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Executive Summary

This report presents research carried out under follow-on funding for SERDP project

MR-1629, “Robust Statistics and Regularization for Feature Extraction and UXO Discrimi-

nation.” We report on the following research areas:

(1) Improving location estimation with SVD. We have developed an inversion algorithm,

termed a Temporal Orthogonal Projection Inversion (TOPI), that uses singular value

decomposition (SVD) to project the data onto a subset of singular vectors. This

automates channel selection for target location estimation and produces improved

polarizability estimates.

(2) Building the training data and combining different feature sets in classification. In

a published article (Beran et al., 2012), we describe our approach to generating a

training data set and identifying novel TOI. Using ESTCP demonstration data sets,

we show how the variable quality of estimated features affects overall classification

performance. Finally, we demonstrate a technique to optimize classification per-

formance by adapting features during target prioritization. Additional unpublished

work included in this report describes a “Combined Classifier Ranking” (CCR) that

simultaneously uses all available features to generate an ordered diglist.

(3) Regularized inversion. Improved polarizability estimates can be obtained by aug-

menting the data misfit with a model norm that penalizes deviations from desired

model properties. Previous work looked at penalizing differences in secondary polar-

izabilities, here we consider a model norm that favors “smooth” (i.e monotonically

decreasing) polarizability estimates. This approach significantly improves the match

of recovered and reference polarizabilities for low SNR data (e.g. deep targets). We

have also investigated regularized inversion for dipole location estimation. An un-

derdetermined implementation with a sparse, L1 norm requires additional weighting

to constrain model space. Better results are obtained with an overdetermined for-

mulation that removes redundant sources by penalizing the total distance between

sources.

(4) Technology transfer. We have written a paper providing a basic introduction to the

current state of UXO detection and classification. The intended audience is the

humanitarian demining and UXO community and the paper was published in the

Spring 2013 issue of the Journal of Explosive Remnants of War (ERW) and Mine

Action.
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1. Introduction

Under SERDP MR-1629, “Robust Statistics and Regularization for Feature Extraction and

UXO Discrimination,” we have investigated a number of techniques for improving inversion

and discrimination. Methods for UXO discrimination using magnetic and electromagnetic

induction data generally rely on feature vectors extracted from physics based dipole models.

These feature vectors are obtained by solving an inverse problem that provides a best-fit to

the observed data. Typically, this best-fit is defined as the model that minimizes the sum-

of-squares of the residuals between observed and predicted data,with each residual weighted

by an estimated standard deviation. Thus, there is an implicit assumption that the residuals

are normally distributed (Gaussian) and that the maximum likelihood solution is the most

appropriate model to extract from the data. This assumption of Gaussian statistics may

not be appropriate if the residuals have outliers (due to sensor or positional glitches) or if

the residuals contain significant structure (model not adequate to represent the data). In

those cases, the predicted feature vectors may be significantly in error and should not be

relied upon for discrimination. In addition, the maximum likelihood solution may not be the

most appropriate one to recover from the available data. In the first part of the MR-1629

project we researched the statistical structure of the underlying inversion process developed

methods for more accurate extraction of feature vectors from multi-time, multi-frequency

and multi-component EMI data (Billings et al., 2011).

In follow-on work we proposed to investigate a number of UXO data processing prob-

lems deserving of further research. In this report, we first provide detailed descriptions of

unpublished follow-on work on combining different features in classification and regularized

inversion. Published articles, comprising the bulk of our follow-on work under MR-1629, are

included in an appendix:

(1) L. P. Song, D. W. Oldenburg, L. R. Pasion, S. D. Billings, and L. S. Beran (2013).

Temporal Orthogonal Projection Inversion Technique for EMI Sensing of UXO. IEEE

Transactions on Geoscience and Remote Sensing, in preparation.

(2) L. S. Beran, B. C. Zelt, S. D. Billings (2013). Detecting and classifying UXO. Journal

of Explosive Remnants of War and Mine Action, 17.1, pp. 57-62.

(3) L. S. Beran, B. C. Zelt, L. R Pasion, S. D. Billings, K. A. Kingdon, N. Lhomme, L.

Song, D. W. Oldenburg (2012). Practical strategies for classification of unexploded

ordnance. Geophysics, 78, pp. E41− E46.

We conclude with a brief discussion of remaining problems to be addressed with further

research.
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2. Development and application of multi-feature classification methods

In a previous article (Beran et al. (2012), see appendix A.3), we advocated a classification

approach that progressively reduces the dimensionality of the feature space as we proceed

from high to low SNR targets in a diglist. With this method we begin our ranking with

obvious TOI for which all polarizabilities are a good match to known reference polarizabil-

ities. We then revert to using primary (or total) polarizabilities to classify items that are

potential TOI with poorly constrained secondary polarizabilities. The switch between these

feature sets can be defined manually by the analyst. We also proposed an automated switch

based on choosing the “elbow” of the sorted decision statistic.

Here we investigate the feasibility of classification using all available feature sets simulta-

neously. For each target we produce a discrete ranking Ri in the diglist using the following

feature sets:

(1) All polarizabilities,

(2) Primary polarizabilities,

(3) Size,

(4) Decay

For example, R1 = 1 indicates that our target is ranked first in the diglist generated by

matching with all polarizabilities. Here we use the convention that the diglist is ordered

with likely-TOI first. We then obtain an overall ranking Rtot for a target by summing over

the individual ranks from all feature sets

(1) Rtot =
∑
i

Ri.

Sorting the total rankings in ascending order produces a merged diglist that uses all feature

sets simultaneously to classify each target. In this report we term this classification algorithm

a “Combined Classifier Ranking” (CCR). To demonstrate CCR performance, we consider a

number of real data sets acquired under the ESTCP demonstration program. Figure 1 shows

a size-decay feature space extracted from MetalMapper data acquired at Massachusetts

Military Reservation in 2012.

Our submitted diglist (figure 2) used a four-stage approach and resulted in five false

negatives. For the early digs (1-183) the order was based on a weighted combination of

polarizability misfit (relative to the best fitting item in the reference library) using all three

polarizabilities, as well as size and decay. Optimal weights were chosen such that items

flagged as likely UXO would appear as early as possible in the dig list. The second stage

(184-223) was based on polarizability misfit alone (using all three polarizabilities). The third

stage (224-359) was based on polarizability misfit using only the primary polarizability. The

final stage (360-881) was based on decay.

The false negatives in this case are all TOI for which the recovered features deviate

significantly from the expected reference polarizabilities.
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Figure 1. Distribution of passed models for MMR data displayed in de-
cay(t1,t29) versus size(t1) feature space, where size(t1) is the total polariz-
ability measured at the first time channel (t1=0.106ms), and decay(t1,t29) is
size(t1)/size(t29) where t29=2.006ms. Outliers are not shown. Labelled stars
represent ordnance library reference items.

Figure 2. Receiver operating characteristic for submitted multi-stage classi-
fier applied to MMR data.

For example, figure 3 shows the polarizabilities estimated via single, two, and three object

inversions for target 2281, a 155mm at 80 cm depth. All models have polarizabilities that are
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Figure 3. (Polarizabilities for CE-2281 (155mm at 80 cm depth). Predicted
polarizabilities are red, black and magenta lines. Broken grey lines are polar-
izabilities for best fitting reference item. Top left: single object inversion. Top
center and right: 2-object inversion. Bottom row: 3-object inversion

Figure 4. Decay-size feature space plot showing location of recovered models
for CE-2281 (numbered yellow squares) in relation to passed models of all other
anomalies (blue dots). Stars are reference features. Red circles are variations
of the 155mm projectile. The broken blue line outlines the region occupied
by most 155mm objects. The broken red line outlines a dense region of large-
amplitude, fast-decaying scrap items.
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far outside the expected range for this target class, this can also be visualized in size-decay

space (figure 4). We therefore do not expect any automated classifier - including CCR - to

identify the false negatives in a retrospective analysis.

We retrospectively applied the CCR to the same MMR feature data and obtained the

ROC displayed in figure 5. Excluding the 5 outlying TOI, the CCR provides better initial

performance (∼ 75 false alarms for all TOI) than our submitted dig list (∼ 130 false alarms

for all TOI). In particular, the CCR ROC does not have the gradual turnover, or elbow,

that we usually see for multi-stage classifiers when we switch from using all polarizabilities

to total polarizabilities (e.g. between approximately 75 and 125 non-TOI digs in figure 2).

Both diglists fail to find the same 5 outliers at the selected stop dig point.

Figure 5. Receiver operating characteristic for retrospective CCR applied to
MMR data.

Figure 6 illustrates a second example of CCR performance, in this case applied to MetalMap-

per data from the 2012 Spencer Range demonstration. The CCR achieves a lower false alarm

rate than single stage classifiers using L1 or L123 misfit. It also outperforms our automated

two stage approach, described in appendix A.3.

These initial results suggest that the CCR can produce diglists with similar, or slightly

better, performance than the multi-stage approach. We have implemented the CCR in

our DigZilla classification software and have also proposed an ESTCP project to make our

classification methods accessible through UX-Analyze.
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3. Regularized inversion methods for dipole parameter estimation

In earlier work conducted under this project we investigated a number of different reg-

ularisation methods with application to inversion of TEM data with the dipole model. In

Beran et al. (2012), we focused on regularizing the transverse, or secondary, polarizabilities.

