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Executive Summary

This report summarizes progress for the first two quarters of SERDP project MR-2226.
The primary objective of the initial phase of the project is the development of a decision
support system (DSS) to predict classification performance given environmental variables.
This report details progress on the following tasks:

(1) Prediction of target detection thresholds. Current methods for setting target detection
thresholds are based on the worst case (i.e. minimum) amplitude response for a given target
of interest. The geophysical system verification (GSV) calculator previously developed by
ESTCP assumes that this worst case corresponds to a horizontal target oriented cross-track.
We show that, depending on sensor geometry and offset from the center of the array, the
minimum target response for a horizontal target is not always in a cross track azimuthal
orientation. In addition, we show that the worst case target amplitude can, in practice,
produce a prohibitively large number of target picks. To reduce the number of picks, we
simulate the distribution of target response amplitudes assuming a uniform distribution of
target azimuth and location across the sensor swath. We then show that setting a threshold
that provides a very high confidence of detecting targets of interest (e.g. 99 %) can drastically
reduce the number of target picks.

(2) Noise estimation. Most synthetic analyses use discrete background measurements to
characterize noise at a site. However, we find that a simple noise model derived solely from
background measurements (e.g. independent, Gaussian noise) cannot accurately reproduce
the distributions of dipole polarizabilities recovered from field data. We instead use the
recovered polarizability distribution of industry standard objects (ISOs) as a barometer
for characterizing noise across a site. We develop techniques to invert the covariance of
polarizabilities within the ISO class to recover an effective covariance of the noise on the data
across the site. The resulting noise is highly correlated and only approximately Gaussian.

(3) Performance prediction. Our aim here is to predict the receiver operating character-
istic (ROC) that would be obtained for a sensor and targets under specified environmental
conditions. For a given site, we associate the noise covariance derived from ISO polariz-
abilities with the median location of ISO items, relative to the sensor. With this noise
covariance, we can predict the covariance of target polarizabilities at any other location via
a straightforward linear analysis.

Next, we derive analytic expressions for the misfit of log-transformed polarizabilities with
respect to reference, or library, polarizabilities. This misfit is the statistic most commonly
used to discriminate between targets of interest (TOI) and non-TOI using cued sensor data.
The distribution of the decision statistic then maps to the predicted ROC. This machinery
allows us to efficiently predict how the spatial distribution of targets affects classification
performance. We derive analytic expressions for the covariance of target polarizabilities
under a uniform distribution of target orientations. We show that target dip has an impor-
tant effect on classification performance, with a uniform distribution of dips producing ROC
performance that is intermediate to horizontal and vertical cases.

Finally, we extend our performance prediction methods to dynamic sensors and develop
techniques to account for the effect of varying data density on classification performance.
We derive expressions for the distribution of the polarizability decay parameter, which is
typically used to classify data acquired with the EM-61 sensor. This provides a means to
predict the baseline ROC for a site, and so to predict whether cued interrogation will produce
a significant improvement in classification performance.



1

Contents

Executive Summary 2
List of Figures 2
List of Tables 3
List of Acronyms 4
1. Introduction 5
2. Background 5
2.1. Data acquisition 5
2.2. Feature extraction 6
2.3. Classification 9
3. Predicting target response thresholds 11
4. Performance prediction 16
4.1. Performance prediction for cued interrogation 17
4.1.1. Noise estimation 17
4.1.2. Predicting the distributions of polarizabilities 27
4.1.3. Predicting the ROC 35
4.2. Performance prediction for dynamic sensors 42
5. Conclusions and further work 48
References 49
Appendix A. Summary of ESTCP demonstration data sets 51
Appendix B. Expected polarizability covariance under a uniform distribution of

target orientations 53



2

List of Figures

1 Electromagnetic induction (EMI) survey 5

2 Sequential inversion approach 9

3 Computing the ROC from the score distributions of TOI and non-TOI 11

4 Anomaly amplitude analysis for a three coil EM-61 array 12

5 Anomaly amplitude analysis for an asymmetric three coil EM-61 array. 13

6 Cumulative distribution of response amplitudes 14

7 Cumulative distribution of response amplitudes at JDR 15

8 Distribution of response amplitudes for targets distributed uniformly in azimuth
and dip. 15

9 Methods for polarizability prediction 17

10 Background noise standard deviations for MetalMapper sensor at Camp Butner and
Pole Mountain. 18

11 Components of the observed secondary field for MetalMapper dynamic data acquired
at Camp Butner 19

12 Estimated ISO polarizabilities at Camp Beale and Pole Mountain. 19

13 Synthetic example of estimation of effective noise standard deviation 21

14 Estimates of effective noise standard deviations for MetalMapper Beale Parsons and
Pole Mountain data sets 22

15 Comparison of actual and synthetic estimated ISO polarizabilities at Pole Mountain 23

16 Example fit of a sum of exponential decays to estimated polarizabilities for an ISO
target 24

17 MetalMapper data predicted using unsmoothed and smoothed polarizability
estimates 25

18 Fits to noise distribution derived from ISO target polarizabilities, for channel 42 of
MetalMapper data at Pole Mountain 25

19 Estimated normal mixture model parameters at each MetalMapper channel 26

20 Structure of the noise covariance matrices at Camp Beale and Pole Mountain 28

21 Effect of target depth on polarizability uncertainty 29

22 Dependence of polarizability standard deviations on horizontal target location 30

23 Predicted ISO polarizabilities for four spatial distribution scenarios 31

24 ISO polarizabilities for TEMTADS2x2 and BUDhh handheld sensors at Camp Beale 32

25 Standard deviation of positional error as a function of target position 34

26 Targets used for ROC prediction 37

27 ROC prediction for the MetalMapper, Pole Mountain noise 37

28 ROC prediction for the MetalMapper, Camp Beale noise. 38

29 Effect of target orientation on decision statistic and ROC 39

30 Numerical simulations of primary polarizability estimation for vertical and horizontal
ISO targets. 40

31 Total polarizabilities estimated for ISO targets at Camp Beale. 42

32 EM-61 size-decay feature space, Camp Beale handheld area. 43



3

33 Dependence of EM61 total polarizability standard deviations at Camp Beale on
cross track spacing 44

34 Dependence of lognormal decay distribution on target size and correlation coefficient 45

35 Performance prediction for the EM61, Camp Beale noise. 47

List of Tables

1 EM sensors used for UXO classification 7



4

List of Acronyms

BUD Berkeley UXO Discriminator
BUDHH Handheld Berkeley UXO Discriminator
CDF Cumulative Density Function
cm centimeter
DSS Decision Support System
EM Electromagnetic
EMI Electromagnetic induction
ESTCP Environmental Security Technology Certification Program
FAR False Alarm Rate
FPF False Positive Fraction
FLBGR Former Lowry Bombing and Gunnery Range
GSV Geophysical System Verification
ISO Industry Standard Object
JDR Jeep and Demolition Range
m Meter
mm Millimeter
MPV Man-Portable Vector Sensor
MSEMS Man-Portable Simultaneous EMI and Magnetometer System
ms Millisececond
MTADS Multi-Sensor Towed Array Detection System
mV MilliVolt
PI Principal Investigator
POC Point of Contact
QC Quality Control
ROC Receiver Operating Characteristic
SLO San Luis Obispo
SNR Signal to Noise Ratio
TEM Time-domain electromagnetic
TEMTADS Time Domain Electromagnetic Towed Array Detection System
TOI Target of Interest
TPF True Positive Fraction
UBC-GIF University of British Columbia Geophysical Inversion Facility
UXO Unexploded Ordnance



5

1. Introduction

While significant advances have been made in the acquisition and processing of geophysical

data for classification of buried munitions, the success of any classification strategy strongly

depends upon site characteristics, including range of munitions types and clutter, geological

background, topography and vegetation. In this project our goal is to develop and validate

the components of a decision support system (DSS) that will help site-managers and teams

design surveys and data processing strategies to achieve optimal classification performance

at the lowest attainable cost for a given site.

2. Background

Advanced classification of buried munitions requires a number of steps:

(1) Data acquisition: detection of buried targets with a geophysical sensor.

(2) Feature extraction: characterization of each target with features estimated through

inversion of a parameterized physics based forward model.

(3) Classification: prioritization of targets for digging using estimated features.

The ultimate goal of this processing is to identify all targets of interest with a minimal

number of false alarms.

2.1. Data acquisition. In the data acquisition stage, a geophysical sensor is deployed

at the site. Time-domain electromagnetic (TEM) sensors are most commonly used for

detection of buried metallic targets. These instruments actively transmit a time-varying

primary magnetic field which illuminates the earth. The variation of the primary field

induces currents in buried targets and these currents in turn produce a secondary field

which can be measured by a receiver at the surface (figure 1)

Figure 1. Electromagnetic induction (EMI) survey. Eddy currents are in-
duced in a buried target by a time-varying primary field. Decaying secondary
fields radiated by the target are then measured by a receiver at the surface.

In a detection mode survey, a TEM sensor passes over an area in nominally straight,

parallel lines, with line spacing and instrument height dictated by instrument geometry and
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detection considerations. Subsequent cued interrogations may revisit previously-identified

targets and acquire finely spaced, high signal-to-noise ratio (SNR) data in a small area

about the target. Recently developed systems for cued-interrogation illuminate the tar-

get with multiple transmitters and receivers (a “multistatic” configuration) from a single

observation location and thereby avoid the requirement for accurate positioning of mov-

ing sensors. Table 1 compares the industry-standard EM-61 sensor with newer multistatic

systems developed specifically for UXO detection and classification.

2.2. Feature extraction. Once target anomalies have been identified in the observed geo-

physical data, we can characterize each anomaly by estimating features which will sub-

sequently allow a classification algorithm to discern targets of interest (TOI) from non-

hazardous clutter (non-TOI). These features may be directly related to the observed data

(e.g. anomaly amplitude at the first time channel), or they may be the parameters of a phys-

ical model. Advanced classification relies upon physics-based modeling, with the observed

magnetic field B(t) radiated by a buried target usually represented as a time-varying dipole

(1)
∂Bs

∂t
(r, t) =

p(t)

r3
(3(p̂(t) · r̂)r̂− p̂(t))

with r = rr̂ the separation between target and observation location, and p(t) = p(t)p̂(t) a

time-varying dipole moment

(2) p(t) =
1

µo
P(t) ·Bo.

