal of the process described and illustrated in this report is to confirm that the 
detection and classification decisions made prior to and during a remedial effort remain 
reasonable once ground truth information is garnered and taken into account. 

In the following discussion, we assume that we have access to all geophysical data, both 
reconnaissance survey and classification, and all ground truth information, which includes 
recovered munitions types and burial depths, as well as all non-UXO discoveries.  Given this 
scenario, our approach for assessing missed detections includes the following steps: 

 First, insert synthetic signatures, which correspond to the expected response of the 
recovered munitions, directly into the geophysical survey data. 

 Then, process using standard detection procedures. 
 Finally, evaluate detection statistics as a function of depth and munitions types, etc. 

This approach naturally incorporates realistic noise levels and scenarios found at the area of 
concern and imposes realistic sampling scenarios. 

Camp San Luis Obispo 

Data from the former Camp San Luis Obispo, California was selected for this study.  The site 
spans a hillside that is a historical mortar target and has limited vegetation and geologic 
interference, and a variety of munitions types.  At this site, there were four targets of interest 
known prior to the study: 60-mm, 81-mm, and 4.2-in mortars and 2.36-in rockets (Figure 1). 

 

Figure 1. Photographs of the seeded targets at Camp San Luis Obispo: top left – 2.36in rocket, 
top-right -- 4.1in mortar, bottom-left—81mm mortar, and bottom-right –60mm mortar. 
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A photograph showing the local setting of the San Luis Obispo Classification Study site is shown 
in Figure 2.  Historic evidence and recent field observations document intact munitions and 
debris in this area.  The average anomaly density was expected to be 100-200 anomalies per acre, 
which is low enough to allow for classification of individual items. 

 

Figure 2. Photograph of the study area within Former Camp San Luis Obispo, California. 

During the initial ESTCP Demonstration study, a team from the ESTCP program office produced 
a list of anomaly detections.  This list was then passed to all of the classification demonstrators to 
attempt classification. Overall, the results of the classification efforts were very good.  
Additional details and classification results can be found in [1]. 

Here, we are interested in quantifying the likelihood that targets of interest were not identified 
during the detection phase.  The evaluation process that we followed included these steps: 

1. Run an automatic target picker on EM61-MK2 data, which was used for the detection 
part of this study, to determine appropriate threshold to detect original anomalies.  Note 
that this step was required primarily because we did not perform the target detections and 
did not have access to their detection parameters. 

2. Mask (remove) data around each of the original anomalies.  The reason for removing the 
original detections is that we were interested in missed detections – and those anomalies 
nearby or on top of already detected anomalies were, by definition, not missed. 

3. Randomly select seed locations from the remaining background data to plant model 
responses of the UXO type found at the site.  For these example data, we were able to 
identify ~4,100 seed locations. 

4. Using the site data calculate average polarizations for each UXO type. 
5. At each seed location, add synthetic signatures, e.g., the expected response associated 

with each individual munitions type, to the measured data.  Note that the measured data 
at each seed location is solely comprised of natural background “noise”.  For this study, 
we constrained the burial depth to be between 8 and 15 times the ordnance diameter. 

6. Run automatic target picker on seeded data using different detection thresholds. 
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7. Calculate probability of detection statistics by creating bins which correspond to the 
individual gradations from 8-15 times ordnance diameter. 

These steps are illustrated in the subsequent text and figures. 

Figure 3 presents false-color images from the acquired EM61 data at San Luis Obispo, CA.  The 
nominal line spacing for the EM61 data was 0.5 meter.  Approximately 1500 targets were 
selected for intrusive actions during the study.  Ground truth information regarding the nature of 
the source item at each of the 1500 detections was collected during the original study.  Our task 
is to determine if these original detections are still reasonable given ground truth information 
regarding recovered munitions type and burial depths. 

 

Figure 3. EM61 data from Camp San Luis Obispo overlain by target declarations as picked 
by the ESTCP program office for the initial demonstration study. 
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Figure 4 presents EM61 MKII cart survey data with original anomalies and automatic target 
picker declarations using 6mV threshold. 

  

Figure 4. EM61 data from Camp San Luis Obispo overlain by target declarations made by an 
automatic target picker using a 6mV threshold. 
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The final step before seeding the site with synthetic targets is to remove data from each original 
target area (Figure 5).  Once the anomalous responses were removed, the remaining areas were 
considered to represent natural background levels and fluctuations. 

 

Figure 5. EM61 data after removing data associated with the original targets. 
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Figure 6 shows the EM61 MKII cart survey data with over 4100 randomly selected seed 
locations in background areas. 