Equality of transverse polarizabilities is diagnostic of an axisymmetric body of revolution

and so has been proposed as a useful feature to discriminate between axisymmetric UXO and

non-axisymmetric metallic clutter. We showed that estimated transverse polarizabilities can

sometimes be poorly constrained in an inversion of multi-static TEM data. This motivated

our development of a regularized inversion algorithm that penalizes the deviation between

transverse polarizabilities. We then developed an extension of the support vector machine

(SVM) classifier that uses all models obtained via regularized inversion to make discrimina-

tion decisions. This approach achieved the best performance of all candidate discrimination

algorithms applied to a number of real data sets.

In this section, we investigate how regularization can be used to mitigate the jitter (noise)

in polarizabilities estimated from low SNR data. Our development is motivated by practi-

cal experience with a large scale MetalMapper survey conducted at the Bellows Air Force

Station on Oahu, Hawaii in 2012-2013. The principal concern at the site was the removal of

potentially hazardous Cooper bombs down to a maximum clearance depth of four feet.

To determine if Cooper bombs could be reliably classified down to a four foot depth range,

MetalMapper data were collected at various standoffs over an inert Cooper bomb, both with

and without fins. The left columns of figures 7 to 10 show polarizabilities extracted over

Cooper bombs with and without fins at 3 and 4 feet below the sensor, respectively. Each

figure contains results from three orthogonal target orientations: horizontal east and north,

and vertical. For the Cooper bombs at 3 feet, the recovered polarizabilities are relatively

smooth, although there are a number of channels where noise causes some distortion in the

expected values, particularly for the secondary polarizabilities. The MetalMapper data for

the Cooper bombs at 4 feet are significantly lower SNR and the recovered polarizabilities

are extremely noisy. While the polarizabilities at each channel do tend to vary about the

expected values, it is difficult to unambiguously identify each item as a Cooper bomb.

The standard inversion algorithm implemented in UXOLab splits the inverse problem

into a nonlinear step for target location estimation and a linear step, at a fixed location, for

recovery of the polarisability matrix. The six unique elements of the polarisability matrix

are recovered independently one time-channel at a time. The polarizability estimates are

only linked during a final joint diagonalization process which solves for the best fitting set

of principal axis polarizabilities and orientations applicable to all time-channels. For low

SNR anomalies (such as the 4 ft deep Cooper bombs) the recovered polarizabilities tend to

be quite noisy (non-monotonic) because there is no explicit functional dependence between

the values recovered at adjacent time-channels.
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There are a number of possible approaches that could be pursued to ensure that the

recovered polarizabilities are smooth, including:

(1) Parameterize the polarizability decay (e.g. by using the Pasion-Oldenburg parame-

ters) and directly solve for those parameters during the inversion process;

(2) Smooth the recovered polarizabilities after an inversion, either by a moving average

or by fitting a smooth function (e.g. a sum of exponentials);

(3) Impose a smoothness constraint on the recovered polarizabilities through regularisa-

tion.

Here we proceed using this last method. When solving parametric inverse problems, it

is often sufficient to minimize a data norm quantifying the misfit between observed and

predicted data

(2) φd = ‖Wd(d
obs − dpred)‖2

with dpred = F (m) generally a nonlinear functional of the model m, and Wd a weighting

matrix accounting for estimated errors on the data. Assuming Gaussian errors on the ob-

served data, minimization of equation 2 yields a maximum likelihood estimate of the model

parameters (Menke, 1989). Additional prior information can be incorporated in the inver-

sion via parameter bounds (e.g. positivity) or by constructing a model which has specified

properties. In the latter case, the optimization problem can be solved by minimizing the

norm (Oldenburg and Li, 2005)

(3) minφ = φd + βφm

where the regularization parameter β controls the trade-off between data and model norms.

The model norm φm is a regularizer that ensures that the recovered model has, for example,

a minimum deviation from some prior reference model. In this work our regulariser is instead

a smoothness constraint: we use a five point finite difference approximation to the second-

derivative as φm. The smoothness constraint is applied to each of the six components of

the non-diagonalized polarisation tensor matrix. We weight the smoothness constraint as√
tn, where tn is the centre of the n-th time-channel: this has the effect of increasing the

weighting given to the latter time-channels where the polarizabilities are much smaller than

at early time. White noise that is log-gated decreases as 1
t
and hence for the data we use a

weight matrix that is proportional to t. For a linear forward modelling (dpred = Gm) with

fixed β, equation 5 is minimized by the solution of (Oldenburg and Li, 2005)

(4)
(
GTWT

dWdG+ βWT
mWm

)
m = GTWT

dWdd
obs.

Here Wd and Wm are weighting matrices on the data and model, respectively. The reg-

ularisation parameter β can be chosen using a number of automated methods such as the

L-curve method or Generalized Cross Validation, or alternatively can be set to achieve a

target misfit dictated by the estimated noise (Farquharson and Oldenburg, 2004). For this

application we found that the there was a wide range of parameter settings that produced
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a relatively stable solution, and we settled on a single value of β = 0.2 for all the examples

shown in this section. The right columns of figures 7 to 10 show polarizabilities extracted

using this regularisation parameter over Cooper bombs with and without fins at 3 and 4 feet

below the sensor. The polarizabilities are much smoother than the unregularized inversion

and in all twelve cases the item is clearly revealed to be a Cooper bomb.

The advantage of regularized inversion over alternative methods of polarizability smooth-

ing is illustrated in figure 11. We compare the regularized result with a fit to the raw

polarizabilities using a sum of decaying exponentials. The latter approach does a decent

job at denoising, but the secondary and tertiary smoothed polarizabilities can be strongly

skewed when fitting late time raw polarizabilities. In all cases in figure 11 the regularized

approach gives a lower misfit with respect to the reference polarizabilities than smoothing

with an exponential fit.

Figures 12 and 13 compare unregularized and regularized inversions, respectively, for the

case of an X-directed Cooper bomb with no fins at 4 feet. Close inspection of the observed

versus fitted data reveals that the regularised inversion does not fit many of the spikes in

the observed data indicating that the unregularized inversion overfits the data (i.e. the

model converged to fit both the signal and noise in the observed data). In this respect,

regularization is similar to robust inversion: both approaches diminish the effect of noisy

data on the recovered model.

We also note in figure 13 that the regularised inversion did not produce a good fit to

the RxY-TxX or RxX-TxY receiver-transmitter combinations indicating that those values

can’t easily be reproduced with a smooth polarisation tensor model. This tendency occurred

for each of the other 11 examples of Cooper Bomb polarizabilities shown and presumably

indicates systematic error in those receiver-transmitter combinations (e.g. inappropriate

background estimate, systematic modeling error, etc).
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Figure 7. Polarizabilities extracted with no-regularisation (left column) and
with regularisation (right column) for a Cooper bomb without fins 3 feet from
the sensor and oriented along X (top row), Y(middle row) and Z (bottom
row). The polarisability (obtained from high quality data) of a Cooper bomb
without fins is show in grey.
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Figure 8. Polarizabilities extracted with no-regularisation (left column) and
with regularisation (right column) for a Cooper bomb with fins 3 feet from the
sensor and oriented along X (top row), Y(middle row) and Z (bottom row).
The polarisability (obtained from high quality data) of a Cooper bomb with
fins is show in grey.
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Figure 9. Polarizabilities extracted with no-regularisation (left column) and
with regularisation (right column) for a Cooper bomb without fins 4 feet from
the sensor and oriented along X (top row), Y(middle row) and Z (bottom
row). The polarisability (obtained from high quality data) of a Cooper bomb
without fins is show in grey.
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Figure 10. Polarizabilities extracted with no-regularisation (left column)
and with regularisation (right column) for a Cooper bomb with fins 4 feet
from the sensor and oriented along X (top row), Y(middle row) and Z (bot-
tom row). The polarisability (obtained from high quality data) of a Cooper
bomb with fins is show in grey.
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4. Regularized location estimation

4.1. Underdetermined location estimation. Accurate recovery of target location is cru-

cial to the success of UXO classification. This is because dipole polarizabilities are strongly

correlated with estimated distance to the sensor, so that a small error in location can trans-

late to a large error in the amplitude of polarizability estimates (Beran et al., 2011). These

correlated errors will reduce the match with respect to reference polarizabilities and hence

adversely affect classification performance. Perhaps the principal benefit of modern, multi-

static TEM sensors has been improved target localization; it is this capability that has driven

recent advances in classification performance.

Improved data has produced a commensurate improvement in inversion algorithms, and

multi-source solvers are now routinely used to process field EMI data. Song et al. (2011) first

estimate the location of N hypothesized dipole sources, followed by estimation of polariz-

abilities and orientations at fixed locations. Separating the problem in this way produces a

linear inverse problem at the second step, and eliminates the problematic location/amplitude

correlation that arises when all parameters are recovered simultaneously. However, the loca-

tion estimation step is still nonlinear, owing to the approximate 1/r6 decay of the predicted

fields. Some care must be taken with initializing the location search to avoid convergence

to suboptimal local minima. Song addresses this by defining a regular grid of candidate

locations and testing solutions on this grid. For even a two-source problem, an exhaustive

search of all combinations is prohibitively expensive, and so a reduced set of randomized

candidate locations are tested. This approach to multi-source inversion is now used in all

BTG data processing. The results have been generally excellent, but we do note that in rare

cases the algorithm does not produce repeatable results because of the random start model

search (figure 14).