The induced dipole is the projection of the primary field Bo onto the target’s polarizability

tensor P(t) (Bell et al., 2001). Here the elements of the polarizability tensor (Pij(t)) represent

the convolution of the target’s B-field impulse response (P̃(t)) with the transmitter waveform

i(t) (Wait, 1982)

(3) Pij(t) =
∂

∂t

∞∫
−∞

P̃ij(t
′ − t)i(t′)dt′.

The polarizability tensor is assumed to be symmetric and positive definite and so can be

decomposed as

(4) P(t) = ATL(t)A

with A an orthogonal matrix which rotates the coordinate system from geographic coor-

dinates to a local, body centered coordinate system. The diagonal eigenvalue matrix L(t)

contains the principal polarizabilities Li(t) (i = 1, 2, 3), which are assumed to be independent

of target orientation and location.

From a set of observations of the electromagnetic field, the inverse problem is then to

find the set of model parameters (location, orientation, and polarizabilities) that best fits

the data. The model vector m can be estimated by minimizing a norm (e.g. least squares)

quantifying the misfit between observed (dobs) and predicted (dpred) data. For the TEM
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Sensor Geometry Channels

EM61 MKII

0.040.1 1 10 50
Time (ms)

4 channels

MetalMapper

0.040.1 1 10 50
Time (ms)

42 channels

TEMTADS

0.040.1 1 10 50
Time (ms)

115 channels

MPV

0.040.1 1 10 50
Time (ms)

32 channels

BUDHH

0.040.1 1 10 50
Time (ms)

46 channels

Table 1. Electromagnetic sensors used for UXO classification. In geometry
plots transmitters and receivers are red and black, respectively.
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dipole model, the least squares estimate must generally be obtained iteratively, owing to the

nonlinear relationship between model parameters and predicted data in equation 1. However,

if the location of the target (r) is assumed known, then the forward modeling becomes linear,

so that

(5) dpred = Gm

with G, the forward modeling matrix, implicitly dependent on target location. The least

squares model estimate is then given by

m̂ = (GTG)−1GTdobs

= G†dobs
(6)

with

(7) G† = (GTG)−1GT

denoting the pseudo-inverse. When inverting observed field data for a sensor with tri-axial

transmit and receive coils (e.g. MetalMapper), we express G as

(8) G(r) =



Bx
sB

x
p

Bx
sB

y
p +By

sB
x
p

Bx
sB

z
p +Bz

sB
x
p

By
sB

y
p

By
sB

z
p +Bz

sB
y
p

Bz
sB

z
p



T

with Bp the primary field at the target and Bs the secondary field at the receiver, with

all fields implicitly dependent upon target (r) and sensor location. Superscripts denote the

x, y, z components of the respective fields. In this formulation, the model vector at location

r is parameterized in terms of the six unique elements of the polarizability tensor P

(9) m = [Pxx, Pxy, Pxz, Pyy, Pyz, Pzz]
T .

In practice, the vector m is estimated at each time channel in a sequential, or two stage,

inversion strategy (Song et al., 2011). As illustrated in figure 2, we first solve a nonlinear

inverse problem for target location. We then solve a linear problem for the polarizability

tensor elements (equation 9) at our fixed location estimate. Decoupling the location and po-

larizability parameters in this way allows for efficient parallel solution of the linear problem

at all time channels. Target orientation and principal polarizabilities are subsequently esti-

mated via joint diagonalization (Cardoso, 1996). This algorithm returns a single eigenvector

matrix A for all channels, corresponding to a fixed target orientation. The eigenvalues at

each time channel are then an estimate of principal polarizabilities.
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Optimize source location

dpred = F (r) = G(r)†dobs

Optimize source orientation 

and polarizabilities

dpred = Gm

Figure 2. Sequential inversion approach for estimation of dipole model pa-
rameters. We first estimate target location r; the predicted data in this case
are a nonlinear functional F (r). We then estimate target orientation and
polarizabilities. At a fixed location and orientation, the predicted data are
related to the model via a linear forward operator G.

The model vector at each time channel can also be comprised of the principal polarizabil-

ities

(10) m = [L1, L2, L3] .

In this case the matrix G depends implicitly upon both target location and orientation. As

will be discussed in section 4, this formulation of the model vector and forward operator is

useful when propagating noise on the data to predicted distributions of polarizabilities.

2.3. Classification. To rank detected targets for digging, we use the information in our

observed geophysical data. Features of the observed data, estimated without resorting to

inversion with a physics-based model, can sometimes suffice as criteria to discriminate be-

tween ordnance and non-ordnance targets (e.g. Williams et al. (2007)). However, because

dipole model parameters can be related to intrinsic properties such as target size and shape,

features derived from the estimated parameters (such as the total polarizability in equation

3) are often more reliable for discriminating between TOI and non-TOI.

Classification with TEM data is often performed by comparing estimated polarizabilities

with library responses and then ranking a target based on some measure of closeness between

observed and expected responses. Care must be taken here to use parameters which can

be reliably estimated: late time polarizabilities are more susceptible to noise and poor

estimates may unduly affect the discrimination decision. Pasion et al. (2007) solve this

problem with a fingerprinting algorithm that inverts for target location and orientation while

holding principal polarizabilities fixed at their library values. Reducing the model’s degrees

of freedom in this way makes the inversion less susceptible to fitting the noise. Targets are

then dug based upon the proposed library item which produces the best fit to the observed

data.

Statistical classification algorithms applied to UXO discrimination try to learn a decision

rule from a sample of labeled targets for which ground truth is known (the training data).
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One approach to formulating the decision rule is to fit some assumed parametric distribu-

tions to each class of targets in the training data, and to then assign an unlabeled (test)

target to the class distribution which is most likely. The class distributions are defined in a

multidimensional feature space spanned by some subset of estimated model parameters, or

transformations thereof. The total polarizability

(11) Ltotal(tj) =
3∑
i=1

Li(tj)

can be a useful classification feature when secondary and tertiary (L2, L3) polarizabilities

are poorly constrained. Alternatively, a two-dimensional space spanned by the amplitude

and decay of the polarizabilities

amplitude = log10

(
N∑
j=1

Ltotal(tj)

)

decay(tk, tj) =
Ltotal(tk)

Ltotal(tj)
,

(12)

has been successfully used to train statistical classifiers for a number of ESTCP field demon-

strations (e.g. Billings et al. (2010)). These parameters are useful because, to first order,

a conductor can be modeled as a simple LR (circuit with inductor and resistor in series)

loop which is inductively coupled to transmitters and receivers on the surface. The current

response of this loop is a decaying exponential which is fully described by an amplitude and

time constant (West and Macnae, 1991). Polarizabilities estimated from multistatic data are

typically well-constrained relative to monostatic detection data, and so statistical classifiers

for cued data sets are usually trained on the (log-transformed) principal polarizabilities, or

total polarizabilities.

The output of any automated classification algorithm is a decision statistic, or score,

that is used to rank detected targets from likely TOI to likely non-TOI. For example, a

library classifier uses the misfit of estimated polarizabilities with library polarizabilities as

the decision statistic. As shown in Figure 3, the receiver operating characteristic (ROC) is

then a plot of the true positive fraction (TPF ) versus the false positive fraction (FPF ),

which are defined as the cumulative score distributions for TOI and non-TOI

TPF (x) =

x∫
p(y|TOI)dy

FPF (x) =

x∫
p(y|non− TOI)dy.

(13)

In the context of munitions management, the false alarm rate (FAR) at which all ordnance

are detected on the ROC (i.e. TPF = 1) is the crucial metric by which site managers

evaluate the efficacy of remediation efforts. An advanced technique that results in good

initial detection of TOI but fails to find outlying TOI until late in the dig order will be
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Figure 3. Left: the receiver operating characteristic (ROC) shows the true
positive fraction (TPF) as a function of the false positive fraction (FPF).
Right: the ROC at point x can be modeled as the integral of the distributions
of TOI and non-TOI (true and false positives, respectively) with respect to
the decision statistic.

judged unsuccessful. This can occur with statistical classifiers that overfit the training data

and so fail to generalize to noisy test TOI.

3. Predicting target response thresholds

Targets identified in a detection mode survey must be selected for subsequent cued in-

terrogation using objective and reproducible criteria. The Geophysical System Verification

(GSV) approach developed by ESTCP (Nelson et al., 2010) advocates setting a target pick-

ing threshold based upon the lowest predicted amplitude expected for targets of interest

at a specified clearance depth. In the case of the EM-61 cart, the worst case scenario is a

horizontal item, oriented perpendicular to the sensor track. This geometry decouples the

primary field from the axial (L1) response of the target, so that the dipole response is dom-

inated by the sum of the smaller, transverse polarizabilities. The GSV response calculator

provides functionality for predicting the best and worst case target response amplitudes for

an array of EM-61 sensors in an arbitrary geometry.

When we apply this approach to munitions response projects, we sometimes find that

the threshold defined by the worst case scenario results in an undesirably large number of

target picks. This has motivated us to extend the GSV response calculator functionality to

consider the statistics of the target response across the swath of the array.

Figure 4 illustrates this extended analysis for a three coil EM-61 array interrogating a

37 mm projectile at 30 cm depth. Within the swath of the array, the minimum predicted

anomaly amplitude occurs for orientations of the target across the sensor track. The global

minimum of the response (≈ 8.5 mV at channel 3) is near the cross-track edges of the

center transmitter coil. This minimum is the consequence of the fall-off in received EMF

as the secondary dipole moves away from the center of each receiver coil. In this particular

example, the minimum response is in a cross track orientation.

For asymmetric array geometries we have found that the minimum response is still at

a horizontal dip, but the target azimuth can be at an intermediate angle to cross and

along track directions. This is illustrated in figure 5 for an asymmetric three coil array.

When constructing the worst case curve we therefore model over a full 360 degree range

http://www.serdp.org/Tools-and-Training/Munitions-Response/Geophysical-System-Verification/GSV-Response-Calculator
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of target azimuths to obtain the minimum predicted response. Comparing the symmetric

and asymmetric array geometries in figures 4 and 5, we remark that the minimum response

across the swath is significantly elevated for the asymmetric array. Narrowing the swath will

decrease the production rate, but will improve target detection.
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Figure 4. Anomaly amplitude analysis for a horizontal 37 mm projectile at
30 cm depth illuminated by a three coil EM-61 array. (a) Maximum anomaly
amplitude (mV) at channel 3 as a function of target location, for target ori-
ented along track. White lines indicate transmitters. (b) As in (a), but with
horizontal target oriented across track. (c) Minimum of responses in (a) and
(b) across the swath of the sensor array.

