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Abstract

Objectives - A profound lack of data hinders managers’ abilities to set scientifically
defensible recovery goals and criteria for all but a few species that are listed as threatened or
endangered under the Endangered Species Act. Given such data gaps, managers tend to jump
between generic conservation rules and expensive, time-consuming, and often unattainable
single-species PVAs. Our goal was to develop an analytical framework that would take
advantage of shared traits and threats across many species to develop a pathway towards a
more defensible system of developing recovery criteria. To do this, we developed multiple
database resources containing compiled information on species recovery data, population
trajectories, and life-history traits.

We had twin objectives in undertaking an informatics approach to conservation. The first
was to develop an analytical framework for inferring critical conservation information based on
shared threats and traits. The second was to develop a resource that managers and agencies
could use to make better conservation decisions, possibly following analytical frameworks or
using the data in ways that we did not consider. We were able to use the database resources we
developed to make some major breakthroughs in understanding the linkages between species
biology, conservation potential, and recovery criteria. However, our experience was that there
still are not enough species-specific data to allow robust cross-species modeling. In adjusting
to this reality, we adapted our objectives to include 1) developing database resources to
enhance conservation management, 2) understand key patterns in recovery criteria, 3) improve
the utility of Population Viability Analysis (PVA), 4) determine the potential to infer recovery
criteria for poorly studied species, and 5) develop new approaches for inferring traits for poorly
studied species.

Technical Approach - Our technical approach for achieving our objectives was to build a series of
databases from the literature and recovery plans, and then use those data to carry out novel analyses.
The largest resource is a set of databases of information from 288 recovery plans for 642 plants
and ~400 plans for 528 animal species. We extracted information on every aspect of listing
and conservation status, habitat requirements, and from over one hundred traits of biological
importance. In addition, we compiled resources on well-studied species, especially plants,
birds, and mammals and have made those resources available as well. We used these databases
to carry out analyses on patterns in recovery criteria, patterns in PVAs, the ability to model recovery
criteria based on traits, and the ability to infer traits using phylogenetic approaches.

Results - We undertook a full examination of different aspects of recovery, including how it is
defined, and how recovery criteria are linked to patterns of decline and species’ biology.
Overall, despite years of criticism, recovery criteria continue to be defined more by the current
status of the species (e.g., the species’ listing status and population levels) than by the specifics
of their biology or individual needs. This disappointing fact means suggests minimal
opportunities to link current recovery criteria with biological traits under an analytical
framework.

In realizing that most plans lacked quantitative data to support recovery criteria, we closely
examined one of the primary methods used to support recovery criteria, PVA. PVA is still
considered by some scientists to be the “gold standard” in establishing defensible recovery
goals. However, PVAs have also been criticized because uncertainty inherent in the modeling
process may make it an inappropriate tool for assessing absolute outcomes or prescribing
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absolute population sizes. Our study revealed that PVAs have seen very limited use in
recovery plans. PVAs have only been used to help determine delisting criteria for five listed
plant species and are included in the description for only nine listed species. Furthermore,
despite a long history of criticism and suggestions to improve rigor, most PVAs, as carried
out, fail to meet minimum standards for use in recovery planning.

As an alternative to data-hungry mechanistic PVAs, we present a statistical approach for
extracting parameters from time-series data that are relevant to the establishment of recovery
criteria. The approach is based on the idea that certain average properties of stochastic
processes may be predictable even when the details of the underlying process are unpredictable
and/or unknown. Our goal was to extend this type of reasoning to the estimation of a specific
property of stochastic population trajectories: the probability of decline below a pre-defined
threshold (i.e., quasi-extinction). We successfully used this model to output quasi- extinction
probabilities for a broad class of population change processes.

Because we could not find a rigorous link between traits and published recovery criteria, we
next used the procedures developed in our quasi-extinction model to explicitly link species
traits, threats, and population trends (instead of recovery criteria). However, our attempt to
build sets of similar species was unsuccessful. We were never able to produce enough stable
and significant comparison sets to proceed with the inverse modeling efforts that we had
planned. Considering our focus was on relatively well-studied taxa (plants and birds), this does
not bode well for applying the method broadly at this point. Yet even exploring simpler
surrogacy approaches proved elusive. Based on these disappointing results, we realized that
we needed to find a new approach for leveraging the information we have about species in way
that would usefully inform their recovery. We decided to switch to evolutionary statistical
models and focus our attention on predicting species maximum population growth rates, a
fundamental metric in population biology known as “little r” or r , the intrinsic rate of increase.

Very generally, r describes trends in population density and abundance and is an indication
of the potential for a population to replace itself. As a fundamental life history trait, r
integrates how long a species lives, patterns in death over the course of a typical lifetime
(referred to as survivorship curves), and lifetime reproductive capacity into a single metric.
We present advancements made in estimating r and we also show how r is more strongly
related to taxonomic ancestry than it is to body mass, as is typically believed. The realization
that r had a strong phylogenetic signal led us to develop a model that could predict r based on
shared traits, phylogenetic structure, and knowing the value of r for a subset of species in each
clade. We showed that this method was successful for birds and mammals.

Benefits - In the course of this project, we have developed four substantial databases that
have been released to the public. We have also carried out a series of analyses showing
the limitations of the current “state-of-the-art” approaches to conservation science. These
limitations have two causes, still too-sparse data and also that generalizations between
species are still elusive. However, we have provided two new analytical techniques that
could have widespread value to the conservation community, both in and outside of
federal lands. The first is a new method of producing key parameters from PVAs without
detailed process data and the second is a novel phylogenetic approach to estimating key
life-history parameters for species where we continue to have a paucity of data.



1. Objectives

We had two complementary sets of objectives for this project. Each was related to the
goal of enabling the DOD to do a better job of meeting its requirements for management for
threatened and endangered species, especially for species where little information is available to
support action. The first set of objectives was to develop a database that compiled information
available for two broadly-defined sets of species. The first group was any species listed by the
US Fish and Wildlife Service (USFWS) as either threatened or endangered species (abbreviated
here as TES) that for which there was an approved recovery plan. The second group was any
well-studied species (WSS) that had either a population viability analysis or time series data
available. Our goals for these databases were to compile the following information:

1. threats;

2. life history or trait information that would allow us to generalize patterns from
one species group to another; and

3. population levels through time

4. established recovery criteria.

The second set of objectives focuses on using the data compiled above to understand the
nature of listed species, and to use the information about traits, threats, and abundances to
develop a suite of models that could support development of recovery criteria when data are
limited. To do this, we carried out research that allows us to:

1. understand the scientific defensibility of listing goals and recovery criteria in
recovery plans;

2. evaluate the use of population viability analysis for recovery planning;

3. determine if recovery goals or recovery potential can be inferred from well to
poorly studied species; and

4. develop methods for inferring unknown traits using information from well-studied
species.



2. BACKGROUND

The Endangered Species Act of 1973 (ESA) establishes a visionary commitment to protecting
biodiversity in the United States using the best available science. The primary goals of the ESA,
which is implemented by the U.S. Fish and Wildlife Service (USFWS) and the National Marine
Fisheries Service (NMFS), are to prevent extinction and to recover species such that they are no
longer in need of the ESA’s provisions for survival. Recovery is achieved through development
and implementation of recovery plans that specify scientifically-based, measurable, objective
recovery criteria (e.g., numbers of populations or population sizes) as well as management
actions that ameliorate threats such that the species can be downlisted or delisted. However,
recovery plans for many species do not establish such criteria (Gerber and Hatch 2002), and,
when they do, criteria have been criticized for being unrelated to inherent biological
characteristics (Clark et al. 2002; Elphick et al. 2001; Gerber and Hatch 2002) or too low to
adequately protect populations into the future (Tear et al. 1993, 1995). The more than 350 listed
species on Department of Defense (DoD) lands result in significant conservation and recovery
responsibilities which often include land set-asides and limitations on military training
opportunities. Our goal for this project was to develop an approach that could increase the
scientific defensibility of recovery criteria that could be used even in absence of extensive data
for most species.

Several major reviews of recovery had been completed in the mid-1990’s. These reviews
were based on recovery plans approved before 1992, at which time the number of species with
plans represented only a small fraction of the species that currently have plans. Overall, Tear et
al (1995) reported that often species tended to be listed only after they were too endangered to
have high likelihood of recovery (i.e., recovery could be achieved for 37% of 163 species). They
also concluded that abundances required for delisting species that did have recovery potential
would leave most species far too vulnerable to extinction. For most species, recovery plans
indicated that delisting would be allowed with no more populations than existed at plan writing,
that biological information was lacking for most species, and that recovery criteria focused more
on individual and population abundances than amounts of habitat and range. A subsequent
analysis by Elphick et al. (2001) questioned the biological basis of delisting criteria for 27 bird
species because they found that the numbers of individuals required for delisting were best
predicted by the numbers of individuals at plan writing, rather than by body mass, fecundity, or
lifespan.

The requirement for objective and measurable recovery criteria in the 1988 amendment
to the Endangered Species Act (ESA) spurred development of conservation methods that provide
objective, measurable, species-specific recommendations. Population viability analysis (PVA)
has been strongly advocated to determine the "minimum viable population” (MVP), or the
population size needed for persistence over a given time period. Some scientists consider PVA
to be valuable for defining recovery objectives because this type of model links underlying
biological mechanisms with observed population trends and thus can be used as a tool for
making predictions or setting specific conservation targets (Morris and Doak 2003). The most
common type of PVA approach is to build a mechanistic model that accounts for each biological
stage involved in births, deaths, immigration and emigration and then parameterize the model
with data relevant to each stage, including transition probabilities. Such high-quality data are
rarely available to conservationists (Morris et al. 2002, DeMaster et al. 2004). Furthermore,
even when expensive data-collection efforts are possible, PVA results likely do not apply to



other species or even other localities or future conditions for the same species (Flather et al.
2011).

A second population modeling approach has been to use time-series abundance data (a
data type that is much more widely available) to track population processes and use them to infer
underlying dynamics. Yet, to date, these approaches have not produced specific conservation
targets, only predictions of future population trajectories under the assumption that conditions
remain the same. Although data requirements for time series analyses are lower than for
traditional PVA approaches, they are still more intensive than can be supported for most species.
Further, issues of applicability beyond the sampled populations remain. Absence of data for PVA
or time series analysis of abundance data creates a critical need for alternative approaches to
determining scientifically defensible recovery criteria specific to each listed species. At the other
end of the spectrum, when few or no data are available, broad rules of thumb have been
developed that don’t necessarily require detailed species-specific information. These general
rules of thumb are supported by basic theory and conservation principles and are applied to
poorly known species. These rules may provide some useful management guidelines within
groups, but may be inadequate when applied across a broad range of taxa with widely varying
life histories and ecological characteristics. For example, it is well known that the population size
needed to conserve an endangered insect is vastly greater than the population size needed to
conserve a bear or similar species. However, these approaches are rarely applied in such a broad-
brush fashion. Their application is problematic when going from general principles to specific
abundance levels because it will be difficult or impossible to defend those abundances as being
both necessary and sufficient. This dichotomy between lack of data for species specific
recommendations and broad rules of thumb is especially problematic for land managers that have
to balance multiple uses such as the DoD, whose main goal is advancing mission readiness.

One of the most attractive approaches to finding a middle way through the problem of
lack of data is to link species biological traits with the threats they face, and then build from that
linkage to develop broadly defensible recovery criteria. This approach is attractive because so
much of ecological and evolutionary theory is grounded on the idea that species-level traits
matter for population dynamics, species interactions, and ecosystem function. For example, the
metabolic theory of ecology holds that a species body mass is central to understanding a host of
biological processes at multiple levels of organization (Brown et al. 2004). Overall, more than
3000 scientific articles have been written about some aspect of the linkage between species-level
life history traits and conservation. This intensity of effort suggests that there is a natural
inclination within the research community to think of traits as a source of insight into
conservation success. Put another way, it is conceptually appealing that there should be some
fundamental principles at work, that once identified, would facilitate development and
organization of guidelines for conservation efforts based on underlying species-level traits.

Our goals for this project were to develop an approach for defining recovery that
capitalized on application of data from well-known species to situations where few data are
available. To do this, we developed two databases (one for plants and one for animals) that
contained information extracted from all recovery plans that had been written by 1 January 2010.
The development, content, and use of those databases are described in Part 1 of this report. We
drew on those databases to achieve several goals. The first was simply to better understand the
patterns of recovery criteria and the associated information in the recovery plans. Those patterns
are reported in Part 2 of this report. Next, by bringing in additional information from the
published literature and from other database sources, we continued to examine the potential for



PVA to be a tool for developing scientifically defensible recovery criteria by continuing to
develop methods when only time-series abundance data are available, but also to understand how
PVAs are used currently, and determine if those uses conform to current best practices. Those
results are described in Part 3 of this report. The next two sections describe our progress in
developing methods for recovery when data are lacking. Part 4 describes attempts to model
recovery criteria based on shared traits, threats, and population trajectories.

These attempts highlighted the reality that currently available data remain insufficient to
make broad inferences about recovery criteria across diverse species. Furthermore, in many
cases, what inferences one can make can hinge upon which pieces of data are available and for
what species. This means that the ‘lack of data’ problem constitutes the foremost hurdle to
cross-species inferences, and such inference are likely to always remain difficult and, even in the
best of circumstances, to hinge upon detailed statistical analysis. More importantly our results
are indicating that the application of the surrogate species concept for estimating recovery
criteria is fundamentally flawed even when data are more readily available. Given this vexing
problem concerning the lack of sufficient species-specific information, we adopted an
evolutionary perspective, and sought to use species’ shared evolutionary history to advantage in
filling in missing data. We implemented this method by focusing on one critical trait, the
maximum rate of population growth (also called “little r” or the intrinsic rate of population
increase, and denoted by r) . This species-level parameter describes a species’ capacity for
population growth. This measure can be calculated from a species’ biological traits, and sets an
upper limit on its performance in the face of external threats. Consequently, this measure is an
important trait for understanding a species’ conservation potential. As we researched this path,
we found that it was first necessary to develop, implement, and compare a series of statistical
approaches for estimating r and for characterizing the relationship between r and other traits,
such as body mass, and all of these efforts are described in Part 5. In Part 6, we present a method
for estimating little “r” based on phylogenetic relationships and show it is indeed possible use
this approach to make reasonable estimates for r when no species-specific data are available. We
end this report with a synthesis of our efforts and a roadmap for future work because the need for
developing tractable, yet defensible, species recovery criteria remains as important as ever.



3. PART 1: DATABASE DEVELOPMENT

3.1 - Background

We had three main goals in developing a suite of database resources. The first was to compile
the data necessary to do the analyses that were at the core of this project. The second was to
determine how much data were available for the types of cross-species analyses that we
proposed. Third, the data collected as part of this project will be made public so that others can
take advantage of these resources.

Throughout the course of this project, we have compiled information from several
sources and for targets. The first major part of this effort was to extract information directly
from all approved recovery plans for federally listed plants and animals. This information was
extracted and put into one database for plants (hereafter, RecoveryDB) and one database for
animals (hereafter, AnimalDB). The databases were kept separate because different types of
biological information are relevant for plants versus animals. In addition to the information
extracted from recovery plans, RecoveryDB also includes a list of peer-reviewed publications
prior to 2010 that have data relevant to the listed species (although the trait data themselves are
not in RecoveryDB). These publications did not necessarily contain trait information but rather
were gathered to understand what scientific information was available in the published literature.

We also sought to compile information on well-studied species which we defined as
those species having population viability, time series abundance data, or quantitative data on
demographic parameters related to population growth. For those species we also scoured the
literature for the same life history and other biological traits that we collected for the listed
species so that we could model minimum viable population estimates for these species with
biologically similar listed species.

3.2 - The Recovery Databases

We have developed two, separately implemented on-line resources for data coming from
approved recovery plans, one for plants (RecoveryDB) and one for animals (AnimalDB).
Although there are some differences in specific attributes, the structure and implementation of
both databases is largely the same. Therefore, we describe the basics of structure and database
implementation for both, but highlight differences for each throughout.

RecoveryDB and AnimalDB are PostgreSQL databases and the query interface structure
is implemented with PHP. The databases are served from a Linux-based server housed by the
Office of Information Technology for the Department of Plant Science and Landscape
Architecture. Both of these databases are available to be viewed online and access information
is given in Appendix 1. Several different classes of information were extracted from each
recovery plan, and the basic links between different types of data are shown in a conceptualized
schema in Fig. 1. Note that although the schema represents both plants and animals, the
databases are completely separate and implemented on separate Web pages (see below). The
databases organize information from two major types of sources. The first are the approved
recovery plans. Each species is represented in a table of species and that table is linked to tables
for the recovery plans and for attributes of each species. Species were organized in taxonomic
groups so information can be organized by taxonomic group if necessary. The table of attributes



Recovery Plans

Plan ID

Plan name

A list of plan-specific
fields (e.g., author,
when written, etc.)

Recovery Plan Link

References*

RefID

A list of reference-
specific fields (e.g.,
author, year
published, title,
source, etc.)

*note: for plants only

Reference Link

Plan ID Ref ID
Species ID Species ID
Attribute ID Attribute ID

Attribute table

Species table Attribute ID Attribute groups
Species groups Species ID Att. Group ID o—p Att. Group ID
Sp. Group ID o 5p. Group ID Attribute name Att. group name
Sp. Group name Species name (for list of (e.g., management,
(e.g., plant, bird, attribute names life-history, see Table
mammal) and their groups, 1 for list)

see Table 1)

Attribute tables*
Attribute ID
Species ID
Attribution data

*Note that there are actually three separate attribute tables because
there are three different types of attribute data: numeric, free text
(anything can be typed in), and restricted lists (attribute data can be
chosen from a restricted list). Forsimplicity, those different tables
and their structures are not shown here.

Figure 1. A conceptual database schema for RecoveryDB and AnimalDB. This schema does not
show all tables or internal structure in the functional database, but shows the different types of
information found within the database and how those data types are linked together.



that include data for each species to contain information extracted from each recovery plan was
developed. A total of 169 attributes were identified for plants and 243 for animals; with some
overlapping fields. For each recovery plan, information about each attribute was extracted and
entered into the attribute tables as available.

All plant TES with an approved recovery plan published as of January 1, 2010 were
included in the database regardless of whether they are located on DoD or DoE lands. For
quantitative abundance values, multiple observers collected data independently and these data
were then compared and reconciled to ensure quality control. Sometimes differences were due
to simple human error, but more often they were due to different interpretations on the part of the
two observers. Reconciling these abundances was an arduous process that involved extensive
effort. Additional quality checking of values was achieved through checking outliers during data
summary efforts. Qualitative data were quality controlled first through limiting the potential
entry to pre-established lists. Such lists limit errors due to typographical errors or subtle
differences in wording. Second we built in automatic dependencies for hierarchical relationships
such that if a lower level attribute was true for a species, all higher levels were automatically
true. Values of each attribute were also checked after entry for logical consistency across
species. Data proofing and quality checks are a major undertaking for a project this size and
efforts at error reduction and elimination are ongoing. All data used in analysis to date have
been cross-checked multiple times by 2-3 observers. Data were entered from all recovery plans
for available for the 812 plant and 1203 animal listed as recovery entities, hereafter referred to
generically as species. After data extraction was complete, not all attribute fields ended up being
used and there was a tremendous amount of variability in data availability from plan to plan.
Table 1 shows all the fields that had data entered into them, and how many species had data
entered for each field type. Note that attributes are grouped into general categories and some are
plant or animal-specific (Table 1).

Verifying the underlying quality of the data presented in the recovery plans was beyond
the scope of our data collection efforts. In particular, confirming or investigating cause and
effect relationships between identified threats and declines in each species was far outside the
scope of our project. We handled threats in two ways. First, we recorded the threats as
identified in the plans (e.g., development, agriculture, off-highway vehicle use, invasive species,
etc.) as well as the ultimate manifestation of those threats (reduction in numbers of individuals,
numbers of populations, or range extent). The basic threats as we first collected them were not
directly usable because they were not presented consistently in plans and for our purposes under
this project the ultimate manifestation were more relevant. Thus, all analyses to date have used
threats expressed as the ultimate manifestation.

Examples of inconsistencies are that one plan might list agriculture as a threat whereas
others might specify the type of agriculture; one plan might specify ‘transportation” (which could
include road construction or maintenance, railroads, shipping, etc.) whereas others might specify
the aspect of transportation (e.g county road maintenance). We are continuing to improve the
basic threat data by working with USFWS to apply a classification system they are adopting that
will allow us to put threats into a useful hierarchy and to separate out stressors from the
consequences of those stressors. We will ultimately explore the relationship between identified
threats and recovery strategies, but such exploration is beyond the analysis needed for this
project. Much of the continuing work on threats is being led by Dr. Judy Che-Castaldo through a
postdoctoral fellowship at the SocioEnvironmental Synthesis Center (see Conclusions).



3.2.1 - References from the peer-reviewed literature

A great deal of information has been culled from the peer-reviewed literature to compile
database resources for well-studied plants and animals that have been the focus of scientific
research (see Well-studied database section below). For plants, the references with data for each
of the 169 attribute fields were also compiled into a table and included in the RecoveryDB online
implementation (Fig. 1). This table allows users to query for which species have any of the 169
types of information published and for users to obtain a list of those references published up until
2010 that have information relevant to each of the fields.

For RecoveryDB itself, only references from the peer-reviewed literature were included
in these reference links. No information from abstracts, floras, manuals, field guides, or theses
were included. These reference sources were used, however for compilation of information for
well-studied species that did not have recovery plans.
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Table 1. Attribute fields for RecoveryDB and AnimalDB. Then number of fields

that have data entered for plants and animals are shown for each.

Plants Animals Plants Animals
ATTRIBUTES (812) (1203) ATTRIBUTES (812) (1203)
GROUP: ADMINISTRATIVE DATA SPECIES STATUS (cont.)
Listing Date 812 Number of Populations Introduced 642 140
Number of Populations Ex Situ (orin
Original Listing Status 812 captivity foranimals) 7 150
Current Listing Status 812 799 Range Compared with Historical 353
Number of Populations Compared
Reclassification Status 812 with Historical 555 171
Size of Populations Compared with
Taxonomic Level 711 Historical 394 100
Downlisting Date 7 Units of Historical Range 29
Delisting Date 12 Extent of Range Historically 12
Delisting Reason 13 Units of Current Range 71
Where Llisted 757 17 Extent of Range At Plan Writing 54
General Location 1196 Units of Occupied Habitat Historically 4
Distinct Population Segment 16 Units of Occupied Habitat 137
Lead Region 632 Extent of Habitat Historically 2
Numbers When Listed 686 Extent of Habitat At Plan Writing 81
Recovery Plans 665 Unit of Population Measure 205
Plan Status 668 Total Number of Units 196
Recovery Potential 655 Total Number of Units Historical 154
Minimum Number of Units in
Critical Habitat 30 6 Populations 41
Maximum Number of Units in
Special Rules 2 Populations 36
Reference Search Date 746 Number of Populations Natural 185
Land Ownership 658 GROUP: DELISTING CRITERIA
Federal Agency Jurisdiction 364 Delisting Potential
GROUP: MONITORING AND Reason for No Quantitative Delisting
BECOMMENDED STUDIES Criteria 640 11
Monitoring Types - All 607 Delist Minimum Number of Sites 1
Delist Minimum Number of
Recommended Studies 660 34 Populations new 1
Recommended Genetic Diversity
Markers 47 Delist Minimum Number of Sites 434
Recommended Systematics Markers 19 Site Distribution (delist) 430
Delist Minimum Number of
GROUP: SPECIES STATUS Populations 478
Total Number of Individuals Minimum Number of Individuals In a
Historically 4 Population For Delisting 328
Number of Individuals Known At
Listing 5 Total Acreage For Delisting 14
Total Number of Individuals At
Recovery Plan Writing 470 Population Estimate Type (delist) 15
Minimum Number of Individuals in
Populations At RecoveryPlan Writing 410 Population Characteristics (delist) 500
Maximum Number of Individuals in Delist Duration for Population Size
Populations At Plan Writing 391 (years) 361 95
Number of Populations Historical 411 92 Delisting Monitoring Type 108 29
Number of Populations In Listing Rule 19 Delist Monitoring Duration (years) 111 27
Number of Populations at Recovery
Plan Writing 593 Other Delisting Criteria 525 183
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Table 1. Attribute fields for RecoveryDB and AnimalDB (cont.)

Plants Animals Plants Animals
ATTRIBUTES (812) (1203) ATTRIBUTES (812) (1203)
DELISTING CRITERIA (cont.) GROUP: THREATS AND RECOVERY

Full Text Criteria for Delisting 5 Threats 660 531
Revised Criteria for Delisting 1 Recovery Strategies 636 532
Percent of Occupied Habitat for
Delisting 1 GROUP: RANGES AND DISTRIBUTIONS
Percent of Suitable Habitat for
Delisting 1 Floristic Provinces 6590 1
Acreage perPopulation (delist) 10 Geographic Distribution 204 10
Number of Sites at Delisting 1 Local Population Size 61 6
Number of Populations at Delisting 1 Habitat Specificity 74
Reason for No Quantitative Delisting
Criteria 11 Population Densityand Abundance 49 5
Unit of Population Measure (Recovery) 193 Area Occupied 5
Minimum Number of Units 115 Range Size 6
Site Distribution 118 Historic State Range 801 57
Minimum Number of Populations 110 Current State Range 756 55
Minimum Number of Units in a
Population 31 Jepson Floristic Regions 153
Mininum Number of Units Total 26 Physiographic Division 698
Population Estimate Type 4 Physiographic Province 696
Population Characteristics 118 Physiographic Section 650
Total Acreage 1 Mean Territory Size (ha) 1
Criteria Differ by Region? 1 Average Habitat Patch Size (ha) 4

GROUP: DOWNLISTING CRITERIA Maximum Habitat Patch Size (ha) 3
Reason for No Quantitative
Downlisting Criteria 58 9 Minimum Habitat Patch Size (ha) 3
Downlist Minimum Number of Sites Maximum Population Density
DELETE 415 117 (units /km2) 3
Downlist Minimum Number of Sites
new 1 GROUPS: SPECIES BIOLOGY (PLANTS)
Site Distribution (downlist) 408 107 Bloom Time 418
Downlist Minimum Number of
Populations 401 108 Life Form 714
Minimum Number of Units in a
Population 33 Duration 701
Mininum Number of Units Total 23 Duration Simple 648
Minimum Number of Individuals In a
Population For Downlisting 314 Growing Location 648
Minimum Number of Individuals Total
For Downlisting 320 Trophic Status 648
Downlist Duration for Population Size
(years) 327 85 Reproductive Mode 327
Population Estimate Type (downlist) 15 3 Reproductive Repetition 668
Population Characteristics (downlist) 445 101 Floral Sexuality 300
Downlisting Monitoring Type 113 28 Plant Sexuality 303
Downlist Monitoring Duration (years) 113 22 Mating System 177
Other Downlisting Criteria 482 118 SI Mode 131
Criteria for Downlisting 2 142 Pollination Vector 138
Percent of Habitat 1 Seed Dispersal Vector 97
Downlisting Potential 481 Ploidy level 39
Total Acreage 1 Chromosome Count (2n) 44
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Table 1. Attribute fields for RecoveryDB and AnimalDB (cont.)