Miller et al. (2010) formulate dipole location estimation as a regularized inverse problem.

As in Song et al. (2011), they define a regular grid of source locations. However, rather than

assuming a pre-defined number of sources, they fit the observed data with all sources. The

inverse problem in this formulation may be underdetermined, and so additional information

must be incorporated in the form of model regularization. A sparse, L1 type norm that

forces most source amplitudes to zero is appropriate. Miller’s implementation with a sparse

solver has been successfully demonstrated on real data sets. Since their method does not

depend on randomized start models, convergence to local minima - as illustrated in figure 14

- may be avoided.

Here we pursue a direct comparison of overdetermined and sparse underdetermined ap-

proaches to multi-source dipole location estimation. To better understand the problem,

we have developed our own implementations of underdetermined methods. In future work

(e.g. SERDP MR-2318, “Strategies and Methods for Effective UXO Classification”), we

plan to carry out a direct comparison of all available multi-source solvers, including Miller’s

implementation in UX-Analyze.
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Figure 14. Example two-object inversion results for a cued MetalMapper
sounding. Top row: recovered polarizabilities (solid lines) and best fitting
reference polarizabilities (dashed lines). Bottom row: Inversion results for re-
initialized two-object inversion, with the same settings as top result. In this
example one of the two targets is in fact a 37mm projectile. Based on the
match with the reference polarizabilities, we therefore conclude that the top
row results from convergence to incorrect source locations at a local minimum
of the data misfit.

For underdetermined source localization, we define a grid of sources arranged beneath the

MetalMapper array (figure 15). We estimate the six unique elements of the polarizability

tensor at all M points in the grid. To forward model N data d via the linear equation d =

Gm, we therefore form an N ×6M forward matrix G. For MetalMapper data we have N =

63 and so N < 6M even for very coarse regular grids. Hence the inverse problem becomes

non-unique and additional information (regularization) must be introduced to obtain useful

estimates of source locations. As in section 3, we minimize the norm

(5) φ = φd + βφm.

The model norm (φm) restricts the space of feasible solutions and allows us to recover a

model with specified properties. The most straightforward solution to the underdetermined

problem uses an L2 model norm (φm = ‖m‖2). Figure 16 shows an example fit and recovered

source model using the L2 model norm. In this case we have used a manually-selected

regularization parameter β that produces a good fit to the data. In this figure and all similar

plots in this section we shade source locations based upon the source amplitude, defined here

as the trace of the recovered polarizability tensor at each location. L2 regularization favors a

smoother solution and so the true source in this example is recovered as a diffuse distribution
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Figure 15. Source locations for underdetermined inversion of MetalMapper data

of sources. The smoothing effect of the L2 norm can be removed by regularizing with an L1

model norm (φm = |m|) , as in Miller et al. (2010). We use the “basis pursuit denoising”

code of van den Berg and Friedlander (2008) to solve the problem

(6) min |Wmm| subject to ‖d−Gm‖2 < τ

with τ functioning as a regularization parameter that controls the trade-off between fitting

the data (small τ) and minimizing the model norm (large τ). We introduce the weighting

matrix Wm into the model norm to compensate for the geometric decay of the sources as

a function of distance from the sensor. This effect is manifested by the concentration of

large amplitude sources near the surface in figure 16. For underdetermined inversion of

magnetic data, Li and Oldenburg (1996) weight the model by 1/z3 to counteract a similar

20 40 60
−200

−100

0

100

200

Datum #

Observed
Predicted

−0.5 0 0.5−0.5
0

0.5

−0.2

−0.1

0

z 
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)

36 sources

x (m)
y (m)

Figure 16. Regularized source localization with an L2 norm. Left: Synthetic
observed data and data predicted with estimated source model. Right: Source
locations are shaded by total polarizability amplitude (trace of the polarizabil-
ity tensor). For clarity, in this example only locations with amplitude greater
than 5 percent of the maximum amplitude are displayed. Darker circles indi-
cate a greater source amplitude. Actual target location is indicated by a green
star. MetalMapper transmitter and receiver locations are shown above source
grid for reference.
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concentration of high susceptibilities near the surface. In this problem, we can understand

the decay of the secondary field by considering the amplitude of the kernel

(7) g =
√

diag(GTG)

as a function of distance to the sensor (figure 17). As expected, the decay of the secondary

field asymptotes to 1/z6 in the far field. Closer to the sensor, however, the primary field

falls off as 1/z, resulting in an overall 1/z4 dependence. To account for this variable decay

100 10110−8

10−6

10−4

10−2

100

Depth (m)

g(
z)

Kernel
1/z4

1/z6

Figure 17. Decay of forward modeling matrix kernel g(z) as a function of
source depth z.

rate, we define a diagonal weighting matrix with elements

(8) Wmii
= 1/gi.

This boosts the contribution of deeper sources to the model norm and allows for recovery

of larger amplitude sources at depth. A second form of the model weighting matrix couples

the elements of the polarizability tensor at each location to ensure recovery of a physically-

meaningful model. If the sparse inversion recovers a non-zero polarizability at a given

location, then all 6 of the elements of the tensor at that location should be nonzero. We

have achieved this constraint by creating a block diagonal weighting matrix

(9) Wm = diag(Ωj) j=1...M.

The 6× 6 block corresponding to the jth source is

(10) Ωj = Vj

√
diag(1/Dj)V

T
j

where Vj and Dj are the eigenvector and eigenvalue matrices of the submatrix Γj

Γj = (GTG)[k, l], 6(j − 1) + 1 ≤ k, l ≤ 6(j − 1) + 6

= VjDjV
T
j .

(11)

Figure 18 shows the effect of model weighting on the sparse inversion result. We see in 17(b)

that the unweighted model places the strongest sources above the actual target location.
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Using the diagonal weighting matrix in 18(c), forces the sources to the correct depth. The

block diagonal weighting matrix in (d) produces a similar result as in (c), but with the

correct number of non-zeroes for the number of recovered sources.

While figure 18 suggests that sparse underdetermined inversion coupled with proper model

weighting is a feasible approach to source localization, further experiments have produced

less promising results. Figure 19 shows underdetermined inversion results for a two object

scenario with a large (105 mm) target at 40 cm depth and a small 37 mm projectile at 10 cm

depth. In this figure we have varied the regularization parameter τ to illustrate the trade-off

between fitting the data and obtaining a sparse model. There is no obvious inflection point

on the Tikhonov (or Pareto) curve (leftmost plot in figure 19) and the two norms are not

particularly smooth functions of τ . The sparsest recovered model (i.e. minimum model

norm) places the strongest sources at depth, roughly at the location of the 105 mm item,

but there is a halo of lower amplitude sources that preclude clear identification of the 37

mm projectile. Other recovered models in figure 19 require a large number of sources to

produce better fits to the data; none of these models is very useful for recovering the true

source locations. Regularization with an L1 norm can produce a well-posed inverse problem

but seemingly cannot, in this example, recover a model that fits the data and reproduces

the true source locations.
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The example in figure 19 is a relatively simple two-object scenario that is readily recovered

with the overdetermined method of Song et al. (2011) (figure 20). We therefore conclude that

an underdetermined formulation has limited practical utility for dipole location estimation

in multi-object scenarios.

−0.5
0

0.5

−0.5
0

0.5

−0.4

−0.2

0

x (m)y (m)

z 
(m

)

Figure 20. Two-object overdetermined inversion example. Synthetic data
for this example are the same as in figure 19. True source locations are indi-
cated by green stars. Open circles - nearly coincident with the true locations -
are source locations estimated by nonlinear overdetermined inversion for two
objects.

4.2. Overdetermined location estimation. We now turn to regularization of overde-

termined location estimation. For the MetalMapper, we have N = 63 data at each time

channel. If we again consider a predefined grid of source locations, then the (linear) inverse

problem for the six polarizability tensor elements at all locations remains overdetermined for

up to ten sources. This is obviously too coarse a grid to use for precise target localization,

and so we must directly solve for source positions r. The data now depend nonlinearly on

the model

(12) dpred = F (m) = G(r)G†(r)dobs

with the model m = r. Miller et al. (2010) consolidate sources estimated via overdetermined

sparse inversion with clustering algorithms. Alternatively, Song et al. (2011) specify the

desired number of sources a priori and find the model m that produces the best fit to the

data, as illustrated in figure 20.

We have developed an approach that clusters sources during an inversion by penalizing

the total distance between sources

(13) φm =
∑
i �=j

Δ2
ij,

with Δij the distance between sources i and j, as depicted in figure 21. Figure 22 summarizes
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Figure 21. Computation of the total distance between sources.

the method. We start with an unregularized inversion, eliminate redundant sources based

on their proximity, and then progressively increase the distance regularization (equation 13)

to force sources to cluster together. When two or more sources are less than a specified

distance Δthresh apart, they are merged into a single source.