 

Figure 6. EM61 data from Camp San Luis Obispo overlain by locations for seeded targets. 

For each seed location the response of each UXO type was added to the background (Figure 7).  
All target parameters for a UXO type were selected randomly except for depth which was 
constrained to be from 8 to 15 times the ordnance diameter. 

 

Figure 7. Decision metric distributions from recent ESTCP classification demonstrations. 
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Finally, we used an automatic target picker to select targets at thresholds of 2-, 4-, 6-, and 8mV.  
We accumulated the target declarations and calculated the probability of detection for each UXO 
type at the four thresholds.  The depths correspond to bins ranging from 9 to 15 times the 
ordnance diameter. 

 
Figure 8. Probability of detection for 60mm mortar as a function of depth and target picking 
threshold for the San Luis Obispo data set. 

 
Figure 9. Probability of detection for an 81mm mortar as a function of depth and target 
picking threshold for the San Luis Obispo data set. 
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Figure 10. Probability of detection for 2.36in rocket as a function of depth and target picking 
threshold for the San Luis Obispo data set. 

 
Figure 11. Probability of detection for 4.2in mortar as a function of depth and target picking 
threshold for the San Luis Obispo data set. 

As observed in these results, there are occasional missed declarations for the deeper burial 
depths.  The misses are most notable for targets at depths of 13x the diameter, but occasionally 
for shallower depths.  We investigated these misses and found that the missed detections at 
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shallow depths were due to seeded targets located near data gaps (Figure 12).  The missed target 
declarations at deeper depths were due to low signal to noise, which is expected. 

 

Figure 12. Example of a shallow synthetic seed that was not detected due to partial coverage 
(sampling).  The red ‘X’ is the actual seed location. 

 

Figure 13. Example of a deep synthetic seed that was not detected due to low signal strength.  
Left – background signature.  Right – background signature with synthetic response of a 
4.2in mortar buried 42inches below ground. The red ‘X’ is the actual seed location. 
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Actual Target Depth Distributions 

The final step in this approach is to evaluate the seeded results within the context of what was 
actually recovered at the site.  In other words, we want to answer the question ‘can we see 
enough deeper than any of the targets to be satisfied that none were missed?’ A straight forward 
method of addressing this question is to compare any and all ground truth (i.e., depth 
distributions as a function of ordnance type) from the site with detection limits from simulations. 

Figure 14 present a ground-truth summary of the ordnance depth distributions from Camp San 
Luis Obispo.  For the UXO types included in the study, only one target was recovered at depths 
of more than 0.5m.  The single target was an 81mm mortar found at a depth of 0.52m. 

 

Figure 14. Decision metric distributions from recent ESTCP classification demonstrations.  
The only target recovered deeper than 0.5m was an 81mm mortar and it was found at 0.52m. 

Detection Study Result 

Based on this comparison of the actual depth distribution of the UXO recovered at San Luis 
Obispo and results of the synthetic seed study, it is reasonable to conclude that all of the UXO, at 
least with regard to the four included in the study, were successfully detected.  The deepest target 
that we know of, based on the available dig results, was an 81mm at a depth of 0.52m.  The 
synthetic seed exercise suggests, however, that 100% of the 81mm mortar seeds were detected 
for burial depths of up to 0.77m (Figure 9). 
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Classification Errors 

There are two basic types of classification error. Munitions (or other TOI) can be misclassified as 
clutter. This is referred to as false negative. Or clutter can be misclassified as munitions (false 
positive). Generally speaking, the consequences are grossly imbalanced. False negatives carry a 
very high cost associated with leaving a potentially deadly item in the ground, while the cost of a 
false positive is just digging another hole. Consequently we will focus on the risk of false 
negatives in the classification process. 

Our goal here is to devise procedures for determining the likelihood of false negatives. Initiating 
events may be inversion failures or unexpected TOI signatures, and we are interested in 
developing mitigating procedures which can recognize initiating events and procedures for 
evaluating residual probabilities of misclassified TOI. 

The classification process produces a ranked dig list which is based on a decision metric ߯ 
determined from target features, where ߯ → 0 if there is a good match to a munitions item or 
other TOI, and ߯ → 1 when there is a poor match and the target is likely clutter.  Figure 15 shows 
some decision metric distributions for TOI and clutter items from recent ESTCP classification 
demonstrations. Classification performance is summarized by the receiver operating 
characteristic (ROC) curve. Figure 16, from the ESTCP Pole Mountain demonstration, is an 
example. The ROC is a parametric plot of the percentage of TOI on the site which are correctly 
classified (Pd) versus the number of incorrectly classified clutter items (Nfa) as the decision 
metric varies from 0 (marking the beginning of the ROC curve at bottom left point on the plot) to 
1 (marking the end of the ROC curve at the top right point of the plot). 