Plants Animals Plants Animals
ATTRIBUTES (812) (1203) ATTRIBUTES (812) (1203)
GROUPS: SPECIES BIOLOGY (PLANTS) GROUP: TAXONOMIC UNCERTAINTY
Edaphic Substrate 403 Taxonomic Uncertainty Code 523
Soil Moisture 520 Known Taxonomic Uncertainty 522
Wetland Type 660 Of Hybrid Origin 418
Maximum Plant Height (m) 512 GROUP: ANIMAL BIOMETRICS
Maximum Leaf Length (cm) 444 Mean Body Length (cm) 19
Maximum Flower Size (cm) 337 Range Body Length (cm) 19
Maximum Inflorescence Size (cm) 193 Mean Body Mass (g) 12
Fruit Size (cm) 292 Range Body Mass (g) 19
Seed Size (mm) 135 Mean Tail Length (cm) 2
Minimum Elevation (m) 423 Range tail length (cm) 4
Maximum Elevation (m) 431 Mean Wing Chord (cm) 2
GROUP: SPECIES BIOLOGY (ANIMALS) Range wing chord (cm)

Major Mortality Sources 8 Mean wingspan (cm)
Mating Season 72 Range wing span (cm)
Percentage of Females Breeding -
Reporting Information 7 Sexual Dimorphism 50
Percentage of Females Breedingina
Season 12 GROUP: ANIMAL ECOLOGY/FOQOD
Sex Ratio Categorical 8 Competitor Species 1
Breeding Description 72 Daily Activity 1
Breeding Site 63 Food Description 172
Breeding Site Description 65 Foraging Behavior 455
Breeding Site Fidelity 27 Trophic Position 462
Breeding System 43 Diet Breadth 457

GROUP: HABITAT Food items 465
Habitat From Plan 667 547 GROUP: ANIMAL MOVEMENT
Microhabitat From Plan 202 486 Migratory Pattern 11
Habitat: During Migration 26 Overwintering Sites 4
Habitat: Non-Breeding 469 Mean Movement Distance (km) 2
Habitat: Roosting 73 Mean Dispersal Distance (km) 100
Habitat Specificity 61 Maximum Dispersal Distance (km) 2
Nest Microhabitat Structure 74 Maximum Elevation (m) 3

Minimum Elevation (m) 3

or dissertations, technical reports (including grey literature) or accession lists for herbaria,
botanic gardens or other repositories were included.

3.3 - Online search tool

A query tool was developed to allow users to search the RecoveryDB and AnimalDB for data

extracted from recovery plans. The database is accessible via a Web portal and currently

requires log-in access that must be granted by the database manager. The database is being

readied for public release.
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The Recovery Database was designed by Maile Neel and John Fuetsch. Programming was implemented by John using PHP and PostgreSGQL and data compilation and
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Figure 2. Home page for RecoveryDB.

The home pages for RecoveryDB and AnimalDB give access to all the features of the
database (home page for RecoveryDB shown in Fig. 2). There are three query tools that allow
users to access information based on species attributes (Species query), based on information in
the recovery plans (Recovery plan query), and (for plants only), reference search from the peer
reviewed literature (Reference query). Note that public users will not be able to see the “edit
database” tab (Fig. 2); this will only be available to users with administrative permissions.
Instructions on keeping the database updated are shown in Appendix 1.

All three query tools are similar in construction. We show the results of one query where
we searched the database for all plants whose minimum elevation is greater than 2000m. For
each plant that met those requirements, we asked to view minimum elevation (m), current listing
status, number of populations at recovery plan writing, maximum plant height (m) and minimum
leaf length (cm). Results for 10 species were returned into a table (upper part of Fig. 3) and the
query interface can be seen below (Fig. 3). There is also a query manager that allows users to
save queries that they use frequently (Fig. 2).

This data will be made accessible and the main value of the database will be to
researchers and agency personnel with broad questions about patterns in endangered species and
their recovery. One of the main groups that we have worked with to build a database useful for
agencies to be able to make better decisions is the USFWS. We have been in close contact with
them to ensure that the data are useful. We have regularly responded to their queries for
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Figure 3. Query results from RecoveryDB. Results are shown in a table that is viewed
online based on a query built in the query builder shown below.

information on recovery plans and they anticipate using the database for understanding the
nature of the content of recovery plans. We have also already provided data to other scientists
who have requested information for their research efforts.

3.4 - Database resources for data compiled from other resources.

One of the main resources that we compiled was databases on life history characteristics, one
each for birds and mammals. We collected data on 20 life history characteristics (Table 1b) from
several sources. Data were compiled from published sources including recovery plans, research
papers and verified scientific databases. Data from AnimalDB (see above) were verified against
the data source, typically a recovery plan. Additional sources were located through systematic
literature searches. Literature searches commonly used Web of Science and Google Scholar. In
some cases specific species were targeted for data collection through a broader web search
involving online databases, primarily Birds of North America and Animal Diversity Web.
Sources for each data point are included as an attribute for each record, so the source of all data
housed in these databases is known.
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We were able to find data on life-history characteristics for 1303 bird species and 1858
mammal species. The number of species that we were able to compile each type of attribute data

is shown in Table 1b. In
addition to the attribute data,
there was enriching information
for each data point such as how
the estimate was calculated,
whether the estimate was
specific to males/females,
adults/juveniles, the location of
the study site, whether the
population was wild or captive,
and also notes from the source
that seemed relevant.
The compilation of these data
was largely in support of the
work presented in Parts 5 and 6
of this report. However, life
history data are broadly useful
for answering many questions
because all relate to a species
ability to produce young and the
capacity for population growth.
These are critical factors when
considering a species’ survival
or recovery capacity. These data
are available for the public free
to download and access
information is listed in Appendix
1.

We also compiled a
database of well-studied plant

Table 1b. Attribute fields for life history databases

Life history attribute Birds Mammals
# Broods per Year 818 765
Age of First Reproduction 420 770
Age of Last Reproduction 19 191
Age of Maturity 47 142
Biomass (grams) 209 2849
Brood/litter interval 171 41
Brood Size 592 1492
Clutch Size 963

Incubation Period 167

lambda 122

Length of Breeding Season 170

Lifespan 51

Maximum lifespan 355 625
Mean Lifespan 53 89
Mortality Rate 15

Productivity 622

r 30 1154
Survivorship 17

Survivorship (adult) 142 142
Survivorship (juvenile) 44 142
Total 5727 8402

species that includes data from population matrices data for 287 plant species for which we
found published population matrices. We initially summarized data from these publications (see
Part 3). However, because the PVA and other population growth and trajectory values in these
publications were not calculated or presented in a consistent manner we went to the extra effort
of digitizing each matrix for each population for each species so that we were able to calculate
the same projection values for each species in a consistent manner. This effort resulted in
compilation of >6,000 individual matrices across species, years, and experimental treatments.
We have entered into a collaborative effort with the ComPADRe 11 group at the Max Planck
Institute to share data collection efforts and the matrices we collected will be housed in their
database in exchange for gaining access to additional data sets they have collected (which is
destined for public release; see Appendix 1 for access information). For each of these species we
also collected 43 of the same life history traits as were collected for the listed species. We
selected the life history traits that were most often represented in the listed species data set so
that we would have the largest possible sample sizes for comparison. We will continue to
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analyze these data, but their collection took much longer than anticipated is just coming to
completion.

Additional resources for well-studied animal species were compiled from a series of sources
including several proprietary databases we purchased or were able to use through Memoranda of
Understanding and other source that are already freely available online. We do not provide
access to these data in any or our databases to be made public. Here, we list each resource used
and give a brief description. We refer to these databases in the following analysis sections
whenever data from these sources were used and include web links whenever possible.

To use the data we pulled from these resources, users would need to contact these sources
directly (links provided below).

1. NatureServe -Bird and mammal trait (http://www.natureserve.org/)

2. Global Population Dynamics Database-Bird Population time-series data
(http://www3.imperial.ac.uk/cpb/databases/gpdd)

3. Fishbase-A database of fish traits and data (http://www.fishbase.org/home.htm)

4. Animal Diversity Web — an online database of animal natural history, distribution,
classification, and conservation biology (http://animaldiversity.ummz.umich.edu/)

5. Birds of North America — an online compilation of data and information on North
American birds (http://www.birds.cornell.edu/Page.aspx?pid=1478)

6. Max Planck Database of Longevity Records - Online book and data tables containing the
highest documented ages for over 3,000 vertebrate species/subspecies.
(http://www.demogr.mpg.de/cgi-bin/longevityrecords/entry.plx)

The following two resources are not public:

1. Bird life history traits compiled by Cagan Sekercioglu (used via MOU)
2. ISIS/WAZA International and Regional Studbooks -Survivorship data for captive
animals that are compiled by zoos and research facilities. (Isis/Waza 2004)

Finally, as part of our work modeling population growth potential (see Parts 5 and 6), we
compiled databases of life-history traits for both mammals and birds. Links to download the data
and for descriptions can be found in Appendix 1.

3.5 - Summary

We have compiled data from 288 recovery plans for 642 plants and ~400 plans for 528 animals.
In addition, we have compiled data from several resources including the published literature and
have made those resources available as well (see Appendix 1). These data, along with data
culled from multiple proprietary databases (see above) were used to carry out the series of
analyses that are described in the following sections. Throughout these analyses sections, we
will refer back to the resources described in this section.
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4. PART 2: UNDERSTANDING RECOVERY CRITERIA
4.1 - Background

To understand the basis for developing recovery criteria, we performed several analyses on
RecoveryDB and AnimalDB. For all the below analyses, we focus on “recovery entities” which
under the ESA can include species and subspecies of all plants and animals, distinct populations
segments of vertebrates, and varieties of plants (all listable entities under the Act). We use the
entity described in each recovery plan as our unit of analysis. Our recovery entities largely
correspond to those provided by the National Marine Fisheries Service (NMFS) and the
Threatened and Endangered Species Database System (TESS). However, we treated a species as
more than one recovery entity if it was treated as such during the recovery planning process,
despite how it was treated in TESS or by NMFS. For example, the agencies treat the loggerhead
sea turtle (Caretta caretta) as a single entity. However, there are separate recovery plans with
different objectives for the species in the Atlantic and Pacific. In another example, the FWS
treats Achatinella snails in Hawaii as a single listing unit. However, the Federal Register listing
rule (FWS 1981) covers 41 species of Achatinella, and the recovery plan for the genus includes
separate range maps and historic and extant locality information for each species. We therefore
would treat the genus Achatinella as 41 recovery entities. Simply crosswalking between listed
entities, TESS, and recovery units proved to be a monumental task.

To determine broad patterns within recovery plans, we used data from the Recovery
Database to answer the following questions: 1) What patterns of decline are evident in TES
species with recovery plans, 2) How is recovery defined and 3) How are recovery criteria
determined? These analyses draw extensively from the Recovery databases (see Part 1) that
were populated with information for recovery plans up to 01/01/2010. However, individual
analyses will only have used data available at the time the analysis was performed. Therefore,
for each analysis, we will specify the date to which complete recovery plan data had been
compiled.

4.2 - Patterns of decline described within recovery plans

Species listed as threatened and endangered under the U.S. Endangered Species Act have high
probabilities of extinction (Wilcove et al. 1993). The type of decline, including declines in
geographic range, number of populations, and overall abundance, may vary considerably among
species. Extinction can result from any single type of decline, but at some point along the
trajectory to extinction all types occur simultaneously. At early and intermediate stages of
decline, however, understanding the nature of decline may help halt or reverse decline (Neel
2008). In studies of threatened and endangered species in the United States, taxonomic
composition, geographic distribution, and threats have been examined (Dobson et al. 1997;
Flather et al. 1994, 1998; Rutledge et al. 2001; Wilcove et al. 1998). Building on these efforts,
we conducted the first comprehensive analysis of ways in which species listed as threatened or
endangered under the ESA are declining.

We defined three different ways that a population can decline. Its overall abundance can
go down (abundance), the number of populations can decrease even if the overall range size
remains the same (humber of populations) or the range of the species can contract (range
contractions). The types of declines associated with a particular species are usually a function of
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intrinsic species’ traits, extrinsic threats, and their interaction. Biological traits (e.g., body size,
longevity, range size) generally are more similar within than among taxonomic groups (e.g.,
birds, insects, plants), which is thought to result in similar vulnerabilities within a taxonomic
group to extinction from particular threats. For example, many mammals and birds occupy
relatively large areas and have low-density populations. Reductions in the overall abundance of
such wide-ranging species may result in range contractions without extirpations. In contrast,
threatened and endangered plants and invertebrates are often endemic to small areas and have
discrete high-density populations. Such populations can be more easily extirpated, but unless a
population is in the periphery of the species’ range, the overall range of the species is not
reduced during the initial phases of decline. Range size and population density can then interact
with extrinsic threats, which in turn are often clustered geographically (Flather et al. 1994, 1998).
For example, in parts of the western United States, many threats to species may be related to
changes in disturbance regimes caused by grazing by domestic livestock and water diversions
(Flather et al. 1998). Such threats could result in declines in abundance without causing
extirpations or range reductions.

Understanding the patterns of species declines can help guide recovery efforts through
guiding specification of objective measurable criteria, such as the number or size of populations,
extent of habitat or range, and the spatial arrangement of populations (Gerber and Hatch 2002;
Tear et al. 1995; Wilcove et al. 1993). We argue that understanding the nature of declines for
specific species can help ensure that these recovery objectives are appropriate. We evaluated
the qualitative type of decline for species listed under the ESA and examined the proportion of
species that declined in range, number of populations, and overall abundance and through a
combination of these types of decline. We then examined how the prevalence of these types of
decline varied among 3 broad taxonomic groups (invertebrates, vertebrates, and plants) and 11
more finely resolved taxonomic groups. Additionally, we examined the association between
patterns of decline and geography.

The work described here was published in Leidner and Neel 2011 (See Appendix 2).

4.2.1 - Methods

Here we assessed the ways in which terrestrial species that are listed as threatened or endangered
declined. Decline was quantified either through population size, range, or number of
populations. We focused on “recovery entities” and collected data from all recovery plans
approved as of 31 December, 20009.

From each recovery plan, we scored each species as to whether the domestic range,
number of populations or abundance was the same or smaller at the time the recovery plan was
written relative to historic levels. We defined “historic” status as its extent, distribution, and
abundance prior to human activities (however defined) or occurrence of natural phenomena that
reduced the entity’s probability of persistence to the point that the listing process was initiated.
Information was only taken from recovery plans and not from any supporting documents or
literature cited within the plans. Improvements in status due to recovery actions were not
considered.

In scoring recovery entities for declines, we collected qualitative data only if it was
explicitly stated that ranges, abundances or number of populations was smaller than at historic
times, otherwise, data were recorded as “not specified”. Therefore, recovery entities were scored
into one or more of the following groups:
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e (Geographic range decline: Geographic range considered range of occurrence not area
within the range (so if it just said the “distribution” declined, range contraction was not
assumed)

e Decline in number of populations: We followed each recovery plan’s definition of
population for our assessment of population decline

e Decline in overall abundance: Abundance was defined as the overall number of
individuals

e Not specified

Whether qualitative or quantitative data were presented for declines was also scored for each
type of decline and data were only considered quantitative if both current (at time of recovery
plan writing) and historic numbers were provided, otherwise data were considered qualitative.
Recovery entities were then aggregated into 11 taxonomic groups and further into three
categories (vertebrates, invertebrates, plants). Differences among groups were tested with
contingency tables. State level data from recovery plans, as well as the FWS, NMFS, and TESS
website were used to delineate the geographic extent. We calculated the proportion of recovery
entities within a state or equivalent for which ranges had contracted or populations were
extirpated (although the decline could be anywhere in its range).

4.2.2 - Results and Discussion

We reviewed 599 recovery plans that included 1164 recovery entities. Table 2 shows for each
major taxonomic group, how many entities were analyzed and how many had qualitative data for
reductions in range, population number or abundance. Not surprisingly, qualitative data showed
all three types of declines for most recovery entities (Table 2). The pervasiveness of declines in
range, number of populations, and abundance are to be expected for imperiled species.

However, the patterns of decline, and the associations with taxonomy and geography, can inform
recovery planning. While most plans (97%) had qualitative data for at least one type of decline,
only four percent of recovery plans (n=42) had quantitative data on both the historic and current
range size of recovery entities and 2% of recovery plans (n=28) had data on abundances. For
approximately half the recovery entities (49%, n=566), the number of historic and current
populations was available. Of the recovery entities with qualitative data available, a
considerable majority had declined in abundance (99%), range size (77%), and number of
populations (79%) (Table 2).

The 10 taxonomic groups differed significantly in the proportion of recovery entities with
declines in range and extirpations with invertebrates having slightly higher rates of decline in
both range and population (Fig. 4). Most species that declined in range also declined in number
of populations (74%) whereas a surprising 17% showed no evidence of decline and the
remaining recovery entities were reduced in one or the other (Table 3). About 14% of
vertebrates had range contractions without extirpations. For several taxa (e.g., crustaceans,
amphibians, and reptiles), the expected values for an individual cell were <5; thus, significant
values should be interpreted with caution.

For the 3 taxonomic categories of recovery entities, geographic patterns of range
contractions and extirpations were somewhat correlated (Fig. 5). Overall, recovery entities in the
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Invertebrates had a , . . . . .

. Figure 4. Proportion of population declines by taxonomic group. Proportion of
high prevalence of o . ) e . )

. recovery entities (species, subspecies, and distinct population segments for which final
ran_ge cqntractlons and recovery plans have been approved) are significantly different (p<0.001 based on X?
extirpations regardless analysis) for both range contractions and population extirpations among all taxa and
of their location. among broad taxonomic groups (vertebrates, invertebrates and plants). Sample sizes are
The general in Table 1 and arachnids were excluded from all analyses due to small sample sizes.

geographic patterns of

declines in range and number of populations reflect in part the geographic clustering of
taxonomic groups (Fig. 5). For example, populations of invertebrates have been extirpated
throughout the United States, but there are more listed invertebrates in states east of the

Table 3. Decline pattern by taxonomic group. Results of contingency table analysis of
combinations of range contractions and population extirpations, within each taxonomic group,
for cases in which the status of both types of decline were known.

Range Range Range Range
reduce_d, reducecl,. same, same, dr xz P

population no population population  no population

extirpations extirpations extirpations extirpations
Vertebrate 118 25 6 34 1 62.17 < 0.001
Amphibian 5 0 2 5 1 3.54 0.06
Bird 35 10 0 8 1 15.02 <0.001
Fish 56 6 2 11 1 30.29 < 0.001
Mammal 19 6 1 1 1 0.00 0.98
Reptile 3 3 1 9 1 1.42 0.23
Invertebrate 123 1 1 16 1 114.13 < 0.001
Arachnid 1 0 0 0 -- -- --
Clam 51 0 0 0 -- -- --
Crustacean 3 0 1 5 1 2.76 0.10
Insect 19 0 0 3 1 14.33 <0.001
Snail 49 1 0 8 1 14.33 =< (0.001
Plant 346 3 37 83 1 273.69 < 0.001
All recovery entities 587 29 44 133 1 41528 < 0.001
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Mississippi River and south of New York. When all recovery entities are combined, declines of
invertebrates offset the lower rates of decline of vertebrates in this region. Even within broad
taxonomic groups, geographic patterns may be driven by the different numbers of certain taxa
across regions. Range and population declines were more prevalent among vertebrates in the
southwest, particularly in Arizona and New Mexico, than in other regions. These states have
proportionally fewer endangered amphibians and reptiles, so the patterns are driven by declines
of birds, mammals, and fishes.

Within taxonomic groups, patterns of decline may be driven by geographic patterns of
threats. A lower proportion of plants in the western United States, especially the southwest, had
range contractions and extirpations than plants in the east and in California. Threats in this
region, such as water diversion and grazing by domestic livestock (Flather et al. 1998), are more
likely to reduce habitat quality than cause habitat loss, perhaps limiting extirpations. Habitat loss
and fragmentation due to land conversion, threats prevalent in the eastern United States and
coastal areas (Flather et al. 1998), can be directly linked to extirpations and could also contribute
to range contractions.

The high percentage of recovery entities for which extirpations and reductions in overall
abundance have been documented suggests that the common use of downlisting and delisting
criteria expressed in terms of the number and size of populations (Wilcove et al. 1993; Tear et al.
1995; Gerber and Hatch 2002; M.C.N., unpublished data) is biologically warranted. Yet, despite
the frequency of range contractions, recovery objectives rarely address range contractions
directly. Quantitative downlisting or delisting recovery criteria have been set as the occupied
proportion of the species’ historic geographic range for 10 of the 1164 recovery entities (M.C.N.,
unpublished data). This mismatch may reflect the lack of quantitative data on range declines and
land-use changes. However, range is often incorporated qualitatively into recovery plans
through recovery criteria that call for species to be maintained throughout their geographic
distribution or stipulate that a certain number of populations be maintained in different
geographic regions. Furthermore, for the 25 recovery entities that had range declines without
extirpations (primarily vertebrates, Table 3), recovery criteria targeting increases in population
size may indirectly promote range expansions. Nevertheless, a more direct quantitative criterion
associated with range in recovery criteria might be useful for some species.

Conservation biologists frequently lament the lack of quantitative data for imperiled
species that can be used to formulate recovery objectives and limited use of such data when they
are available (Tear et al. 1995); Schemske et al. 1994; Morris et al. 2002; Schwartz 2008). Yet
qualitative data on declines can focus recovery actions and priorities for future collection of
quantitative data. For example, distances among some populations increase for species that have
lost populations but still occupy the historical extent of their range. If research suggests these
increased distances have affected dispersal and gene flow, recovery actions aimed at restoring
connectivity may improve the species’ status. In contrast, the status of species that have declined
in range may be most improved by restoring the species to areas within its historic range in
which habitat is still present and that extend the environmental gradients occupied by the species.
Ultimately, our results suggest that qualitative data can contribute substantially to informing
species recovery efforts.
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4.3 - How is recovery defined in recovery plans?

Recent legal challenges to Department of the Interior decisions delisting species as recovered
have refocused attention on a fundamental question regarding the ESA: what is a recovered
species? The drafters of the Act, unfortunately, provided only limited guidance on this question
(Goble 2009). The purpose of the ESA is to ‘conserve’ endangered and threatened species and
the ecosystems upon which they depend. Conservation is achieved when the measures the
statute provides are no longer necessary to prevent extinction. Thus, a species is recovered when
it is neither “in danger of extinction throughout all or a significant portion of its range” nor likely
to become so “within the foreseeable future”. Recovery requires both that a species be
sufficiently abundant and that continuing threats are managed or eliminated for the species to
persist as part of its natural ecosystem without the provisions of the Act, and that removing the
Act’s protection does not trigger recurrence of the species’ decline (Goble 2009).

How recovery is defined is critical because how criteria are defined has a profound influence
on whether those criteria can ever be reached. To explore the issue of how recovery goals are
defined and the implication of those definitions, we asked the following six questions:

1. What percentage of listed species with recovery plans is considered by the agencies to
have potential to be delisted?

2. What quantitative abundance criteria are used to measure recovery?

3. What percentage of species with potential for delisting has quantitative objectives for
delisting?

4. How do abundances required for delisting compare to abundances historically, at listing,
at recovery plan writing, to objectives from previous reviews of listed species (Schemske
etal. 1994; Tear et al. 1993, 1995), and to the benchmarks suggested in the literature and
to quantitative criteria in the IUCN Red List (IUCN, 2001)?

5. How do abundances for delisted species compare to these same values?

6. Do abundances required for recovery differ between threatened and endangered species?

This work was part of a collaborative effort with Mike Scott, Dale Goble and Aaron Haines as
part of their SERDP-sponsored work on species recovery planning (RC-1477). The work
described below is published in Neel et al. 2012 (see Appendix 2). A related project, also in
collaboration with Mike Scott’s group, examined the question of species that are unlikely to ever
be able to recover (Scott et al. 2010, see Appendix 2) and are therefore likely to be reliant on
continued conservation efforts in perpetuity. We report on those findings at the end of this
section.

4.3.1 - Methods

We focused on the 1320 domestic recovery entities listed by USFWS as of 31Dec2009. Prior to
this date, an additional 25 species had been listed, but then delisted (so no longer included in the
tally). Not all listed or delisted species had recovery plans so we worked from 1173 recovery
plans focused on different recovery entities as well as final listing and delisting documents
published in the Federal Register. Note that we focused on reaching abundance goals because
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threat abatement is not a specific goal or usually part of the recovery criteria, so are not
rigorously addressed in recovery plans. To answer the above questions, we gathered for each
species the following information:

e Species potential for delisting (possible, not possible, may not be possible, not addressed)

e Where available, data for individual abundance, number of populations, range at five
points in the endangerment to recovery process: historically, at listing, at plan writing,
required for delisting, and at delisting (missing or excluded where not available or too
vague).

e Range size was defined as the geographic extent of the species and amount of habitat as
the area of suitable environment within its range.

e When a range of values was given, we chose the lowest number for recovery objectives
and the highest for historic and current abundances

e For each species, we determined the IUCN (2001) categories into which each species
would fall, given the numbers of populations and individuals specified for recovery:
critically endangered (1 location or <50 individuals), endangered (2-5 locations or 50-250
individuals), vulnerable (6-10 locations or 251-1000 individuals) secure (more than 10
locations or >1000 individuals). These categories were also influenced by rapid declines
or highly fragmented populations.

e We determined if prognosis for listed species had changed since previous reviews by
comparing species with plans completed through the end of 1992 (n=256) with those
completed between 1993 and 2009 (n=817).

For analysis, we used a series of parametric and non-parametric association tests as well as log-
likelihood ratio tests to determine differences in patterns between threatened and endangered
species and also before and after 1992. All statistical tests were conducted using R (Version
2.11.1; R Development Core Team).