Figure 22. Flowchart for overdetermined inversion with distance regularization.

This algorithm incurs additional computational cost by requiring simultaneous forward

modelling for multiple sources. A new implementation of the forward modelling reduces

computation time by about an order of magnitude (figure 23) by eliminating repeated calcu-

lations. This somewhat alleviates the computational overhead of the regularized algorithm.

As shown in figure 24, the method produces a series of models with decreasing numbers

of sources and increasing data misfit. When there are more sources than necessary (e.g.
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Figure 23. Comparison of execution times for single and multi-source im-
plementations of forward modelling matrix G

M = 9 in figure 24), then the data can be fit quite closely by a tight spatial distribution

of sources. It is only when redundant sources are eliminated (i.e. M ≤ 5 that the model

is forced to move sources apart in order to fit the data. In this example the true source

locations are ultimately recovered by the algorithm when M = 2. The regularized result

is not an improvement over Song’s unregularized approach (figure 20) and the regularized

algorithm is considerably slower since more model parameters must be estimated.
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In numerical experiments we have found that the regularized location estimation algorithm

identifies the same set of source locations as Song’s multi-object code (figure 25). The former

approach is about four times slower, but does not rely on randomized start models.
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Figure 25. Comparison of error in estimated locations for inversion of syn-
thetic data sets with unregularized and regularized algorithms. Data realiza-
tions are two source (37 mm and ISO) scenarios at a range of depths and
separations.

In this section we have developed underdetermined and overdetermined regularized inver-

sion algorithms for dipole location estimation. The latter has promise for practical applica-

tion in production codes. Further testing and direct comparison with multi-object inversion

codes in UX-Analyze will be pursued in SERDP MR-2318.
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5. Conclusions and recommendations for future research

Under follow-on funding for MR-1629 we have developed improved algorithms for inver-

sion of multi-static EMI data. Measured data from sensors such as the MetalMapper and

TEMTADS ideally produce well-constrained polarizabilities that closely match reference

polarizabilities. These hardware improvements have made some data processing techniques

developed in the first phase of this project largely obsolete. For example, explicitly inte-

grating over parameter uncertainty, as developed in Beran et al. (2011), produces negligible

benefits for multi-static data. On the other hand, other techniques - e.g. using multiple

models for classification - are now routinely used in UXO processing.

Additional data processing techniques presented here address identification of TOI with

multi-static EMI sensors in difficult, low SNR scenarios. Robust inversion, regularization,

and the TOPI method all attempt to mitigate the effects of noise on recovered polarizabilities.

All of these methods produce a model that is a somewhat worse fit to the observed data

than standard least squares inversion. The benefit of this reduced fit is often a polarizability

model that is a better match to reference polarizabilities.

Similarly, multi-stage techniques for target classification try to identify noisy TOI polar-

izabilities by progressively reducing the dimensionality of the feature space. The Combined

Classifier Ranking (CCR) developed here is a variant that uses all features simultaneously,

thereby eliminating the need to switch between feature sets. We routinely use these ap-

proaches for classification of ESTCP data sets and have implemented them into our classi-

fication software.

We have not completely addressed all research that was proposed under MR-1629. Re-

maining topics are:

(1) Robust statistical norms and multiple objects in the field of view. This question

has largely been addressed with TOPI and regularized multi-object inversion. As

discussed above, these methods all try to balance the fit to the data with recovery

of denoised polarizabilities.

(2) Methods to determine when to stop digging. This problem is being investigated under

MR-2226, “Decision support tools for munitions response performance prediction

and risk assessment.” Under this project we have developed methods for assigning

an objective numerical confidence to the stop dig point determined by an analyst.

(3) Include positional uncertainty in the inversion algorithm. The degraded positional

accuracy of dynamic data motivated past work (Tarokh and Miller, 2007; Tantum

et al., 2008) on this problem. While cued interrogation largely circumvents the

requirement for accurate positioning, recent efforts to classify with dynamic multi-

static data motivate further examination of positional uncertainties. Methods that

mitigate the effects of positional errors will also be applicable to marine UXO classifi-

cation. This topic will be studied under SERDP MR-2318, “Strategies and Methods

for Effective UXO Classification.”
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Temporal Orthogonal Projection Inversion

Technique for EMI Sensing of UXO
Lin-Ping Song, Member, IEEE, Douglas W. Oldenburg, L. R. Pasion, S. D. Billings, and L. Beran

Abstract

This paper presents a new inversion method that is based upon the singular value decomposition (SVD) analysis

of multiple-time channel responses. First, we form the multi-channel EMI sensor data as a spatial-temporal response

matrix (STRM). The rows of the STRM correspond to measurements sampled at different time channels from one

sensor and the columns correspond to measurements sampled at the same time channel from different sensors. The

SVD of the STRM produces the left and right singular vectors that are related to the sensor and the temporal spaces,

respectively. If the effective rank of the STRM is r, then the first r left and right singular vectors span signal

subspaces (SS). The remaining singular vectors span the noise subspaces. Next, we do a one-sided projection by right

multiplying the STRM with the temporal signal subspace matrix and obtain a transformed response matrix whose

r columns are termed as the SS temporal channels. This derives a temporal orthogonal projection inversion (TOPI)

where the r SS projected temporal channels are used for source locations in the transformed system of equations

and the target polarizabilties are solved as a linear optimization problem in the original data domain. The theoretical

and numerical analysis based upon the magnetic dipole model is presented on the determination of r. The proposed

approach is evaluated using the synthetic and real multi-static EMI (TEMTADS) data.

Index Terms

Electromagnetic induction, Unexploded ordnance, Magnetic dipole polarization, Orthogonal projection, Subspace,

Nonlinear inversion

I. INTRODUCTION

Electromagnetic induction (EMI) sensing has been a major protocol in environmental remediation of unexploded

ordnance (UXO) contamination [1] - [29]. Its effective use relies upon an inversion processing technique that

is capable of extracting accurate target signatures (e.g., dipolar polarizabilities) from measured data for input to

subsequent tasks of discriminating UXO from non-hazardous clutter [20]-[22].

EMI signal processing is generally cast as a nonlinear inversion problem where the location of an object and

its principal polarizations are sought for best explaining data [6] -[8], [12]-[13], [23]-[29]. Modern EMI data are
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acquired as a series of transient responses to a nearby object with an array of sensors. An inversion is typically

carried out using the responses at a subset of the measured time channels. This involves in a process of pre-selecting

time channels to be used. It might be done based upon a priori estimates of the unknown sensor noise. A usual rule

of thumb is to choose responses above a pre-defined SNR threshold in order to avoid possible adverse effects of

late time noisy measurement on the estimated source parameters. This channel selection method works reasonably

well if a good a-priori estimate of sensor noise is available across data sets. If noisy data are included however,

the quality of the inversion result is degraded.

In this paper, we present a method that is not so dependent upon a-priori noise estimates. We first define the

spatial-temporal response matrix (STRM). This is the data matrix whose rows correspond to measurements at

different time channels from one sensor (that is, a single transmitter-receiver pair), that is, each row is the time

domain decay curve for a particular sensor. The columns of the STRM are measurements at all sensors at a single

time. The SVD (Singular Value Decomposition) of this matrix provides a well defined set of vectors with which to

expand the rows of the STRM. We project the time domain decay curves onto a small subspace by keeping only

those vectors associated with larger singular values. A nonlinear inversion is then carried out in the transformed

domain to find the source locations. The procedure, which we refer to as temporal orthogonal projection inversion

(TOPI), has a number of benefits. Most importantly, the subspace projection has the potential for separating signal

from additive Gaussian noise and thus higher quality and more robust solutions are obtained in the inverse problem.

It also reduces the size of the inverse problem to be solved and this speeds up the process. Once good estimates

are obtained for the locations of the targets, their polarizabilties are subsequently obtained by solving a linear

optimization problem in the original data domain.

The remaining parts of this paper are organized as follows. In section II, the data model formulation are presented.

Our existing nonlinear inversion algorithm is outlined for the development. In section III, we present the SVD

analysis of the STRM that relates to the interested temporal basis and derive our projection inversion method. In

section IV, we evaluate and discuss the technique using synthetic and real data recorded by the new-generation

sensor array systems of TEMTADS [32]. Section V gives the conclusion.

II. SIGNAL MODEL

A. The polarizability tensor and formulation

In UXO surveys, where a target dimension is often small relative to the target-sensor distance, the transient

scattering of a metallic object can be well described by an equivalent induced dipole [33], [34]. This dipolar

dynamic property is characterized by a 3× 3 symmetric magnetic polarizability tensor (MPT) P (t) [1]-[12],

P (t) =

⎡
⎢⎢⎢⎣

p11(t) p12(t) p13(t)

p12(t) p22(t) p23(t)

p13(t) p23(t) p33(t)

⎤
⎥⎥⎥⎦ , (1)

May 6, 2013
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where each element pij(t) represents a dipole component in the ith Cartesian direction due to a primary field in

jth Cartesian direction and where t is time. This polarizability tensor P (t) has an eigen-decomposition as

P (t) =
3∑

j=1

Lj(t)eje
T
j , (2)

where ej(j = 1, 2, 3) is the orthonormal eigenvector representing the jth principal direction of dipolar polarization

with respect to a reference system, and Lj(t) is the principal polarization strength that is a function of the geometry

and material of a target. In other words, P (t) contains the information regarding the geometry and material of a

target as well as its orientation. Superscript T denotes a transpose operation.