Returning now to the symmetric three coil array, we note that the 8.5 mV minimum in

figure 4(c) will undoubtedly produce a very large number of picks that must be excavated or

interrogated with a cued sensor. For example, at the Jeep and Demolition Range (JDR) at

the Former Lowry Bombing and Gunnery Range (FLBGR), we found that a 30 cm clearance

depth for 37 mm projectiles, corresponding to an 8.5 mV threshold, required us to dig a

prohibitively large number of picks.

However, we have found that by considering the statistics of the target response we can

significantly reduce the number of target picks. Assuming a uniform spatial distribution of

horizontal 37 mm projectiles throughout the sensor footprint with a uniform distribution of

target azimuths, we obtain the cumulative distribution of response amplitudes in figure 6.
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Figure 5. Anomaly amplitude analysis for an asymmetric three coil EM-
61 array. Note in this case that the worst case amplitude does not always
correspond to the cross track orientation.

At 0.99 and 0.95 confidence levels, we can raise the detection threshold in figure 4 to ap-

proximately 11 and 15 mV, respectively. In (c) we plot the proportion of 37 mm targets that

fall below these thresholds as a function of cross track location. For the 11 mV threshold

(0.99 confidence level), the non-zero regions of targets below the threshold are restricted to

lobes near the outer edges of the center transmitter. Increasing the threshold to 15 mV (0.95

confidence level) significantly increases the chances that we will miss a 37 mm target within

the sensor swath.

As shown in figure 7, increasing the threshold to 11 mV at JDR reduced the number

of target picks by 30%, while still ensuring a very high confidence of finding all 37 mm

projectiles. At the 95% confidence threshold we have a 60% reduction in target picks.

However, the 5% probability of missing a horizontal 37 mm may not be an acceptable risk.

At sites where the worst case threshold produces a prohibitive number of picks, this type

of statistical analysis can provide objective justification for slightly raising the detection

threshold.
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Figure 6. (a) Cumulative distribution of response amplitudes for horizontal
37 mm projectiles at 30 cm depth. Targets are distributed uniformly with
respect to cross track location and azimuth. (b) Lower tail of the cumulative
distribution. Markers indicate 0.99 and 0.95 confidence bounds. (c) Propor-
tion of horizontal 37 mm targets with response below threshold specified by
confidence level 1− α, as a function of cross track location.

The distribution in figure 6 is generated for horizontal 37 mm targets at arbitrary az-

imuths. Allowing for an arbitrary target azimuth and dip generates a somewhat less con-

servative distribution of response amplitudes. Figure 8 shows the empirical probability and

cumulative density functions for simulations assuming a uniform angular distribution of tar-

gets. These results are again generated for 37 mm projectiles at 30 cm depth, with the

symmetric EM-61 array of figure 4.

In future work we will extended this type of GSV functionality to newer dynamic plat-

forms, including the MetalMapper and TEMTADS2x2. If requested by the program office,

we will work to develop a software tool, similar to the existing GSV calculator, that makes

this analysis widely available to the munitions response industry.
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Figure 7. Cumulative distribution of response amplitudes at JDR. Markers
indicate 1− α confidence thresholds for detection of 37 mm targets.
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Figure 8. Distribution of response amplitudes for 37 mm targets at 30 cm
depth, distributed uniformly in azimuth and dip. (a) Empirical distribution.
Vertical lines are 1 − α confidence level cut-off. (b) Cumulative distribution.
(c) Proportion of 37 mm targets with response below threshold specified by
1− α confidence level, as a function of cross track location.
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4. Performance prediction

Excellent results have been obtained throughout the ESTCP demonstration program with

the sensor and data processing technologies described above: advanced classification con-

sistently outperforms conventional processing of industry-standard detection data (Billings

et al. (2010), Steinhurst et al. (2010), Prouty et al. (2011), Shubitidze et al. (2011)). The

significant reductions in the false alarm rate obtained with advanced classification translate

to substantial cost-savings during site remediation. Motivated by these successes, classifica-

tion methods have increasingly been transitioned from researchers to industry. For example,

at the 2011 Pole Mountain demonstration, production geophysicists working with UBC-

GIF software to process MetalMapper data obtained classification performance comparable

to that of “expert” analysts (Pasion, 2012). These initial results indicate that advanced

classification can be fully transitioned to the munitions response industry.

To further this transition process, we have developed methods for efficient prediction of

classification performance. The goal of this work is to provide tools for site managers and

their teams to reliably and objectively predict the benefits of advanced classification for a

particular remediation problem. In particular, we address two questions:

(1) Will multi-static sensor data reliably discriminate between targets of interest and

representative clutter items encountered at the site?

(2) Is there a significant improvement in expected classification performance - and hence

a reduction in expected costs - relative to classification with a monostatic sensor such

as the EM-61? For a relatively simple classification task (e.g. identification of 4.2”

mortars at Camp Sibert, Billings et al. (2010)), the additional survey and process-

ing costs associated with advanced classification may ultimately provide negligible

improvements in classification.

Throughout this report we will exploit available data sets from ESTCP demonstrations to

develop and validate our approach to performance prediction. A summary of these data sets

is provided in Appendix A.

As discussed in the previous section, survey design for munitions response projects is

largely restricted to detection considerations. Here we shift the emphasis in survey design

from detection to classification. We consider how site-specific inputs (sensor platform, tar-

get type, etc.) ultimately affect classification performance, as quantified by the ROC. Two

routes can be taken to map from these inputs to a predicted ROC curve. First, numerical

simulation of synthetic observed sensor data can be used to quantify the variability of es-

timated polarizabilities, and hence to predict the score distributions of TOI and non-TOI

for a given noise model. This approach is numerically intensive and is not suited for an

efficient decision support tool. We therefore pursue the second option: we develop statis-

tical mappings between environmental inputs and estimated polarizabilities, as depicted in

figure 9.
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Statistical simulation
f

1. Covariance estimation

cov(εεεε) = Gcov(mest)GT

2. Noise propagation

cov(mr
est)=G †

r cov(εεεε)(G †
r)

T

3. Marginalization

cov(mest)= ∫r ∫θ cov(mr
est) p(θ )p(r) dr dθ

Monte Carlo simulation

1. Forward model

dpred =F(m)

2. Add noise realization

dobs=dpred+εεεε

3. Invert

mest=F(dobs)

Inputs 

(sensor, site characteristics, etc.)

Predicted polarizability

distributions

Figure 9. Methods for polarizability prediction. Most studies use inversion
of synthetic data with independent, Gaussian noise to predict polarizability
distributions. In the next section, we develop statistical mappings that charac-
terize correlated, non-Gaussian noise with a noise covariance, then propagate
noise to the model and integrate over specified spatial and angular distribu-
tions of targets.

4.1. Performance prediction for cued interrogation.

4.1.1. Noise estimation. We begin by quantifying the noise on the observed data for a sta-

tionary cued sensor such as the MetalMapper. The problem is somewhat simplified by the

fact that soundings are acquired at a single location; we need not account for the errors in

measurement of sensor location that complicate analysis of dynamically-collected data. The

errors on measured cued data are then a combination of sources, including baseline sensor

noise and EMI responses that are unaccounted for in an inversion (e.g. transient cultural

noise, magnetic soils or neighboring targets).

Background noise is characterized via repeated measurements taken at an electromagneti-

cally quiet location at the site. These measurements quantify sensor noise and soil response.

Significant variability in sensor noise was observed with two MetalMapper systems used

for the 2010 Camp Butner demonstration. The older, prototype system had substantially

higher noise levels than the newer system manufactured by Geometrics. This difference was

likely due to improvements in electronics in the newer system. Subsequent deployments of

Geometrics MetalMappers at Pole Mountain and Camp Beale have produced consistently
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low noise levels associated with the sensor platform and electronics. Figure 10 compares

standard deviations estimated from background measurements taken at Camp Butner and

Pole Mountain.
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Figure 10. Background noise standard deviations for MetalMapper sensor
at Camp Butner and Pole Mountain.

When inverting field data, we assume that the observed data are a superposition of the

true data predicted by one or more dipole sources, and a noise term ε

(14) dobs = dtrue + ε

with ε ∼ N (0, σi) a zero mean, normally-distributed random variable. The estimated stan-

dard deviations weight the contributions of each channel to the data misfit

(15) φd =
∑
i

(
dobsi − dtruei

σi

)2

.

In the sequential inversion approach depicted in figure 2, this weighting is less critical since

each channel is inverted separately at a fixed location. Channel weighting is more important

when all channels are inverted at once, as in the fingerprinting approach described in Pasion

(2007).

Of course, the estimated standard deviations derived from background measurements do

not account for the various non-stationary sources of noise that are inevitably present in field

data. Figure 11 shows one such source: an elevated magnetic soil response encountered in

part of the survey area at Camp Butner. Non-dipolar fields that cannot be fit in an inversion

can also be regarded as additive noise on the observed data. Given the complex dependence

of noise upon sensor and environment, we do not attempt to predict individual noise sources

and their subsequent effect on estimated polarizabilities. Rather, we use the distributions of

polarizabilities recovered from ESTCP field data sets to estimate the effective noise across

each site.

Figure 12 compares polarizabilities recovered for small industry standard objects (ISOs)

at Pole Mountain and Camp Beale. It is evident from the distributions of polarizabilities



19

Figure 11. Components of the observed secondary field for MetalMapper
dynamic data acquired at Camp Butner. Regions of elevated magnetic soil
response are delineated in the z-component receiver data. Horizontal compo-
nents (x and y) of the data are less sensitive to magnetic soils when excitation
is from a z-component transmitter only.

that the effective noise at Camp Beale is larger than at Pole Mountain. Assuming perfect

recovery of target location, each set of estimated polarizabilities in Figure 12 is a linear

transformation of the observed data acquired over an ISO target (see equation 6). The

covariance of the jth polarizability model at the ith time channel can then be expressed as

(16) cov(mij) = (G†j)
T cov(dobsi )G†j
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Figure 12. Estimated ISO polarizabilities at Camp Beale and Pole Mountain.
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with the pseudo-inverse G†j given by equation 7. For uncorrelated errors with constant

standard deviation σi at each time channel, the data covariance is cov(dobsi ) = σ2
i I and the

model covariance simplifies to

(17) cov(mij) = σ2
i (G

T
j Gj)

−1

As discussed in section 2.2, the forward modeling operator G can be computed for a fixed

target location and orientation, in which case the model vector at each time channel is

composed of the principal polarizabilities at that channel (equation 10).