4.3.2 - Results and Discussion

Delisting was considered possible for 74% of all 1,173 species (69% of the 942 species listed as
endangered and 92% of 231 species listed as threatened). Of the 863 species for which delisting
was deemed possible, more than 90% had at least one quantitative recovery objective related to
abundance or distribution. Number of populations required for delisting was specified for 86%
and number of individuals was specified for 55% of species with quantitative objectives; 50%
(391) of species with quantitative objectives had both values. Amount of habitat was a
quantitative recovery objective for 7% of species with such objectives and amount of range was
an objective for 1%. Recovery objectives were stated in terms of probability of persistence for a
specified amount of time for 27 species (2.3%); most of these plans, however, also stated that
abundances required to achieve these probabilities were unknown. Due to the paucity of
quantitative information for on targets for range size or habitat amount, we further analyzed only
population and individual abundance.

Requirements for delisting relative to historical, at listing and at plan-writing phases are
shown broken down by Threatened or Endangered status for populations (Fig. 6a) and number of
individuals (Fig. 6b). These results show that most recovery plans list recovery targets that are
on par with historical levels and higher than current levels especially for populations (Fig. 6a),
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during the listing process by listing status. Median levels and generally exceed levels
numbers of a) populations and b) individuals at listing and plan-writing. Note
historically, at listing, at recovery plan writing and that frequencies are displayed for
required for delisting. all species with and without 264

Hawaiian plant species since all
species had the same targets
regardless of their history, biology, or threats (Fig. 8).

Although rare, delisting has already occurred and it was useful to compare the targets and
achievements for those species. As of December, 2009, 20 species with recovery plans had been
delisted as recovered; 5 others were delisted as recovered prior to plan approval. While the
number of populations required for delisting was stated in recovery plans for 9 of the 20 species,
only four provided population data at delisting. We could not compare the numbers of
populations at delisting for 13 of the remaining species because population definitions in listing
and recovery documents did not match those in the delisting document or because the numbers
were unclear. The number of individuals required for delisting was provided for 13 of the
delisted species, twelve of which also had the numbers of individuals actually at delisting. In all
12 cases, the number of individuals at delisting exceeded the recovery plan objective by absolute
magnitudes of 36 to 29,607 individuals, representing percentage increases of 0.1%-11.1%
(M=1.1%) and thus were relatively close to the numeric objectives.
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before and after our cutoff time.
Further, a significantly higher
percentage of species were ranked by
the IUCN as critically endangered
(14.5%) or endangered (39.1%) on the
basis of recovery objectives in pre vs.
post 1992 plans (6.6% and 16.9%
respectively; p<0.001).

We found a number of key 1
improvements in recovery potential Historical  Listing  Plan Writing Delisting
that make us hopeful for the future for
species listed under the ESA. In
comparison to <1992 plans, a larger
proportion of species in later plans
have the potential to be delisted, more
have at least one quantitative recovery
criterion, the overall numbers of populations and individuals required for recovery would
increase, and these numbers would exceed the numbers when the recovery plan was written for
more species. The objectives for populations and individuals for species with plans completed
after 1992 would translate to a reduction in the number of rankings in the highest IUCN risk
category. In other ways, however, little has changed since the prior reviews. Apparent
improvements in the potential for delisting are accompanied by such great uncertainty that the
USFWS states that delisting may not be possible for many species, despite a recovery plan’s
implementation. Delisting objectives for abundance remain on the lower end of the continuum of
viability, with 68%—91% falling below published thresholds for the minimum numbers of
individuals. In addition, 144 species could be considered recovered with even fewer populations
than existed when the recovery plan was written; 51 species could decline in their numbers of
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Figure 7. Population levels at different times during
the listing process by taxonomic group. Median numbers
of a) populations and b) individuals historically, at listing,
at recovery plan writing and required for delisting.
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shown based on different population criteria (in various panels) and with and
without Hawaiian plants.

29



individuals. (IUCN 2001) rankings of secure for 81% of the species based on the number of
individuals indicate that the objectives might be sufficient to prevent immediate extinction, but a
comparison with other thresholds indicates that longer-term viability and evolutionary capacity
are likely to be compromised, even when ongoing deterministic threats are not included in the
analysis. The numbers of populations yield even less-optimistic IUCN rankings, with 81% of the
species having recovery objectives that leave them vulnerable, endangered, or critically
endangered.

We do not see this as a failure of the ESA itself. There are still such severe barriers to
recovery that the agencies consider delisting to be possible for only 74% of listed species and
this percentage has not improved since earlier reviews. The two primary obstacles found in the
previous studies remain. The first is that data deficiencies noted by Tear and colleagues in 1993
still preclude rigorous assessment of extinction risk and establishment recovery objectives. The
second obstacle that remains relatively unchanged since earlier reviews (Wilcove et al. 1993) is
that species are not listed until their abundances are too low for a high likelihood of eventual
recovery (Fig. 6). These low abundances alone make measuring success of the ESA solely in
terms of delisting more fallacious than ever. When ongoing declines that are allowed after
listing are considered, simply slowing extinction rates and improving status of listed species are
significant accomplishments that provide evidence that the ESA is working to some degree
(Schwartz 2008). Our findings that threatened species had more individuals at listing and
recovery plan writing (Fig. 6) and that the USFWS considers delisting possible for ~33% more
threatened than endangered species indicates that the 79% of species listed as endangered are far
too close to extinction by the time they are listed to have high potential for recovery even if
threats are controlled.

A second key finding is that when recovery is possible, delisting objectives for
abundance are generally on the lower end of the continuum of viability that ranges from
minimally (Shaffer 1981), to ecologically and commercially (Peery et al. 2003; Sanderson 2006),
and to evolutionarily viable (Lynch and Lande 1998; Soulé and Wilcox 1980), a point also made
in previous assessments (Tear et al. 1993, 1995). In addition to generally low abundances, we
found that ~250 species could be considered recovered with further declines in numbers of
populations relative to what existed when the recovery plan was written; 51 species could decline
in number of individuals. Listed species are at particular risk because abundances and
distributions have been reduced by anthropogenic activities (Fig. 6); they are not simply species
that have also persisted under conditions of natural long-term rarity. Thus, although original
abundances and degrees to which species have declined vary dramatically (Fig. 6), aspects of
both the small population and declining population paradigms (Caughley 1994) are relevant
when planning for recovery.

Despite clear theory for general risks of small and declining populations, there is little
scientific guidance on exactly how many individuals and populations are sufficient for recovery
(Neel 2008; Neel and Cummings 2003; Sanderson 2006; Svancara et al. 2005; Tear et al. 2005),
and no specific population size or number of populations is appropriate across all taxa (Flather et
al. 2011). Uncertainty arises in part due to vague terminology in the Act. Additional uncertainty
arises because extinction risk involves interactions between intrinsic and extrinsic factors (Lee
and Jetz 2011), particularly the threat context in which species are embedded, can result in
different extinction risks even with the same abundance (Isaac and Cowlishaw 2004). Explicitly
linking recovery objectives based on abundance with threat mitigation is necessary because
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recovery is a question of more than numbers. Thus, the abundances are objective, measurable
criteria by which a species’ improved status resulting from threat abatement can be measured.

Nonetheless, because extinction risk is reduced if individual and population abundances
are higher and reducing or eliminating threats as part of recovery objectives would stop or
reverse declines in abundance, it is logical to expect most species to be no less abundant than
they were at listing or at plan writing, points at which they were considered to be at immediate
risk of extinction. Previous investigations documented widespread failure to meet these
expectations and as described below, we find only marginal improvements since the last reviews
of recovery plans.

Prospects are further dimmed by the fact that recovery objectives for the vast majority of
species fall below suggested minimum viable population size guidelines. Seventy-three percent
of the 89 vertebrates with data were below values Reed and colleagues (2003) consider sufficient
(7,360 individuals) and 68% were below the 5,244 suggested by Traill and colleagues (Traill et
al. 2007). Plant species fared even worse, with 90% of 324 species having objectives below the
suggested minimum of 15,992 individuals (Traill et al. 2007). Three hundred sixty-three species
of all taxa could be delisted with 10,000 or fewer individuals, the effective population size that is
considered necessary to ensure long term evolutionary capacity (Lynch and Lande 1998) and
effective sizes are typically only a small fraction of census size (Frankham 2007). Thus,
although abundance objectives for >80% of the species with quantitative objectives might be
sufficient to prevent immediate extinction according to the IUCN criteria, objectives for 85% of
species are still too low to ensure long-term viability and evolutionary capacity even without
considering ongoing deterministic threats

It is possible that at least some of the variation in numeric recovery objectives makes
biological sense. For example, most of the largest percentage increases in numbers of
individuals (Fig. 8) are species that had <10 individuals in the wild at listing, thus the large
percentages still resulted in abundances below viable population thresholds at delisting yielding
great risk even if extrinsic threats were abated. Certainly starting from extremely low
abundances will limit the potential for growth. It is important to understand how a change in
numbers of individuals or populations translates into a change in extinction risk given a species’
biology and the threat context in which it is situated. Although the IUCN criteria and evaluation
process (IUCN 2001) have contributed greatly in this area, there is still no way to make these
links directly or consistently. Determining incremental changes in risk as a function of threat
abatement is particularly difficult and to date has not been attempted in recovery plans. Even the
general logic for requiring particular abundance values and links between these abundances and
reduction of particular threats is not clearly articulated in most plans.

Our third finding is that abundance-related recovery objectives are far more frequently
specified as the number of populations and individuals than as amount of habitat or range;
probabilistic assessments of persistence over time are nearly non-existent (~3% of species).
Focus on populations and individuals could be interpreted as a bias towards species-level
demographics and away from conserving “the ecosystems upon which [listed] species depend”
or from assessing the significance of the portion of the range in which a species is threatened or
endangered. On the other hand, these demographic measures are the most basic quantities
necessary for understanding population trajectories and probabilities of persistence and even they
are lacking for many species. Recovery plans qualitatively incorporate conservation of habitat
and range by specifying that populations selected for conservation represent the ecological and
geographic range of species or be distributed in different management areas (i.e., geographic
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areas). In addition, recovery strategies commonly specify habitat protection and management
actions that are required to meet the demographic objectives. Although it was not possible to
quantify such statements and strategies as a specific amount of habitat or range, they may serve
to conserve ecosystems on which species depend and thus meet the intent of the ESA.
Establishing objective and measurable criteria for habitat and range would improve the
likelihood of such conservation and increase the potential that species will be maintained at
levels sufficient for ecological functioning and adaptation to future environmental conditions that
are essential for long-term prevention of extinction.

In summary, our findings suggest that recovery objectives for many species are too low
to save ensure long-term persistence. Population sizes and numbers of most species are lower
than levels suggested in the literature to be ecologically viable or to maintain the evolutionary
potential of a species (Sanderson 2006). These abundances may prevent extinction only in the
short-term but are unlikely to leave species ‘not in need of the provisions of the Act’. We are
particularly concerned with the number of species that would continue to decline in abundance
on the way to ‘recovery’ because such declines result in requiring extensive management to
maintain species in context of their natural ecosystems (see below). It is possible that for a few
species removing threats alone will reduce extinction risk to a level sufficient for delisting even
with no increase in abundance or distribution. For most species, however, abundances and
distributions above listing levels will be required to prevent the need for re-listing. Substantial
advances in practical understanding of links between demography, species’ biology, and
anthropogenic threats are necessary to improve the recovery process. Even without this
understanding, recovery plans would be improved through clearer articulation of the logic for
choosing particular abundances and relationships between those abundances and threats.

4.3.3 - Conservation-reliant species

In the United States, the Endangered Species Act requires that the decision to list or delist a
species be based on findings on the risk the species faces from a statutory list of five threat
categories: habitat loss, overutilization, disease or predation, inadequate regulatory mechanisms,
and any other reason (ESA sec. 4(a)(1)(A)-(E)). The key to success under the Act, therefore, is
eliminating the threat(s) that led to a species’ imperilment. If these threats cannot be eliminated,
continued management will be required and this management will require “existing regulatory
mechanisms” to ensure that it continues for the foreseeable future. For example, although the
population recovery goals for Kirtland’s warbler (Dendroica kirtlandii) have been met since
2001, the species has not been delisted because its maintenance requires continuing and intensive
management (timber stand management and control of brown-headed cowbirds, Molothrus ater)
(Bocetti et al. 2012). Without such management, the species would once again become
imperiled. We have previously labeled such species “conservation reliant” because they will
require some form of conservation management for the foreseeable future (Scott et al. 2010).
Conservation reliance is a continuum encompassing different degrees of management. It
extends from species that occur only in captivity, through those that are maintained in the wild
by releases from captive-breeding programs and those that require continuous control of
predators or human disturbance, to species needing only periodic habitat management. Although
the intensity and frequency of management actions required varies among species at different
points on this continuum, the common characteristic is that some form of management will be
required, even after the biological recovery goals for a species have been achieved or exceeded,
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to prevent it from sliding back toward extinction (Scott et al. 2005). The ESA does not
recognize distinctions among species at different points on this conservation-reliance continuum;
species are either listed (as threatened or endangered) or not. If only a few of the species
currently listed under the U.S. Act are conservation reliant, then the challenge is manageable.
But if conservation reliance is widespread, the task for conservation managers would be
overwhelming. Working with Michael J. Scott’s group exploring recovery goals (RC-1477), we
explored the issue of “conservation reliant” species and attempted to quantify how many species
meet that definition. The work described here is published in Scott et al. 2010 (See Appendix 2).

To evaluate the magnitude of the problem, we evaluated information taken from recovery
plans. All final recovery plans published as of 12/31/2007 and included 495 animals (196
invertebrates, 299 vertebrates) and 641 plants. Species were categorized as “conservation
reliant” if the conservation management actions identified ongoing management needs because
the plan addressed threats that could not be eliminated This exists along a spectrum from
passive action (erecting a fence to protect habitat, and that’s it) to activities to educate people to
protect or leave alone certain species or fencing areas that require continued maintenance (e.g.,
burning, cowbird control), supplementing resources, artificial recruitment. Species with lack of
information problems were not

assumed to be conservation Table 4. Summary of conservation-reliant status.

reliant if the main current need Percentage of species for each conservation-management

was more research. strategy (a) and conservation-management species with one or
Management actions more conservation-management strategy (b).

were grouped into five

categories: 1) control of other a) All

species, 2) control of pollutants, Vertebrates Invertebrates Plants species

3) habitat management, 4) Control of other 64% 54% 7% 66%

control of use of species or species

human access, and 5) population  active habitat 62% 3% 5% 51%

augmentation. Each species was management

categorized as to how many Control of direct 49% 23% 35% 36%

management categories (1-5) it human impacts

required and which ones. Chi- Artificial 23% 62% 29% 42%

square goodness-of-fit tests were recruitment

used to |dent|fy differences Pollution control 12% 19% <1% 7%

among groups. All strategies 81% 84% 85% 84%
Despite the finding b)

above that 74% of species were

capable of recovery, when Nurnber of

looking at the issue through a conservation-

different lens, we found that management All

84% of species (951 of 1136) strategies Vertebrates Invertebrates Plants species

are actually likely to be 1 Strategy 333 20% 38% 35%

conservation reliant. The 2 Strategies 20% 56% 35% 37%

proportion of conservation 3 Strategies 24% 10% 18% 18%

reliant species did not differ 4 Strategies 1% 4% 0% 9%

based on any taxonomic 5 Strategies 2% 1% 0% 1%

grouping
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Management required (Table 4a):
e Most common: control of other species, active habitat management, artificial recruitment
e Management strategy needed did vary by taxonomic group:
0 Habitat management most often needed for vertebrates and plants
o Artificial recruitment and pollution control most often needed for invertebrates
0 Most species (65%) listed multiple needs (summarized in Table 4b)
Needless to say this presents an overwhelming issue for management agencies and changes the
paradigm of what can be expected even after recovery goals are achieved for most species. As
more imperiled species receive protected status, the needs are going to grow and require
substantial funding and partnerships.

4.4 - How do biological traits and prior abundances relate to recovery goals?

The primary goal of the ESA is to recover species such that they are no longer in danger of
extinction (endangered) or at risk of becoming endangered in the foreseeable future (threatened).
Measurable criteria (e.g., threshold numbers of populations or individuals that would indicate
species recovery and allow delisting) have been required since passage of a 1988 amendment to
the ESA (section 4[f]1]). This requirement is generally considered positive because with
measurable criteria are more likely to show improved status than species without such criteria
(Gerber and Hatch 2002). However, criteria that have been set have been variously criticized as
being too low (Tear et al. 1995; Neel et al. 2012), not based on biological characteristics
(Elphick et al. 2001), or simply based on guesswork (Schemske et al. 1994).

Although the criteria are easy to criticize, there is little scientific guidance regarding
exactly how many individuals or populations are necessary and sufficient for species persistence
(Sanderson 2006). There is, however, extensive empirical evidence and theory relating general
probability of extinction to abundance. More and larger populations covering broader geographic
areas are favored because, all else being equal, extinction risk is higher in small versus large
populations (Gabriel and Burger 1992; Blackburn and Gaston 2002; Matthies et al. 2004), in
species with small versus large ranges (Gaston 1994), in species that are habitat specialists
(Farnsworth and Ogurcak 2008), and when there are small or declining numbers of populations
(Hanski et al. 1995) or range sizes (Channell and Lomolino 2000). Furthermore, relationships
between abundance and extinction risk are highly dependent on extrinsic threats and, as noted
previously, even the use of PVA has also been highly criticized (Crone et al. 2011).

We begin by presenting a subset of results on delisting criteria that come from recovery
plans on plants that had actually run PVAs. The full results of this study are presented in Part 3.
Then, for all recovery plans, most of which have little quantitative or qualitative reasoning
behind their stated recovery criteria, we use a predictive method to determine which factors or
traits are associated with recovery goals. Although we cannot state that these are the factors that
were used to actually establish the goals, we can show which factors may be consistent or
predictable.

4.4.1 - Qualitative delisting criteria for listed plant species with P\VVAs

To assess use of PVA in endangered species recovery planning, we reviewed 258 final recovery
plans for 642 plant species that were approved by USFWS prior to 30 June 2010. The full
methods and results of this study are presented in Part 3 of this report. However, one goal of the
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study was to understand the factors
related to qualitative listing criteria
and we present those results here.
We found that, for recovery plans
that included PVAs, recovery
criteria included the concept of Qualitative Viability Criterion Number of
viability. For the 251 recovery Spedies

Table 5. Qualitative delisting criteria in plant
recovery plans with PVAs. These only include the 233
species for which delisting was considered possible.

g . Self-sustaining 132
plans with PVAs, 233 had species _ _ o
for which delisting was considered Stable or increasing population size 102
possible and included qualitative Reproducing 59
'statements pertaining to Vlablllty Healthy populations in natural habitat 10
In a. broad S?nse that could Only be With characteristics that ensure viability over time 34
achieved using a tool such as a
PVA (Table 5). However, these "Numbers do not sum to 251 because some species have
studies represented just a small more than one criterion; 233 species had at least one
fraction of the recovery plans and, criterion

for most, there was little data on
which recovery criteria could be linked. Therefore, we used a predictive approach to determine
if there was a general pattern between recovery goals, traits, threats, and population trajectories.

4.4.2 - Predictive approaches to understanding recovery goals

Despite a lack of clarity in the factors that link to recovery criteria, certain types of data
seem likely to be used in many cases to inform the setting of recovery criteria. However, past
evaluations have found that these criteria vary tremendously (Tear et al. 1993; Neel et al. 2012)
and are not consistently related to biological traits for the few species examined. For example,
numbers of individuals required to delist 27 bird species were best predicted by numbers of
individuals at plan writing but not by body mass, fecundity, or lifespan (Elphick et al. 2001).
Similarly, numbers of populations required to delist 98 plant species were correlated with
numbers of populations at plan writing (Schemske et al. 1994). The goal of the following
analysis was to determine if we can relate recovery criteria with the abundance, traits or threats
facing listed species. Because the factors underlying the establishment of recovery goals is
usually not revealed in the recovery plans, modeling is the only approach to try to infer if certain
factors appear to be driving these decisions.

4.4.3 - Tree-based Methods

We used tree-based statistical models to build a predictive understanding on the link between
recovery goals and traits, threats, and trajectories. In the following two sub-sections and also
extensively in Part 4 (Inferring Recovery Goals for Poorly Studied Species) we use the same
approach so we give a general description here, and then also give details specific to each
analysis in individual methods sections.  Tree-based statistical methods allow the exploration of
large datasets containing complex interactions between predictor variables and mixtures of
variable types. Tree-based methods recursively partition observations into increasingly similar
groups (Fig. 9). This can be done once to produce a single tree or permutated multiple times to
produce an ensemble of trees (Random Forests). The Random Forest implementation of tree
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based models (Breiman et
‘(\ test sp. al. 1984, Breiman 2001)

finds sets of objects that
share similar traits or
scores within a dataset. In
our case, species that share
similar biological traits and
extrinsic threats are used to
build the Random Forests.
Random Forests allow
unsupervised classification
based on iterative selection
of random subsets of
species and variables.
Random Forests offer more
robust predictions and are
also able to calculate a
score called “variable
importance”. Variable
importance is an important
metric from Random Forest
analysis and indicates the

. . . , mean increase in prediction
Figure 9. Regression tree analysis. Regression trees parse  orror when variable is

tree built with
100 species

objects (in this case, species) into categories based on input permuted compared to
variables that can be continuous or categorical. original data tree-based
methods.

4.4.4 - Predictive methods for plants

Here, we used tree-based methods to determine if recovery criteria are best explained by
distribution, biological traits, previous abundances, or a combination of traits and abundances.
We used the 438 ESA-listed plant species (out of 642) for which recovery plans were approved
as of January 2010 and were considered to actually have a potential for delisting. The 204
species that had no delisting criteria were either considered data deficient or imperiled to the
point where goals focused on actively preventing extinction. This analysis is an expansion of
that done by Schemske et al. (1994) by examining more species, incorporating abundances at
multiple time steps, and considering measures of recovery for both populations and individuals.

We quantified three sets of variables from recovery plans: delisting criteria (response variable)
and previous abundances and traits relating to general distribution patterns and biological traits
(predictor variables):

e Delisting criteria: of the 438 species considered, delisting criteria were stated as number
of populations (n=427), number of individuals per population (n=314), total number of
individuals (n=324), and/or proportion of the historical number of populations
represented by the number of populations required for delisting (n=296). In focusing
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only on this restricted set of species, we recalculated metrics relative to delisting criteria
that was also reported in the previous section (summarized in Fig. 7 above). Here, we
recalculated these metrics just for the 438 species and present summaries in Table 6. As
before, we present results with and without Hawaiian species (n=245) since those species

represent a block that had nearly identical listing criteria (8 populations and 80, 100, or
300 individuals per population).

e Distribution data: Abundances were recorded (wherever available) at three points:
historical, at time of listing, and at plan writing. Number of populations was recorded
(wherever available) at two points: time of listing and at plan writing. Note that historical
time period is vague but generally refers to a time prior to anthropogenic decline.

e Traits: eight distributional and biological traits were chosen either because they had been
shown to relate to extinction risk and rarity but also were available for a sufficient
number of species to allow analysis. These traits include Maximum plant height (m),
maximum flower size (cm), plant life form, life history duration, reproductive mode,
reproductive repetition, physiographic division, range area, listing status (Trait levels are
shown in Table 7)

Note that the - -
Table 6. Summary of abundances and delisting criteria from recovery plans.
year the L - L . P
| These are quantitative delisting criteria and abundance estimates for 438 plant
FECOVETY plan species listed as threatened or endangered and where recovery was possible.
was written
was quantified, Including Hawaiian species
bUt eXPIoratO ry n miinimum median maximum mean (SD)
analysis
y di Number of populations
suggested it historical 410 1 8 475 17 (350)
was not an at listing 418 0 3 173 7(14)
: when plan was written 604 ] 5 231 11(22)
Important ) required for delisting 427 I 8 117 11(11)
variable, so it proportion of historical 296 0.04 1 8 154 (1.67)
wasn’t included required for delisting
. Number of individuals
in the formal at listis > 7898 (7
at listing 381 0 125 1,500,000 THOB (79.806)
analysis. when plan was written 479 0 275 1,000,043,766 239,731 (4,574,310)
: ; required for delisting 324 400 2400 1,300,000 10,739 (74,178)
Relatlonshlps number per population 314 5 300 50,000 745 (3417
between required for delisting
predictors and ) ) -~ ,
delisti ng Excluding Hawaiian species
Criteria were " mini-mum median maximum mean (SD)
analyzed using Number of populations
random forests historical 219 1 8 475 2347
. at listi 240 1 3 173 9017
as described when ?fnn was written 359 0 6 231 1527
above and required for delisting 181 1 12 117 16(16)
Calculating proportion of historical 105 0.04 0.88 6 117 (1.13)
- required for delisting
variable Number of individuals
H at listing 168 1 520 1,500,000 17,492 (119,691)
lmportanc_e for when plan was written 236 0 2,000 100,043,766 486,006 (6,514,667)
each predictor required for delisting 78 400 12,000 1,300,000 38,087 (148,601)
variable. We number per population 68 5 500 50,000 2,504 (7,108)
required for delisting
also ran
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Table 7. Predictor distribution and biological

traits. These traits were included in our analysis of
quantitative delisting criteria. These same predictors
were used for the surrogacy analysis in Part 4 of this

report.

Trait

Levels within each trait®

Maximum plant
height (m)

Maximum flower
size (cm)

Life form

Life history
duration

Reproductive
mode

Reproductive
repetition

Physiographic
division (after
Fenneman &
Johnson 1946)?

Range area (m?)©
Listing status®

continuous (491/337)
continuous (325/200)

herb (333/282), lichen/moss (3/2),
shrub (133/48), subshrub (44/18),
tree (106/40), or vine (23/7)

annual (79/75), perennial (380/302), or
short-lived perennial (192/28); some
species fell in more than one category
©/8)

clonal (3/3), clonal and sexual
(132/107), or sexual (504/285)

monocarpic (85/82) or polycarpic
(553/312)

Appalachian Highlands (49/49), Arctic
(1/1), Atlantic Plain (82/82), Canadian
Shield (2/2), Hawaii and Pacific
Islands (320/25), Interior Highlands
(6/6), Interior Plains (36/36),
Intermontane Plateaus (64/64), Pacific
Mountain System (113/110), Rocky
Mountain System (7/7), West Indian
(50/50); some species fell in more
than one category (25/25), creating
23 distinct combinations of divisions

continuous (483/292)

endangered (536/298), threatened
(106/99)

“Sample size in parentheses gsample size with and

without Hawaiian species).