For the ith measurement of M sensing Tx/Rx pairs, the secondary response di to an excited object might be

written as an inner product form with respect to P (t), [1] [12]

di(rRxi
, t) = aTi (r, rRxi

, rTxi
)q(t), (3)

where ai(r, rRxi
, rTxi

) is 6×1 column vector representing spatial sensitivities of the ith sensor to the object located

at r, and q(t) a 6 × 1 column vector whose components are the elements of the polarizability tensor P (t) of an

object. They are given by [27]-[28]

ai(r, rRxi
, rTxi

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bx
RB

x
T

Bx
RB

y
T +By

RB
x
T

Bx
RB

z
T +Bz

RB
x
T

By
RB

y
T

By
RB

z
T +Bz

RB
y
T

Bz
RB

z
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,q(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11(t)

p12(t)

p13(t)

p22(t)

p23(t)

p33(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where [Bx
R By

R Bz
R]

T and [Bx
T By

T Bz
T ]

T are the Cartesian components of field vectors BR(r, rRxi
) and BT (r, rTxi

)

which are generated by the receiver and transmitter coils at a source location.

Assume that η objects are present in response to a given excitation. By neglecting EMI interaction between the

objects [23] - [?], we model a measurement as a linear superposition of the signals from each object. That is,

di(rRxi
, t) =

∑η
k=1 a

T
i (rk, rRxi

, rTxi
)qk(t) where ai(rk, rRxi

, rTxi
) defined in (4) are the spatial sensitivities of

the ith senor to the kth object located at rk with polarizations qk(t). The observed EMI responses for M sensors,

in the presence of noise, can be conveniently expressed in a vector-matrix notation

d(t) =

η∑
k=1

A(rk)qk(t) + n(t), (5)

where d(t) = [d1(t), · · · , dM (t)]T is an M×1 measured data vector at time t, n(t) is the additive noise vector, and

A(rk) is an M × 6 matrix denoting the sensitivities of the M sensors to the kth object located at rk. Its transpose

is given by

AT (rk) =
[
a1(rk) . . . aM (rk)

]
. (6)

May 6, 2013
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The position vectors of the sensor coils are suppressed in Eq. (5) for simplifying the notation. It is understood that

the sensor information is a subscript-indexed in the recordings and in the sensitivity vectors. Eq. (5) is a generic

dipole-based formulation for estimating and recovering the locations and polarizabilities of EMI anomalies.

B. Two-step Inversion

In this section, we briefly review the sequential inversion algorithm of TEM data [27], [28] for the later

development.

In that algorithm, the model parameters are grouped into two parts: a nonlinear part consisting of source locations

r = vec[r1, · · · , rη] and a linear part consisting of source polarizations v(t) = vec[q1(t), · · · , qη(t)] at time

instant t. Here vec[·] represents a vectorization operation, i.e., stacking all vectors into a single column. Since both

parameter sets (see Eq. (5)) are separable where the matrix A is independent of source polarizations qk(t), the

algorithm treats finding source locations as a primary step in which estimating polarizations as an intermediate step.

For η objects and a given suite of starting or current locations rc, a nonlinear optimization is carried out to

update the location by solving the following minimization problem:

r̃ = argmin
r

Nt∑
j=1

∥∥∥Wj(dobs(tj)− d̃(rc, tj)− J(rc)(r− rc))
∥∥∥
2

d̃(rc, tj) =

η∑
k=1

A(rc,k)q̃k(tj)

subject to ‖r− rc‖ < Δr

, (7)

where Nt is the number of time channels used during this nonlinear update, Wj is a diagonal data weighting matrix

for the data at the selected time tj and its diagonal entries correspond to the uncertainty for each datum. J(rc) is

the Jacobian for furnishing the descent direction in the local linearized search, d̃(rc, tj) are the predicted data at rc,

and Δr is a positive scalar used to provide a local ball within which r is allowed to change w.r.t. rc. Computation

of the predicted data d̃ requires that q̃k be evaluated. This is done as a nested process by solving the constrained

least square problem at rc,

ṽ(tj) = arg min
v(tj)

‖dobs(tj)−
η∑

k=1

A(r̃c,k)qc,k(tj)‖2

s.t.

pk,ii(t) ≥ 0

|pk,ij(t)| ≤ 1

2
[pk,ii(t) + pk,jj(t)] .

(8)

The constraints imposed in (8) arise from the symmetric positive definite matrix in Eq. (1) [35] - [36].

The iterations in (7) are continued until convergence criteria are satisfied. This yields a set of final locations r̃k

and polarizations q̃k(k = 1, · · · , η) are obtained by (8) for all time channels. The source orientations and principal

polarizations can be simply obtained by the eigen-decomposition of the MPT at each time channel. It is observed

May 6, 2013
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in Eq. (7) that an estimate of source locations is depends upon the response at Nt selected time channels. The issue

of channel selection will be focused in the next.

III. METHOD

A. Spatial-temporal response matrix and its SVD

EMI data are generally acquired where an array of sensors is deployed above the surface to interrogate an object.

Each sensor records a transient series, say, t1, · · · , tJ . Assuming M Tx/Rx pairs, we arrange data as

D =

⎡
⎢⎢⎢⎣

d1(t1) · · · d1(tJ )
...

...
...

dM (t1) · · · dM (tJ )

⎤
⎥⎥⎥⎦ . (9)

We call this the spatial-temporal response matrix (STRM). Its row corresponds to responses sampled at different

time channels from one transmitter/receiver pair and its column to measurements sampled at the same time channel

from different transmitter/receiver combinations. The STRM can be formed for a static or a dynamic survey with

mono-static or multi-static array configurations.

The singular value decomposition (SVD) [35], [36] of D in Eq. (9) is written as

D = UΣV T =

p∑
i=1

σiiuiv
T
i , (10)

where p = min(M,J), U = [u1, · · · ,uM ] is an M×M left orthonormal matrix and V = [v1, · · · ,vJ ] is an J×J

right orthonormal matrix, and Σ is an M ×J singular value matrix with elements σii along the diagonal and zeros

everywhere else. If the singular values are ordered so that,

σ11 ≥ σ22 ≥ · · ·σpp ≥ 0 (11)

and if the matrix has a rank r < p, then the last singular values are equal to zero, and the SVD of D becomes

D =
r∑

i=1

σiiuiv
T
i . (12)

Next, we relate the triplet {σi,ui,vi} of the STRM in Eq. (12) to field quantities A and q.

To make the following derivation simple, we consider a single-object case. Recall that Eq. (3) represents a

mathematical expression for the measured EMI response to a single object. Replacing each entry in Eq. (9) with

Eq. (3), we have Eq. (9) as

D = A(r)QT , (13)

where A(r) is an M × 6 array response matrix defined in Eq. (6). QT is a 6× J source matrix

QT =
[
q(t1) · · · q(tJ)

]
, (14)

whose column corresponds to one temporal component of the dynamic polarizability tensor.

To generate an SVD form of Eq. (13), we introduce the two symmetric matrices [35],

WA = (ATA)
1
2 , WQ = (QTQ)

1
2 . (15)

May 6, 2013
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Using WA and WQ, we transform D in Eq. (13)

D = AW−1
A WAWQ(QW−1

Q )T . (16)

Set

UA = AW−1
A , VQ = QW−1

Q , X = WAWQ, (17)

where UT
AUA = I and V T

Q VQ = I . Taking the SVD of X as X = UXΠV T
X , we rewrite Eq. (16) as

D = (UAUX)Π(VQVX)T . (18)

This is an analytical form of SVD decomposition of D where the left singular vectors are the columns of UAUX

and the right singular vectors are the columns of VQVX . The singular values of D are the diagonal entries of Π, i.e.,

the eigenvalues of the square matrix X . There is no an explicit connection of Π with the principal polarizabilities of

L. In other words, the eigenvalues of an STRM cannot be simply interpreted as apparent principal polarizabilities

as in the multi-static response (MRM) that has measurements taken at one location and requires a sufficient number

of transmitters and receivers [30], [31].

SVD provides a unique decomposition and hence comparing (18) to (12) leads to,

UAUX,i = ui, VQVX,i = vi, i = 1, · · · , r, (19)

where UX,i and VX,i represent the ith column of UX and VX . Eq. (19) shows that for σii > 0 the singular

vectors ui are the linear combinations of the orthornormalized array Green’s function matrix UA and form a set of

orthornormal basis spanning the sensor-target location space, while the singular vectors vi are linear combinations

of the orthornormalized polarizability source matrix VQ and form a set of orthornormal basis spanning the temporal

space. Both left and right singular vectors contain information of the target location and polarizability. The former

in principle can be used in MUSIC-like imaging to estimate target location [30]. However in this development, our

scope is concentrated on the use of the latter as a basis to project original temporal responses for inversion.

B. Rank and the number of targets

For a data matrix D given in Eq. (9), its rank r ≤ p = min(M,J). However, recalling D = AQT as in Eq.