The covariance of the principal polarizabilities in equation 17 represents the covariance of

the model parameters that would be estimated from repeated noise realizations with stan-

dard deviation σi for a single target at a fixed location and orientation. The polarizabilities

estimated from field data are instead a set of model estimates with independent realizations

of noise but at varying locations and orientations. The following procedure computes an es-

timator of the effective noise standard deviation at a site from the set of recovered principal

polarizabilities:

Algorithm 1 Estimator σ̂2
1 of the data variance.

(1) Estimate the (3× 3) sample covariance matrix using the recovered principal polariz-
abilities at ith time channel, for all targets within a given class.

(2) Form a vector δi comprised of the diagonal elements of the estimated model covari-
ance (i.e. the variances of the polarizabilities)

(3) At each target’s estimated location and orientation, compute Γj = (GT
j Gj)

−1. This

is the model covariance for the jth target (equation 17) without scaling by the (un-
known) data variance σ2

i

(4) Compute the mean model covariance matrix

(18) Γ̄ =
1

M

M∑
j=1

Γj

over all M targets in the class. Γ̄ is an average of symmetric and positive-definite
covariance matrices and so is itself a valid covariance matrix.

(5) Form the vector g from the diagonal elements of Γ̄.
(6) Finally, compute a least squares estimate of the data variance at the ith time channel

(19) σ̂2
i = (gTg)−1gT δi

To ensure that the inverse problem in equation 19 is well-posed, we assume a diago-
nal data covariance and neglect estimation of correlations quantified by off-diagonal
terms.

Figure 13 shows a synthetic example of noise estimation for MetalMapper data. The syn-

thetic observed data are contaminated with additive zero mean Gaussian noise with standard

deviations derived from Camp Butner background measurements. We simulate ISOs dis-

tributed uniformly in both location and orientation, with a maximum target depth of 0.6

m. The recovered distribution of polarizabilities, estimated from nonlinear inversion of the
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synthetic data, is then used to compute the data variance estimator using the above proce-

dure. There is good agreement between the actual and estimated data standard deviations,

suggesting that this approach can provide a reasonable estimate of the effective noise on the

data.
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Figure 13. Synthetic example of estimation of effective noise standard devi-
ation. Left: ISO polarizabilities estimated from synthetic MetalMapper data
contaminated with Gaussian noise. The kink in the true secondary polariz-
abilities at late times is a consequence of noise on the particular measurements
used to extract reference polarizabilities. Smoothing could be applied to re-
move this effect. Right: True standard deviation of noise and estimator σ̂1
recovered from polarizability distributions.

We now apply this analysis to real MetalMapper data. The analysis is restricted to ESTCP

demonstration sites with seeded ISOs (at the time of this report): Pole Mountain and Camp

Beale. ISO items are preferred for this analysis because of their physical uniformity and

consequent consistency of their polarizabilities under low noise conditions. ISOs can also be

seeded uniformly across the site to ensure that variability in site conditions is adequately

sampled.

Figure 14 shows noise estimates for Camp Beale and Pole Mountain derived from the

distributions of estimated ISO polarizabilities in figure 12. As expected from the observed

distributions of polarizabilities, the estimated standard deviation of the noise at Camp Beale

is larger than at Pole Mountain, but only slightly. Munkholm and Auken (1996) showed that

log-gated and stacked white noise produces errors on the TDEM response with a standard

deviation exhibiting a t−1/2 decay. For these data sets, the estimated noise standard devia-

tions decay considerably faster than t−1.

As a check on this procedure, we can now contaminate synthetic data with our effective

noise and verify that the distributions of recovered polarizabilities are consistent with the

actual distributions in figure 12. Figure 15 compares the synthetic estimates recovered with

the inferred Pole Mountain noise model and the actual estimated polarizabilities for ISOs

at this site. The synthetic polarizabilities have a much higher variance, in particular for the
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secondary and tertiary polarizability estimates, indicating that we have overestimated the

noise. A similar result is obtained for simulations with our estimated Camp Beale noise.

Why does our noise estimation procedure fail in this case? We have made several as-

sumptions in this analysis: the noise is independent, normally distributed, and constant for

all data at each time channel. As we will now show, a closer examination of the polariz-

abilities estimated from field data indicates that the noise on the data is correlated, only

approzimately normally-distributed, and is not constant for all data measured at a single

time channel.

The correlated nature of the noise is easy to see in figure 12: correlated shifts of the esti-

mated polarizabilities, especially obvious at Camp Beale, could not result from independent

random noise. In the case of Camp Beale, a variable magnetic soil response affects our

estimation of target depth and so results in constant shifts (in log space) of the estimated

polarizabilities.

We turn now to the distribution of the noise. Typically, in synthetic simulation work

we assume Gaussian noise at each time channel. This is motivated by simplicity, and the

observation that multiple sources of additive noise will tend to a normal distribution.

In previous work, we also carried out simulations that treated the data residuals - the

difference between observed and predicted data - as realizations of noise (Carin et al., 2012).

The various realizations of noise across a site were then added to forward modeled data for

a given target to synthetically seed that target at the site. This allowed us to study the

variability of estimated target features expected at the site.

A drawback of the synthetic seeding method is that the residuals in an inversion in fact

represent the component of the noise that is not fit in an inversion. We are not accounting

for the component of the noise that causes random deviations of the estimated model and

contributes to the overall variability of the features within a target class. Here we try to
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Figure 14. Estimates of effective noise standard deviations for MetalMapper
Beale Parsons and Pole Mountain data sets. Heavy dashed line is a t−1/2

decay.
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Figure 15. Comparison of actual (left) and synthetic estimated (right) ISO
polarizabilities at Pole Mountain. The latter are generated by adding the
predicted data and independent Gaussian noise with standard deviations es-
timated with algorithm 1.

isolate this effect of the noise by fitting a smooth, physically-motivated function to the

estimated polarizabilities. This provides a route for estimating the component of the noise

that contaminates our model estimates.

The polarizability decay for an arbitrary target can be generally parameterized as a su-

perposition of decaying exponentials

(20) Lsmooth(tj) =
N∑
i=1

ai exp(−tj/γi).

With N → ∞, this is the analytic form of the polarizability response of a spheroidal tar-

get (Kaufman, 1994). Random fluctuations of recovered polarizabilities away from this

smoothly decaying function are then diagnostic of random noise on the data. We fit the

above function to the recovered polarizabilities, with the summation truncated to N = 30

terms and decay constants γi logarithmically-spaced between 10−6 and 10−2 s. We solve

a linear optimization problem for the coefficients ai by minimizing the least squares differ-

ence between estimated and smoothed polarizabilites, with the constraint ai ≥ 0 ensuring

a monotonically decreasing function. Figure 16 shows a typical fit obtained with this ap-

proach. There is excellent agreement between smoothed and unsmoothed polarizabilities,

the only obvious deviation is at late times when the estimated secondary polarizabilities

approach the noise floor. Given estimated (unsmoothed) and smoothed polarizabilities, we

can generate an estimate of the noise by predicting the data for both

dest = Gmest

dsmooth = Gmsmooth

(21)
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Figure 16. Example fit (solid lines) of a sum of exponential decays to esti-
mated polarizabilities (markers) for an ISO target at Pole Mountain

where the model vectors m are the polarizabilities at each channel. Our prediction for the

realization of noise on the data is then

(22) ε = dest − dsmooth = G∆m.

From this we see that the predicted noise is that of a dipole source, co-located with the

target and with principal polarizabilities given by the change in the polarizability model

∆m. Figure 17 shows the prediction for ε for one channel of MetalMapper data, using the

ISO polarizability estimate in figure 16. While this approach dictates dipolar noise, the

actual realization of noise that produced the estimated (unsmoothed) polarizabilities is not

necessarily dipolar - there may be another noise model that can produce the same result.

Nonetheless, we can use the statistics of the predicted dipolar noise to understand the char-

acter of the noise that produced the observed polarizabilities. Repeating the polarizability

fitting process for all ISO items at Pole Mountain, we obtain the noise distribution for a

single channel in figure 18. The resulting distribution can be decribed as mostly normal:

larger amplitude outliers produce heavier tails than would be obtained with a purely Gauss-

ian noise distribution. This type of heavy-tailed noise often motivates the use of robust

norms that downweight the influence of outliers on model estimates. We investigated robust

fitting in an earlier project and showed that these methods are especially beneficial when

processing dynamic data collected with monostatic EM sensors (Beran et al., 2011). In

contrast, the large number of (nearly) redundant measurements acquired with multistatic

sensors make these data inherently robust to outliers. Robust processing therefore offers

negligible improvements in parameter estimation for these platforms.

Symmetric, heavy-tailed noise is often represented as a mixture of two Gaussian compo-

nents with equal means (Marrona et al., 2006). The lower weight, larger variance component

describes the outlying noise. In figure 18 we find that a single Gaussian does not adequately

describe the noise, and so we use two techniques to fit univariate, Gaussian mixture models
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Figure 17. MetalMapper data at channel 42 (7.9 ms) predicted using un-
smoothed (top row) and smoothed (middle row) polarizability estimates from
figure 16. The difference between the predicted data sets (bottom row) is it-
self a dipolar anomaly and is an estimate of the noise realization on the data.
Markers indicate receiver locations.

to the empirical distribution of the noise. Expectation-maximization (E-M) is a popular,

iterative algorithm for maximum likelihood estimation of mixture model parameters (Hastie

et al., 2001). We have also developed an alternative estimation method that minimizes the
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Figure 18. Fits to noise distribution derived from ISO target polarizabili-
ties, for channel 42 of MetalMapper data at Pole Mountain. Left: Empirical
density (histogram) and predicted densities using a single normal distribution
(denoted Normal) and a mixture of normal distributions. The mixture models
are estimated using expectation-maximization (E-M) and a novel method that
directly fits the CDF. Right: empirical (black line) and predicted cumulative
densities. Inset shows fits in the shoulder of the distribution.
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least squares difference between empirical (observed) and predicted cumulative distribution

functions (CDFs). By specifying particular points on the CDF that we want to fit, we place

more emphasis on the “shoulders” of the distribution and obtain better agreement between

observed and predicted cumulative distributions. Fitting the CDF directly is motivated by

the fact that the Kolmogorov-Smirnov (K-S) hypothesis test of two non-parametric distri-

butions uses the maximum difference between CDFs as its test statistic (Press et al., 1992).