When division not

stated directly, designation was made by comparing
overlap of ranges. “Estimated as the intersecting
area between the physiographic section and the
state distribution listed in the recovery plan. “Not
used in final analysis.

conditional random forests (CRF) to
adjust for correlations between
predictors and produce unbiased
variable selection. For both ensemble
methods, we built 1000 trees, with 4
randomly chosen predictors tested at
each node. One of the main
drawbacks of Random Forests is that
it is difficult to visualize the
relationships, and to do so, we
generated conditional inference trees
(cTree) which produce easily
interpretable diagrams depicting
partitioning of species by predictors.
Three sets of analyses were
performed using 1) traits alone,
previous abundances alone and 3)
both traits and abundances. In all,
there were 28 models from
combinations of the four delisting
criteria, three sets of predictors,
whether HI species were included,
and whether the largest possible or
reduced data set (to correct for
missing data) was used. Each model
was implemented using the three
different tree-based approaches
(conditional Tree (cTree),
RandomForest (RF), and conditional
Random Forest (CRF).

4.4.5 -Results and Discussion: Plants

Detailed model selection results for
the 28 models using the three tree-
based approaches are found in Table
8. Here, we report the best models
for each of the four delisting criteria

(number of populations, proportion of historical populations, number of total individuals, number
of individuals per population). Overall, measures of previous abundance were the most
important factor, meaning that when there were higher population levels at listing, higher
population levels were also required to delist. This aligns with work done on birds by Elphick et
al. (2001) and on a smaller number of plant species by Schemske et al. (1994).

Recovery plans that were based on total number of populations or the proportion of
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the variation with 37-71% with the most important variable abundance at listing (Fig. 10). The
model performed well with and without Hawaiian species. However, models including
abundance and traits also were significant and explained 13-49% of the variability with

Table 8. Results from 28 model runs

Number of populations Proportion of bistorical populations

abundance abundance
tratts  abundance abundance only - traits  abundance abundance only -
Variable” only only and trafts  reduced® only only and traits  reduced®
n (with HI species)’ 139 205 66 66 92 205 66 66
n (without HI species) 55 69 19 19 NA NA NA NA
Population abundance
no. pop. historical X x x x* x x
no. pop. listing x* x* x x x x
no. pop. writing x x* x X x x
no. pop. listing/historical x* x x
no. pop. writing/historical X X X
Trait
maximum height x x x x
maximum flower size X x x x
life form X X x X
life-history duration x X x X
reproductive mode X x* X X
reproductive repetition x x* x x
physiographic division X x x X
range size X x x X
Variance explained (%)
cTree 20.67 59.71% 34.69° 19.29 =0.0043 6795 3231 61.56
RF —22.33 70.90* 48.76** 10.38 —12.66 63.97* 65.19 52.09
cRF 4.20 36.92" 1322 12.68 —-2.90 63.19* 33.42 35.74
cTree (no HD) —0.0019 62.37* —0.0020 0.0061
RF (no HI) —37.44 78.70* 39.77 30.61
¢RF (no HD) —9.48 36.88" —11.19 —11.35
Number of total individuals Number of individuals per population
traits  abundance abundance traits only -  tralts  abundance abundance trafts only -
Variable® only only and trafts  reduced® only only and rraits  reduced®
n (with HI species)’ 114 257 91 91 110 253 90 90
n (without HI species) 31 45 19 19 27 41 18 18
Individual abundance
no. indiv. listing X x* X x*
no. indiv. writing X = ¢ x*
Trait
maximum height x x X x x x
maximum flower size X x x x X X
life form x* x* x* x x b -
life—history duration x* x* X x x x
reproductive mode x X X X X X
reproductive repetition x X x x X X
physiographic division x* x* x* x x* X
range size 2 X X X X X
Variance explained (%)°
cTree 57.84* —0.0028 53.92* 55.64" 44.97 0.0003 47.54%* 47.54
RF 44.51** =55.52 56.12** 35.05* 4.63 22.28 19.7** 10.38
cRF 46.32* —-2.84 31.43* 40.85* 2041 10.96 2207 16.94
¢Tree (no HI) —=0.0023 —0.0009 —=0.0022 —0.0049 22.90 0.0017 0.0011 0.0008
RF (no HD) 10.67 —63.12 3032 —0.14 —5.85 13.2 =2.07 —9.42
CRF (no HD) -1.63 -8.17 —-11.76 -12.12 -7.70 5.79 -12.49 =13.06

“An “x” indicates the variable was included in the analysis (*identified as important in at least one of the three
modeling approaches) 2See methods for explanations of past population level categories and trait types
Models builtwith data from only the species with no missing values in any of the abundance and frait
variables iSample sizes (n) varied when Hawaiian (HI) species were excluded andwhen different predictors
were used due fo missing values *Prediction error standardized by variance for each analysis by modeling

method
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reproductive mode and repetition showing as the most important traits (Table 7). For Recovery
Plans where criteria were targeted as proportion of historical populations, abundances alone
provided the best model with 64-68% of the variation explained; however, in this case, historical
population size was the most important variable (conditional tree not shown). For these delisting
criteria, no other models were successful and only models with Hawaiian species were run.

However, we also found that traits were important alone or in combination with
abundance for delisting criteria focused on numbers of individuals (or individuals per
population). For recovery plans where criteria were targeted as total number of individuals,
traits were more important than previous abundances alone (Table 7). In this case, the best
models either included only traits, using either the full or reduced model (45-58% or 35-56% of
variance explained respectively) or abundance and traits combined (31-56% of variance
explained). For all these cases, significant models all included Hawaiian species (Table 7). For
the model that included both abundance and traits, physiographic division was the most
important predictor, with life form and duration also coming out as important traits along with
the number of individuals at listing and recovery plan writing (Fig. 11). For recovery plans

n=7
y = 55.286

Variable importance
[n*] (] F o o
ST

(=]
1

(=1

NPopHist NPopList NPopWrit

Predictor variables

Figure 10. Abundance factors underlying delisting criteria. Results of tree-based analyses
of the number of populations required for delisting under the ESA on the basis of previous
abundance (NPopHist, number of historical populations; NPopL.ist, number of populations at
time of ESA listing; NPopWrit, number of populations when recovery plan was written) as
predictor variables (including HI species, n = 205): conditional inference tree diagram (a) and
variable importance values from cRF (b).
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where criteria were targeted as number of individuals per population, only the model that
included both abundance and traits came was significant and explained 20-48% of the variation
(Table 7). Again, only the model including the Hawaiian species was significant. Similar to the
model based on total number of individuals, physiographic division and life-history duration
were important traits along with the number of individuals at listing and recovery plan writing
(conditional tree not shown).

In both of these cases, physiographic division was an important predictor, the most
important predictor for number of populations (Fig. 11). Importance of physiographic division
in predicting individual-based recovery criteria may have been driven by differences in biology
of plants in different divisions, different land-use patterns, or the interaction of both factors. For
example, divisions associated with higher delisting criteria (Interior Plains, Intermontane
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p <0.001

<3000 > 3000
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{Annual; Perennial, short-lived} Perennial
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Predictor variables

Figure 11. Traits underlying delisting criteria. Results of tree-based analyses of the number
of total individuals required for delisting under the U.S. Endangered Species Act (ESA) on the
basis of distribution and biological traits (life form; duration, life-history duration; max.ht.,
maximum plant height; max.flower, maximum flower size; range; reprod.mode, reproductive
mode; reprod.repetition, reproductive repetition; physiogdiv, physiographic division (see Table
X) and previous abundance (NIndList, number of individuals at time of ESA listing; NIndWrit,
number of individuals when plan was written) as predictor variables (including HI species, n =
91): conditional inference tree diagram (a) and variable importance values from cRF (b).
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Plateaus, and Pacific Mountain System) tend to have a greater proportion of public land, which is
subject to land uses that alter carrying capacity but is less threatened by uses that cause
permanent conversion of habitat (e.g., residential, agriculture, or industrial development), than
the eastern United States (Flather et al. 1998). Range and abundance of listed plant species in the
interior and western divisions have declined less than those of species in other areas (see Fig. 5
in previous section on patterns of decline). A lower probability of land conversion and smaller
population declines increase recovery potential in these divisions because a larger proportion of
the historic habitat and range remains and can support more individuals (Kerr & Deguise 2004).
The Hawaii and Pacific Islands division was associated with low species delisting criteria,
potentially because this division is severely affected by habitat loss and degradation and supports
species with naturally limited distributions and specific habitats. Thus, these patterns may reflect
what is possible for conservation in each region rather than biological mechanisms. Differences
between physiographic divisions may also have resulted from the particular species representing
each division in our data set. The Atlantic Plain/Appalachian Highlands/Interior Plains division,
which was consistently associated with low species delisting criteria, was represented only by the
broadly distributed but locally rare species Isotria medeoloides. The recovery criterion for this
species of permanently protecting 75% of known populations and increasing abundances in 25%
of populations translates to delisting when 2420 total individuals are conserved (U.S. Fish and
Wildlife Service 1992).

4.4.6 - Results and Discussion: Animals

A similar analysis as above was carried out for animals, but data limitation was much more
extensive than for plants. For example, out of 528 listed animal species with recovery plans,
only 85 species had data on the prior abundances needed to predict number of populations
required for delisting. Using a statistical imputing method, we assigned weighted median values
to missing cells, in which the weights were based on values for other species placed in the same
node. As with the listed plants above, we used predictors on past and present abundances
(historical number of populations, number of populations at listing and when the recovery plan
was written, and number of individuals at those time points), distributional data on habitat extent,
and trait data including adult mortality, age at maturity, maximum lifespan, food habits, and
mean body mass. Across all listed animal species with sufficient data for analysis (n=274), the
conditional inference tree method explained 54.26% of the variance in number of populations
required for delisting, and abundance variables (e.g., number of populations at writing and
number of populations at listing) were important explanatory variables, although adult mortality
was also a splitting variable. The conditional random forest methods explained only 40.14% of
the variation and the number of populations at plan writing and historical number of populations
were the most important predictors. Abundance and biological traits were poor predictors for the
number of total individuals and the number of individuals per population that were required for
delisting.

We also examined recovery criteria for three vertebrate groups separately: mammals
(n=64), fish (n=112), and birds (n=102). Only the model for birds had high explanatory power,
with other groups never yielding models that explained more than 10% of variance in recovery
criteria. For birds, the conditional inference tree method explained 64.85% of the variance in
number of populations required for delisting, and number of populations at writing and extent of
habitat were the most important explanatory variable (Fig. 12a). However, conditional random
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Figure 12. Factors underlying delisting criteria for birds. Results of tree-based analyses on the
number of populations (a,b) and individuals (c,d) required for delisting threatened and endangered
bird species. Conditional inference trees (a,c) and variable importance values (b,d) are shown.
Where variable importance was near zero, values are omitted from the graph, including juvenile
mortality and body mass for number of populations (b) and juvenile mortality, age at maturity and
maximum body length for total individuals (d).

forest methods explained only 21.6% of the variation and the number of populations at plan
writing and historical number of populations were the most important variables (Fig. 12b). For
total number of individuals required for delisting birds, conditional inference tree methods
explained 37.93% of the variance and the only important explanatory variable was number of
individuals at plan writing (Fig. 12c). Conditional random forest methods showed similar results
with the model explaining 36.85% of the variation and the number of individuals at plan writing
again being the most important variable, although here individuals at listing was also an
important factor (Fig. 12d). Thus, as we saw with plants, prior abundances were often the best
predictors and biological traits were poor predictors of recovery criteria. Because of this, and the
extensive amount of missing data, we discontinued work on developing a predictive approach to
understand recovery criteria for animals.
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4.4.7 - Summary

Although these methods were less successful for animals other than birds, the importance
of previous abundances emerged as a major factor in both analyses, generally more important
than traits. Dependence of recovery criteria on prior abundances has been considered
problematic because such criteria are considered to not reflect species biology (Schemske et al.
1994; Elphick et al. 2001). We contend that relations between recovery criteria and previous
abundance do not necessarily indicate recovery criteria are poorly formed and offer several
explanations for the failure to find stronger relations between traits and recovery criteria. First,
we may not have focused on the correct traits or not taken into account interactions between the
traits. Weak associations may also emerge because extinction risk and recovery potential depend
on combinations of traits and circumstance. Vagueness of the recovery criteria can also hamper
our ability to rigorously quantify criteria, eroding our ability to find strong statistical links.
Finally, recovery criteria are highly normative and influenced by societal value, political will,
and competing economic pressures. Therefore, how recovery is defined is best seen as a
combination of previous abundances, traits, threats, and political circumstances at the time that
recovery criteria are set.

4.5 - Conclusions

Taken in total, these papers show that existing recovery criteria are not predicted by the
biological traits examined. Rather they are best predicted by prior abundances. As we have
considered these findings with great thought, we have realized that expecting recovery criteria to
be similar for biologically similar species may be fundamentally flawed. Despite its great
intuitive appeal and underlying role in a number of areas in current ecology and evolution, there
are many reasons why the expectation is unrealistic. The overriding realization emerging from
our work is that is that scientists have not yet found a defensible approach by which extinction
risk can be estimated as complex function of abundance, distribution, and extrinsic threat. Thus,
there is no way to evaluate whether recovery criteria of 10,000 individuals in 10 populations for
one species for which threats have been abated would yield the same probability of persistence
for another species for which 50,000 individuals in 5 populations with some level of remaining
threat.

Although the need to have more empirically based recovery criteria is recognized (Tear et
al. 1993; Schemske et al. 1994), this context-dependent extinction risk and recovery potential
continue to preclude establishing consistent recovery criteria, or even a way to determine
whether criteria are consistent across species. Ideally, scientists and practitioners would
determine an acceptable level of extinction risk for all species and then apply a science-based
framework to translate that risk into quantitative recovery criteria for each species. Despite an
excellent scientific foundation for understanding effects of life-history traits and external threats
on relative extinction risk, methods for translating generalities to quantitative estimates are
lacking. Population viability analysis (Shaffer 1981) offers the only quantitative method for risk
assessment, but even proponents of these models do not consider them suitable for setting
specific conservation criteria (Crone et al. 2011). A fundamentally new approach needs to be
developed that weaves together a number of related fields, typically treated separately (e.g.,
determination of broad-scale correlates of rarity, past extinction patterns, or turnover at small
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spatial scales; time series analyses; comparisons of traits in rare versus common or endangered
versus secure species; and incorporation of stochastic processes), and thus integrates species
biology, anthropogenic threats, and their interactive effects to comprehensively quantify
extinction risk and develop criteria for its abatement. We present more progress on exploring the
use of PVAs (Part 3), and then turn to the goal of developing methods for recovery planning
when data are lacking (Parts 4-6).
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5. PART 3: IMPROVING THE UTILITY OF POPULATION VIABILITY

ANALYSIS IN RECOVERY PLANNING
5.1 - Background

Population viability analysis is still considered by some scientists to be the “gold standard” in
establishing defensible recovery goals. PVA is defined here as “an analysis that uses data in an
analytical or simulation model to calculate the risk of extinction or a closely related measure of
population viability” (Ralls et al. 2002). The appeal of PVA and related approaches lies in use of
quantitative methods to forecast the future status of a population (Morris and Doak 2003) and to
model both deterministic and stochastic elements of a system related to anthropogenic threats,
management scenarios, and environmental conditions (Akcakaya and Sjogren-Gulve 2000). This
framework also requires biologists to be more explicit in their reasoning, integrate knowledge
from multiple sources, identify important model structures and parameters, and guide future data
collection (Akcakaya and Sj6gren-Gulve 2000).

However, PVAs have also been criticized because uncertainty inherent in the modeling
process may make it an inappropriate tool for assessing absolute outcomes or prescribing
absolute population sizes (Crone et al. 2011; Reed et al. 2002). Uncertainty in PVA is
particularly problematic when demographic data are limited (Beissinger 2002), which is typical
for endangered species (Schemske et al. 1994). Table 9 shows characteristics that have been
promoted as being critical components of an “ideal” PVA used for setting quantitative recovery
criteria. Although Menges (2000) promoted use of PVA in plant conservation, his review of 95
plant PVAs revealed that most were not parameterized with data from enough individuals or
years to capture variability and did not include important components such as stochasticity and
metapopulation dynamics. Therefore, many did not meet the criteria of an “ideal” PVA laid out
in Table 9. Further, depending on how data were collected, inference related to PVA output may
only apply to the population from which the data came as well as the time-period in question.
This is a particular problem when realistic estimates of error and variability are not available to
be built into the model. In general, data availability is limited for reasonable estimates of the
true variability that may exist across time and space, so researchers are often left to make
assumptions about the error structure and build those into their models. So, while PVA remains
a powerful tool for understanding underlying mechanisms and making predictions, it is also
limited by data availability and ability to generalize across space and time are usually limited.
These limitations have caused some to even question the validity of using PVA to inform
conservation goals for TES (DeMaster et al. 2004).

The PVAs described in Table 9 are based on classic PVAs that are built on demographic
models, are mechanistic in nature, and demand a great deal of data on each life stage and
transition. However, PVAs are a classically “data hungry” approach that demand data on
multiple life stages and transitions that are difficult and costly to obtain, and model output can be
sensitive to small changes in parameter estimates. Further, since parameters are generally
estimated from intensive field studies, data usually come from a restricted spatial extent and
usually only from a few years of data. However, time-series data on population size are much
more common and often exist for several different populations. Further, new modeling
techniques are improving our ability to estimate absolute or relative population sizes and correct
for year to year differences in detectability (Mackenzie et al. 2002). Therefore, if output
associated with PVAs could be estimated from time-series data, that would greatly expand our
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ability to apply these approaches, and also potentially give a way to cross-validate data from
more traditional mechanistic approaches.

Population viability analyses (PVAs) have now become a standard tool in conservation
biology, with goals ranging from providing detailed guidance on management actions (Crouse et
al. 1987) to simply characterizing the degree or nature of risk faced by populations (Morris et al.
2002; Fagan et al. 2001). Obtaining sufficiently detailed field data to parameterize models of
population viability involves a challenging amount of work. Consequently, but unfortunately,
for most species and situations, we lack the data required for all but the crudest PVAs. Indeed,
it is telling that a synthesis found only 21 data sets (19 species) with sufficient data for full PVA
assessments (Brooketal. 2000). These data sets, which contained substantial detail on population
size- or age-structure, life history, and demography, are far more characteristic of focused efforts
by academic researchers than of the cash-strapped monitoring efforts by governmental wildlife
agencies and nongovernmental organizations upon which so much modern conservation action
depends. Though helpful when available, such detailed demography and basic population
biology data are often lacking for species of conservation concern. As a result, any full
assessment of the utility of PVAs must examine their performance when faced with less detailed
information.

When relevant data are available, one commonly used approach to developing a PVA is
through the use of timeseries of censuses, population counts, or estimates of population size.
Though still uncommon, long-term studies providing a continuous record of ‘count data” occur
more frequently than do in-depth demographic studies. Diffusion approximations (DASs) (e.g.,
Dennis et al. 1991, Holmes 2001) are one set of techniques that researchers have developed to
estimate population vulnerability and extinction risk from limited data. The key to such
approaches is the assumption of a simple stochastic exponential growth model and the
estimation of the population growth rate and its variability from the year-to-year (or census-to-
census) transitions in population size associated with such a model. These parameters, in
combination with the most recent known population size, are then used to calculate the
probability that a population will decline to extinction within a specified time frame. These
models can also be used to discern additional information as well (Dennis et al. 1991),
including profiles of quasi-extinction risk. Such profiles define the probability that a
population will decline to each of a series of population sizes, of which extinction, or N=1, is
but one of many potential values of interest (hence, “quasi-extinction”).

Diffusion-approximation models provide a tool for estimating quasi-extinction risk,
although such models may be constructed and parameterized in a variety of ways ((Dennis et
al. 1991); (Lande et al. 1998); (Engen and Saether 2000); (Holmes 2001)). One method of
assessing the accuracy of DA models is to evaluate their performance in quantifying risk in
real populations, as Ludwig (1999), Brook et al. (2000), and Ellner et al. (2002) have done.

The general approach taken is a cross-validation analysis in which the first portion of a time
series is used for estimating parameters, then the predictions of those parameterized models
are evaluated by comparing them to the realized dynamics evident in the remaining portion of
the time series. Brook et al. (2000) outlined the utility of applying cross-validation techniques
to issues of extinction risk. They concluded that the good agreement between model
predictions and realized dynamics evident in the evaluation portion of their time series was a
strong endorsement of PVAs as a conservation tool. Ellner et al. (2002) criticized this
conclusion, arguing that the results of Brook et al. (2000) fell far short of “predictive
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accuracy” and instead merely demonstrated an absence of bias in ensemble—rather than
species-level—estimates of probabilities of quasi-extinction.

We have two goals for this section: 1) an exploration of the use of PVA in Recovery
Plans and an analysis of the extent to which state-of-the-art methods are being employed and 2)
the development of a new approach to PVA use in conservation planning that is based on time-
series data and so doesn’t require detailed mechanistic data that are usually lacking.

5.2 - PVA in ESA recovery planning

Our objective in this study was to reassess the actual and potential use of PVA in determining
scientifically-based, measurable recovery criteria for endangered plant species listed under the
ESA to determine if PVAs were being conducted or recommended as part of the recovery
planning process. We also reviewed peer-reviewed studies containing plant PVVAs (irrespective
of focal species listing status) to assess whether the state of the art in PVA is sufficient to
contribute to assessments of quantitative recovery criteria and if PVVA design has improved since
Menges’ 2000 publication. The work described in this sub-section is a summary of a manuscript
by Zeigler and colleagues that is currently in press at Conservation Biology (See Appendix 2).

5.2.1 - Methods

To assess use of PVA in endangered species recovery planning, we reviewed 258 final recovery
plans for 642 plant species that were approved by USFWS prior to 30 June 2010. For each
recovery plan, we searched for the keywords “population viability analysis”, “minimum viable
population”, “matrix”, “model”, and “viability” and noted how PVA was discussed in applicable
plans, including whether (1) the plan discussed a PVA study conducted previously or as part of
the plan, (2) an existing PVA informed recovery criteria, (3) recovery criteria were written in the
language of PVA (e.g., the population should have a specific probability of persistence for a set
time period to be considered recovered), (4) PVA was recommended as part of the recovery
strategy, or (5) PVA was recommended to determine, evaluate, or refine recovery criteria.
Additionally, for the 251 listed plant species for which delisting was considered possible, we
recorded qualitative statements in recovery criteria that were related to viability. Those results
were presented earlier in Part 2 in the subsection on factors used to determine recovery goals.

To assess if the state of the art in published PVAs and how they could be used as a strong
tool for setting quantitative recovery criteria, we used ISI’s Web of Science database and the
search engine Google Scholar to search for PVA-related peer-reviewed literature for plants
(irrespective of the focal species’ listing status). We used the search terms “population viability
analysis”, “viability,” and “matrix population model” to find studies published through
December 2008. Publications that provided demographic information but no model of current or
future population trends, extinction risk, or minimum viable population estimates (MVP) were
excluded. We found 223 studies describing 280 PVAs for 246 plant species.

To determine whether these models had attributes of an “ideal’ PVA (Table 9), we noted
the type of model used, which could be an age- or stage- based matrix model, individual based
model, or other model type (e.g., periodic projection matrix, equation-based model, reaction-
diffusion model). We also noted if multiple models were explored to determine the sensitivity of
PVA results to model structure. We determined if PVAs considered complex attributes of plant
life history (e.g., seed bank, clonal reproduction, and plant dormancy) and if they incorporated
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stochasticity, genetics, ecological processes/interactions (e.g., density dependence, natural
disturbances), or external population drivers (e.g., threats or management actions). We also
recorded the number of populations and years of observation used to parameterize PVAs.
Finally, we noted whether perturbation analysis or model validation were used to explore the
impact of parameter uncertainty on predictions. To determine if PVA design has changed since
Menges (2000), we used chi-square tests to compare the number of PVAs published before (n =
116) and after (n = 164) 2001 that were parameterized with more than five years of data as well
as the number of PVAs that incorporated stochasticity, disturbances/catastrophes, density
dependence, metapopulation dynamics/dispersal, or genetics.

In addition, for each focal species, we noted the listing status under the ESA (not listed,
threatened, or endangered) and IUCN (not listed, critically endangered, endangered, vulnerable,
lower risk, least concern, or conservation dependent), life form, and duration. We also recorded
finite rate of population growth (L), probability of and mean time to extinction for stochastic
simulations, MVP size, and sustainable harvest levels as predicted by PVA models when given.
When perturbation analyses were conducted, we noted the methodology used (sensitivity,
elasticity, or life table response experiment) and the stage class (adult/reproductive/large plants,
juvenile/non-reproductive/vegetative/medium plants, seedlings/saplings/small plants, seeds, or
dormant plants) or life history process (stasis/survival, progression/growth, reproduction,
germination/establishment/recruitment, retrogression, or clonal growth) deemed most important
for population growth.

Finally, we evaluated within-species variability in PVA results based on methods, space,
and time. For studies reporting population growth rates using different PVA methodologies or
across different sites or years, we noted if rates were statistically different (as determined by the
study’s author). We also calculated the arithmetic average, standard deviation, and percentage
difference between minimum and maximum population growth rates to describe the magnitude
of within-species variability for all studies, irrespective of whether authors statistically compared
growth rates.

5.2.2 - Results and Discussion

We found limited use of PVA in ESA recovery planning; only 15% of the 258 final recovery
plans for 24% of the 642 listed plant species mentioned or recommended PVA. However, the
concept of viability was nearly ubiquitous in recovery criteria; recovery plans for 233 of the 251
species for which delisting was considered possible included qualitative statements requiring
viability in a broad sense (see Table 5 in Part 2). Nevertheless, most recovery plans simply
recommended PVA for the recovery strategy, only 12 plans, representing 14 species actually
included information on PVAs conducted either prior to or during plan writing (Fig. 13).
Instead, most recovery plans simply recommended PV As for the recovery strategy or for use in
evaluating recovery goals (Fig. 13). However, despite the lack of PVVAs specifically included or
recommended in plans, nearly 97% of the 642 listed plant species suggest that more PVAs could
be conducted in the future in that 97% of the 642 listed plant species have recovery plans that
recommend monitoring or research related to demography, specific life history stages, and
genetic viability as part of the recovery strategy (Fig. 14). Furthermore, demographic monitoring
is specifically required in downlisting and delisting criteria for 98 and 97 species, respectively.
This suggests a strong role for PVA or similar demographic models were assumed to be possible
for recovery plan implementation (Fig. 14)
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Figure 13. Contexts under which PVA is used or recommended in recovery plans.
These are for final recovery plans for plant species listed under the U.S. Endangered
Species Act.