(13), we know from the matrix analysis theory [35] that rank(D) = rank(AQT ) ≤ min[rank(A), rank(QT )].

This restricts the maximum rank of D for a single object is 6 since both rank(A) ≤ 6 and rank(QT ) ≤ 6. In fact,

Q, which contains polarizabilities, is really controlled by 3 parameters Lj . Using Eq. (2), we can express QT as

QT = EL, where E is a 6 × 3 matrix whose elements are related to the principal direction directors ej and L

is a 3× J matrix whose elements are the three principal polarizabilties in J time channels. By applying the rank

inequality property, we have rank(QT ) = rank(EL) ≤ min[rank(E), rank(L)] ≤ 3. So the maximum rank of

Q is three. As a result, the maximum rank of D, if the data are from a single object, is three. That rank can be

reduced to two for a cylindrically symmetrical object that has two distinct principal polarizabilities, or to rank one

for a sphere. Theoretically, if there are η objects contributing to the data then the maximum rank is 3η.
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C. Temporal Orthogonal Projection and Inversion

Assuming that the matrix has a rank r, as described in Eq. (12), we group these SVD-constructed orthonormal

vectors into the left and right signal subspaces (SS), i.e., Us = [u1, · · · ,ur] and Vs = [v1, · · · ,vr]. The remaining

singular vectors, Un = [ur+1, · · · ,uM ] and Vn = [vr+1, · · · ,vM ], are correspondingly grouped as the left and

right orthonormal noise subspaces (NS).

We want is to project the data onto Vs. Right-multiplying Eq. (13) with sub-matrix Vs, we have

Ds = A(r)QT
s , (20)

where

Ds = DVs, (21)

a projected data matrix of M × r and

QT
s = QTVs, (22)

a projected source matrix of 6 × r for a single-object case. Eq. (20) is a temporal orthogonal projection equation

where the original J time channels are converted into r SS temporal channels but the sensitivity matrix A remains

unchanged. For numerical implementation of an inversion in the transformed domain, Eq. (20) might be rewritten

as a matrix-vector form for each projected temporal channel i

ds(i) =

η∑
k=1

A(rk)qs,k(i) + ns(i), i = 1, · · · , r, (23)

where ds(i) = [ds,1(i), · · · , ds,M (i)]T is an M × 1 projected data vector at projected channel i, ns(i) is the

projected noise vector. Considering the decomposition of Eq. (12) and the orthonormality of vectors vi, we can see

that projected data ds(i) = σiui and the size of σi controls the importance of the ith channel.

The transformed equation (23) as in the original domain equation (5) retains the feature that ds is linear with

respect to source parameter qs and nonlinear with respect to the locations of objects. Therefore, the same solution

strategy outlined in section II-B can be applied to Eq. (23) by replacing d and q with ds and qs in Eq. (7) and

using an identity data weighting matrix. This is the temporal orthogonal projection inversion (TOPI) where the r

SS projected temporal channels are used to localize sources via the nonlinear update. Once source locations are

determined, the target polarizabilties are solved as a linear optimization problem in the original data domain via Eq.

(8). The orientation of each object might be extracted from the polarizability tensors through an eigen-decomposition

in Eq. (2).

IV. EXPERIMENTS

An important question for the TOPI concerns the size of the subspace used and nature of the associated basis

vectors. To illustrate the relationship between the rank and the polarizabilties of an object, division between signal

and noise subspaces, we take experiments using synthetic and real TEMATDS data. TEMTADS [32] is a single-

component multi-static system. It consists of a horizontally arranged coplanar array of 5×5 transmitters and receivers
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Fig. 1: (a) TEMTADS: a single-component multi-static system consisting of a horizontally arranged coplanar array

of 5× 5 transmitters and receivers. Each transmitter is 35 cm × 35 cm and each receiver 25 cm × 25 cm. (b) Two

sets of polarizabilties used for the numerical experiments. The solid and dashed curves represent polarizabilities of

a 105 mm projectile and a scrap, respectively.

(Fig. 1 (a)). The sizes of its transmitters and receivers are 35 cm × 35 cm and 25 cm × 25 cm, respectively. It

has 115 logarithmically spaced gates between 0.042 ms and 24.35 ms. For each transmitter excitation, TEMTADS

records the response at all receivers. Thus it has spatial-temporal data of 625 × 115 for a static (cued) survey.

Fig. 1 (b) shows the two sets of polarizabilties used for the numerical experiments. The solid and dashed curves

represent polarizabilities of a 105 mm projectile and a scrap, respectively.

A. Synthetic single-object example

In a single-object experiment, we consider a 105 mm projectile buried at (0, 0, -0.60) m. Fig. 2 (a) is a plot of

the singular values versus their indices for the noise-free case. One can see that there are two significant singular

values that exactly are associated with the number of distinct polarizabilities of the cylindrical object. In the figure,

we also show the singular values directly derived from the synthetic matrix D (marked as “Num.”) and the singular

values of Π in Eq. (18) (marked as “Ana.”). Both agree well. To see how noise can have effect on singular values,

we add 3%, 5%, and 10% Gaussian noise into the synthetic data. As shown in Fig. 2 (b)-(d), noise can amplify all

small non-zeros singular values to a significant level that is comparable to signal singular values. In this example,

it looks that signal singular values are still distinguishable with noise singular values for 10% noise case. We say

that the rank of D is 2.

With respect to data subspace, its size is intimately related to the number of targets and their symmetry and

strength in contributing to the observed data. From the SVD point of view, there are two factors to the determine
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this: the first is the magnitude of the singular values as mentioned above; and the second is the nature of the singular

vector or temporal eigenvectors (TEV) V . Figs. 2 (e) and (f) show the first 7 and the last two V for noise-free

and 10% noise cases. One can observe that the first 2 singular vectors are smooth and progressively display zero

crossing with their indices. These span the signal subspace with the dimension of 2. The remaining singular vectors

have a random behavior associated with noise and span the noise subspace. Thus in principle it can be estimated

that the maximal dimension of a signal subspace is the number of significant values or the number of smooth

eigenvectors in V .
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Fig. 2: Single-object case. Singular values: (a) Noise free; (b) 3% noise; (c) 5% noise; (d) 10% noise. Singular vectors: (e) Noise free; (f) 10% noise.
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Fig. 3: Single-object case. (a) Signals. (b) Noise 10%. (c) Signals + noise. (d) Estimated signal. (e) Estimated noise.

To show the above definition of signal and noise subspaces, we do an experiment by working only within a

subspace that contains smoothly decaying functions with a few oscillations. That is to reconstruct the data using

D =
∑2

i=1 σiiuiv
T
i where the rank is 2. For noise, we might estimate as N =

∑115
i=3 σiiuiv

T
i where the remaining

eigenvalues and vectors are used. In Fig. (3), we notice that the additive noise has been essentially eliminated when

compared to noise-free signals in Fig. 3(a). Fig. 4 show the estimated signals ((a)-(d)) and noise ((e)-(h)) at different

time channels. These results show that the subspace concept is a useful tool for separating signal from unwanted

noise.

Notice that above signal eigenvectors are smooth and are with a few polarity changes and noise eigenvectors

are oscillating. We experiment a temporal projection that is to project the data onto the space spanned by vectors

Vs and Vn. The test is given in Fig. 5. It is observed that a few large values corresponding to the larger singular

values and small random values thereafter. This character is easily understood. The first singular vector v1 is a

smoothly decaying single polarity curve. It’s character is similar to the data observed at many Tx/Rx pairs. Hence

the inner product of that basis with the rows of D generates a large value. Inner products with other vectors that

have additional zero crossings will yield smaller data values. Eventually inner products with highly variable vectors,

and especially when those vectors have increasing amplitudes at larger times, produces projected data that contain

little information and whose uncertainty greatly exceeds their values.
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Fig. 4: Single-object case with 10% noise. (a) Recovered Signals (a)-(d). Noise estimated (e)-(h).
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Fig. 5: Single-object case. 10% Noise. (a) Original data with Tx-13 excitation. (b) Projected data with Tx-13 excitation. (c)-(d) Original and projected data

of Tx-13/Rx-4 pair. (e)-(f) Original and projected data of Tx-13/Rx-13 pair.
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Turning to the TOPI based on Eq. (23), we carry out the inversion using 1, 2, 3, and 5 projected channels (e.g.,

for 5 projected channels using a subspace of [v1, · · · ,v5] for the 10% noise case. All returned same exact results

r = (0.00,−0.00,−0.60) m. To understand how these TEVs play a role in the inversion. We did the TOPI using

the projected channel at v2 and obtain r = (0.00,−0.01,−0.60) m. This is almost the exact location as v2 is a

signal eigenvector. However, the use of projected channel at v3 gives r = (0.61, 1.00,−1.20) m that is far from

the exact one as it is noise vector. Removing v1, we conducted the TOPI using the two subspaces of [v2,v3] and

[v2, · · · ,v5], respectively. Both delivered the location at r = (0.00,−0.01,−0.60) m. The experiments demonstrate

that the TOPI is stable whenever signal vectors are used to project data.