By this criterion, our method produces a higher likelihood estimate of mixture parameters

than E-M. The CDF fitting method produces a good fit across all time channels, indicating

that a two-component mixture is an accurate model for the noise.

Figure 19 shows the standard deviations and weights of the normal mixture components

across all MetalMapper channels at Pole Mountain. The lowest noise variances are at inter-

mediate channels. At late times the observed decays hit the background noise floor, so that

the noise standard deviation is a larger proportion of the true datum.
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Figure 19. Estimated normal mixture model parameters at each MetalMap-
per channel. Left: Standard deviations of normal mixture components, ex-
pressed as a percentage of the observed datum, estimated via CDF fitting
technique. Right: Weighting of first, smaller variance component in mixture
model.

In this section we have investigated, in some detail, methods for estimating the distribution

of additive noise that contaminates observed data. We conclude that a simple model of

uncorrelated Gaussian noise is only roughly applicable to MetalMapper data. A mixture of

correlated Gaussians is a much better approximation. With these lessons in mind, we now

turn to a straightforward linear approach for modeling the effects of noise and predicting

the distributions of estimated polarizabilities. This simple method makes no restrictive

assumptions about the distribution of the noise and directly reproduces the variability of

polarizabilities observed in field data.
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4.1.2. Predicting the distributions of polarizabilities. Equation 23 relates the observed noise

ε to the perturbation in the model ∆m via the forward modeling operator G

(23) ε = G∆m.

From this relation, we can express the covariance of the noise as

cov(ε) = E(εεT )

= GE((∆m)(∆m)T )GT

= Gcov(m)GT .

(24)

We can estimate the covariance of the polarizabilities, cov(m) directly from the set of esti-

mated target polarizabilities at a site, as displayed, for example, in figure 12. Note that for

each target in this set, there is a separate G corresponding to the estimated orientation and

location of that target.

We now assume that there is some equivalent dipole source at the median location req of

all targets in our observed target set. For example, at Pole Mountain and Camp Beale the

median location of ISOs is directly below the center of the array, at approximately 20 cm

depth. The forward operator Geq at this location can then be used to compute the effective

noise covariance using equation 24.

Geq also depends on the orientation of the dipole source. As in a GSV analysis, we

can restrict ourselves to targets in a particular orientation. Alternatively, we can specify

a probability distribution of target orientations and marginalize over azimuth and dip to

determine the expected covariance of the estimated polarizabilities. Appendix B develops

expressions for the covariance of the estimated polarizabilities under a uniform distribution

of target dip and azimuth. For simplicity, in this section we consider only vertically-oriented

targets.

Figure 20 compares the effective noise covariances for Pole Mountain and Camp Beale

computed using this approach. Consistent with our characterizations of the noise in the

previous section, there is significant off-diagonal structure in figure 20(a), indicating the

presence of correlated noise on the data. The estimated standard deviations in figure 20(b)

show that a single standard deviation at each time channel, as assumed in the previous

section, is not an accurate characterization of the noise. Instead, we find that are three

standard deviations required at each channel: one corresponding to maximum coupling

between transmitter and receiver (e.g. x transmitter and x receiver component), and two

components for perpendicular transmitter/receiver combinations.

Inverting at a fixed target location is a linear transformation of the data, and so with the

noise covariance from equation 24, we can directly compute the covariance of the polariz-

abilities at the location rj with corresponding forward operator Gj as

(25) cov(m)j = G†jcov(ε)G†j
T
,
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Figure 20. Structure of the noise covariance matrices at Camp Beale and
Pole Mountain. (a) Correlation matrix structure. Each block in the correlation
matrix is comprised of the 21 measurements (7 receivers × 3 transmitters)
made with a given receiver component (b) Estimated standard deviation of
the noise for center MetalMapper receiver (all components) at Camp Beale
and Pole Mountain.

with G†j denoting the pseudo-inverse. For rj = req, we find cov(m)j = cov(m)eq. This means

that a target at our equivalent source location will produce a distribution of polarizabilities

that is exactly that which we recovered from the field data.

Now as we vary the target location rj, there is a commensurate change in our model

uncertainty, as shown in figure 21. This analysis is still restricted to vertically oriented tar-

gets. The change in model uncertainty reflects the relative change in curvature of the misfit

function as the target location varies. Figure 22 shows the dependence of the polarizability

uncertainty on the horizontal location of the target. The uncertainty is relatively constant

within the sensor footprint.

At each possible location for a target, we now have the machinery to compute the uncer-

tainty in the polarizabilities that is expected given a specified noise covariance. In practice,

we have a sample of targets S at different locations and wish to compute the overall covari-

ance of this sample. It is straightforward to show that the covariance of the sample can be

estimated as the mean of the covariances of all targets in the sample

(26) cov(m)S =
1

M

M∑
j

cov(m)j.

More generally, for a specified distribution of target locations p(r) the model covariance

is computed via the expectation

(27) cov(m) =

∫
r

cov(m)(r)p(r)dr.
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Figure 21. Effect of target depth on polarizability uncertainty. (a) Predicted
standard deviation of polarizabilities as a function of target depth. Predictions
are for channel one MetalMapper data at Pole Mountain. (b) ISO reference
polarizability (solid lines) and predicted 95% confidence interval (dashed lines)
for ISOs at 0.1 m depth. (c) As in (b), at 0.4 m depth.

For specified horizontal and vertical spatial distributions of targets, we approximate the

above integral at a discrete set of points, with each point weighted by

(28) P (rj) =
p(rj, )∑M
k=1 p(rk)

.

Figure 23 shows the effect of assuming normal or uniform horizontal distributions of ISO

targets on the predicted polarizability distributions. The uniform horizontal distribution in

(a) might represent a scenario where the operator of the sensor platform does a relatively

poor job of positioning the sensor on top of a target. If we replace this operator with a

more experienced/careful driver in (b), there is a moderate expected reduction in polariz-

ability variance. In cases (a) and (b), we have assumed a uniform vertical distribution of

ISOs down to a maximum depth of 40 cm1. Consequently, the overall, averaged variance

1This maximum depth may correspond to the clearance depth specified by a regulator.
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Figure 22. Dependence of polarizability standard deviations on horizontal
target location, Gridded images show log10-transformed standard deviations.
Markers indicate MetalMapper receiver locations. Calculations are for a target
at 20 cm depth, using data covariance derived from Pole Mountain.

from equation 27 is dominated by targets at depth and the benefits of improved horizontal

positioning are attenuated. In (c) and (d) we now reduce the maximum clearance depth for

ISOs to 20 cm. This has a strong effect on the polarizability variance for both drivers, with

a dramatic reduction in variance for our experienced driver in (d). We conclude from these

simple examples that the important controlling variable in polarizability variance with a

cued sensor is target depth. Good horizontal positioning is important, but may only provide

modest improvements in parameter estimation when we are tasked with classifying targets

near their maximum detection depth.

Thus far we have focused exclusively on MetalMapper data, but the technique is read-

ily extended to any cued sensor, with the functionality to compute G implemented for any

data type we already invert (TEMTADS2x2, MPV, etc.). Figure 24 compares recovered ISO

polarizability distributions for the BUDhh and TEMTADS2x2 sensors deployed at Camp

Beale. The BUDhh measures data over a very short time window, with the result that

there is very little random jitter in the recovered polarizabilities, relative to the late time

polarizabilities measured with the TEMTADS2x2. Similar to its larger 5x5 antecedent, the

noise on the 2x2 array could be substantially reduced by simply averaging the polarizabil-

ities in windows of e.g. 5 channels. Evident for both sensors are correlated shifts of the

polarizabilities, in this case likely due to a strong background response at the site.

We use these polarizability distributions to generate noise covariances for each sensor, and

then to predict the distributions of polarizabilities that would arise for each sensor for ISOs

distributed uniformly within each sensor’s footprint. We again consider how different target

distributions with depth affect polarizability variance. In the first scenario (middle row of

figure 24), we represent the distribution of ISOs at Camp Beale as a normal distribution

with mean depth 15 cm and a standard deviation of 5 cm. This roughly corresponds to the

actual depth distribution of ISOs at Beale. Unsurprisingly, this model closely reproduces
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Figure 23. Predicted ISO polarizabilities for four spatial distribution scenar-
ios with Pole Mountain noise model. (a) Uniform horizontal distribution across
the sensor footprint, uniform vertical distribution between 0.05 and 0.4 m. (b)
Normal distribution truncated on the horizontal interval x, y ∈ [−0.3 0.3] m,
with standard deviation of 0.1 m in both x and y. Uniform vertical distribu-
tion between 0.05 and 0.4 m depth. (c) As in (a), but with maximum vertical
depth constrained to 0.2 m. (d) As in (b), but with maximum vertical depth
constrained to 0.2 m.

the observed polarizability distributions for both sensors. Now if we make the parameter

estimation problem a little bit harder by distributing targets uniformly with depth down to

30 cm (bottom row of figure 24), the BUDhh shows a significant increase in polarizability

variance, relative to the 2x2. This is likely because the BUDhh measures fewer data at each

sounding (30 data at each channel) than the 2x2 (48 data at each channel). This produces

a larger rate of increase in the polarizability variance with depth for the BUDhh than the

TEMTADS2x2.

In the preceding discussion we have used a straightforward linear analysis to develop

methods for predicting the distribution of estimated polarizabilities given site specific noise.