Most PVAs lacked many of the crucial elements of the best practices for implementing
PVAs (Table 10) and, further, there has been little improvement since Menges’ 2000 review. In
the 280 published plant PVAs, the typical model was an age- or stage-based matrix model (89%
of PVAs) that focused on a species that was not listed under the ESA (92%). It was
parameterized with <5 years of demographic data (69%) from a single population (53%) and did
not include parameters for stochasticity (74%), genetics (95%), or density dependence (91%).
The typical model did not include special components relevant to plant species such as seed
banks (70%), vegetative reproduction (97%), or dormancy (95%) nor did it include threats (87%)
or management strategies (90%). It did include perturbation analysis (59%) but did not evaluate
multiple PVA methods (97%) or validate model results by comparing model predictions to actual
population trends (95%). We also found that the number of PVAs published subsequent to
Menges’ publication (2000) that considered density dependence, spatial factors, or genetics was
not significantly different from the number prior to that publication (results not shown).
However, significantly more PV As considered stochasticity (32%; y2= 8.0, p<0.05) and were
parameterized with >5 years of data (34%; 2= 4.3, p<0.05) following Menges’ publication.

A synthesis of results from the PVAs presented some surprising patterns. First, the
estimated population growth rates ranged substantially, ranged from 0.0004 for Dipsacus
sylvestris (Werner and Caswell 1977) to 15.54 for Lobularia maritima (Pico et al. 2002), with a
mean of 1.08 (sd 0.64; median 1.00). Further, whereas only 44% of PVAs reported growth rates
less than one, 61% off the populations were actually declining based on other data. That seems
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Figure 14. Types of recommended demographic monitoring or research in recovery plans.
These could be used to construct a population viability analysis, in recovery plans for plant species
listed under the U.S. Endangered Species Act.

to suggest that the PVAs are either missing some crucial factor or the parameter estimates need
to be refined. Surprisingly, only 11 of the plant PVAs reported MVP sizes which suggests that
groups deploying PVA rarely use one of the features of this approach that allows defensible
setting of recovery goals.

Another useful feature of PVAs are you can vary parameter estimates once the model is
built to determine which factors contribute most to variability in estimated growth rates. This
feature allows the key traits to be identified and can act as a guideline as to which traits are most
important in understanding population growth. Perturbation analysis conducted in 164 PVAs for
150 species indicated that population growth rates were most sensitive to changes in life history
stages involving adults, reproductive individuals, or large plants (70% of species) followed
closely by stages involving juveniles, non-reproductive/vegetative individuals, or medium-sized
plants (67%). The most important demographic process for these species was stasis/survival
(95%) followed by progression/growth (53%) and reproduction (32%). Percentages listed here
do not sum to 100% because some studies indicated multiple stages or processes as being equally
important for population stability and growth. In addition, these results may not be broadly
reflective of important life history stages or demographic processes for all plants because the
majority of plant species with PVVAs included in our dataset were longer-lived perennials (86%),
and adult survival is generally most important for longer-lived, late maturing species (Heppell et
al. 2000).

Studies that examined either within sites or across years showed substantial variability
(Fig. 15) suggesting that PVVAs constructed from few sites or during short time spans will not
necessarily translate to novel sites or years. This suggests that even though PVAs are considered
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Figure 15. Intra-specific variability in PVA results. Percentage
difference between the highest and lowest population growth rates for
different populations of the same species compared within the same
year (a) and for the same population across multiple years (b).

the most rigorous approach to
setting goals, results should
be interpreted with caution,
especially when applied to
areas or time spans other than
when data were collected.

It is intuitive that
PVA could inform recovery
criteria by forecasting
extinction or quasi-extinction
probabilities over a specified
time period, determining
population status or trends, or
establishing MVP sizes.
However, these are precisely
the applications considered to
be the most inappropriate for
PVA by prominent
population biologists (e.g.,
Crone et al. 2011). Our
results also show PVA'’s lack
of suitability for determining
species-level recovery
criteria due to data
limitations and substantial
shortcomings in PVA design
that lead to unacceptable
levels of bias and lack of
precision as well as more
fundamental characteristics
of the PVA approach itself.

Data limitations
include lack of demographic
data from a sufficient number
of individuals, populations,
or years as well as lack of

information on life history traits that can influence model outcomes. We found that 81% of
PVAs predicted growth rates for the same population that varied by more than 10% through time
(Fig. 3). Typically, 15-20 years of data are needed to reliably estimate population growth trends
or extinction risk (Che-Castaldo & Inouye 2011; Doak et al. 2005; Fagan et al. 1999), and
reliably forecasting future extinction risk can require as much as a 5:1 ratio of observation to
forecast years (Fieberg & Ellner 2000). Of the 231 PVAs we reviewed, only 4% were based on
>15 years of data, and 69% were based on <5 years (Table 3). Although significantly more
PVAs published after Menges (2000) were based on >5 years of data (Table 4), the median
dataset length after 2001 was still only 4 years, indicating a need for continued improvement.
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Limited spatial extent of datasets (i.e., the number of populations observed) is also
problematic because population growth rates, viability, and underlying vital rates are highly
context specific. Observations of multiple populations from throughout a species’ range over
multiple years are needed to adequately capture species-level dynamics. However, 53% of PVAs
in our review were parameterized based on observations of a single population. Because
recovery plans typically specify that all populations conserved must be viable in a broad sense,
evaluating probability of persistence in one or a few populations over short time frames
contributes little to understanding whether this requirement is met and whether extinction is
likely throughout all or a significant portion of the species’ range.

The need for 15-20 years of data from multiple populations to account for temporal and
spatial variation in vital rates makes parameterizing even simple stage- or age-based models for
all listed species a daunting task. Chronic lack of funding for endangered plants (Campbell 1991)
has resulted in little existing demographic data (Schemske et al. 1994). Although USFWS
recognizes the need for such data based on the fact that recovery plans for 97% of plant species
recommend demographic monitoring and research, implementing these recommendations will
require a commitment of funding and personnel that far exceeds historical levels (Male & Bean
2005).

Beyond lack of sufficient demographic datasets, lack of knowledge about key life history
traits can also limit PVA applications. Models that exclude important population processes can
overestimate population viability (Lindenmayer et al. 2000; Melbourne and Hastings 2008) and
yield inaccurate projections of population dynamics (Courchamp et al. 1999; Grimm et al. 2005;
Letcher et al. 1998). Features that are known to be important drivers of population dynamics for
plants (Boyce 1992; Doak et al. 2002; Reed et al. 2002) are often difficult to quantify (Crone et
al. 2011); in our study, most models did not consider stochasticity (74% of PVASs), genetics
(95%), density dependence (91%), seed banks (70%), vegetative reproduction (97%), or
dormancy (95%). As with lack of demographic data mentioned above, a greater commitment to
research on endangered plant species could reduce the severity of this issue.

Even if data availability and model complexity were improved, many population
biologists consider PVA approaches inappropriate for setting absolute conservation targets
(Beissinger and Westphal 1998; Crone et al. 2011). One of the most fundamental mismatches
between the paradigm of PVA and recovery planning is that models tend to focus on impacts of
intrinsic demographic processes (e.g., pollen limitation, inter-annual variation in seed
germination, or seedling survivorship) whereas extinction risk is often more affected by extrinsic
large-scale and chronic human-mediated threats, such as resource extraction, exotic species
introductions, and land-use change (Lawler et al. 2002). In addition, threatening processes can
cause declines in population abundance, numbers of whole populations, and extent (i.e., area of
habitat or range, with or without loss of whole populations).

Alternative modeling techniques that may be more robust to limited datasets have also
been suggested. Integral projection models produce less biased and more precise population
growth rate estimates than matrix models for small datasets (e.g., <300 individuals; Ramula et al.
2009), but they still do not overcome issues related to short time series. PVAs based on species
occurrence rather than abundance offer a potential solution because presence and count data are
more widely available than stage- or age-based data (Skarpaas & Stabbetorp 2011). In the next
section, we explore the potential for specific recovery targets to be extracted from a PVA model
that is designed for corrupted data sets, often the data that are available for recovery planning.
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5.3 - PVA analysis using time-series data to estimate conservation targets

While PVA remains an important tool for supporting conservation goals, the above work shows
the limitations in applying that technique, often due to data limitations for an extremely data-
hungry process. Here, we build upon the idea that time-series data on population trajectories
produces visible trends generated from the mechanistic processes that underlie the standard
PVA, so that it should be possible to make predictions about future trajectories based on
observed patterns. While this approach has been used to implement PVAs whose sole goal is to
predict population trajectories (Humbert 2009), these do not produce the specific parameters
necessary to be able to estimate conservation targets like a Minimum Viable Population size or
the probability of reaching an extinction or quasi-extinction threshold.

Here, we present work detailing an approach to allow us to extract parameters relevant to
the establishment of recovery criteria, traditionally only available through data-hungry
mechanistic PVAs, via use of time-series data only without the need of data on any specific
biological mechanism. The approach is based on the idea that certain average properties of
stochastic processes may be predictable even when the details of the underlying process are
unpredictable and/or unknown. The key is to find statistical properties that are convergent over a
broad class of plausible population dynamics. Convergent statistical properties are at the
foundation of classical statistical inference. Our goal was to extend this type of reasoning to the
estimation of a specific property of stochastic population trajectories: the probability of decline
below a pre-defined threshold. As this metric does not measure absolute extinction per se, we use
the term quasi-extinction (Ginzburg et al. 1982). Quasi-extinction probabilities are a widely used
risk metric by conservation and management organizations. For example, the World
Conservation Union’s IUCN risk criteria (Mace and Lande 1991) and the proposed quantitative
criteria for the U.S. Endangered Species Act (DeMaster et al. 2004) rely on quasi-extinction
probabilities. For this paper, we consider only quasi-extinction thresholds above the level at
which demographic stochasticity and Allee effects become important. These factors accelerate
the decline toward absolute extinction, which differs in many fundamental ways from the decline
to a critical threshold (Gilpin and Soule 1986; Lande et al. 2003; Fagan and Holmes 2006).

Here we build on past work showing that exponential growth models can be estimated
from corrupted data sets (Holmes 2001, Holmes and Fagan 2002) and used to separate dynamic
population variance from observation error using a model called the Corrupted Stochastic
Growth model (hereafter, CSEG). The CSEG model is written as the coupled system of
equations

log X,,, =log X, +u+e,,

where &,~N (0,0'p) Eq. 1

|Og Nt+l = IOg Xt+1 + 8np,t+l
where ¢,,~N (ﬁ,anp)

where X; is the true (unobserved) population size, N; is the observed population size, and p is the
mean population growth rate. Stochastic process error, cp,, which represents underlying year-to-
year environmental variation, is modeled as a Normal distribution with standard deviation o,
Stochastic non-process error (e.g., observation error), is denoted cyp, and is modeled as a Normal
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distribution with mean P (the mean observer bias) and standard deviation cn,. We extended this
method to be able to estimate quasi-extinction profiles.

5.3.1 - Methods

To develop a model able to extract parameters that are relevant to setting management
objectives, we synthesized two bodies of theoretical research: the stochastic convergence
properties of population processes and the estimation of stochastic models. We began by
identifying a simple stochastic model (a stochastic exponential model overlaid with Gaussian
errors) that approximates the relationship between quasi-extinction risk, threshold (meaning a
critical population level at which extinction risk increases sharply) and forecast length.

Our model of quasi-extinction includes observed population trajectories and models future
population counts of forecast length, T. Thus, we are able to forecast the probability of “future
quasi-extinction given the observed counts by summing over the set of all possible past
trajectories. The expected quasi-extinction rate is thus the expected probability of quasi-
extinction observed by selecting a past trajectory randomly from the past trajectories that
particular process could produce. It measures the propensity of a population process to produce
quasi-extinctions.

In developing this new method, our main goals are to be able to extract four critical
parameters: population trend, error estimates parsed into observational and process error, and an
estimate of a minimum population needed to keep from falling below a quasi-extinction
threshold. We begin by developing the model for the simplest population structure, one that is
regulated by density-independent processes and includes no age- or stage- specific structures.
We then adapt that model to be able to be used with real time-series data accounting for the types
of noise typically found in these datasets. This step will allow us to apply the model to real data
sets that are likely to be available to managers in real-world conservation situations that tend to
contain errors and flaws. We then will adapt this more realistic model to complex population
structures such as ones that include age- or stage-structured data or are assumed to have density-
dependent processes. After developing these models, we apply them to real data and explore the
best approaches to their applications using real-world data with common problems found,
especially for species of conservation concern. We omit detailed methods and results for this
report and focus instead on the results most pertinent to this project, but those details are
available in Holmes et al. (2007).

5.3.2 - Results and Discussion

We were able to use the CSEG model to output quasi-extinction probabilities for a broad class of
processes that are known to underlie many observed population counts. This included examples
on a stage-structured species (Chinook salmon), using a stochastic Ricker model, and also a
community model with four interacting species. Under all these circumstances, the CSEG model
was able to produce probabilities of reaching a quasi-extinction level that was either based on a
specific population size (Fig. 16a) or a proportion of the original population size (Fig. 16b).
These outputs could be used to set conservation targets such as a Minimum Viable Population
size. It could also be used to determine a population’s current trajectory and how much of the
observed variability is due to observation vs. process error.
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Figure 16. Example quasi-extinction profiles for a species with stochastic population
growth. The quasi-extinction profile, which may be represented as a probability surface
(A) or as a series of curves giving percentage declines (B), quantifies the cumulative
probability that a population will decline to a given population size (or by a given fraction
of its initial size) within a particular time horizon.

In addition to developing a theoretical CSEG approximation for multiple stochastic
processes, and showing it was possible to produce the four key parameters, we also used the data
to test CSEG forecasts on real time series data for our key test datasets, all of which represent
populations of conservation concern. To do this, we developed cross-validation simulations of
the expected quasi-extinction probability as a function of forecast length to see how closely
actual decline probability from the simulations matched estimates from the CSEG models for the
Chinook salmon, Ricker, and community datasets (Fig. 17). We found that the CSEG model was
able to capture these probabilities well, although the model did better for salmon (Fig. 17a-c)
overall and when longer time periods were used overall (Fig 17). However, the modeling
approach did not work well in all situations; for instance CSEG did not perform well when
populations fluctuated slowly around a mean.

Overall, we found this method to be a promising approach to developing conservation
targets when detailed mechanistic data necessary for standard PVAs are lacking. We have
shown that simple stochastic approximations can model a particular ensemble property, the risk
of quasi-extinction. We have focused on the CSEG model and shown how the CSEG can
accurately approximate quasi-extinction risks across different forecast lengths and risk
thresholds, for a variety of population processes. Using simulations and 20 years of data, we
illustrated that CSEG estimates of quasi-extinction risk can have relatively low bias and 95% Cls
that are much smaller than (0,1) — particularly for declining and rapidly fluctuating populations.
We crossvalidated these results using a large dataset of abundance time series from species of
conservation concern.

Although we did find this approach to be powerful for many situations, we did highlight
some areas where model improvement in necessary. However, we were able to find an approach
that was generally free from biased results even when biological mechanisms were completely
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Figure 17. Cross-validation using simulations for three examples of population
structures used to develop the CSEG model. These include the Chinook salmon (a-c),
Ricker stochastic model (d-f) and a four-species community model (g-i). For each
simulation, black lines show the actual mean probability of 80% decline and the box and
whicker plots show the range of CSEG estimates containing 95% CI. Simulations were
run at 10 (left column), 20 (center column) and 30 (right column) year time-frames for
estimating quasi-extinction.

ignored, often a criticism of simple PVA models. Another criticism that has been leveled against
PVA:s is that the data used are often riddled with errors. While this is true, here we present a
method that works well with data sets that include errors that are common in field studies and we
showed that it performed well in at least some circumstances. While there are many challenges
still to overcome in building tractable approaches to forecasting population trajectories, we
present a new approach that we hope can add a powerful tool for managers struggling to develop
defensible conservation targets when only time-series of population sizes are available to them.

5.4 - Conclusions

Currently, the only relatively standardized method to determine species-specific quantitative
recovery criteria is the population viability framework based on minimum numbers of
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individuals required for a specified probability of persistence (Favreau et al. 2006). Vital rates
estimated from demographic approaches can be used to determine whether populations are on
trajectories toward persistence versus extinction (Schemske et al. 1994) and structured
population models can identify stages in the life cycle that are most important to population
growth and the degree to which they are affected by stochasticity (Melbourne and Hastings
2008). However, from a practical standpoint, use of population viability analyses (PVAs) for
establishing recovery criteria and management actions is precluded for most species due to
intensive information requirements. In fact, PVAs have only been used to help determine
downlisting and delisting criteria for five listed plant species (in two recovery plans), and
included in the description of basic natural history for only nine listed species. Yet many
consider the use of PVA to be inappropriate for setting absolute minimum numbers and suggest
that it should only be used for comparative risk analysis (Beissinger and Westphal 1998; Flather
et al. 2011; Reed and Shine 2002; Crone et al. 2011). In this section, we were able to highlight
some drawbacks and strengths of PVA, as it is currently practiced on plants and also present a
new approach that may allow PV A approaches when demographic data are lacking.
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6. PART 4: INFERRING RECOVERY CRITERIA FOR POORLY-

STUDIED SPECIES
6.1 - Background

Conservation work to date has jumped between generic conservation rules and expensive, time-
consuming, and often unattainable single-species PVAs, without regard for any intermediate
analytical framework. For instance, without specific demographic information, conservation
decision makers often apply various kinds of general rules of thumb to generate recovery goals.
Even today, workers quote the well-known 50/500 and 500/5000 rules for effective population
size targets. Such general rules can provide useful guidelines, but their invariant application
across taxa with widely varying life histories and ecological characteristics is problematic.
Although it may be intuitively obvious that the number of individuals needed to conserve an
endangered insect is vastly greater than to conserve a bear population, the reality is that we still
lack guidance on coming up with more species-specific criteria.

Our goal was to develop a framework to account for the fact that for each species, extinction
risk and recovery potential result from a combination of intrinsic factors (e.g., demography, life
history, genetic diversity, ecological requirements, and range size) and extrinsic factors (e.qg.,
types of threats; extent, magnitude, and duration of reductions in range and population size). To
date, the balance of these individual factors, as it varies across species is poorly understood (e.g.,
Murray et al. 2002a). In originally undertaking this project, our goal was to provide a framework
for quantifiable recovery goals and practical approaches to recovery planning by using this idea.
In our initial framework, we planned to use a database amassing information from TES and well-
studied species to leverage information across species and develop an analytical model that
would produce a defensible estimation of the best recovery goals when on-the-ground or species
specific data are lacking to parameterize data-hungry models (Fig. 18).

Unfortunately, our experience was that there still are not enough species-specific data to
allow this cross-species modeling approach. The lack of data was exacerbated by the fact that
species do appear from our analyses to be fairly unique. This lack of congruence between traits,
population trends, threats, and recovery criteria demanded even a higher degree of data on each
species if this approach was to be successful. This made the lack of data availability even more
problematic. Below, we show the results of multiple attempts to link traits, abundances, and
threats and show that we were never able to design an approach that was able to compensate for
the lack of data. While most of the work in this section shows a frustrating lack of successful
results, they highlight an important challenge to conservation biologists and also highlight the
need to continue filling in knowledge gaps across species, population dynamics, and threats
throughout regions and landscapes. In the final section of this report, we describe an approach
that harnesses evolutionary pathways to understand the distribution of traits across related
species and can be used to help fill in gaps in knowledge in a robust way.

For our attempts at harnessing current data, we used tree-based methods which are described
in more detail in section 2 (see page 34), but specific details are given for each section. Then,
we show the main results from our attempts to build comparison sets for our Proof of Concept
bird and plant taxa. Finally, we show that even the more modest goal of trying to identify
surrogates between well and poorly studied taxa met with the same result, species were too
unique and we did not have enough data on traits.
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Figure 18. Schematic of our original analytical approach. Inputs to and
outputs from the planned analyses are shown. Data did not turn out to be robust
enough to successfully complete Step 2.

6.2 - Comparison sets to infer recovery criteria for species with similar traits and threats

Our approach to develop comparison sets had three major steps: 1) Use tree-based approaches to
develop comparison sets for all TES species, 2) Determine if the comparison sets were
statistically significant and stable, and 3) Identify if the species that were members of a stable
and significant comparison set shared similar recovery criteria or similar quasi-extinction
thresholds. We developed and tested this method on two taxa for which we had the most data:
plants and birds. Throughout this section, we will present results separately for these two
groups.
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Figure 19. Sample ordered proximity graph for a
hypothetical species. This schematic graph shows
hypothetical shape of proximity scores between one

as the proportion of_1000_trees in the focal species and all other species in the database.
random forest runs in which two Higher proximity scores indicate more similarity in life
species fall into the same leaf as the history traits and threats between the focal species and
underlying trait/threat matrix is gach other species.

sampled and permuted. Thus, the

comparison sets are groups of species

that share a suite similar biological traits and extrinsic threats. We then developed a proximity
graph for each species from the proximity matrix. This graph allowed, for each focal species, an
assessment and visualization of the ranked similarity of all other species by their proximity score
relative to the focal species (Fig. 19).

Step 2: Determine if sets are significant and stable

We assessed the statistical significance of each species’ membership in a comparison set via
randomization tests that determined whether the proximity score between a focal species and a
potential comparison species was robust to random sub-setting of the underlying trait/ threat
matrix. Our goal here was to identify those species whose proximity to a focal species did not
hinge on one or a few traits or threats that might be absent from a given trait/threat matrix given
typical levels of incompleteness of the conservation databases. Significant comparison species
were those whose proximity scores relative to the focal species were in the top 5% of such
proximity scores that could be calculated, given the data available in the trait-threat matrix for
those randomly constructed sets of the same size. To emphasize this point, a significant
proximity score was not judged by its raw magnitude, but rather its magnitude relative to the
other proximity scores that could be calculated given an assumption about how extensive the
underlying trait/threat data matrix was. As a result, in a rank proximity graph (Fig. 20)
significant comparison species (those species denoted by vertical lines in the figure) could be
separated by runs of non-significant comparison species whose proximity to the focal species
was sensitive to the scope and content of the available data matrix (Fig. 20a).
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Statistically proximate species
could be part of a comparison set for the
focal species because their similarity
relative to the focal species is robust to
randomization of the multivariate
trait/threat matrix. However, to be truly
useful in any predictive context, we
would also need a set of comparison
species (i.e., a comparison set) to be
stable with regard to the randomization.
That is, we need the species in a
comparison set to stay together as a
group with regard to their proximity
relative to the focal species as the
trait/threat matrices are manipulated.
Thus, not all species that are statistically
proximate to a focal species could
feasibly belong to a comparison set
because the component species could
differ wildly relative to one another (as
a function of how much data was
available) with regard to the proximity
magnitude observed. We considered
sets of >5 species with contiguous
proximity values to comprise a stable
comparison set for a focal species (Fig.
20b). Delineated in this way, stability
of comparison sets is a stringent
criterion, but it yields comparison sets
that are relatively robust both to the
content of the trait/threat data matrix
and to inclusion or exclusion of species
in the database as judged by ‘leave-one-
species-out’ jackknifing.

To assess how well these
comparison-sets associate with
quantitative recovery criteria, we used
two sets of data we have gathered. First
we used time series obtained for over
three hundred populations of birds (77
distinct species). We used the CSEG
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Figure 20. Hypothetical proximity scores indicating
significant and stable comparison sets. This
schematic graph shows significance of similarities
between proximity scores and extinction risk value
between one focal species and three other species in the
analysis. The green lines indicate species that are
statistically significantly (i.e., they are resistant to
elimination based on randomization of the trait/threat
data we have) (a). Species who are statistically
significant, but also stable (i.e., as the trait/threat
matrices are manipulated these species stay together as
a group with regard to their proximity relative to the
focal species) are shown with blue lines (b).

model (Part 3) to compute minimum viable population sizes (MVPs) from the time series data.
Second, for 642 listed plant species with recovery plans, we looked at changes in the number of
populations and the total number of individuals with the goal of expressing recovery criteria in

these two quantities jointly.
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We had determined early on that this approach would vary based on how extensive the
available time-series data were. Because of this, we developed one approach for cases where
only a minimal amount of data were available, specifically for when only two data points were
available to determine population trends. We also developed methods for cases where more
time-series data were available that allowed us to explore population trajectories and infer more
rigorous recovery criteria. Based on overall data available in our database, we implemented the
minimal data approach for plants and the time-series approach for birds. In each case, our goal
was to assess whether the trends (or MVPs) calculated for a focal species were similar to the
trends (or MVPs) that would be calculated using a stable, significant comparison set for that
species.

6.2.1 - Time-series approach (birds)

For bird species, we compiled a database of 300+ population time-series from the Global
Population Dynamics Database (http://www3.imperial.ac.uk/cpb/databases/gpdd). This database
contains a collection of time-series data (counts of numbers of individuals over time) and we
used data for 77 different bird species. For each of these 77 data sets, we applied the CSEG
technique described in Part 3 of this report (see Fig. 16). We were specifically interested in the
estimates of MV/P that was produced by this technique because it presented the potential to link
traits and threats to a defensible recovery target. To obtain trait data to build our proximity
database, we used data obtained from NatureServe and supplemented with data from field guides
and other sources.

We present one example of this process for the Junco (Junco hyemalis). We constructed
an individualized comparison set of species for the Junco using data included in (Fig. 21a).
Based on a random forest analysis of all trait and threat data, we identified a comparison set of
nine species most similar to J. hyemalis for the next steps in the analysis (Fig 21b). Our
bootstrap randomization tests (with an arbitrary cut-off for membership in the comparison set)
yielded mixed results (Fig. 22). The comparison species had estimates of process error (cp; Fig.
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Figure 21. A comparison set of multivariate proximity for Junco hyemalis. Rank
proximity for all available species appears in panel A, and in magnified form in panel B
where species names are added to the most proximate species
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22b) and non-process error (onp; Fig. 22c¢) that were significantly closer to those of J. hyemalis
than could be expected by chance. However the similarities of the mean growth rates (u, Fig.
22a) of the comparison species and J. hyemalis were not significantly different than random
whereas the MVP values (Fig. 22d) of the comparison set species and J. hyemalis were
marginally similar (p = 0.10). This set of results means that that the variability metrics of the
comparison species’ time-series were statistically similar to those of the focal species but that the
agreement in mean rate of growth was not differentiable from random.
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Figure 22. Example results from bootstrap randomization tests of the differences
between Junco hyemalis and the nine closest members of its comparison set. These
comparisons are made in terms of CSEG parameters (panels A-C) and resultant MVP
values (panel D). The p-values report the probability that a randomly-chosen comparison
set would be as similar to the value of the focal species as was the comparison set
determined from the proximity matrix. Graphically, this is the proportion of each
histogram’s area to the left of the vertical dotted line.

66



We repeated the process outlined above and developed comparison sets for each of the 77
bird species. We then used our randomization technique to determine if we could find stable and
significant sets for each of the species. Unfortunately, when looking at all 77 species, only about
20 had statistically significant comparison sets, and of those, fewer than 10 were both significant
and stable (Fig. 23). The pattern we found for the Junco, namely success in cross-characterizing
measures of variability using stable significant comparison sets but inability to estimate the
means, occurred regularly in application of this approach to other bird species. The low number
of species for which we could find comparison sets precluded us from proceeding to the next
step in our process, inverse problem modeling (Fig. 18).
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Figure 23. Number of stable and significant comparison sets. A total
of 77 birds were processed (orange bar). Of those, 20 had significant
comparison sets (green bar) and fewer than 10 had stable sets (blue bar).