 

Figure 15. Decision metric distributions from recent ESTCP classification demonstrations. 
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Figure 16. Example ROC curve from Pole Mountain classification demonstration. 

The classification process entails setting a stop-dig threshold ߯੊ on the decision metric. Targets 
with decision metric ߯ ൑ ߯੊ are classified a possible TOI and will be excavated while those with 
߯ ൐ ߯੊ are classified as likely clutter and will be left in the ground. Consequently the true 
identities of the targets with metric ߯ ൑ ߯੊ will be known, but the others will not. The residual 
risk corresponds to the likelihood that any of the targets classified as likely clutter and left in the 
ground are actually TOI. It depends on the statistics of the decision metric ߯ for the TOI. We see 
only samples of the probability distribution of the decision metric for the TOI, Pሺ߯|੊੅ਿሻ. 
Because there tend to be very few TOI and many clutter items at a typical munitions response 
(MR) site [2], such samples are generally small. 

Probabilistic risk assessment entails 

1. Modeling the underlying distributions of test statistics (decision metrics) for TOI and 
clutter using sample statistics, 

2. Calculating the likelihood of misclassified TOI as a function of the amount of clutter that 
has to be excavated, and 

3. Evaluating the costs and/or consequences. 

Step 2 can be implemented using extreme value theory or by Monte-Carlo simulations. Here we 
focus on the application of extreme value theory. The risk is generally defined in terms of the 
relative costs of false positive and false negative classifications [3]. Here, we will focus on the 
application of extreme value theory to estimating the likelihood that one or more TOI may be 
misclassified. 
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Decision Metrics for Classification 

A simple decision metric based on two parameters which was developed in SERDP project MR-
2100 [4] turns out to be more useful for our analysis than the decision metric shown in Figure 15. 
Classification is a matter of deciding whether the object’s polarizabilities are TOI-like or clutter-
like. Library matching methods employing various procedures to compare polarizabilities of 
unknown targets with those of targets of interest (TOIs) are commonly used for classification [5, 
6]. Our method exploits the fact that an object’s polarizability tensor B(t) can be represented as a 
product of two factors: the volume V of the object and a tensor A(t) whose eigenvalues αj(t), i = 
1, 2, 3 depend only on the shape and composition of the object. Strictly speaking this is true only 
for nonmagnetic objects [7] or those with a specific magnetic permeability. However, as a 
practical matter it appears to be a good representation for typical TOIs and clutter items. 
Confronted with an unknown target, we then compare its apparent size and EMI “shape” with the 
sizes and shapes of the TOI. 

Given the set (spanning three axes and N time gates) of principal axis polarizabilities β0 for a 
TOI and the set of principal axis polarizabilities β for an unknown target, we calculate a size 
ratio ݏ as 

(1) 

ݏ ൌ ݉݁݀݅ܽ݊ ቆ
ඥߚయ

ඥߚ଴
య

ቇ 

where the median is taken over all axes and time gates for which β > 0. If β < 0 for more than 
some threshold fraction (typically 25-50%) of the available terms, then the target is put in the 
“can’t analyze” category. The size mismatch parameter Δsize is then 

(2) 

∆௦௜௭௘ൌ  ሻݏሺ݃݋݈

which is equal to zero if the EMI sizes of the target and the reference TOI are the same, The 
shape mismatch parameter Δshape is determined by comparing the unknown target’s polarizability 
with the reference polarizability scaled by the size mismatch 

 

(3) 

∆௦௛௔௣௘ൌ
∑หඥߚయ െ ଴ߚඥݏ

య ห

∑ ඥߚయ
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in which the sums are over all terms with positive β. For each target, size and shape mismatch 
parameters are calculated for each TOI. Classification is based on thresholding a figure of merit 
(FOM) parameter or decision statistic 

(4) 

߯ ൌ 	min
்ைூ

൛|∆௦௜௭௘| ൅  .ሺ∆௦௛௔௣௘ሻൟ݃݋݈	݇

which has been minimized over the set of possible TOI. A parameter value ݇ ≈ 0.3 seems to give 
the best classification performance. Because the decision statistic is defined in terms of the 
logarithm of the shape mismatch ߯ → -∞ for objects that are a very good match to TOI. We 
could transform this FOM parameter to a decision metric which runs from 0 to 1 with a 
transformation based on some cumulative probability distribution model for the FOM. For 
purposes of analysis, however, it is more convenient to deal with a parameter which can run from 
-∞ to ∞. 