Beyond its simplicity, the approach is appealing in that it combines the problem physics -



32

10
−3

10
−1

10
1

10
3

TEMTADS2x2
P

ol
ar

iz
ab

ili
tie

s

 

 

L
1

L
2

L
3

10
−3

10
−1

10
1

10
3

P
ol

ar
iz

ab
ili

tie
s

0.089 1.583 24.35
10

−3

10
−1

10
1

10
3

Time (ms)

P
ol

ar
iz

ab
ili

tie
s

10
−3

10
−2

10
−1

10
0

10
1

BUDhh

10
−3

10
−2

10
−1

10
0

10
1

0.08 0.331 1.46
10

−3

10
−2

10
−1

10
0

10
1

Time (ms)

Figure 24. ISO polarizabilities for TEMTADS2x2 and BUDhh handheld
sensors at Camp Beale. Top row: actual ISO polarizabilities for each sensor
at Camp Beale. Middle row: Predicted ISO polarizability distributions for
each sensor with a uniform horizontal distribution of targets within the sensor
foorprint. Targets are normally distributed in depth, with a mean depth of 15
cm, and 5 cm standard deviation. Bottom row: As in middle row, but with
targets uniformly distributed with depth down to 30 cm.

encapsulated in the forward modeling matrix G - with a realistic noise model described by

a dense noise covariance.
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In a linear uncertainty analysis we typically assume perfect recovery of target location.

There is, however, some accounting for imperfect location recovery, and other nonlinear

effects, implicit in our estimation of the noise covariance. This is because we use a set of

actual, estimated polarizabilities for a target class to back out the noise covariance. Cor-

related shifts of these recovered polarizabilities resulting from errors in location estimation

are therefore propagated through the analysis. We can further quantify the magnitude of

uncertainty in position estimation at each site via a linearized apparaisal. This is identical

to the linear uncertainty analysis, except the forward matrix G in equation 25 is replaced

by the sensitivity (Jacobian) matrix J of first derivatives with respect to target position.

Figure 25 shows this analysis for the MetalMapper at Camp Beale and Pole Mountain. At

each target location we compute the standard deviation of our location estimate as

(29) σr =
√
trace(cov(ri, rj))

with cov(ri, rj) denoting the covariance between ith and jth elements of the position vector

r. In figure 25(a) and (c) we show the uncertainty in target position at 30 cm depth for a

single object scenario. Within the sensor footprint the median standard deviation in target

location is approximately 30 cm and 15 cm at Camp Beale and Pole Mountain, respectively.

In the linearized analysis we can also examine the effect of multi-object scenarios on location

uncertainty. In (b) and (d) we introduce a second target near the edge of the array and

compute the standard deviation in position as a function of the location of the first target. If

the sensor is properly centered over one of the two targets, then the uncertainty is essentially

unchanged. It is only when the two targets are both near an edge of the array that we expect

a large uncertainty in recovered target location. Improved infield QC procedures should

prevent this scenario, so that we can reasonably expect a relatively small error in recovered

target location with cued sensors.

Thus far, our analysis is tied to specific sites for which we have a representative sample of

ISO items to characterize model variability. Ultimately our goal is to predict classification

performance for an arbitrary site characterized by particular conditions (topography, target

density, etc.) If, for the moment, we regard Pole Mountain and Camp Beale as end members

in the spectrum of classification difficulty, then we might envision a system where a user

might select a reference site most similar to their problem, and then use the approach

developed here to predict polarizabilities and classification performance. As more data sets

with seeded ISOs become available, we will obtain a more diverse set of site conditions, with

some even more challenging that Camp Beale (e.g. the planned demonstration in Waikoloa,

HI). In ongoing work we will work to develop metrics (target density, magnitude of soil

response, sensor positioning, etc.) necessary to characterize each site. We will also explore

ways to average existing noise models (i.e. covariances) to make predictions for novel site

conditions.
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Figure 25. Standard deviation of positional error as a function of target
position. (a),(c) Single-object scenario at Camp Beale and Pole Mountain,
respectively. (b),(d) Two-object scenario at Camp Beale and Pole Mountain,
respectively. Marker indicates fixed location of second target in top right
corner of the array. Gridded image then shows the uncertainty in the location
estimate for the first target.
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4.1.3. Predicting the ROC. The next step in predicting classification performance is to use

the distributions of polarizabilities to compute the distribution of the decision statistic for

each target class. At this point we make the assumption that estimated polarizabilities are

lognormally distributed, with variances predicted using the above analysis. This ensures that

the polarizability distribution is non-negative. The log-transformed polarizabilities are then,

conveniently, normally-distributed, allowing us to analytically compute the distribution of

the decision statistic. For classification with multistatic sensor data, the decision statistic φ

is typically a misfit of log-transformed estimated polarizabilities Lest with respect to some

reference, or library, polarizability Lref

φ =
N∑
i=1

(log(Lesti )− log(Lrefi ))2

=
N∑
i=1

X2
i

(30)

with Xi = log(Lesti ) − log(Lrefi ). The summation extends over some subset of the polariz-

abilities. For high SNR targets we often use all three principal polarizabilities, whereas for

noisier cases we might only use the primary polarizability to compute the decision statistic

and rank targets. Other similarity measures may also be used as a decision statistic for

ranking targets. For example, we often use a heuristic function of the form

(31) φ =
N∑
i=1

(Lesti )γ − (Lrefi )γ

1/N
N∑
j=1

(Lrefj )γ


2

with γ ≈ 0.1. The following analysis can readily be applied to nonlinear functions of this

form; we can use a first order approximation to compute the variance of the polarizabilities

under arbitrary nonlinear transformations.

Continuing with the decision statistic in equation 30, we require the expected value of

the log transformed polarizabilities in a class to be the logarithm of the true, reference

polarizabilities of that class

(32) E(log(Lesti )) = log(Lrefi ).

If the lognormally-distributed polarizability has predicted variance var(L), then the variance

of the corresponding log-transformed variable is given by

(33) var(log(L)) = log

(
1 +

√
1 + 4var(L) exp(−2E(log(L)))

2

)
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The mean and variance of the decision statistic are

E(φ) =
N∑
i=1

E(X2
i )

var(φ) =
N∑
i=1

var(X2
i ).

(34)

For the individual Xi, the required moments are

E(X2
i ) = var(Xi) + E(Xi)

2

var(X2
i ) = E(Xi)

4 + 6E(Xi)
2var(Xi) + 3var(Xi)

2 − E(X2
i )2

(35)

The above expressions can be used to compute the moments of the polarizability misfit

for a specified target class with respect to an arbitrary reference polarizability. The sum

of N standardized normal random variables is distributed as a χ2 random variable with

N degrees of freedom. In this case, the Xi are not standardized (i.e. normalized by their

standard deviation). We therefore use a variant of the central limit theorem: the summation

of independent, but not identically-distributed, variables in equation 30 will tend to a normal

distribution (Billingsley, 1995) with mean and variance given by equation 34.

As an example, we consider discrimination between ISO targets and a clutter item.

Ground truth photos are shown in figure 26. We have selected a non-TOI item from Camp

Beale that has a very similar primary polarizability to an ISO. In figure 27 we simulate the

distributions of polarizabilities that would be obtained for these items assuming the Pole

Mountain noise covariance, and a uniform spatial distribution for both targets to a maximum

depth of 40 cm. We first compute the decision statistic using only the primary polarizability

(top row of figure 27). This produces some overlap in the distributions of φ, such that the

resulting ROC requires us to dig approximately 5% of clutter in order to ensure that 99%

of all TOI are found. If we instead use all polarizabilities for classification (bottom row of

figure 27), then the ROC indicates perfect classification. This is because there is a significant

difference between transverse polarizabilities for these targets at the specified noise level.

Figure 28 considers the same classification problem as in figure 27, but uses the noise

covariance derived from Camp Beale. The increased noise at this site degrades classification

performance using the primary polarizability, but perfect classification is still expected when

all three polarizabilities are used to rank targets.
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(a) ISO (b) Clutter, Camp Beale target 2530

Figure 26. Targets used for ROC prediction.
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Figure 27. ROC prediction for the MetalMapper, Pole Mountain noise. In
this scenario we discriminate between ISOs and a clutter item with a similar
primary polarizability. Top row: Classification using primary polarizabilities
only. Bottom row: Classification using all polarizabilities.
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are the same as in figure 27, only the noise covariance is changed.
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Thus far, we have restricted our performance prediction analysis to targets in a single

orientation, with the results in this section generated for horizontally-oriented targets. Fig-

ure 29 compares ROC prediction for the same TOI and non-TOI items in horizontal and

vertical orientations, as well as for a uniform angular distribution of target orientations.

Expressions for this latter case are developed in appendix B. Horizontal targets are the most
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Figure 29. Effect of target orientation on decision statistic and ROC. Top
row: decision statistic and ROC for classification with primary polarizabilities.
Bottom row: decision statistic and ROC for classification with all polarizabil-
ities.

difficult scenario for discrimination using the primary polarizabilities. In this orientation, the

primary polarizability is less coupled to excitation by the horizontal MetalMapper coil. This

is alleviated somewhat by the (horizontal) fields transmitted by the vertical x and y coils,

but since the center of these loops is vertically displaced from the receiver plane, data from

the vertical transmitter coils is somewhat lower SNR than from the horizontal coil. This

results in more variability in the estimated primary polarizability for horizontally-oriented

targets than for vertically-oriented targets. We verify this effect with numerical simula-

tions in figure 30. We conclude that horizontal targets represent the worst case scenario for
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both detection and classification (when we rely exclusively on primary polarizabilities for

classification).

Unsurprisingly, a uniform angular distribution of targets gives a classification result that

is intermediate to purely horizontal and vertical cases. The distributions of the decision

statistic, using only the primary polarizability, are quite similar for horizontal and uniform

cases. This is expected: a uniform distribution with respect to target dip is biased towards

horizontal orientations2.

Moving now to discrimination with all polarizabilities (bottom row of figure 29), the per-

formance of vertical and horizontal cases is reversed. Secondary and tertiary polarizabilities

are better constrained in horizontal orientations, and so inclusion of these features allows

for perfect discrimination between the two targets considered in this example. Conversely,

it is harder to excite the transverse response of a vertical target, and using transverse polar-

izabilities for classification of vertical targets therefore degrades performance. The uniform

angular distribution is again intermediate to vertical and horizontal cases.
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Figure 30. Numerical simulations of primary polarizability estimation for
vertical and horizontal ISO targets. Targets are distributed on a uniform grid
within the sensor footprint down to a maximum depth of 40 cm. Independent
Gaussian noise is added at each channel using standard deviations estimated
from Pole Mountain background measurements. The synthetic data for each
location and noise realization are then inverted to produce the polarizability
estimates.