6.2.2 - Minimal data (plant) approach

For 642 listed plant species with recovery plans, we looked at population changes based on two
metrics: 1) the number of populations and 2) the total number of individuals. Our goal was to
express recovery criteria in these two quantities jointly. For many plant species we were able to
extract information from federal listing documents and recovery plans on number of populations
and individuals at 1) the time of listing and 2) the time at which the recovery plan was written
(for example, see Figs. 6 and 7). We then tested whether the nature of species’ declines in terms
of populations and/or the number of individuals was a function of the types of threats a species
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faced or of the biological traits of that species. Using a subset of 109 species from RecoveryDB
that had relatively complete data for 25 trait and threat variables, we applied unsupervised
random forests to see if species with similar traits and threats show similar patterns of decline.
Declines are quantified in terms of the magnitude and direction of the (# of populations, # of
individuals) vector and the number of years over which the declines have occurred. We present a
summary of the numbers of species considered, and how many were stable and both stable and
significant in Figure 24. We present results based on minimum number of individuals and
minimum number of populations. In addition, as done in Part 2, we present results with and
without Hawaiian species. Only when HI species were included were there a substantial number
of species with significant and stable comparison sets (Fig. 24). However, the fact that they all
share the same recovery plans, also precluded us from proceeding with the inverse problem
modeling. That step is not possible when there is no variability in recovery goals.

6.2.3 - Summary

This exercise showed that there are two fundamental barriers remaining to the type of approach
we proposed (Fig. 18). First, the unique nature of species means that we would need a large
number of species with well-parameterized sets of traits and threats. Unfortunately, at this time,
there are still too few species that are well-studied enough to be used in the proposed analytical
framework.
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Figure 24. Number of stable and significant comparison sets for plant species.
Analysis was run using both the minimum number of individuals and the minimum
number of populations and also with and without HI species. Over 600 plant species were
processed (~400 with HI species excluded. orange bars). Numbers with significant
comparison sets (green bars) and stable sets (blue bar) are shown for whether individuals
or populations are used as the minimum, and with and without HI species.
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6.3 - Testing surrogacy assumptions: Can TES be grouped by traits and abundances?

We found two main barriers to developing robust comparison sets to formally model the
most defensible recovery criteria for species that have not been well studied is a lack of trait data
to link the comparison sets together, but also that species are fairly unique in terms of their
characteristics. This brings the question of whether or under what circumstances species can act
as surrogates for each other for any use. Although the process we went through in this project is
similar to the one above, our goals were slightly different. Above, we were looking for any
species that could reasonably be linked together with a set of species that shared similar traits,
threats, and recovery criteria to actually develop a model that would output a predicted “best”
recovery target. Here, we tried to determine the extent to which one well-studied species could
be used as a surrogate for another group of threatened and endangered species based on shared
traits and abundance trends. If so, this one species could be the focus of conservation efforts and
other species could be assumed to be protected or that the same recovery targets would be
appropriate.

In the broadest sense, surrogate approaches encompass all methods that apply principles
from theory in ecology, population biology, and population genetics to determine conservation
strategies in absence of species-specific information (Caro and O'Doherty 1999; Noss et al.
1997; Niemi and McDonald 2004). Surrogate species may be chosen based on a range of
biological similarities with target species. They may overlap with target species in terms of
ecological requirements or geographical ranges (indicator and focal species: Caro and O'Doherty
1999; Lambeck 1997), control target species abundance through trophic interactions (keystone
species: Mills et al. 1993; Sergio et al. 2008), have close phylogenetic relationships with targets
(species groups: Wiens et al. 2008) or have broad ecological requirements that encompass those
of many species (umbrella species: Caro and O'Doherty 1999;Wilcox 1984; Fleishman et al.
2001). Based on these biological relationships and similarities, benefits from protection or
management of surrogates are inferred to extend to target species. Thus, use of surrogate species
for conservation planning employs the assumption that species sharing biological traits or
relationships will also be similar in terms of their distribution, abundance, or response to
management.

Critics have long contended that surrogate approaches are ineffective because these
underlying assumptions are likely unmet in most applications (Caro et al. 2005; Landres et al.
1988; Lindenmayer and Likens 2011; Murphy et al. 2011; Simberloff 1998). Further, in many
cases the assumptions are not explicitly stated, and when they are stated they are rarely tested. As
a result, the potential utility of surrogate approaches for most species is unknown. The few
studies testing surrogacy assumptions for reserve selection have found no or weak
correspondence between the presence, abundance, or richness of surrogates and those of the
target taxa (Andelman and Fagan 2000; Lewandowski et al. 2010; Rodrigues and Brooks 2007).
Selection of conservation sites based on one taxonomic group rarely represents other groups well
and the degree of spatial overlap between groups is idiosyncratic (Chase et al. 2000; Brooks et al.
2001; Gladstone 2002; Saetersdal and Birks 1993; Scott et al. 2010; Virolainen et al. 2000;
Williams et al. 2000).

Thus it is essential to continue testing assumptions to determine if there are
circumstances in which the use of surrogates is appropriate (Lindenmayer and Likens 2011). In
the case where a common or well-studied species is chosen to represent the demographic trends
or management responses of a group of listed species, two specific assumptions must be met.
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First and fundamentally, there must be groups of threatened and endangered species that are
sufficiently similar in multiple characteristics and/or threats to form identifiable groups that
would justify representation by a surrogate species. Second, the groups of species must respond
similarly to management and threat abatement as the surrogate species. In this study, we tested
the first assumption by searching for groups of species with similar characteristics in the
threatened and endangered plant species listed under the ESA. In addition to allowing potential
representation by surrogates, groups of biologically similar listed species may share similar
conservation needs and thus may be managed as a group to facilitate recovery planning. In this
study, we used tree-based statistical models to examine whether listed plant species can be
grouped based on a set of biological traits alone, their previous abundances and patterns of
declines alone, or a combination of traits and abundances. This analysis will determine whether
there are identifiable groups of listed species, and if so, identify traits that are important for
defining these groups.

6.3.1 - Methods

We compiled data on previous abundances and biological traits from recovery plans for
the 642 listed plant species with final approved plans as of 31 December 2009. We recorded the
number of historically known populations, number of populations at listing, number of
populations at plan writing, total number of individuals at listing, and total number of individuals
at plan writing. To quantify the pattern of decline for each species, we calculated the proportion
of historical populations remaining at plan writing and that at listing, the proportion of
populations at time of listing remaining at plan writing, and the proportion of individuals at time
of listing remaining at plan writing. A summary of those metrics are shown in Table 11.

We collected data on the same eight biological and distributional traits (also referred to
here as “traits”): maximum plant height, maximum flower size, life form, life history duration,

Table 11. Summary of abundance variables included in surrogacy analyses

N  Minimum Mean = SD Maximum
Number of populations
Historical 408 1 16.9 = 3548 475
At listing 415 0 7.2+13.74 173
At plan writing 601 0 11.0+21.63 231
Proportion of historical
remaining at listing 287 0 0.68 £0.278 1.0
Proportion of historical
remaining at plan writing 406 0 0.67=+0.272 1.0
Proportion at listing
remaining at plan writing 395 0 1.00 =0.398 7.8
Number of individuals
At listing 380 0 7919 +79910 1,500,000
At plan writing 478 0 240200+4579090 100,000,000
Proportion at listing
remaining at plan writing = 352 0 52.1 +763.8 14290
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reproductive mode, reproductive repetition, physiographic division, and range area. Specific
levels for each trait category are shown in Table 7.

6.3.2 - Analysis

To examine whether listed plant species can be grouped based on similarities in traits, prior
abundances representing patterns of declines, or a combination of traits and abundances, we used
the random forests, which is a tree-based method of analysis (see page 34 for a general
background). In this case we used an uninformed RF the data are modeled without a response
variable to assess whether there is inherent structure in the data. The original dataset is classified
as group one and a second group of data is created through random permutation of the original
data, and RF is used to re-assign the combined data into two groups based on predictor variables.
If there is structure in the original data, RF will correctly reassign the same groups with error rate
<50%. By convention, <40% error indicates significant grouping whereas higher error rates
indicate random group assignment.

We used the randomForest function in the R package randomForest (Liaw and Wiener
December 2002) to run RF. For each analysis we built 1000 trees with four randomly chosen
predictor variables tried at each node (mtry=4), except in the individual-based abundances model
in which there were only three total predictors (mtry=3). Different mtry values were tested and
produced similar results (not shown). To assess model accuracy, we used the out-of-bag
classification error (OOB error), which was the mean squared error calculated using only the
observations that were not used to build the individual trees.

We performed three sets of analyses: classification of species based on traits alone,
previous abundances alone, and both traits and abundance. For models including abundances as
predictors, we also ran separate models including only population-based abundances or only
individual-based abundances to examine whether the measure of abundance affected
classification. Because all examined variables were missing data from at least one species, each
analysis used a different subset of the data ranging from 70 to 352 species (Table 12).

6.3.3 - Results

We found no evidence of grouping among listed plant species based on biological traits,
abundance or traits and abundance (Table 12). Variable importance values for all traits were
negative for biological traits (Fig. 25a) and mostly negative for abundance traits except for some
marginally positive values (Fig. 25b). Results were similar when the analysis included only
population-based abundances (Table 12). There was, however, significant grouping in the
analysis including only individual-based abundances (OOB error = 29.4%; Table 2), and the
number of individuals at plan writing had the highest variable importance value (mean decrease
in model accuracy from variable permutation are -0.12, 0.06, and -0.06 for the number of
individuals at time of listing, number of individuals at time of plan writing, and number of
individuals at time of plan writing remaining at time of listing, respectively).

6.3.4 - Discussion

Our results are similar to the ones we found above and are therefore not surprising. Our results
demonstrated that ESA-listed threatened and endangered plant species cannot be grouped based
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on their biological traits or most of the abundance variables we examined. Further, the lack of
similarity among listed species may indicate a true difference in terms of their intrinsic
characteristics and patterns of decline, but it may also be due to data limitations even though we
went to great lengths to develop a comprehensive database and statistically account for residual
gaps in data available across species. For example, each of the traits examined had missing data
for many of the species, and actual similarities may not have been illuminated due to insufficient
data. However, managers tasked with choosing surrogate species will be faced with the same
level of data deficiency given that our data come from actual recovery plans.

The overall lack of grouping suggests low potential for widespread use of surrogacy to
guide recovery planning because species do not meet the fundamental requirement of forming
biologically similar groups. However, the lack of grouping may also have resulted because listed
species represent a subset of plant species that share similar values for the traits examined and
cannot be further subdivided. This was likely true for using abundance as an indicator. For
example, they all have relatively low abundances and have experienced declines, which are
related to their threatened and endangered status. If their threatened status results in a small range
of values for each trait represented in our dataset, there may not be sufficient variation among
species to split them into more refined groups. It is possible that comparing non-listed and listed
species would have presented a broader range of traits and enabled grouping species by traits.
However, such groupings would not meet our goal of finding suites of listed species that can be
managed similarly or that could have similar recovery criteria. However, lack of trait diversity
doesn’t seem to be a likely cause because many traits were represented in the database
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Figure 25. Variable importance values from surrogacy analysis. Variable importance was
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Negative or slightly positive values indicate variables are not important.

73



6.4 - Conclusions

Our attempt to build comparison sets showed that we are not yet at the point where we have
enough data to employ a data-intensive approach to predicting recovery criteria. \We were never
able to produce enough stable and significant comparison sets to proceed with the inverse
modeling portion of our analytical flow (Fig. 18). Considering our focus was on relatively well-
studied taxa (plants and birds), this does not bode well for applying the method broadly at this
point. Yet even exploring simpler surrogacy approaches proved elusive. Previous studies testing
the assumptions of surrogate approaches primarily examined how well abundance or distribution
of surrogates predicted abundance or distribution of target species (Andelman and Fagan 2000;
Lewandowski et al. 2010; Rodrigues and Brooks 2007; Chase et al. 2000; Brooks et al. 2001;
Gladstone 2002; Saetersdal and Birks 1993; Scott and Sullivan 2000; Virolainen et al. 2000;
Williams et al. 2000). One of the few studies to test whether species sharing similar traits also
share demographic characteristics (e.g., population abundance or decline) demonstrated that
temperate birds with similar migratory status and the same feeding guild exhibited as much
variance in abundance as all birds combined (Cushman et al. 2010). Although not specifically
focused on surrogacy, studies attempting to link various life history traits to species rarity (Bevill
and Louda 1999; Murray et al. 2002a; Murray et al. 2002b or to extinction risk (Gaston and
Blackburn 1995; Cardillo et al. 2008; Brook et al. 2008; VVamosi and Vamosi 2005; Sodhi et al.
2008; Traill et al. 2010) have also failed to yield consistent and predictable relationships. These
results suggest that even if there were groupings of endangered species that shared biological
traits, their demographic trends would likely not be determined by those traits alone and
therefore would not be well predicted based on surrogacy.

Because relationships between surrogates and target species have been difficult to
generalize, researchers recommend testing surrogate assumptions on a case-by-case basis (Wiens
et al. 2008; Murphy et al. 2011; Rodrigues and Brooks 2007; Favreau et al. 2006). In other
words, effective implementation of the surrogate approach requires monitoring the full set of
target species to evaluate its success. Others suggest devoting resources to direct monitoring of
target species rather than to surrogate approaches that require such extensive verification
(Lindenmayer and Likens 2011). Based on previous studies and our current findings of failure to
meet surrogacy assumptions, we agree that individual-species monitoring and recovery planning
are likely required to develop defensible recovery criteria.

In short, we are concerned that surrogate approaches and similar shortcuts are not
supported by the best available science and further preclude the understanding of the status and
trends of listed species. Although the prospect of determining science-based, quantitative
recovery criteria and management actions for every listed species is a daunting task, focusing on
the types of decline and their relative magnitudes that result from threatening processes may
improve the efficiency of the process. Currently it is not possible to distinguish between the
types of decline for all listed species or which type has had the greatest impact on species
survival based on information provided in recovery plans. This is because historical range
extents are often unknown or have not been explicitly documented, and most plans only describe
declines qualitatively (Leidner and Neel 2011). However, such information would enable further
analyses of whether recovery criteria are consistent and objective. Moreover, the patterns of
decline are likely related to the specific threats that have caused the decline. The type and
severity of the various threatening processes contributing to species extinction also need to be
more specifically quantified in recovery plans.
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7. PART 5: NEW STATISTICAL APPROACHES FOR THE ESTIMATION
OF LITTLE “r”

7.1 - Background

The key goal of this project was to develop powerful methods by which to leverage trait data for
use in conservation decision making. While one issue remains how realistic it is to use trait data
as a proxy for making conservation decisions (see Part 4 of this report), another is the quality of
the estimates that are pulled from the literature. In particular, if researchers use strong
assumptions that influence estimates of critical traits, or they use different methodologies, then
broadly speaking, trait data may not be comparable across species because differences are due to
differences in methodology and not to differences between species. Even worse, if researchers
use estimation methods that are not appropriate, then their estimates may be incorrect. We
explored these issues by focusing on the history of estimating one of the most critical parameter
from the ecological and conservation literature: little “r” (hereafter, r).

The intrinsic rate of increase, r, is a fundamental concept in population ecology. Very
generally, r describes trends in population density and abundance (Sibly and Hone 2002a, b) and
is an indication of the potential for a population to replace itself. r is an integration of how long
a species lives, patterns in death over the course of a typical lifetime (referred to as survivorship
curves), and reproductive capacity throughout a lifetime (referred to as fecundity schedule). r is
often considered a species-level trait, because it is meant to estimate a species’ intrinsic ability to
grow. In reality, however, realized measures of r are often based on estimates in the field, where
most individuals live well below their maximum lifespans and several environmental factors may
depress their reproductive output.

With respect to conservation, r is important because it governs everything from
population stability to extinction risk (Lande 1993a,b; Calder 2000a,b; Mace 2008; Mace et al.
2008) and recovery dynamics (Hutchings 1999; Denney et al. 2002; Fagan et al. 2010). Asa
result, r can be used to differentiate species with regard to conservation needs. However, despite
the broad relevance of r to ecologists and conservation biologists alike, calculation of r from
empirical datasets is only possible for a tiny subset of wild species (Coulson et al. 2001).
Moreover, even when calculation of r is possible, estimates are often fraught with complications
due to data availability, context specificity and methodology differences discussed above. This
can make direct application to conservation needs difficult at best and dangerous at worst.

7.2 - A brief history of estimating r

There are two different general approaches to estimating r, a bottom-up approach and a top down
approach. The bottom-up approach uses mechanistic data on survivorship and fecundity to
determine what population trajectories are the most likely. This approach can use two types of
data to estimate r: life tables or life-history traits. Life tables collect stage specific demographic
data throughout a species lifetime, including an individual estimation of the probability of
surviving and reproducing at each designated stage. Stages can be designated annually or in
other time increments based on the biology of the species. These data are extremely expensive
and intensive to collect and are rarely available. In contrast life history information is more
generalized information that may be summarized from a life-history table, but estimates at each
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life stage are not required. For instance, there may be general information about what type of

survivorship curves are typical for
each species (see Fig. 26) and
those can be combined with
general information on levels of
reproduction (e.g., average clutch
size).

In contrast to bottom-up
approaches, a top-down approach
uses time-series data on
population trajectories to infer a
growth parameter. While this type
of data is not as costly as
constructing a life-table, it can be
more costly than estimating life-
history parameters. In addition, r
estimation usually requires long
time-series and thus years of data.
The distinction between top-down
and bottom-up approaches is
similar to the discussions on PVA
presented in Part 3, where some
models use mechanistic data
(often life table data) and others
work from time-series. In fact,
estimates of r are closely tied to
output from PVA and many of the
problems making estimates and
comparing data are similar.

While each approach or
data source used to estimate r
would ideally lead to identical
predictions, this is not always the
case. Life tables can give different

Percentage of organisms surviving

ISy

Time

Figure 26. Three classic survivorship curves. The basic
shape of these curves and their “type”is a life-history trait
that is often conserved at much higher taxonomic levels. For
instance, humans tend to have type I survivorship, with most
death occurring near the end of their lives. Frogs tend to
show the opposite pattern (Type III) where most eggs do not
hatch and most tadpoles don’t survive, but once the adult
stage is reached, survivorship increases. Birds on the other
hand tend to die at a fairly consistent schedule throughout
their lives (Type II). The shape of these curves and the scale
(how the time axis is scaled) are both critical life history traits
that have a profound influence on the value of r. Graphic
from Wikipedia Commons, by Ray Husthawaite (CC-BY).

estimates of r depending on the conditions under which the life tables were generated. For
example, parameterizing life tables based on measurements taken at different population
abundances or in different environments may result in different life tables and thus different
estimates of r. The same is true for time series estimates of r made by direct regression of count
data against time — depending on the conditions present when the time series were recorded,
estimates of r can vary dramatically. Transforming time-series count data according to density
dependence can yield estimates of r that are corrected for population abundance (i.e. that always
apply in the limiting case of zero population abundance); however, this requires assumptions
about density dependence, and different assumptions can lead to different estimates of r.
Estimating r from life-history traits suffers from all the same context related complications
associated with life tables and time-series. In addition, however, this method often requires
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significant simplifying assumptions, and these can have profound and erroneous effects on
estimates of r.

Since the different methods used to estimate r lead to different results corresponding to
different interpretations, we suggest that there are actually several “concepts” of r in the
literature (summarized in Table 13). These alternative forms are very rarely distinguished but
are neither identical nor interchangeable. For instance, the maximum population growth rate of a
laboratory or captive population maintained under low density, high-resource conditions (7,4x)
will be different from the maximum growth rate attainable by a wild population under field
conditions (r,,,). Moreover, if a top-down approach based on life-history traits is used, then r
estimates will differ not only with context, but also depending on the assumptions that are made
regarding survivorship and fecundity patterns (¥ or p in Table 13). In both the ecological and
management literatures, various estimates of r are used inconsistently. Therefore, even if values
are estimated “properly”, comparing values can be fraught with difficulties because comparisons
may span different concepts of r. Here, we focus on estimating r using either life-history traits
or population time series, since these methods use data that is more commonly available.

The starting place for estimating r based on life-history traits is the Euler equation:

fooo l(x)m(x)e ™ dx =1 (2)

where [(x) is the survivorship to age x (i.e. the proportion of individuals that survive to age x)
and m(x) is the per capita fecundity of female offspring at age x (Roughgarden 1996; Kot 2001).
To obtain r from Eq. 2, one must have empirical survivorship and fecundity schedules, or must
make assumptions about the shape and scale of those schedules based on life history data.
Clearly, the assumptions that are made about the shapes of survivorship and fecundity functions
are going to have a profound impact on the estimation of r. One common approach (Hennemann
1984; Schmitz and Lavigne 1984; Robinson and Redford 1986; Ross 1992; Duncan et al. 2007),
first proposed by (Cole 1954), is to assume that reproduction occurs annually and that all
individuals in a population survive to a common maximum age and then die (step function
survivorship). Under these assumptions, the only parameters necessary to define the
survivorship and fecundity schedules in Eq. 2 are offspring production per female per year, age
of first reproduction, and age of last reproduction/death. The simplicity and minimal data
requirements of Cole’s approximation have made it popular, even in analyses for which the
original assumptions (annual reproduction, fixed lifespan, etc.) are inappropriate.

Recently, Pereira and Daily (2006) proposed a different set of assumptions for
approximating Eq. 2. Specifically, they replaced annual reproduction with reproduction at a
fixed time interval, A, and assumed a constant death rate (i.e. exponential survivorship) as
opposed to a fixed lifespan. Under these new assumptions, the only parameters necessary to
define the survivorship and fecundity schedules in Eq. 2 are offspring production per female per
litter, interval between litters, minimum age of reproduction and mortality rate. Because the
Pereira and Daily (2006) approximation is nearly as simple as the (Cole 1954) approximation,
but does not constrain reproduction to occur on an annual basis, it has found use in mammalian
conservation planning. However, the Pereira and Daly (2006) model still makes broad, albeit
different assumptions regarding survivorship functions.

In what follows we analyze and compare the Cole approximation (p, see Table 13) (Cole
1954), the Pereira approximation (#, see Table 13) (Pereira and Daly 2006), and field studies that
use time-series data (;,,, see Table 13). For simplicity, we continue to refer generically to r
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throughout the rest of the report, but distinguish between these three alternative versions of r by
referring to methods (Cole, Pereira, Timeseries).

7.3 - An examination of the most rigorous estimation methods for r

Given the relevance of r to conservation planning, we believed that it was imperative to
understand how the different methods for r estimation could influence results. In particular, we
were interested in the importance of survivorship and reproduction assumptions. Specifically,
we asked the following questions:

1.) How do empirical survivorship curves compare to the step function approximation from
Cole and exponential approximation from Pereira?

2.) How do estimates of r based on empirically fitted survivorship curves compare to
estimates of r made using the step function approximation or the exponential
approximation?

3.) How does the shape of the survivorship curve influence estimates of r?

4.) How does the scale of the survivorship curve influence estimates of r?

5.) How does reproductive schedule influence estimates of r?

6.) How do the various life-history trait methods for estimating r compare to methods using
time-series data?

The work in this section summarizes results published in Fagan and Lynch (2009) and Fagan et
al. (2010) (Appendix 2).

In order to parse out the roles of survivorship shape and scale on r estimation, as well as the
relevance of standard survivorship assumptions in real-world contexts, we sought to develop a
generalized model of survivorship. Here, the goal was to select a function that was complex
enough to fit a wide variety of empirical survivorship schedules, but simple enough to interpret
in terms of shape and scale parameters. One critical issue is the flexibility of the function used to
model the survivorship schedule. Specifically, function choice will determine how well the
model can fit empirical data. We found that commonly used distributions (Weibull, Gompertz)
did not provide a good fit to many of the available mammalian survivorship schedules. Instead,
we used the beta distribution, which tends to be more flexible than either the Weibull or the
Gompertz distributions. Our model of the survivorship function using a beta distribution took
the following form:

l(x) =1—CDF[Beta(x/L; a,8)] =1 —1(x/L; a, B) 3

where CDF is the cumulative density function, « and g are the nonnegative shape parameters of
the beta distribution, and I(x/L; a, B) is the regularized incomplete beta function. Since the beta
function has nonzero support only on the interval [0,1], we scaled x by maximum lifespan L,
which then becomes the scale parameter. The model in Eq. 3 provides excellent fits to all
survivorship curves in our mammalian data set. In addition, the beta distribution contains, as
special cases, both the step function survivorship schedule assumed by Cole and the exponential
survivorship schedule assumed by Pereira.
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7.3.1 - Methods

Using data extracted from published journal articles, we compiled a data set of 58 survivorship
curves for populations of wild mammals. Using the nonlinear least squares fitting procedure
“nls” from the statistical computing environment R, we then fitted each of these curves to the
beta distribution (Eq. 3). The (a, 8) coordinates obtained from the fits were then plotted in
shape space such that their locations could be compared to each other and to both the step
function survivorship curve from Cole and the exponential survivorship curve from Pereira. This
allowed us to define a general region in shape space that captured typical mammalian
survivorship curves.

Next, we evaluated whether differences in survivorship shape and scale are significant
with respect to estimation of r. To do this, we selected two species, the white-footed mouse
(Peromyscus leucopus) and the North American wild horse (Equus caballus), that spanned the
range of survivorship curves found in our data set. To explore the role of shape, we fixed the
scale parameter at 1/5 the maximum lifespan of the species. We then varied the two shape
parameters («,8) over a continuous range encompassing most reasonable survivorship curves,
including the step function approximation from Cole, the exponential approximation from
Pereira and the best-fit beta distribution based on empirical measurements. Similarly, to explore
the role of scale, we fixed the shape parameters at values characteristic of (i) the step function
approximation from Cole, (ii) the exponential approximation from Pereira, and (iii) the best-fit
beta-distribution. We then varied the scale parameter (L) over a range of reasonable lifespans.
Finally, we compared the different r value predictions across the ranges of shape and scale
parameters that were considered.

Since the Cole approximation also makes the explicit assumption of annual reproduction,
we wanted to explore the role of fecundity schedule on r estimates as well. To do this, we
considered the bank vole (Myodes glareolus), which produces ~2.1 females/litter every 30 days
and thus strongly violates the assumption of annual reproduction. Specifically, we compared r
estimates based on the empirical reproductive schedule with r estimates based on annual
reproduction (~25.2 females/litter once a year).