We find similar TOI and clutter distributions of the decision metric defined by equation (4) for 
the classification demonstrations at Camp San Luis Obispo, Camp Butner and Camp Beale 
(Figure 17). 

 

Figure 17. Decision metric distributions for TOI and clutter at Camp San Luis Obispo, Camp 
Butner and Camp Beale. 

Classification performance is controlled by the overlap region between TOI and clutter. The 
distributions for Camp Beale have the least overlap and correspond to the best classification 
performance of the three demonstrations. 
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Extreme Value Distributions 

The simple application of statistics can produce inappropriate estimates of the risk that TOI have 
been misclassified. In a purely statistical approach, the likelihood of TOI misclassification is 
related to the extreme value statistics for the TOI decision metric (߯) distribution. For example, if 
there are ݊ TOI, then one measure of the residual risk might be the probability that the maximum 
value ݊ܯ of ߯ for the TOI items, 

(5) 

௡ܯ ൌ maxሺ߯ଵ, ߯ଶ, … , ߯௡ሻ, 

exceeds the stop-dig threshold ߯੊ that was selected. 

Depending on the tail behavior of the distribution there can be one of three types of extreme 
value distributions [8, 9]. Figure 18 shows the tails of the TOI distributions from Figure 17. They 
appear to be bounded by exponential and Gaussian distributions as shown. 

 

Figure 18. Tails of TOI distributions from Figure 17 compared with Gaussian and 
exponential distributions. 

For exponential-type tails (which includes Gaussian and exponential), with suitable scaling 
factors ܽ݊ (the intensity function) and ݊ݑ (the characteristic largest value) the distribution of the 
maximum approaches the Gumbel distribution 

(6) 

ܲሼܽ௡ሺܯ௡ െ ௡ሻݑ ൑ ሽݔ →  ሺെ݁ି௫ሻ݌ݔ݁



18 
 

asymptotically when ݊ is large. If the underlying distribution function for the decision metric ߯ is 
Gaussian 

(7) 

ሺ߯ሻܨ ൌ
1

ߨ2√
න ݁ି

ଵ
ଶ௫

మ
ఞ

ିஶ
 ݔ݀

then asymptotically for large n the scaling factors are 

(8) 

ܽ௡ ൌ ඥ2 ݈݊ሺ݊ሻ 			and			ݑ௡ ൌ 	ܽ௡ െ
1
2ܽ௡

ሾ݈݊ ݈݊ሺ݊ሻ ൅ ݈݊ሺ4ߨሻሿ. 

Alternatively, for an exponential distribution 

(9) 

ሺ߯ሻܨ ൌ 1 െ ݁ିఞ 

we have 

(10) 

ܽ௡ ൌ 1			and			ݑ௡ ൌ ݈݊ሺ݊ሻ.	

Figure 19 shows what happens when we apply this to the Camp Beale classification data. The 
red curves (left scale) show the probability that ݊ܯ > ߯੊ calculated using the Gaussian and 
exponential tail distributions shown in Figure 18. The calculations were done for ݊ = 80, but the 
results are not very sensitive to the actual value. The blue curve (right scale) simply shows the 
number of clutter items with ߯ < ߯੊. The plot implies that roughly half of the clutter items would 
be dug at a threshold corresponding to a 1% residual risk of misclassified TOI. We believe this to 
be misguided. The mathematical formulations are correct but the logic is not. We believe the 
problem is that the tails in Figure 18 do not reflect random sample variations in the decision 
metric that should be expected, but rather are due to inversion failures or other pathological 
events. We consider the question of identifying such failures in the Results and Discussion 
section below, under the subheading Classification Failures. 
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Figure 19. Residual classification risk for Camp Beale as a function of decision threshold 
based on extreme value statistics (red curves and left scale) and number of clutter digs as a 
function of threshold (blue curve and right scale). 
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Results and Discussion 

Missed Detections 

We presented a practical and straight forward tool for the assessment of missed UXO detections.  
It involved inserting synthetic signatures, appropriately chosen for the UXO types actually 
recovered, into the reconnaissance survey data, processing using standard detection schemes and 
thresholds, and evaluating the results in the light of ground truth information.  This approach is 
attractive because it naturally incorporates site-specific realistic noise levels and sampling 
schemes. 