In the preceding analyses, we have considered a simple classification problem: we have

one set of TOI polarizabilities and one set of non-TOI polarizabilities. We then predict the

ROC that would be generated for a given spatial and angular distribution of each target. By

predicting classification performance for specific items, this analysis can give a site manager

a concrete sense of the classification capabilities of a sensor under prescribed conditions.

2At a horizontal dip angle, an azimuthal angle g subtends a longer arc than at near vertical angles, so that
a uniform distribution on the surface of a sphere produces more samples at the equator than at the pole.
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A more general and realistic classification problem is to predict classification between a

number of TOI classes and a prescribed set of non-TOI items. This is a straightforward

generalization of the approach developed here: we compute the distribution of the deci-

sion statistic for each item, and then represent the distribution of the decision statistic

within each class (TOI and non-TOI) as a mixture of the distributions of each item in that

class. The component distributions in the sum can be weighted by probabilities reflect-

ing the relative frequencies of each item. Alternatively, we can treat the non-TOI class

as fundamentally uncertain and define an underlying non-TOI distribution. The predicted

polarizability distribution arising for specified parameters (spatial and angular distributions

and noise covariance) can then be convolved with the underlying distribution of non-TOI

polarizabilities.

The choice of representative non-TOI items is an important consideration when predicting

classification performance. We have maintained a database of targets from past ESTCP

demonstrations, and we envision a decision support system with access to this database.

Non-TOI could be selected based on visual similarity to TOI, or based on the similarity of

polarizabilities to reference polarizabilities.
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4.2. Performance prediction for dynamic sensors. In order for the performance pre-

diction tools developed in the previous section to be useful for site managers and field

geophysicists, a similar analysis must be available for dynamic sensors. We must be able to

objectively show that the additional time and expense spent on collecting and processing

cued interrogation data will provide tangible improvements in classification performance,

and an overall reduction in cost. Our primary focus for this analysis is on EM-61 data,

since this sensor is familiar to practicing geophysicists and provides a baseline performance

metric. The approach can be readily generalized to other dynamic sensors, including arrays

of EM-61s and newer dynamic platforms.

As with cued sensors, we can estimate a site-specific noise covariance using a linear trans-

formation of the polarizabilities for ISO items. Figure 31 shows total polarizabilities for

ISOs estimated from EM-61 cart data acquired at Camp Beale. These features exemplify a
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Figure 31. Total polarizabilities estimated for ISO targets at Camp Beale.

notorious difficulty with monostatic data processing: poor constraints on target depth pro-

duce a large spread in the amplitude of recovered polarizabilities. This is further illustrated

in the size-decay feature space for the Camp Beale handheld area in figure 32. The poor

constraint on estimated depth is manifested by the spread of the size parameter within each

target class. The decay parameter, however, is relatively well constrained. In particular,

small ISOs have a fairly tight distribution with respect to decay. This is also evident in fig-

ure 31: the primary polarizabilities have a reasonably consistent slope. We have found that

the simplest and most reliable approach for classification with EM-61 data is a threshold on

the decay parameter.

Using the approach developed in the previous section, we can predict the distribution of

estimated polarizabilities for a given spatial distribution of targets. In this case we only

specify the vertical distribution of targets, the horizontal distribution of targets will always

be assumed uniform across the dynamic sensor’s swath. However, a new complication arises

when we consider dynamic data: the dimension of the forward matrix G depends upon the

along-track and cross-track data density. This means that we cannot directly compute the



43

−1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

log10(Size)

D
ec

ay

 

 
Clutter
ISO
Fuze
37mm
60mm
81mm
105mm

Figure 32. EM-61 size-decay feature space, Camp Beale handheld area.

effect of varying data density on polarizability variance, since the dimension of the estimated

data covariance at a given density will not match the dimension of G for a different density.

To address this problem, we first associate the observed covariance of the polarizabilities

cov(m) within a target class with the forward modeling G1. Matrix G1 is evaluated at

a median target depth, with a specified target orientation (horizontal or vertical), and a

nominal along-track and cross-track data spacing. The model covariance at this location,

without scaling by the data covariance, is

(36) S1 = (GT
1 G1)

−1.

We denote the diagonal elements of S1 - the unscaled variances of the polarizabilities - as

v1. For G2 evaluated for a different data spacing (at the same target depth and orientation),

we can similarly generate v2. We then compute the ratio of standard deviations at the two

data densities

(37) ρi =

√
v2i
v1i
.

Finally, we form the diagonal matrix

(38) R = diag(ρ).

and scale the model covariance of the target class by R to obtain the expected model

covariance at the data density corresponding to G2

(39) cov(m)2 = Rcov(m)RT .

This transformation preserves the correlation structure of cov(m) and scales the model

covariance by the change in polarizability uncertainty dictated by the change in data density.
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Figure 33 illustrates this effect for varying cross-track line spacing: as the line spacing is

increased, the uncertainty in the total polarizability increases nonlinearly.
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Figure 33. Dependence of EM61 total polarizability standard deviations at
Camp Beale on cross track spacing. Standard deviations are displayed at all
four EM61 channels, with the magnitude of the uncertainty decreasing with
time.

We now turn to computation of the distribution of the decay parameter. The total polar-

izability at each time channel has variance

(40) var(Ltotal(tk)) =
∑
i,j

cov(Li(tk), Lj(tk)).

Treating the total polarizability as a lognormally distributed random variable, the decay

parameter

(41) decay(tk, tj) =
Ltotal(tk)

Ltotal(tj)
,

is then the ratio of two lognormally distributed variables, which we now denote as X/Y .

Taking the log of the ratio we have

(42) Z = log

(
X

Y

)
= log(X)− log(Y ).

The log transformations of X and Y are normally distributed, so that Z is itself normally

distributed with mean and variance

E(Z) = E(log(X))− E(log(Y ))

var(Z) = var(log(X)) + var(log(Y ))− 2cov(log(X), log(Y )).
(43)

The ratio X/Y = exp(Z) is then lognormally distributed with mean and variance

E(X/Y ) = exp(E(Z) + var(Z))

var(X/Y ) = (exp(var(Z))− 1) exp(2E(Z) + var(Z)).
(44)
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The predicted distribution of the decay parameter depends on the variance of the total

polarizabilities at the selected channels tk and tj. For EM61 data the decay parameter is

usually computed at first (tj = 0.216 ms) and fourth (tk = 1.225 ms) time channels. We also

find that the correlation between the total polarizabilities, quantified by the covariance term

in equation 43, affects the decay distribution. Finally, the above transformations introduce

a dependence on the size of the target, so that two items with the same expected decay

parameter but different total polarizability amplitudes will produce different distributions

of the decay parameter. These effects are illustrated in figure 34.
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Figure 34. Dependence of lognormal decay distribution on target size and
correlation coefficient. Top row and bottom rows are for correlations of
R = 0.99 and R = 0.95, respectively. (a) Dependence of lognormal decay
distribution on target size. As target size decreases, the mode of the decay
parameter distribution shifts to smaller values. (b) Standard deviation of de-
cay parameter as a function of size scaling parameter α. (b) Expected value
of the decay parameter as a function of size scaling parameter α. Dashed line
indicates the true value of the decay parameter.

Taking the median ISO total polarizability at Camp Beale as our reference, in figure 34

we scale the total polarizability by a factor α ranging between 10−5 and 101, leaving the true

value of the decay parameter (decay ≈ 0.18) unaffected. In (a) we show the dependence

of the decay distribution on this scaling of target size. As α is decreased, the distribution
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becomes increasingly skewed, with the mode of the distribution shifting to smaller values. In

(b) and (c) we show that a decrease in target size (smaller α) produces an increased variance

in the decay parameter, and an increased positive bias in the expected value. These effects

are consistent with what we observe in field data. Smaller targets produce lower SNR data,

and so we expect an increase in variance with decreased size. We also find that at later

times the signal falls below the noise floor for small targets. This has the effect of biasing

the estimate of the decay parameter upwards, as predicted in this analysis.

The top and bottom rows in figure 34 show the effect of varying the correlation coefficient

between total polarizabilities at channels tj and tk. Increasing the correlation effectively

decreases the noise, and reduces the variance and bias of the decay distribution. For the

Camp Beale ISOs the correlation coefficient is R = 1, so that the expected value of the

decay distribution is independent of target size. In figure 34 we reduce the correlation

coefficient to R = 0.99 and R = 0.95. This produces a positive bias in the expected value.

When predicting performance for new data sets, the correlation coefficient R estimated from

known ISOs will be used.

Figure 35 shows the predicted distributions of the EM61 decay parameter for the same

targets considered previously for cued sensor performance prediction (see figure 26). Both

targets are uniformly distributed down to 40 cm depth. For this example, the clutter item

is slightly slower-decaying than an ISO, and so has a larger expected decay parameter. This

is the opposite of the usual situation; clutter tends to be faster decaying). However, we can

still predict classification performance - in this case we threshold from smallest to largest

decay parameter. The resulting, mediocre ROC is typical of EM-61 performance, with a

false alarm rate of 0.51 required to find 99% of the ISOs.
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Figure 35. Performance prediction for the EM61, Camp Beale noise. Left:
distribution of the decay parameter for ISOs and a slow-decaying clutter item
(see Camp Beale target 2530, figure 26). Both targets are uniformly dis-
tributed down to a maximum depth of 40 cm. Right: predicted receiver
operating characteristic.
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5. Conclusions and further work

In this report we initially studied the prediction of target response thresholds. Building

on previous GSV analyses, we showed that the worst case detection threshold at a specified

clearance depth depends on sensor geometry and does not always correspond to a cross-

track azimuthal orientation. In addition, we modeled the statistics of anomaly amplitude

for a uniform distribution of cross-track location and azimuthal orientation. We found that

raising the detection threshold slightly above the worst case scenario can drastically reduce

the number of target picks, while still maintaining a high probability of detecting all targets

of interest at the maximum clearance depth. Further work will extend this analysis to newer

detection sensors such as the OPTEMA and dynamic MetalMapper. We will also examine

how the choice of time channels can affect the number of target picks in detection data. We

are preparing a journal article on this extended GSV analysis for publication in the next

year.