Most large comparative studies (and, as a consequence, multispecies conservation
planning) focus on the life-history trait method for estimating r. This is a result of limited data
availability, since time-series and/or life tables are rarely available for all species in large
databases or conservation regions. It is therefore critical to understand how estimates of r based
on the life-history trait method compare to estimates of r based on other methods, especially if
estimates are going to be compared within or across species. To investigate this question, we
compiled a database of r values that had been previously estimated by ourselves (Fagan 2001,
Fagan et al. 2001) and others (Duncan et al. 2007) using a “top-down” time-series approach. In
all cases, the data for the time-series came from field studies, and thus reflected r values
characteristic of the environment from which the time-series came. Because, however, all r
estimates were based on regression of transformed count data (In(Ny,,/N;) vs N;), the resulting
r values were standardized to low (nominally zero) population abundances. In total, we were
able to find time-series estimates of r for 119 mammalian species. However, because the species
for which time-series data are available are not the same as the species for which life-history
traits are available, direct comparisons are impossible. As a result, to compare the different
methods, we considered broad trends in the different datasets.
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7.3.2 - Results and Discussion

Our results suggest that survivorship shape varies widely across different mammal species (Fig.
27b), but is contained within a triangular area of parameter space (Fig. 27c). Although many
animals do exhibit a roughly exponential survivorship as assumed by the Pereira approximation
(Fig. 27a), none of the animals approach the step function survivorship assumed by the more
commonly used Cole model (Fig. 27 a).

Our analyses also demonstrate that r estimates are highly sensitive to the shape of the
survivorship curve (Fig. 28). Fig. 28 shows r estimates for both the white-footed mouse (Fig.
28a) and the North American wild horse (Fig. 28b) as functions of the two shape parameters
(a,B) in the beta function, (Eq. 3). Interestingly, while the exponential approximation can either
inflate of deflate r, the step function approximation always inflates r — an effect that is worse for
the mouse than it is for the horse due to the mouse’s highly concave (Type I11) survivorship
curve. r estimates are also sensitive to the scale of the survivorship curve, which is related to the
lifespan of the organism. This can also be seen in Figure 28 where we show r estimates for the
white footed mouse (Fig. 28c) and the North American wild horse (Fig. 28d) as functions of
scale in each of the three survivorship models (the step function approximation from Cole, the
exponential approximation from Pereira, and the best-fit beta distribution). While r is relatively
insensitive to scale for the step function survivorship, it is sensitive to scale for both the
exponential and the beta distribution survivorship curves. This occurs because changing the
scale of the step function does not change survivorship in the most important early years,
whereas the other two functions change everywhere as longevity is extended.

Estimated r values are also sensitive to reproductive schedule. In the case of the bank
vole, for instance, relaxing the constraint of annual reproduction in the Cole model (but still
assuming step function survivorship) reduces the estimate of r from 30.2 to 11.4. In general, the
problem with the assumption of annual reproduction is that it does not properly account for the
exponential discounting of offspring born later in the year. This problem is particularly acute for
species with high reproductive rates, such as the bank vole and other small mammals.
Obviously, this could have important consequences on conservation planning, particularly if
relative r estimates are used to prioritize species that exhibit a range of different reproductive
schedules.

So far, we have only discussed the various estimates of r based on life-history traits. We
also found, however, that approximations based on life-history traits yield different estimates of r
as compared to the time-series approach. Figure 29 shows a histogram of r estimates from both
the Cole approximation and the Pereira approximation, along with r estimates based on a
standard time-series approach (see Methods). Using the Cole approximation, approximately 8%
of species are predicted to exhibit r > 3, while
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Figure 27: Using the beta-distribution to model mammalian survivorship. Panel A:
Exponential and step-function survivorship models (solid line) and their approximations
(dashed line) using the beta-distribution survivorship (Eq. 4). Panel B: Gray lines
represent the beta-function model (Eq. 4) that best fits the empirical survivorship data for
each of the 58 mammal species spreadsheet (Appendix A?). The exponential and the step-
function survivorship curves are in black. Panel C: Location of organisms in survivorship
shape-space as determined by fitting Eq. 2 to empirical survivorship data for the 58
mammal species. The diameter of the circles are proportional to logl0(Mass). The Cole
step-function survivorship shape is indicated with a gray square and the Pereira is
indicated with a gray diamond. The shapes are illustrated with line plots for all integer
values of a and [3 in light gray, and the line plot for (o. =8.0, =0.5) is in black. The
triangle represents that portion of shape space in which empirical survivorship shapes fall.
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1% are predicted to exhibit r > 10. Using the Pereira approximation, approximately 21% of
species are predicted to exhibit r > 3, while again, 1% are predicted to exhibit r > 10. Using the
time-series approach, 7% of species are predicted to exhibit r > 3, with the maximum r estimate
falling at r = 6.5. Figure 4 was limited by data availability, and thus compares r estimates across
different data sets comprised of different species. However, for any given species with fixed life
history traits, we find that the Cole estimate of r will always be larger than the time-series
estimate of r which will be larger than the Pereira estimate of r.

0 > Tcole = Ttimeseries = Tpereira > —00 (4)

The Cole approximation,
arguably introduced as
an algebraic convenience
to the (then)
computationally difficult
Euler equation (Eq. 2),
has been used and cited
so broadly that its
application has been
effectively disconnected
from the unrealistically
harsh assumptions it
makes about
survivorship and
reproduction. By
reducing the estimation
of a population’s growth
rate from a life table to
the far simpler problem
of obtaining a few life
history traits, the Cole
approximation greatly
broadens the range of
species for which such
growth rates may be
calculated. However, the
estimates obtained via
this approximation are
unreasonably large,
especially for small
bodied species (Fig. 2c).
This is a result of
unrealistic assumptions
regarding both
survivorship schedules
and fecundity schedules.
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Figure 28. Map of the influence of survivorship shape on estimate of r. Done
for the White Footed Mouse (A) and the Wild Horse (B) showing (1) the step-
function implicit in the Cole approximation, (2) the exponential and (3) the beta-
distribution fit to data. Each of these survivorship shapes is associated with a
different combination of shape parameters o. and 3 and results in a different
estimate of r. The position of these different curves, and the associated r values, are
indicated by numbers ([1] the step-function, [2] the exponential and [3] the beta-
distribution). The saturation of r with maximum lifespan is shown for the White
Footed Mouse (C) and the Wild Horse (D). The three curves for each species
represents the impact of scale on each of the three survivorship models (Cole=
dotted; Pereira= dashed; with beta distribution= solid). Panel C inset: Plot of mean
lifespan in the wild vs. maximum physiological lifespan ever recorded.
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Given these problems, we argue that the Cole model is not useful for characterizing interspecific
differences in population growth rate, and strongly discourage further use of the model, at least
for mammalian species that strongly violate model assumptions. In place of the Cole
approximation, we urge wider use of the Pereira approximation which accounts for non-annual
reproduction and hinges on exponential survivorship. This model incorporates a more realistic
fecundity schedule and provides a far better match to survivorship patterns exhibited by a wide
range of wild mammal populations. Because the Pereira approximation only requires life history
trait data to estimate r but yields estimates that agree closely with those obtained from full
lifetable data (via fits of the beta distribution), this method balances reasonable outputs with
limited data requirements .
Even in the Pereira
model, care must be taken

Annual Population Multiplier when selecting survivorship

0 107107 10° 10 10° 10° 10 scale. Animals in the wild
— gole_ only live a fraction of their
] ereira - - .
== Time-series physiological maximum

lifespan. Moreover, small
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Figure 29. Histogralps Qf empirical estimatels oflthe different measures recorded in Captivity will

of . Rates of population increase from approximations to the Cole, Pereira, . .

and Time-series and from time-series analyses (rm). See Table 1 for tend to inflate r for wild

definitions of the different measures of population growth rate. populations, and this effect

will be particularly harsh

for small animals. The appropriate longevity for estimating r depends on the context. For
evaluating the maximum possible rate of population growth, it is most appropriate to use a
longevity that reflects the most benign conditions possible (e.g. data from captive populations).
To understand the rate at which a real population in its natural environment could grow, it is
more important to use a longevity suited to populations experiencing mortality characteristic of
their environment.

7.4 - Predicting survivorship curves for use in estimating little “r”

Given the importance of survivorship in r estimation, there exists a need for methods of
predicting survivorship curves. However, as is so commonly the case in conservation
applications, few species have been sufficiently well studied to characterize their full
survivorship curves directly. For species without fully parameterized survivorship curves, it is
necessary to make assumptions regarding survivorship. To the extent that these assumptions can
be guided by other life-history traits or even general information on typical survivorship curves,
the accuracy of survivorship estimation can be improved. This, in turn, should improve
estimates of r used to develop conservation guidelines when species-specific data are scarce.
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In this element of our project, which appears in more detail as Appendix B of Lynch et al.
2011, our goal was to characterize the relationships between life history and trophic trait data
(which are more readily available across species) with quantitative summaries of full
survivorship schedules (which are scarce). In particular, we sought to understand how closely
changes in the shape and scale of mammalian survivorship curves could be approximated by
such traits as longevity, litter size, age to maturity, trophic level, and taxonomic group.

7.4.1 - Methods

To relate survivorship shape to life history traits, we again turned to the beta distribution in Eq.
3. Specifically, we fit beta distribution survivorship curves to survivorship data for 37 captive
mammals drawn primarily from International and Regional Studbooks kept by consortia of zoo
biologists for the management of captive animal stocks. For this analysis, we selected species
that represented the range of body sizes available in the database and included in our selection all
those species for which wild population survivorship data sets were also available. To maximize
data quality, we restricted our analysis to only those individuals in the database system on or
after 1 January 1980. Particularly for the longest-lived species, survivorship data for the oldest
age classes suffered from small sample sizes, thus we only considered those age classes
represented by more than 10 individuals. After the small sample size age classes had been
removed, a second level of filtering was done to ensure that the remaining survivorship curve
represented the majority of the cohort mortality. Specifically, we only considered species for
which the last recorded age class indicated less than 20% survival.

The (a, B) coordinates obtained from the fits of our beta distribution model (Eq. 3) to
each captive animal survivorship curve were then plotted in shape space such that their locations
could be compared. Again, the goal was to define a general region in shape space that captured
the majority of captive mammalian survivorship curves. To define this region, we fit a bivariate
normal distribution to the distribution of points in shape space. The resulting fitted distribution
was also used to obtain estimates for the geometric means (across all species) of the two shape
parameters. Finally, to determine which life history traits may be associated with survivorship
shape, we used linear regression and principal components analysis (PCA) to look for
correlations between life history traits such as body mass and litter size and the shape parameters
a and S.

In order to contrast wild survivorship curves with captive survivorship curves, we
additionally fit our beta distribution model (Eq. 3) to 58 survivorship curves derived from field
studies. We also directly compared a and £ results for 7 species with survivorship curves in
both the wild and captive animal databases (Note that two of the species with both wild and
captive animal survivorship curves did not meet our criteria for inclusion in the previous
analysis, but were included here due to the limited number of species for which both
survivorship curves were available). Again, survivorship shape was visualized by plotting (a,)
coordinates in shape space. As before, the goal was to define a general region in shape space
that captured the majority of wild mammalian survivorship curves. In addition, we wanted to
compare the region in shape space associated with captive animal survivorship curves to the
region in shape space associated with wild animal survivorship curves.
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Finally, to relate our analysis of survivorship curves to r estimation for poorly studied
species, we performed a leave-one-out cross-validation method based on estimated bounds in
survivorship shape space. Specifically, we removed one focal species at a time from the data set.
We then repeated (i.e. with the focal species missing) the bivariate fitting of a normal
distribution to the points in shape space. From this fitted normal distribution we predicted the
50™ percentile confidence envelope for the bounds on a and B. Using this multispecies
confidence envelope, we then calculated maximum and minimum r estimates for the focal
species based on the Euler equation, species life history traits and the upper and lower bounds on
survivorship shape. Sufficient life history information to calculate r was only available for 36 of
the 37 species in our database.

7.4.2 - Results and Discussion

Figure 30 shows the survivorship curve parameters displayed with summarizing information
about their principle components (PC) and resulting curve shape. The geometric means of the
two shape parameters were ¢ = 0.40 and = 0.86 respectively. In addition, we found that the
distribution of shape parameter values was clustered along two principal axes that roughly
corresponded to «/f (loosely interpreted as skew towards early vs. late mortality) and af8
(loosely interpreted as
unimodal vs. U-shaped 1.0
mortality). While longevity,
age to weaning and litter size
were significantly correlated 0.5
with the position of a species
along the first principal _
component (PCA1) in shape 0.0+ 7T C >~ s A
space, we found no
correspondingly strong
covariate to explain variation 05 -
along the second principal
axis (PCA2). We also found C ' [c
no statistically significant -1.04 c
relationship between the first _C_

principal component of life
history and either principal 15+ 0 Age L
component in shape space. w T T | w |
We did, however, find a -2.5 20 -1.5 -1.0 -0.5 0.0
relationship between Iogz(a)

taxonomic group (specifically
order) and survivorship shape.
In fact, despite correlations
between PCAL and other life
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Figure 30: Survivorship curve parameters displayed in shape
space. Information is labeled by Order : A = Artiodactyla, C =
Carnivora, P = Primates, X = Other. Gray shapes containing all the
points of a given Order have been drawn as a general guide to the

hist_or_y traits, we founq tha_t distribution patterns of these three Orders. Inset (upper left):
variation along PCAL is still Distributions of PCA1 of survivorship shape space. Inset (lower
best modeled by order alone. right): Fitted survivorship curves for the each group in our sample.

As was found in our previous
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study, captive mammal survivorship shapes were largely contained within a triangle in shape
space (Fig. 31).
Compared to captive animal survivorship curves, survivorship curves for wild animals
are more variable, reflecting both the higher precision of the captive survivorship data and the
integration of environmental factors with inherent drivers of survivorship in the wild. Moreover,

log, (B)

-2 Captive populations
I T T T T | I
-4 -3 -2 -1 0 1 2
log,, (ct)

Figure 31: Comparison of survivorship shapes from
wild and captive populations. Triangles have been
drawn as a guide to the region in survivorship shape
inhabited by each dataset. An exponential decay (Type
IT) survivorship shape is shown with a gray diamond.
Inset: Arrows showing the difference in survivorship
between a wild population and a captive population for
seven species that had both sets of data available.
Arrows point from the wild to the captive survivorship
shape, and all arrows have been centered at the origin.
The arrows representing the Chimpanzee and the
Hippopotamus are dashed, as these two species were
excluded from the rest of the analysis.

of the seven species for which
both wild and captive animal
survivorship curves were
available, five showed a shift to
smaller values of a and 8 when
moving from the wild population
to the captive population. This
shift is associated with relatively
higher juvenile mortality
(compared to overall mortality) in
the captive populations.

Finally, with respect to
predicting intrinsic growth rates,
we found that r estimates for 28 of
36 species were bounded by the
50% confidence envelope for all
species in the database.
Furthermore, among those 28
species, leave-one-out cross-
validation resulted in upper and
lower limits on r that were, on
average, only 22% above and 21%
below the true value respectively.
This finding emphasizes that not
only are mammalian survivorship
shapes quite similar across
species, but that that similarity has
an important functional
consequence in terms of
predicting population growth rates
across species.

Despite all of the textbook
dogma and subsequent discussion

regarding the three prototypical survivorship curves (types I, Il and 111), we find that all
mammals in captivity have fairly similar survivorship curves most similar to type Il survivorship
curves but with varying degrees of type I character (high rates of mortality among the oldest age
classes) and type 111 character (high rates of mortality among the earliest age classes). We find
that survivorship shape is most closely correlated with life history traits relating to reproduction
(relative age to weaning and gestation, litter size, litters per year, etc.). Our results explicitly
reject the common textbook assertion that survivorship shape is related to body mass.
Taxonomic order, however, was found to be the best predictor of survivorship shape, which is
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consistent with earlier findings that suggest that order is significantly correlated with life history
variation and annual survivorship.

From a practical standpoint, it is useful to know what survivorship shapes can be
expected among mammals. We have found that this is particularly true when using survivorship
to estimate r for conservation planning. To this end, we believe that our method of defining
bounds on survivorship shape based on a bivariate normal distribution will be extremely useful
to practitioners of conservation ecology. In particular, our leave-one-out cross-validation shows
that bounds on the normal distribution can be used to define upper and lower estimates on r that
may be used as guidelines for management while more species-specific survivorship data are
being collected.

7.5 - Conclusions

For conservation-related applications, it is important to consider the details of the
organisms’ particular life-history characteristics to estimate maximum population growth rates
accurately. In this respect, survivorship shape, survivorship scale and reproductive schedule are
all important. The Cole approximation, which assumes step function survivorship and annual
reproduction, will inflate r estimates under all circumstances. Management scenarios
constructed using these inflated estimates will be inappropriate and potentially harmful. While it
would be optimal to have empirically parameterized life-history traits for all species of
conservation interest, we find that one “short-cut” between mammalian life-history traits and
population growth rate is the less commonly used Pereira approximation. This model provides
an unbiased estimate of r over the entire range of species sampled. We thus advocate its use,
particularly when data limitations prevent less approximate methods (e.g. time-series analysis or
empirically fitted survivorship functions). One approach for extending the accuracy of r
estimation beyond what is possible from even the Pereira approximation is to incorporate more
sophisticated, species-specific survivorship functions. We show that this may be possible using
empirically defined general bounds on survivorship shape, as well as estimates of survivorship
shape based on species traits, most notably order.

88



8. Part 6: Phylogenetic approaches for inferring recovery-related
traits for poorly-studied species

8.1 - Background

One of the main outcomes of this project is to expose the scale of data gaps that still exist in the
literature related to conservation relevant species traits. Our sections on PVAs (Part 3) and
estimating r (Part 5) have also shown how difficult it can be to do a rigorous job of estimating
species traits, even when field data are available. When field data are not available, the problem
is more difficult again. One possible way around a lack of field data is to infer trait
characteristics for an unknown species based on what is known about a suite of well-studied
species. Previously (Part 5), we showed that taxonomic order was an important predictor of
survivorship. Given that survivorship is, itself, an important determinant of r, we suspected that
related species may also share similar r values. This, in turn, suggested that r could be predicted
even in the absence of any measured life-history traits.

Based on this hypothesis, we set out to determine if we could leverage information about
phylogeny (species shared evolutionary histories) to predict values of r for poorly studied species
based on known values for related species and information about phylogenetic structure. Here,
we illustrate how focusing on phylogenetic relationships can be a more powerful predictive
framework than using relationships between other traits, such as body mass. We took the
approach that individual life history and ecological strategies are often phylogenetically
structured (Webb et al. 2002). We viewed r as a synthetic life history trait that varies among
species within a clade. This approach is warranted because inheritance from a common ancestor
coupled with phylogenetic inertia routinely yields situations in which similar trait values cluster
across related species (Jombart et al. 2010). Furthermore, it is exactly these types of
relationships that, along with shared environmental factors, underpin the phylogenetic structuring
of extinction risk and endangerment status across species (Heard and Mooers 2000; Purvis et al.
2000; Cardillo et al. 2008; Cooper et al. 2011). Using established phylogenies, we examined
how successfully macroevolutionary models recover r values for well-studied species. We then
leveraged phylogenetic relationships and suites of r values obtained for well-studied species to
predict r for more poorly studied species, providing conservation practitioners with a means of
estimating potential population growth rates of little-known species.

In order to develop and test these methods, we focused our efforts on two groups:
mammals and birds. We selected mammals because we could build off of work that we did in
the previous section (Part 5) and thus take advantage of the same datasets. Fortunately, the
species in these datasets also had a well-resolved phylogeny that has already been worked out
(Bininda-Emonds et al. 2008). We selected birds because they are another taxonomic group that
has sufficient information to parameterize life history trait data and also had a phylogeny
available for use.

8.1.1 - General approach

We used phylogenetic independent contrasts (PIC) to predict values of r for extant species in the
context of their shared evolutionary history (Felsenstein 1985; Garland et al. 1999;Garland and
Ives 2000). This suite of techniques assumes a stochastic process model for trait evolution. In
the simplest and most widely used form, the stochastic process is Brownian random motion,
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where the variance parameter o describes the scale of fluctuations in the unbiased random walk.
Because r is fundamental to a species’ survival (e.g., it sets the upper bound on the rate at which
a population can recover from low density), we expect it to evolve gradually rather than wildly,
reflecting critical life history trade-offs such as longevity versus fecundity (Stearns 1989). For
both the mammals and the birds, we considered two PIC models, one in which we considered
only r (P1C-r) and the other where we included covariates (PIC-r with covariates). Details on
including covariates are given separately in each section since we took different approaches.

Under either model, the phylogenetic position is known for each species whose value of r
is to be predicted. In brief, we use the following procedure for each “unknown” species to be
predicted. First, the tree is pruned to contain a single unknown species and all species with
known r values. Second, the tree is temporarily rooted at the node immediately parental to the
unknown tip species. Third, PIC is used to estimate r at this root. Finally, the root estimate is
extended along the branch to the unknown tip. Under PIC-r, the expected value of r at the
unknown tip is the same as at the temporary root.

8.1.2 - Model assessment

For both birds and mammals we performed model assessment in two ways. First, we compared
results of the two PIC processes against two null models. Second, we performed cross-validation
procedures on all four alternative models. Two of these models were based on the PIC approach
(PIC-r, and PIC-r with covariates) whereas the other two models represented null alternatives
(Allometric null model, and Brownian motion null model). The null models were thus used as
benchmarks against which to judge the predictive improvement provided by tree-based PIC
models for r.

Allometric models for r require data on body mass but not on life history traits. These
models have been used to explore interspecific relationships in r for decades (e.g., Cole, 1954;
Blueweiss et al. 1978; Hennemann, 1984; Schmitz and Lavigne, 1984; Robinson and Redford,
1986; Ross 1992). Allometric approaches also feature prominently in metabolic scaling theory
(e.g., (Savage et al. 2004). This foundation justifies our use of allometric-null models as
alternatives to predictions based on PIC. Historically, allometric regression models did not
attempt to account for phylogenetic non-independence among species in the datasets. However,
phylogenetically based statistical approaches may be used in allometric analyses to incorporate
covariation due to shared evolutionary history among species (Duncan et al., 2007; Fagan et al.,
2010). This joint approach is most appropriate when building allometric models from existing
databases which may be biased in their taxonomic representation (Fagan et al., 2010).
Consequently, we used phylogenetically corrected least squares regression which accounts for
correlated errors due to phylogenetic relatedness (Ives et al. 2007). Note that while our
allometric-null models include phylogenetic information for the sample of species in the original
analysis, they do not incorporate the phylogenetic position of species for which predicted values
are sought. In other words, the allometric null regression models represent static mappings
between female body size and r for the suite of species under consideration whereas the PIC
models customize predictions for the target species based additionally on their shared
evolutionary history with the rest of the clade (Garland and Ives 2000).

The Brownian motion null model incorporates neither body mass nor phylogenetic
information. In this model, observed r values are treated as independent samples from a normal
distribution, for which the mean and variance are estimated from the known species in the clade.
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This model is equivalent to the Brownian motion model of r evolution used by the PIC-r model,
but on a star-shaped rather than bifurcating phylogenetic tree.

We used leave-one-out cross-validation to test model performance. For each species with
a known r value, taken one at a time, this value was ignored and the species was treated as
“unknown” in the prediction procedure. This was carried out for both PIC models. Model
performance was assessed in three ways. First, we assessed general agreement of the predicted,
() and observed () values by examining the relationship between #and r for each group of
species. Second, we assessed accuracy by comparing proportion prediction errors, computed as
for each species. This second method was performed for all four alternative models and gave us
a means of comparing the performance of the PIC methods as compared to the null models.
Third, we assessed accuracy for both PIC-r and PIC-r-mass models by scoring the proportion of
species for which the 95% prediction intervals of the model included the observed r values.

8.2 - Mammal implementation: developing the method

To develop and test our phylogenetic comparative method for r estimation, we considered two
different clades of mammals: the suborder Caniformia (which includes the dog, bear, skunk,
weasel, raccoon, seal, and sea lion families) and the family Cervidae (the true deer). Both of
these clades have well studied phylogenies (though the phylogeny for Cervidae is not as well
resolved), which is a requirement for our approach. In contrast, whereas there is a wealth of life
history data for r estimation in Caniformia, r estimates for Cervidae are more sparsely available.
By considering both clades, we were able to test our approach in two different contexts with
respect to level of clade characterization. We obtained the molecular (cytB), species-level
phylogeny of the order Carnivora (parent to the Caniformia) from Agnarsson et al. (2010) and
smoothed it to an ultrametric tree using the R function chronopl (Sanderson 2002). We used a
lower-resolution phylogeny for Cervidae, extracted from the Bininda-Emonds et al. (2008)
mammalian supertree in an already ultrametric form.

Values of r for well-studied species within each clade were established based on the
Pereira approximation to the Euler equation in combination with life history trait data obtained
from published compilations (Walker et al. 1983; Ernest 2003; Jones et al. 2009). As discussed
in Part 5, the Pereira approximation to Eq. 1 assumes Type Il (exponential) survivorship and
allows for episodic, pulsed reproduction rather than continuous reproduction (Pereira 2006).
Both of these biologically realistic modifications are especially appropriate for mammalian life
history. Under these assumptions, Eq. 1 becomes

m_[ > S(x—yA-p)e X Ldx =1 ©)
0 Ly=0 ,

where r is the maximum population growth rate, m is the maximum number of female offspring
per reproductive episode (litter), A is the average interval between litters, 3 is the minimum age
of first reproduction, and u is the average mortality rate. 5(z) is an interval delta function that
equals 1/T for 0 <z < T and is zero otherwise, where T is the duration of the mammalian “birth
pulse,” which is taken to be one day (Pereira 2006). This model does not constrain reproduction
to occur on an annual basis but does assume constant fecundity per birth event. The integral and
sum in Eqg. 5 can be evaluated, yielding
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This work was published at Proceedings of the Royal Society B: Biological Sciences (Appendix
2).