When the process was applied to ESTCP’s Classification Study at San Luis Obispo, CA, it 
validated the original anomaly selections. 

Classification Failures 

For our purposes, classification failures are TOI targets that we think ”look” more like what they 
are not than what they are, and are classified accordingly. In fact, since the decision metric is 
based on a library of expected TOI signatures, what we really mean is that the target does not 
look “enough like” a TOI to be considered TOI. But why? Are there unexpected TOI with 
significantly different polarizabilities than the expected TOI? Are the target’s calculated 
polarizabilities truly a better match to clutter polarizabilities than to polarizabilities for expected 
TOI at the site? Or are its calculated polarizabilities just very noisy and not a decent match to 
anything?  

The first option (unanticipated TOI) is usually dealt with by using some form of cluster analysis 
to look for groups of targets with similar signatures. This is pretty straightforward with the size 
and shape mismatch parameters that go into the decision metric.in equation (4). Figure 20 shows 
an example of how munitions targets tend to cluster in our size/shape mismatch feature space. 
We have compared all of the year 1 Pole Mountain MetalMapper targets with one of the seeded 
37mm projectiles (target 645). Points are color-coded by target type. The munitions items come 
in different sizes (only 37mm size targets have size mismatch near zero in this plot) but all have 
a similar EMI look to them, so an unanticipated munitions item would probably show up with a 
low shape mismatch to other munitions items. The apparent shape difference between the small 
ISOs (4 inch pipe sections) and the 37mm projectiles is really a composition difference: The 
ISOs have relatively thin walls compared to the 37s. 

We could quantify the second option (better match to clutter than TOI) by calculating a decision 
metric based on clutter signatures and comparing it with the decision metric based on the library 
of expected TOI signatures. However, this would require a clutter library, and some method of 
evaluating how much signature variability to allow in matching to sample members of the 
different possible classes of clutter items. These are not currently available, but we can get some 
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idea how this might play out by using a “clutter library” based on polarizabilities for the targets 
at the site which were identified as clutter in the post-demonstration excavations. For this we 
calculate a clutter FOM or decision statistic following equation (4), where now the minimization 
is over all clutter items (excluding the target whose FOM is being calculated). With ߯੊੅ਿ equal to 
the TOI-based decision metric and ߯ਹੜ੥੤੤੕੢ equal to the clutter-based decision metric, we can 
define a forced-choice (TOI vs. clutter) decision metric ਼߯ਹ along a line rotated 45º counter-
clockwise from the vertical in the ߯੊੅ਿ - ߯ਹੜ੥੤੤੕੢ plane as 

 

Figure 20. Pole Mountain Year 1 MetalMapper targets compared with one of the seeded 37mm 
projectiles (target 645) in terms of size and shape mismatch parameters in equation (4). 

 

(11) 
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In this frame, the forced-choice metric ਼߯ਹ ≶ 0 depending on whether the target looks more like 
the TOI or the clutter. 

Figure 21 shows the relationship between ਼߯ਹ and ߯੊੅ਿ for the Camp Beale man-portable TEM 
array. The point (߯੊੅ਿ, ਼߯ਹ) = (-0.302, -0.090) is relatively far out in the tails of the ߯੊੅ਿ 
distribution, but on the basis of its ਼߯ਹ value it is clearly more TOI-like than clutter-like. It 
represents target BE-903, which is an 81mm mortar. On the other hand the small ISO BE-295, 
with (߯੊੅ਿ, ਼߯ਹ) = (-0.283, 0.008), does not show up as particularly TOI-like or clutter-like. That 
is because its calculated polarizabilities are very noisy and not a decent match to anything. 
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Figure 21. Forced choice (clutter vs. TOI) decision metric compared with TOI-only based 
decision metric for Camp Beale. 

Conclusions and Implications for Future Research 

We presented a practical approach to the assessment of residual UXO risk.  Specifically, we 
investigated a method for assessing target detections and devised procedures for determining the 
likelihood of misclassifying a UXO as clutter.  When applied to ancillary sites in the future, these 
common-sense procedures and associated thought processes are expected to instill confidence 
with regards to the final decisions and facilitate stakeholder acceptance.  If unexpected results 
are initially revealed, the process should iterate, by changing the detection thresholds or 
classification logic and digging more targets, until stakeholders, regulators, and the geophysical 
classification team members agree that all reasonable efforts to mitigate residual UXO risks have 
been made. 

The objective of potential follow-on development and research should be to encode the process 
and methods into a commercial data processing package and disseminate to the user community 
for use on ancillary data sets. 
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