B. Synthetic two-object example

For a two-object example, we set up a shallow object at r2 = (0.03,−0.01,−0.09) and a deep object of 105

mm projectile at r1 = (0, 0,−0.60) m. That shallow object represents a scrap whose polarizabilties (dashed curves)

are shown in Fig. 1 (b). Again different level of Gaussian noise has been added to the data prior to input into

the SVD. Fig. 6 shows the singular values. For an ideal noise-free case, we do see in Fig. 6 (a) that the number

of larger singular values is 5, being the number of 5 distinct polarizabilties from a symmetric ordnance and a

scrap. Also, the numerical singular values agree well with the analytical ones. In Fig. 6 (e), the first 5 singular

vectors are smooth and progressively display more zero crossings and the other singular vectors behave randomly.

Based upon these eigen characteristics, one can define that the maximal dimension of the signal subspace is 5 in

this case. However, the ideal subspace can be distorted with some amount of noise. As shown in Figs. 6 (b)-(d),

amount of 3% ∼ 10% noise makes the noise singular values comparable or even larger than those smaller signal

singular values. Correspondingly, the singular vectors in Fig. 6 (f) associated with the 3 small signal singular values

become oscillatory and behave like noise eigenvectors. Therefore in these noisy examples, the effective rank or the

reduced signal subspace of the data D is 2 in terms of the significant singular values and smooth eigenvectors. The

experiment illustrates that one should be cautious to infer the number of objects using singular value spectrum in

practice.
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Fig. 6: Two-object case. Singular values: (a) Noise free; (b) 3% noise; (c) 5% noise; (d) 10% noise. Singular vectors: (e) Noise free; (f) 10% noise.
M

ay
6,2013



IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING, FOR SUBMISSION 16

0.01 0.1 1 10

10−4

10−2

100

102

(a)

0.01 0.1 1 10

10−4

10−2

100

(b)

0.01 0.1 1 10

10−4

10−2

100

102

(c)

0.01 0.1 1 10

10−4

10−2

100

102

(d)

0.01 0.1 1 10

10−4

10−2

100

(e)

Fig. 7: Two-object case. (a) Signals. (b) Noise 10%. (c) Signals + noise. (d) Estimated signal. (e) Estimated noise.

Like a single-object case, using the effective rank of 2 we tested to reconstruct the data for the 10% noise case

using D =
∑2

i=1 σiiuiv
T
i and estimate noise as N =

∑115
i=3 σiiuiv

T
i in Fig. (7). Comparing to noise-free signals

in Fig. 7(a) with the reconstructed one in Fig. 7(d), we notice that the some amount of additive noise has been

removed. When projecting the data onto the temporal base space, we observe the similar concentrated characteristics

(Fig. 8) as in the single-object example.
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Fig. 8: Two-object case. 10% Noise. (a) Original data with Tx-13 excitation. (b) Projected data with Tx-13 excitation. (c)-(d) Original and projected data of

Tx-13/Rx-4 pair. (e)-(f) Original and projected data of Tx-13/Rx-13 pair.
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For testing the TOPI, we use 1, 2, 5, 10 TEVs vectors to project 10% noisy data, respectively. All inversions

give the exact results at r1 = (0.00,−0.00,−0.61) m and r2 = (0.03,−0.01,−0.09) m. Referring to Fig. 6 (f), we

test the TOPI using the projected channel at v2 and get r1 = (0.02, 0.02,−0.61) m and r2 = (0.04,−0.02,−0.08)

m that is close to the true locations. When using v3 in the TOPI, we have r1 = (0.43,−0.81,−0.72) m and

r2 = (0.43,−0.81,−0.72) m as expected since v3 is a severely contaminated signal vector.

For this noisy case, we run the inversion in original data with 39 channels. It took 1.20 minutes to get r1 =

(0.00,−0.01,−0.35) m and r2 = (0.14,−0.01,−0.02) m, which are incorrect locations. We run the TOPI with

the 39 projected channels. It took 0.13 minutes to obtain the exact locations at r1 = (0.00,−0.00,−0.61) m and

r2 = (0.03,−0.01,−0.09) m. The experiment shows that the TOPI is potentially not only accurate but also fast.

With sufficient basic understanding of the technique, next we proceed with a real data example.

C. Real data example

For a real data example, we use the test-pit data acquired with a 105-HEAT. The object was oriented nose down

and centered below the sensor array. The previous study [30] showed that this large, vertically oriented object is

better represented by a two-object model.

Fig. 9 (a) shows the log σii versus their index. There is a long tail of steadily decreasing singular values which

are reflective of the noise. However in this practical case, the noise may not be purely Gaussian and its part may be

due to an approximate modelling. Like in the synthetic noisy examples, a transition is smooth from large singular

values to smaller ones. There is no clear gap between the large and long tail of small singular values. The question

is to ask what the number of projected channels should be used if being based upon the analysis of that singular

value spectrum .

Suppose we have two objects. Then the maximum r is 6 so there is no sense in exceeding that. Also, it is argued

that there is an axis symmetric body and another body. That makes the maximum rank 5 like in the two-object

synthetic example. There might be a numeric way to determine a value of r used in the projection. In a singular

value-index space of Fig. 9 (a), we can roughly find a elbow point where singular values and their slopes start to

change a pattern and take the correspondent index as r. In this example, r = 7 is found as marked with a cross in

Fig. 9 (a). This number is slightly larger than r = 5, or 6 assumed using physics of the problem.

On the other hand, let us examine temporal eigenvectors. Fig. 9 (b) presents the first seven and the last two TEVs.

Similar to the observation in synthetic cases, one sees that the TEVs become more oscillatory as the temporal index

increases. For the first three TEVs, the number of their sign changes is exactly the number of indices 1, 2 and 3.

The last two TEVs are only sensitive to components at late temporal index. The first TEV remains in a constant

sign and the subsequent TEVs vary. This TEV behavior makes projected signals concentrated and boosted relative

to the original data and those at large temporal index, as seen in Fig. 10. From the regularity of the TEVs picture

we may infer the dimension of the reduced signal subspace is r = 3.

Fig. 10 (a) shows the original data when Tx-13 was fired (the center transmitter, see Fig. 1(a)). The data measured

at those center receivers are smooth decay and the data at edge receivers behave fluctuated and noisy. From Fig. 10
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(a), it seems not direct or clear where to cut off time channels for an inversion processing. To obtain the projected

data, we project D625×115 onto the temporal basses V = [v1, · · · ,v115] (Eq. (21)). Fig. 10 (b) shows the projected

data. As expected from our synthetic analysis the maximum amplitude data are associated with the first few singular

vectors, and in particular, the first one. What one can observe is that (1) the projected data are highly compressed

in the temporal base space; (2) The projected signals at very early temporal index are boosted and the projected

signals at late temporal index are suppressed. To highlight the observation, we zoom in some data in Fig. 10 (c)-(e).

Fig. 10 (c) is the recorded data at Rx-1 under Tx-13 excitation. The data are fluctuated and often the responses at

some time channels are larger or comparable to the ones at their preceding channels. In contrast to the projected

data in Fig. 10 (d), we see that the projected signal at the 1st temporal channel is roughly 3.1 times as large as

the maximum amplitude of the original signals and is at least around 13 times as strong as the projected signals

at subsequent temporal channels. The similar phenomena is seen at Fig. 10 (e)-(f) where show the recorded and

projected data at Rx-13 under Tx-13. In this case, the projected signal at the 1st temporal channel is also about

3.1 times as large as the maximum amplitude of the original signals and is at least around 78 times strong as

the projected signals at subsequent temporal channels. This suggests that inversion may be carried out using the

projected signal at the first temporal channel. This is further evident if looking back at the singular value spectrum.

The amplitudes of singular values contain the information about the importance of the eigenvectors. One notices

that the first σ11 is around 18 times large as the second largest σ22 and dominates over other singular values.

Above, the determination of r was analyzed from a known physics of the problem, singular value distribution,

smoothness of the temporal singular vectors, and the projected data. We test the TOPI and its sensitivity to

different r = 1, 2, 3, 5, 7, 10 when localizing sources. For r = 1, we obtained r1 = (0.02,−0.01,−0.61) m,

r2 = (0.03,−0.01,−0.27) m. For other r values, we obtained all identical locations of r1 = (0.02,−0.01,−0.60)

m, r2 = (0.03,−0.01,−0.26) m. For this real data example, the TOPI is robust to the selection of projected

channels. The recovered polarizabilities are given in Figs. 11 (a)-(b).

To understand the contribution of TEV to signals, we projected the data onto each individual vector of vj , j =

2, 3, 4, 5, 6, 7 and performed the TOPI. Table I lists the inverted locations. We see that starting v3 the location

estimate is incorrect. We also conducted the TOPI using the following subspaces, [v2,v3], [v2, · · · ,v4], [v2, · · · ,v5],

and [v2, · · · ,v7], and obtained all the same locations at r1 = (0.03,−0.02,−0.58) m, r2 = (0.04,−0.02,−0.20)

m. Without using v1, it can have some impact on the location estimate.

Further without using the two major signal vectors v1 and v2, the TOPI was carried out with the subspaces [v3,v4]

and returned r1 = (0.48, 0.36,−0.80) m, r2 = (0.03,−0.03,−0.20) m; [v3, · · · ,v5] and r1 = (−0.09,−0.50,−1.2)

m, r2 = (0.04,−0.02,−0.20) m; [v3, · · · ,v7] and r1 = (−0.04,−0.50,−1.2) m, r2 = (0.04,−0.02,−0.20) m.