Our work on performance prediction focused on developing realistic models of the noise at

each site. We use existing data sets to gain an understanding of how recovered polarizabilities

can vary under realistic noise conditions. The physical uniformity of seeded ISO items allows

us to isolate the effects of site specific noise on the polarizability distributions. We then use

the sample covariance of the ISO polarizabilities to determine the corresponding covariance

of the noise for a target at the median estimated location of ISOs in the sample. This noise

covariance is highly correlated and does not assume a constant standard deviation for all

data at a single channel. With this noise covariance we can then predict the distribution of

polarizabilities and ROC that would arise for any specified spatial and angular distributions

of targets. Relative to conventional Monte Carlo simulation, this approach to performance

prediction is very fast. Indeed, once the forward modeling matrix is pre-computed on a grid

of locations, we can instantaneously predict performance for any targets.

To this point we have not tied the estimated covariances of ISO polarizabilities at ESTCP

demonstration sites to specific environmental conditions at those sites. Directly linking in-

puts such as soil conditions and target density to polarizability variance will be a focus of

ongoing work. This will allow us to predict performance under arbitrary conditions, rather

than restricting ourselves to sites that are, for example, “Beale-like.” Monte Carlo simula-

tions can be used to develop these relationships. For example, we recently simulated the

distributions of polarizabilities that will arise in the presence of strongly magnetic Hawaiian

soils. These results will be useful for developing an efficient predictive model quantifying

the connection between soil response and classification performance.
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Appendix A. Summary of ESTCP demonstration data sets

Sensors Targets of Interest Results

Demonstration Site: Camp Sibert

• Geonics EM-61 cart
• MTADS EM-61 array
• MTADS mag array
• Cued EM-63

• 4.2” mortars The results for all sensor combinations were excellent. When inverted coopera-
tively with magnetics data, the EM63 cued interrogation was the most effective
discriminator. All 33 UXO were recovered prior to 25 false alarms.

The results from the EM-61 cart were also very good, although 24 false-positives
were required to excavate all 105 UXO.

Demonstration Site: San Luis Obispo

• MTADS mag and EM-
61 arrays

• Geonics EM61
• MSEMS
• TEMTADS
• MetalMapper
• BUD

• 60 mm mortar
• 81 mm mortar
• 4.2” mortars
• 2.36” rockets
• one each of 37 mm, 3”

and 5” projectiles

Magnetometer detection and discrimination performance at this site was quite
poor. For EM-61 production data, the time-decay rate estimated from the
recovered polarizabilities provided an effective ranking scheme.

For the TEMTADS data the library method was the most effective with 204 of
206 TOI recovered along with 131 of 1076 non-TOI. The other discrimination
methods were also effective, generating between 2 to 4 false-negatives.

The library method was again most effective for the MetalMapper data with
the excavation of 203 of 204 TOI and 175 of 1205 non-TOI.

Demonstration Site: Camp Butner

• Geonics EM61 cart
• TEMTADS
• MetalMapper

• 105 mm projectile
• 37 mm projectile
• M48 fuze

This site exhibited significant magnetic soil response and relatively high target
densities. EM-61 performance was quite poor, with approximately 70 % of
non-TOI excavated in order to find all TOI.

Excellent classification performance was achieved with TEMTADS data pro-
cessing, all TOI were readily identified and only 4 % of clutter were dug. The
classification method relied on a misfit with respect to all polarizabilities, fol-
lowed by classification with total polarizability only.

MetalMapper performance was comparable to the TEMTADS for identification
of 90 % of TOI, but higher noise levels in one of the sensors deployed at this
site produced 2-3 missed TOI most performers’ diglists.
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Demonstration Site: Pole Mountain

• Geonics EM61 cart
• MetalMapper

• Stokes mortar
• 75 mm
• 60 mm mortar
• 57 mm
• 37 mm projectile
• Small ISO

This demonstration was divided into two parts (Years 1 and 2). The EM-61
achieved mediocre performance for both parts: the false alarm rates (FAR)
for Year 1 and Year 2 were, 64.0 % and 68.0 % respectively. All TOI were
recovered at the specified EM-61 operating points.

The MetalMapper data produced consistently excellent classification perfor-
mance. For example, in the Year 1 test the Library method resulted in the
excavation of all TOI with a FAR of 2.77 %. A number of analysts processed
these data and achieved similar, “near-perfect” performance.

Demonstration Site: Camp Beale

• Geonics EM61 cart
• MetalMapper
• MPV
• TEMTADS2x2
• BUDHH

• 105 mm
• 81 mm mortar
• 60 mm mortar
• 37 mm projectile
• Small ISO

This demonstration tested classification in a portion of the site amenable to
vehicular towed systems (i.e. the “Open Area”). In addition, man-portable
sensor data were collected with the TEMTADS 2x2, BUD, and MPV sensors
in a treed section of the site (i.e. the “Portable Area”).

For the Portable Area, the EM-61 analysis required approximately 30 % of
clutter to be excavated in order to find all TOI. For the Open Area, the false
alarm rate was 50 % with this sensor.

MetalMapper data were acquired by Parsons and CH2M HILL in the Open
Area, with a different analyst processing each data set. Application of a li-
brary classification method to the CH2M HILL data resulted in 99.2 % of TOI
identified (due to one missed TOI) and 27.4 % scrap dug at the stop dig point.
For the Beale Parsons data two stage (all polarizabilities/total polarizability)
classification with a support vector machine was able to identify all TOI at the
stop-dig point, with a 22 % false alarm rate.

All portable sensors data sets produced diglists with no TOI left in the ground
in the portable area of the site. False alarm rates were also quite similar for all
portable sensors, averaging approximately 25 % of clutter dug in order to find
all TOI.
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Appendix B. Expected polarizability covariance under a uniform

distribution of target orientations

To predict classification performance in section 4 we use a single target orientation (hor-

izontal or vertical) to propagate uncertainties and predict the distribution of the decision

statistic. More realistically, we can model a specified distribution of target orientations. A

uniform distribution of target azimuth and dip is the obvious choice, and here we develop

analytic expressions for the covariance of the estimated polarizabilities under a uniform

rotation.

The symmetric polarizability tensor M is related to the diagonal matrix of principal

polarizabilities L via the Euler rotation matrix A

(45) M(t) = AL(t)AT .

For target dip b ∈ [0 π] and azimuth g ∈ [0 2π], we define A as

(46) A =

 cos(g) cos(b) sin(g) − cos(g) sin(b)

− sin(g) cos(b) cos(g) sin(g) sin(b)

sin(b) 0 cos(b)

 .

Under this convention the diagonal polarizability matrix L is ordered

(47) L(t) =

L2(t) 0 0

0 L3(t) 0

0 0 L1(t)


so that a vertical target with g = 0 has its primary polarizability (L1(t)) aligned with the z

axis. The predicted data d for a target at location r are given by

(48) d = G(r)m

with the model vector m comprised of the unique elements of the polarizability tensor

(49)

m =



M11

M12

M13

M22

M23

M33


=



L2 cos(b)2 cos(g)2 + L1 cos(g)2 sin(b)2 + L3 sin(g)2

−L2 cos(g) sin(g) cos(b)2 − L1 cos(g) sin(g) sin(b)2 + L3 cos(g) sin(g)

L2 cos(b) cos(g) sin(b)− L1 cos(b) cos(g) sin(b)

L2 cos(b)2 sin(g)2 + L3 cos(g)2 + L1 sin(b)2 sin(g)2

L1 cos(b) sin(b) sin(g)− L2 cos(b) sin(b) sin(g)

L1 cos(b)2 + L2 sin(b)2


with the dependence on time t now implicit. In this formulation the forward modeling matrix

G has dimensions N × 6, with N the number of data measured at a single time channel.
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From the above expressions, we define the operator α

(50) α =



cos(b)2 cos(g)2 sin(g)2 cos(g)2 sin(b)2

− cos(b)2 cos(g) sin(g) cos(g) sin(g) − cos(g) sin(b)2 sin(g)

cos(b) cos(g) sin(b) 0 − cos(b) cos(g) sin(b)

cos(b)2 sin(g)2 cos(g)2 sin(b)2 sin(g)2

− cos(b) sin(b) sin(g) 0 cos(b) sin(b) sin(g)

sin(b)2 0 cos(b)2


such that α maps from the principal polarizabilities to unique elements of the polarizability

tensor

(51) m = α

L2

L3

L1

 .

Now we assume that the covariance of the data for a given target orientation is given by a

transformation of the polarizability covariance

(52) cov(d) = Geq α cov(L) αT GT
eq

with Geq corresponding to the median location (relative to the sensor) of all targets used to

compute cov(L). Now for a target at location r the covariance of the estimated polarizabil-

ities can be expressed as

cov(L̂) =β G†(r) cov(d) (G†(r))T βT

=β G†(r) Geq α cov(L) αT GT
eq (G†(r))T βT

(53)

where the pseudo-inverse is G† = (GTG)−1G. The operator β

(54) β =



cos(b)2 cos(g)2 sin(g)2 cos(g)2 sin(b)2

−2 cos(b)2 cos(g) sin(g) 2 cos(g) sin(g) −2 cos(g) sin(b)2 sin(g)

cos(b)2 sin(g)2 0 −2 cos(b) cos(g) sin(b)

2 cos(b) cos(g) sin(b) cos(g)2 sin(b)2 sin(g)2

2 cos(b) sin(b) sin(g) 0 2 cos(b) sin(b) sin(g)

sin(b)2 0 cos(b)2



T

corresponds to diagonalization of the estimated polarizability tensor

(55) L̂ = ATM̂A,

so that

(56)

L̂2

L̂3

L̂1

 = βm̂.
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In addition, since A is orthogonal, we find that

(57) βα = I.

Equation 53 provides an expression for the covariance of the estimated polarizabilities at

a given orientation. We now assume a uniform probablility distribution of target dip b and

azimuth g, with the independent densities (Brannon, 2002)

p(g) =
1

2π

p(b) =
1

2
sin(b).

(58)

We marginalize equation 53 over azimuth and dip to obtain the expected covariance of the

polarizbility estimates

(59) E(cov(L̂)) =
1

4π

2π∫
g=0

π∫
b=0

cov(L̂) sin(b) db dg

These integrals involve only trigonometric functions and can be evaluated analytically. The

resulting expressions are quite lengthy and so we do not reproduce them here.
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