8.2.1 - Results and Discussion

Overall, the phylogenetic (PIC) methods are successfully able to recover unknown r values.
Leave-one-out cross-validation predictions from the PIC-r and PIC-r-mass models showed good
general agreement with life history trait based estimates of r for both the Caniformia and the
Cervidae (Fig. 32). In the Caniformia, prediction errors from PIC-r were distributed roughly
equally around a 1:1 line of correspondence with two exceptions, a diverse group of species with
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Figure 32. Relationship between observed and predicted . Estimates were
calculated from equation (4), and predicted r as estimated by the (a, b) PIC-r model
and (¢, d) PIC-r-mass model for (a, ¢) Caniformia and (b, d) Cervidae. Dashed lines
are 1:1, representing perfect prediction by the model. Solid lines represent an
ordinary least squares fit (Caniformia: y=0.52x +0.35, R2=10.57, Cervidae: y=
0.22x +0.25, R2=10.22). In (a, ¢), individual families are: Ailuridae (closed circles),
Canidae (open circles), Mephitidae (closed triangles), Mustelidae (open triangles),
Otariidae (closed diamonds), Phocidae (open diamonds), Procyonidae (closed
squares), and Ursidae (open squares).

small-medium observed values of r (which were overestimated) and two species of weasels with
very large observed values of r (which were under estimated). Overall, for both taxa, both the
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PIC-r and PIC-r-mass models tended to overestimate r for species with small values of r and to
underestimate r for species with large values of r. Surprisingly the PIC-r-mass method did not
perform as well as the PIC-r method based on rank correlations (analysis not shown) suggesting
that taking body mass into account as a covariate did not improve the method and potentially
even made it worse.

Comparison between PIC methods and the phylogenetically corrected allometric null
model showed that the allometric null model tended to yield more biased estimates of r for both
the Caniformia and the Cervidae (Fig. 33a,b). Specifically, the allometric null model
overestimated r for 41 of 65 caniform species (mean overestimation = 177%) and 7 of 15 cervid
species (mean overestimation = 14%). As noted above, the tree-based models also tended to
overestimate r for small r species, but even when such overestimations occurred they were
smaller (e.g., median overestimation of 47% and 6% for Caniformia and Cervidae, respectively,
using the PIC-r model) (Fig. 33.e-h).

Comparison between PIC methods and the Brownian motion null model, showed that
PIC approaches gave more
variation in r estimates across Califormia Cervidae
species and, possibly as a result,
gave better r estimates. Indeed,
cross-validation on the null tree
(i.e. star phylogeny) yielded very _
little variation in predicted r —— i
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Figure 34 compares
observed r values to 95%
prediction intervals for each
species using the PIC-r and PIC-r-mass approaches. As suggested above, we found better

Figure 33: Histograms of prediction error for observed r
values. Values are compared to the mean predicted values

from alternative predictive models of maximum population

growth rate. Values closer to zero indicate less error.
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performance by the simple PIC-r model of trait evolution than by the more complex PIC-r-mass
model that included mass as a covariate.

Maximum Population Growth Rate ()
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Figure 34. Predicted and observed r values. Comparison of observed r values (filled circles) and values predicted
by leave-one-out cross-validation (open circles) for the Caniformia (Panel A) and the Cervidae (Panel B) using the
predictions for the PIC-r (first and orange) and the PIC-r-mass (second, blue). Error bars on each model result give 1
SE (inner pair) and 95% PI (outer pair). The data for PIC-r are plotted phylogenetically in Figure 35.

In fact, for the Caniformia, PIC-r-mass actually yielded worse predictions (median
prediction error was 48% larger with PIC-r-mass). We fully expected the PIC-r-mass model to
improve upon the results from the simpler PIC-r model by including extra information about
how species differed from one another. The lack of improvement that we observed may stem
from the largely similar performance of the PIC-r model across species, irrespective of
differences in body mass; indeed, we found no correlation between prediction error and mass for
either the Caniformia or the Cervidae. These results echo findings in Part 5 where biomass was
not a good predictor of mammalian survivorship, but other traits, such as trophic level and diet
were.

Both the PIC-r model and the PIC-r-mass model gave large 95% prediction intervals
(Fig. 34). However, the observed values for 83-86% and 73% of caniform and cervid species,
respectively, fell within one standard error of the predicted mean. Prediction intervals were
smaller for the PIC-r-mass model than for the PIC-r model in 59 of 61 species-wise
comparisons in the Caniformia, shrinking by an average of 9.8%. In order to visualize the
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relationship between phylogeny and values of r, we plotted PIC-r results on phylogenetic trees

for Califormia (Fig. 35a) and Cervidae (Fig. 35b).
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Figure 35. Phylogenetic relationships and observed and
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Given the interdependencies
among life history traits and
population growth we suspected
that some improvement on these
PIC approaches may be possible
by incorporating life

history traits other than body
mass as covariates of the
evolutionary model. This is
discussed in the following
section, using shorebirds as a
focal group. Specifically, we
included egg size and body size
in our modeling efforts. Other
traits such as age at first
reproduction or average litter size
are known to covary with
measures of population growth
rate across diverse species
(Saether and Bakke 2000);
(Heppell et al. 2000). Those
covariates could also be included
in our macroevolutionary models
and might sharpen predictions of
how r evolves across species.
The potential importance of such
a future extension is made clear
by the cross-validation errors that
occurred in isolated cases where
certain species had r estimates
much different than their
neighbors on the phylogeny. For
example, compared to closely
related species, the short-tailed
and least weasels Mustela
erminea and M. nivalis
(Caniformia: Mustelidae) had
unusually large r values that were
driven largely by young ages at
first reproduction (e.g., females
of these species are often mated
before being weaned (Harris and
Yalden 2008) (Fig. 34a).



8.3 - Shorebird implementation

We next implemented our basic PIC method for estimating r on a new group of animals,
shorebirds (Charadriiformes). Charadriiformes is a large order of birds that has been well
studied on both ecological and evolutionary fronts and for which we have reasonable
phylogenetic resolution. By focusing on this group, we were able to accomplish three goals.
First, we were able to determine if PIC-r methods of estimation could be successfully applied to
another group with very different life history traits. Second, we were able to determine if using
different life history traits other than body mass would improve predictions. Third, we were able
to explore the effect of treating body mass as an evolvable trait, rather than a static covariate.
This last goal was motivated by our finding that treating body mass as static covariates did not
improve predictions (and sometimes even made them worse) for our mammalian data set.

Rather than treating body mass as a static covariate, another take on the problem
recognizes that mass, as well as r, can evolve over time. If one treats both r and other traits as
evolvable entities, different results may emerge than if all traits (except r) are viewed as static
covariates. Here, we considered a PIC-covariates model where female body mass and/or egg
mass are additionally included as evolvable covariates. Egg mass was chosen as a second
covariate because it varies widely across bird species, and is a key life history trait that, though
related to per-capita reproductive output (Williams 1994), does not enter the Euler equation
directly.

Values of r for well-studied species within each clade were again based on an
approximation to the Euler equation. However, since bird biology is distinct from mammal
biology, a different approximation was used. In this case, we assumed an approximation found
in Pereira et al. (2004) that specifically accommodates bird reproductive ecology — hereafter
referred to as ‘Pereira-Bird’. The *Pereira-Bird’ equation predicts r based on broods per year,
eggs per clutch and mortality rate where, again, exponential survivorship is assumed.

We obtained the species-level shorebird supertree necessary to perform PIC from
Thomas et al (2004) and smoothed it to an ultrametric tree using the R function chronopl
(Sanderson 2002). To understand where and in what phylogenetic context it is possible to
leverage data about well-studied species to infer r for poorly studied species, we considered
shorebird clades at three hierarchical levels of organization within shorebird phylogeny. These
were 1) the supertree as a whole, 2) the supertree broken into three major clades consisting of the
suborders Charadrii + Chionidi, Lari, and Scolopaci + Thinocori, and 3) four major families
within the Charadriiformes, namely the Alcidae, Charadriidae, Laridae and Scolopacidae. Again
we studied several different PIC models and counterpart null models. The PIC models we
considered were: 1) the basic PIC-r model, where r for an unknown species is predicted using
only values of r for known species and the phylogeny of the clade; 2) a PIC-r-mass model where
both mass and r are allowed to evolve on the phylogeny; and 3) a PIC-r-egg mass model where
both egg mass and r are allowed to evolve on the phylogeny. Following the same approach that
was taken with the mammalian data set, model validation and assessment was performed using
leave-one-out cross validation and comparison to allometric and Brownian motion null models.

The work described here is still in preparation for submission.
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4 Main Families

Results for 190 species at order and clade

1 Order

3 Clades
1 l :
3 1
Figure 36: Histograms of prediction error for observed r values for birds. These show histograms of proportion

prediction error from cross-validation of each model and each phylogenetic level. At the family and branch levels, results

are aggregated into a single histogram that incorporates all clades at that level.
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level, 147 species at family level. Outliers beyond the domain are indicated with arrows.

8.3.1 - Results and Discussion

Figure 36 shows percent prediction error for both the null models (Allometric and
Brownian) and the phylogenetic models (PIC-r and PIC-r-covariate) at the three different
taxonomic hierarchical levels (Order, Clade, Family). Both null models performed reasonably
well when applied at the family level. However, extending the null models to broader
phylogenetic scales resulted in large errors (Fig. 36). For example, using the allometric null

97



£07 01 05 11 17 03 03 09 15 214

111 NN

B 5T
=== S S8
L 1%
e b-#ha
| == =
L = ==,
M el
=TSN -
= Ty
s T
1= SR h
&L T .._" -
st T
>
= T3
5y Al
- L rs
g 43
S -
= &3 — %
R gt
ol T gt
& ¥
- &8
3 ne-i
S o
L= ]
+ ‘g gt
=iay |
=
Ia-w 2
T
4
S
= ]
-
-
= =T=.
SaS =
T8
3
s ’
=S 3-“ .;' Icropana capanss
o =" |
L :
ety e -as
1 8
—4 = --- 8
- =

@+ PIC-r-mass
Figure 37. Predicted and observed r values for birds. Comparison of observed r values
(filled circles) and values predicted by leave-one-out cross-validation (open circles) for the
Shorebirds (branches 1, 2 and 3) using the predictions for the PIC-r (first and orange) and the
PIC-r-mass (second, blue). Error bars on each model result give 1 SE (inner pair) and 95% CI
(outer pair) of the prediction. The data for PIC-r are plotted phylogenetically in Figure 38.

model, maximum proportional prediction error was less than 15x the observed r value for
analyses of individual families, but over 40x the observed r value for analyses of the entire
shorebird clade. In this regard, the PIC approa7ch offered a substantial improvement. Compared
to the Brownian motion null model, PIC-r provided more accurate estimates of r for the
shorebird group as a whole (median prediction error improved by 27%) and for the three major
clades (by 8% for the Charadrii + Chionidi, 18% for the Lari, and an impressive 49% for the
Scolopaci + Thinocori). It did not, however, generally improve model performance at the family
level (Fig. 36). Our analysis suggests that phylogenetic structure is not that important in the
evolution of r in the local context of closely related species, but that phylogenetic relationships
can improve our understanding of the evolution of r at higher taxonomic levels that incorporate
more diversification among species. Similar to what was found for mammals, the PIC models
for birds that incorporated covariates did not consistently improve prediction accuracy (Fig. 37).
Moreover, although the PIC-r-covariates models did yield smaller confidence intervals than the
simple PIC-r models, these confidence intervals less frequently captured the actual observed r
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values Fig. 37). For instance, under PIC-r, one standard error encompassed the true value of r for
75% of species. In contrast, under the PIC-r-mass, PIC-r-eggmass and P1C-r-mass-eggmass
models one standard error encompassed the true value of r for 67%, 65% and 59% of species

\

7

\\\\

Figure 38. Phylogenetic relationships and observed and predicted values of r for
birds. Phylogenetic relationships for shorebirds giving predicted node and tip
reconstruction of for the PIC-r models. The circles at each tip or node have diameter
proportional to values of r. Orange circles represent tips with observed r values, green
circles show reconstructed nodes, and blue circles represent unknown, predicted tips.
For green and blue, the darker inner and lighter outer circles show the estimated

value minus or plus the standard error, respectively.

respectively. Therefore, while the phylogenetically structured PIC model was beneficial for
predicting population growth potential, there was no overall benefit to incorporating additional
life history information in the form of model covariates. One reason that the model with
covariates may not have performed well is because there was an overall negative relationship
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between r and the two traits that we included (body size and egg mass), although the two traits
did correlate quite strongly with each other (results not shown).

In order to visualize the relationship between phylogeny and values of r, in Figure 38 we
plotted PIC-r on phylogenetic trees. Overall, the various PIC models offered substantial
improvements over the null models — especially the allometric null model. Particularly the PIC-r
model without covariates reduced mean and median prediction errors relative to the null models.
These improvements were most substantial when applied at the scale of broad phylogenetic
datasets (i.e., Order and Clade levels) (Fig. 36). In contrast, PIC-r approaches did not lead to
consistent improvements in estimates of r when analyses were performed at the family level.
Specifically, although family-level PIC predictions offered improvements over the allometric
null model, they did not improve upon the Brownian motion null models for all families. This
series of results appears strongly linked to data density and sample size issues for the different
phylogenies on which the PIC inferences were conducted. More data, even if it is from distant
evolutionary relatives, proved useful in accurately predicting r across the entire group of species.
However, a lack of statistically informative heterogeneity in r among closely related species
meant that the improvement afforded by the PIC-r model relative to the null model was reduced
in small lineages.

8.4 - Conclusions

Knowledge of species’ potential population growth rates is critical for understanding population
dynamics and informed conservation decision-making and management (Mace and Lande 1991).
Because of this, recent efforts have sought to estimate various population growth rate parameters
using demographic traits in concert with other approaches such as allometric regressions (Saether
and Bakke 2000; Hone et al. 2010; Pereira and Daily 2006). In contrast, our approach took
advantage of the shared evolutionary history among species to predict potential population
growth rates, and it performed well even when only limited life history data were available to
inform the predictions. The tree-based methods we adopted routinely yielded credible
predictions within each of two dissimilar mammalian groups and a large clade of birds, thereby
providing a substantial improvement over traditional null models (Fig. 33, 36). Indeed, even
application of the modeling approach to the small, low diversity cervid clade showed that our
approach was robust to both limited observed r data and incomplete phylogenetic resolution, two
problems that are likely to appear in other taxa.

By leveraging data from better known species to inform understanding of poorly known
species, our application of phylogenetic comparative methods to the problem of population
growth rate estimation fills a crucial gap in the toolkit of quantitative conservation biology. In
particular, we have provided conservation practitioners with a method for predicting species’
capacities for population growth even when no species-specific trait data are available. Without
the appropriate suite of life history trait data, it is not possible to parameterize equations to
estimate r. In times past, this would leave conservation practitioners without much guidance as
to that species’ capacity for population growth or recovery (but see Heppell et al. 2000 for a
discussion of intercorrelations among mammalian life history traits and their utilities in
predicting elasticities in population growth rate using demographic matrix data). In contrast,
with the phylogenetic comparative approaches implemented here, researchers can estimate r for
poorly known species reasonably accurately, and with an assessment of uncertainty.
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Estimating maximum per capita population growth rates via tree-based prediction
methods may be especially advantageous to conservation planners who are seeking ways of
comparing species with regard to their needs or risks. For example, in landscape-specific
comparisons across several species, information on r, whether observed or predicted, may be
viewed as an index of species’ vulnerabilities to extinction processes due to a common threat
(Fagan et al. 2001; Cortes 2002). The strong agreement that we find between observed r and
predicted 7 (e.g. Fig. 32) highlights the potential utility of our PIC approach for prioritization
efforts that span multiple species. In particular, the strong rank agreement that we observe offers
planners reassurance that species predicted to be especially vulnerable because they have low r
will actually have low maximum population growth rates compared to other species. Ranking
species’ vulnerabilities using phylogenetically predicted estimates of r would be most useful in
data-poor situations where a suite of species faces a common external threat as opposed to the
(much rarer) data-rich situations in which formal assessments of extinction risk via population
viability analyses are possible.

Beyond conservation-relevant results, our efforts have the additional benefit of
introducing a joint empirical-theoretical framework for explicitly modeling key aspects of the
‘ecogenetic loop’ that links life history traits, demography, and evolution (Partridge and Harvey
1988; Kokko and Lopez-Sepulcre 2007; Coulson et al. 2010). Specifically, future work could
compare how well these macroevolutionary models perform for various life history quantities,
such as those appearing in variants of the Euler equation, both relative to one another, and
relative to r as a synthetic life history trait. Continued development of evolutionary models for r
and other life history traits across species should yield insights into the limits of demographic
plasticity across species and, at the same time, increase our understanding of species resilience
(Reed et al. 2010).

Another future direction would be to include more complex models of character
evolution. In particular, a complicating factor not accounted for in our analysis is the potential
effect of r on extinction or speciation rates. Population growth rates have previously been used
as a proxy for evolutionary fitness and have been implicated as potential drivers of diversity
(Huston 1979; Geritz et al. 1997) and diversification rate (Liou and Price 1994). Several
mechanisms may contribute to this linkage between population growth rates and diversification,
but a key one is that species with low maximum per capita population growth rates are less able
to recover from low population size and may therefore be more prone to extinction, which would
increase extinction rates on trees dominated by slow-growing, ‘low r’ species. A similarly key
issue is that correlations between r, generation time, and rates of molecular evolution (Blueweiss
et al. 1978; Martin and Palumbi 1993; Smith and Donoghue 2008) may lead to association
between r and speciation rate, with “high r’ lineages speciating more rapidly. Effects of traits on
diversification rate are not naturally incorporated in the PIC framework. However, a recent
phylogenetic model of the evolution of a continuously valued character that affects
diversification (FitzJohn 2010) presents an alternative approach. This model, when coupled with
detailed phylogenetic data, extensive data on r values, and potentially covariates, may be useful
for disentangling the effects of population growth rate on speciation and extinction rates.
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9. CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH

Overall, our ultimate goals of identifying sufficient similarities among species such that we could
accurately cross-predict recovery goals proved elusive. Difficulties derived from several sources
including: 1) gaps in the database of species-specific traits and threats that persisted despite
herculean efforts to consolidate available information; 2) unexpected sensitivity in interspecific
proximity metrics to heterogeneity in data availability; 3) relationships between the number of
individuals (or number of populations or area of extent) known to exist at different times prior to
listing and the recovery goals themselves; and 4) biological and/or contextual idiosyncrasies of
the listed species themselves that reduced opportunities for identifying similarities among
species.

Nevertheless, we were successful in several key areas. For example, we made good
progress in characterizing when and where PVA approaches are most utilized and most
informative in conservation efforts for TES species (PVA analyses in Part 3). Moreover, we were
able to demonstrate the broad utility of simple, generic models for predicting quasi-extinction
dynamics across a broad range of species (CSEG model in Part 3). Likewise, we are pleased
with our successful efforts to employ the statistical method of phylogenetically independent
contrasts to infer population growth rate and other traits for little known species (Parts 5 and 6).

Going forward, there are several situations in which the general concept of leveraging
data from well-studied species to inform conservation and management decisions for poorly
known species may prove profitable. For example, further development of the phylogenetic
approaches for predicting r seems warranted. In addition, there may be an opportunity to bring
together elements of several of the approaches that we have already explored in a new context
that could be useful for selected species.

9.1 - Further development of phylogenetic approaches

Even with sparse life history data, the simplest ‘base model’ was able to estimate r
accurately while also maintaining strong rank agreement in r values among species. Because a
listed species’ r is indicative of its ability to recover from small population sizes when extrinsic
threats are ameliorated (or held constant across species in comparative analyses), refinements in
our ability to estimate r could aid ranking of species with respect to conservation priorities. For
example, species with the smallest r values would be those most jeopardized by small population
sizes, because once reduced to low abundance, such species would take the longest time to
increase. Likewise, a ‘low r’ species would, on average, be expected to reside on the endangered
species list for a longer period of time than would a high r species with the same recovery goal.
Such differences in potential “list-residence time” could clearly feedback into decisions about
species management and resource allocation.

Given these potential linkages to management, techniques for estimating r could be
developed building on our findings thus far. For example, improved PIC approaches may be
possible using non-mass traits as covariates of the evolutionary model. That is, even if we lack
sufficient life history data to calculate r for one of the poorly known species, we may have data
on one or more of the life history parameters that enter Eq. 2-3. Traits such as age at first
reproduction or average litter size covary with measures of population growth rate across diverse
species (Saether and Bakke 2000, Heppell et al. 2000), and including them as covariates in our
macroevolutionary models might sharpen predictions of how r evolves across species.
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9.2 - Establishing defensible recovery criteria

Neel and Che-Castaldo are pursuing an alternative path forward to overcome the key
obstacles identified through the SERDP funded research that will provide a means of
establishing defensible recovery criteria even in the face of data gaps. The primary need we
identified is increased understanding of links between the general theoretical risks facing small
and declining populations and the risks associated with abundances specified for recovery. Lack
of ability to link particular abundances with probability of persistence hinders objective
evaluation of existing recovery criteria or development of new criteria. Thus, although variation
in numerical abundances specified as recovery criteria has caused criticism, there is, in fact,
currently no scientific basis to say that the variation is truly problematic. Given wide
interspecific variation in threat context and underlying biology, even substantial differences in
the numbers of populations and individuals required for recovery could correspond to broadly
similar extinction risks across species. Translating criteria into the common currency of
extinction risk would allow more transparent assessment of whether or not specified abundance
measures and threat abatement would be sufficient to ensure sufficient probability of long-term
persistence to leave species ‘not in need of the provisions of the Act’.

Thus, we suggest fundamentally improving recovery criteria requires a means of
rigorously quantifying extinction risk that would result from attainment of specified criteria,
including both numerical abundance and abatement of threats. By integrating risks due to both
intrinsic and extrinsic factors and the interactions between them (Lee and Jetz 2011), the
approach we are developing would address risk associated with specific abundances and trends
as they are modified by the threat context in which species are embedded (Isaac and Cowlishaw
2004). This approach will allow fair and unbiased evaluation of recovery criteria across species.

We also suggest that improving recovery requires integrating more quantitative criteria
for habitat and range extent that can complement demographic values for populations and
individuals. The results of our investigations of traditional PVVA analysis in combination with
conclusion of others indicates they are not appropriate for setting quantitative recovery criteria.
However, our research highlighted the fact that quantitative measures of these aspects of
abundance other than individuals and populations are most often missing from recovery plans.
Thus, despite the fact that change in distribution and extent are major factors in determining
extinction risk, and habitat protection is a primary recovery action, habitat or range amounts are
rarely treated explicitly or quantitatively in recovery plans. Establishing objective and
measurable criteria for habitat and range would improve the likelihood of such conservation and
increase the potential that species will be maintained at levels sufficient for ecological
functioning and adaptation to future environmental conditions that are essential for long-term
prevention of extinction. We have research efforts under way to better quantify changes in
habitat availability and to translate those changes into extinction risk.

Being able to compare given a species’ abundance, biology and the threat context in
which it is situated is critical to comparing recovery criteria across species. Determining
incremental changes in risk as a function of threat abatement is particularly difficult and to date
no scientifically based methodology exists to meet this need. Our goal over the next 1-3 years is
to develop such a methodology. This methodology will integrate the objective and measurable
abundance criteria for individuals, population, range and habitat availability with the ongoing
threat context in which the species exists to develop quantify a change in extinction risk. We
have been working with the US Fish and Wildlife Service on these efforts since early 2012 and
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will continue to do so. Short of a formal methodology, more explicit articulation of the general
logic for requiring particular abundance values and links between these abundances and
reduction of particular threats would vastly improve recovery plans.

9.3 - Future synthetic efforts

Taken together, our partial success in several areas suggests an opportunity for a
composite approach that might prove useful in the development of recovery goals for poorly
known species. Specifically, there seems to be an opportunity to combine the primary strength of
the comparison set approach with the primary strength of the phylogenetic approach. To see
this, note that when the comparison set worked well, it was able to identify a suite of species
that, by virtue of similar traits and threats, exhibited variations in population size similar to those
of a focal species (Fig. 22); that is, ‘similarity in variability of population change.” In contrast,
the comparison set approach proved unable to accurately recover mean rates of population
growth or decline. However, the phylogenetic approach leveraged what was known about
species’ shared evolutionary histories to estimate a focal species’ baseline rate of population
growth. Although the intrinsic rate of increase (r) estimated by the phylogenetic approach is not
the same statistical measure as the mean rate of growth (u) estimated via the diffusion
approximation, the two measures are related and often similar in magnitude. Thus, there may be
an interesting opportunity to combine these two sources of information about a focal species in
the service of its conservation, such as by calculating a recovery goal that reflects both the
species intrinsic capacity for growth and the severity of population fluctuations that the focal
species is likely to experience. The details of this merged approach would need to be worked
out, and of course it would not be useful for those species where we were unable to identify
stable comparison sets, but it does seem worthy of exploration.

9.4 - Final thoughts

Overall, the results presented here highlight both successes and shortcomings of our
efforts to leverage data from well-studied species to inform recovery efforts for poorly known
species. Clearly, the lack of predictive certainty that our approaches afforded on a case-by-
case basis is disappointing (Part 4). However, the broad utility of simple, generic models for
predicting quasi-extinction dynamics across a broad range of species (CSEG model in Part 3)
and the exciting opportunities afforded by phylogenetic of population growth rate (Parts 5
and 6) are reasons for optimism.

Conservation biology is increasingly adopting multiple approaches to conservation,
some traditional single-species, some attempting to integrate efforts for multiple species.
Taking a multispecies perspective, a view that is necessitated both by the increasing numbers
of species of conservation concern and by the general need to act quickly to halt or reverse
population declines, presents many challenges. Often such action must take place in the
absence of solid information on each component species, and from a practical perspective,
broad brush multispecies conservation efforts may trade off case-by-case certainty for time.
Although the knowledge that we will guess right “on average” may provide little solace when
particular species or populations fail to persist, we must keep in mind that real species are, by
definition, unique biological entities for some (potentially high) degree of specialized,
idiosyncratic conservation efforts may be necessary.
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Appendix 1: Data access

RECOVERY DATABASES

All of the data we collected for our projects are accessible via on-line portals or downloads. We
list the resources here:

RecoveryDB (Database of recovery data for plants):

http://recoverydb.umd.edu/login.php

AnimalDB (Database of recovery data for animals):

http://animaldb.umd.edu/

Both can be accessed with the same login/password info:
Login: User
Password: User

Note that both databases are now being modified to remove attribute fields that were not used,
and other updates may occur.

DATABASES OF WELL-STUDIED SPECIES

The life-history databases for mammals and birds are in excel spreadsheet form and can be
accessed at Bill Fagan’s research website:

http://www.clfs.umd.edu/biology/faganlab/life history/index.html

The population matrices are being released through into a collaborative effort with the
ComPADREe Il group at the h the Max Planck Institute and can be found at:

We have entered into a collaborative effort with the ComPADRe 11 group at the Max Planck
Institute to share data collection efforts. The data we collected for this project are available at:

(http://www.demogr.mpg.de/en/laboratories/evolutionary biodemography 1171/projects/compa
dre iii and comadre demographic databases 1867.htm)

Other data resources that came from public or proprietary databases are listed in Part 1 of the
main report along with information on data accessability.
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2. Technical reports — None

3. Conference or symposia
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