The experiment seems to show that v3 mainly contains some information about the location of r2 not r1.

Overall, the above tests show that the inclusion of the signal vectors [v1,v2] is sufficient to recover the locations

via the TOPI.

To test the inversion in the original data domain, we use several subsets of time channels with Nt = 51, 16, 13.

Figs. 11 (c)-(e) present the associated inversion results of the recovered locations and polarizabilities. As one can
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TABLE I: TOPI with single vj in the real data example

TEV (x1, y1, z1) (m) (x2, y2, z2) (m)

v1 (0.02, -0.01, -0.61) (0.03, -0.01, -0.27)

v2 (0.02, -0.02, -0.61) (0.04, -0.02, -0.15)

v3 (0.04, -0.33, -0.85) (0.03, -0.33, -0.21)

v4 (0.26, 0.26, -0.01) (0.26, 0.26, -0.01)

v5 (-0.50, -0.48, -1.20) (-0.44, -0.50, -1.20)

v6 (-0.47, -0.50, -1.01) (-0.47, -0.50, -1.01)

v7 (0.50, 0.26, -1.20) (0.08, 0.56, -1.20)
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Fig. 9: Test-pit data. (a) Singular values. (b) Temporal eigenvectors.

see that the inversion can be affected by an selection of channels. An inappropriate selection like Nt = 16 in Fig.

11 (d) can lead to some a less accurate result. In contrast, the TOPI offers a way to select the projected channels

using signal vectors and was tolerant to the inclusion of noise vectors and was stable. Figs. 11 (a)-(b) shows that

the recovered polarizabilities by the TOPI are similar to better than the ones in Figs. 11 (c)-(e).
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Fig. 10: Test-pit data. (a) Original data with Tx-13 excitation. (b) Projected data with Tx-13 excitation. (c)-(d) Original and projected data of Tx-13/Rx-1

pair. (e)-(f) Original and projected data of Tx-13/Rx-13 pair.
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Fig. 11: Test-pit data. TOPI: (a) 1 TEV, (b) 7 TEVs. Inversion of original data: (c) 51, (d) 16, (e) 13. On the

polarization plots, the red curves represent the known polarizabilities of 105mm projectile and the blue and black

the recovered ones.

V. CONCLUSIONS

We have considered the problem of inverting multiple time channel TEM data. The test showed that the accuracy

of source localization via a nonlinear inversion can be critically related to responses at selected time channels. An

inappropriate channel selection may lead to a poor result.

To address this problem, we propose a temporal orthogonal projection inversion method that circumvents manual

channel selection. Briefly, the method has four steps: 1) doing the singular value decomposition (SVD) of the

spatial-temporal response matrix (STRM); 2) projecting the STRM onto the temporal signal subspace matrix for

a transformed temporal response matrix; 3) carrying out source localizations in the projected temporal domain; 4)

obtaining target polarizabilties in the original data domain. The central idea of the TOPI is to convert time channel

selection into to a signal subspace problem. Therefore the key step in the method is to determine the number r

of temporal signal vectors used for projection. Using synthetic and real TEMTADS data, we have conducted the
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detailed analysis and evaluation on the determination of r from several aspects of the singular value spectrum, the

temporal eigenvectors, the projected data, the physics of the problem. The most prominent feature we have found

is that, owing to the oscillation properties of the TEVs with index, the projected TEM responses can concentrate

around a few early temporal indices and the transformed responses are suppressed at subsequent channels. This

highly compressed feature makes temporal channel selection easy in the transformed domain. We also tried a

heuristic way to find r as the location of maximum curvature in the map of singular values versus their indices.

The TOPI returns the almost the same result with either determined r. In other words, the TOPI is robust to the

size of a signal subspace.

In comparison with the standard nonlinear inversion method implemented in original time-channel domain, the

TOPI can be a potential practical tool that is not only computationally efficient but also is able to produces more

accurate results since a substantial portion of the noise in the data is automatically winnowed from the analysis.
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Detecting and Classifying UXO

This article presents state-of-the-art unexploded ordnance detection and classification, including examples 

from recent field-demonstration studies. After reviewing sensor technologies, with a focus on magnetic 

and electromagnetic systems, the authors discuss advanced processing techniques that allow for reliable 

discrimination between hazardous ordnance and harmless metallic clutter. Finally, the article shows results 

from a large-scale field demonstration conducted in 2011. In this case study, electromagnetic data acquired 

with an advanced sensor is used to identify ordnance at the site, reducing the number of excavations re-

quired with conventional metal detectors by 85%.

by Laurens Beran [ Black Tusk Geophysics Inc. and the University of British Columbia ], Barry Zelt and Stephen Billings  
[ Black Tusk Geophysics Inc.]

The extent of global unexploded 
ordnance contamination has mo-
tivated research into improved 

technologies for unexploded ordnance de-
tection and classification. In particular, the 
U.S. Department of Defense’s Environmental 
Science Technology Certification Program has 
funded the development of sensors and data-
processing techniques specially designed to re-
liably identify buried UXO. 

As part of this research effort, ESTCP con-
ducted a series of field demonstrations to vali-
date detection and classification technologies. 
The first demonstration, conducted in 2010 
at Camp Sibert, Alabama (U.S.), required the 
discrimination of large 4.2-in mortars from 
metallic ordnance debris.1 Subsequent demon-
strations progressively increased in difficulty. 
For example, the 2011 Camp Beale demonstra-
tion (Marysville, California, U.S.) required the 
identification of small 37-mm projectiles and 
fuzes in rigorous terrain. Throughout the dem-
onstration program, a number of participants 
achieved near-perfect UXO identification.1,2,3,4

Detection
Figure 1 depicts paradigms for detection 

and classification of buried UXO. The con-
ventional mag-and-flag approach uses met-
al detectors operated by expert technicians 
to identify targets, which are then flagged for 
subsequent digging. No digital data are re-
corded, and changes in an audio tone usually 
indicate detection. This method is not con-
sistent because success depends upon the op-
erator’s skill. In addition, the mag-and-flag 
approach offers limited possibility for dis-
crimination between hazardous ordnance and 
clutter. Although the projected cost of this 
approach is prohibitively high (Figure 1), the 
mag-and-flag approach will always have a role 

in UXO clearance—primarily to survey areas 
inaccessible to other sensors (e.g., around trees, 
in gullies) and as a first stage clearance of highly 
cluttered areas. 

 The second mode of UXO detection, dig-
ital geophysical mapping, uses geophysical 
sensors connected to a data-acquisition sys-
tem to record digitized data acquired over a 
survey grid. DGM data are subsequently pro-
cessed to identify high priority targets, which 
are likely to be buried ordnance. Simple pro-
cessing techniques, such as digging detected 
targets based on the measured data’s ampli-
tude, can reduce the number of false respons-
es to approximately 10 non-UXO per UXO 
excavated. Applying advanced classification 
methods to digital geophysical data further 
reduces the rate of these false responses and 

Wide area assessment

Surveying and mapping

Vegetation clearance

Digital geophysical mapping

Map & flag Advanced classification

1:1 false alarm rate10:1 false alarm rate100:1 false alarm rate

Figure 1. Flowchart for remediation of UXO. Wide area assessment identifies areas of likely 
UXO contamination at a site, followed by detailed mapping to delineate survey areas. Veg-
etation must also be cleared to allow deployment of sensors for detection of buried metal. Pro-
jected false-alarm rates for remediation strategies (mag and flag, digital geophysical mapping 
and advanced classification) are for typical munitions response sites within the United States. 
All graphics courtesy of the authors.

greatly increases confidence of successful ord-
nance clearance. In a technical report pub-
lished by the U.S. Office of the Undersecretary 
of Defense for Acquisition, Technology and 
Logistics, Delaney and Etter estimate the cost 
of UXO remediation projects within the U.S. at 
US$52 billion with mag and flag, versus $16 bil-
lion with advanced classification.5

Magnetic and electromagnetic geophysi-
cal data types are most commonly acquired for 
UXO detection and discrimination. Magnet-
ic instruments are used to measure distortions 
in the Earth’s geomagnetic fields produced by 
magnetically susceptible materials (e.g., steel). 
Magnetic sensors deployed for UXO detection 
typically either measure the total magnetic field 
(scalar measurement) or the difference between 
two closely spaced magnetometers, measuring 
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the vertical component of the magnetic field 
(gradiometer measurement). Magnetic-sensor 
arrays have been deployed for helicopter-borne 
surveys (heli-mag) in wide-area assessments.6 
Multiple magnetometers can also be arranged 
in arrays for ground-based surveying, using 
wider swaths to decrease the number of pass-
es required to cover a given area. A significant 
background soil response, which can obscure 
identification of discrete targets in the mea-
sured signal, often complicates the processing 
of magnetic data. In addition, magnetic data 
can only provide limited information about 
intrinsic target properties (i.e., size and shape) 
and are rarely used to classify detected tar-
gets as UXO and non-UXO.7 Therefore, the re-
mainder of this article focuses on classification 
with electromagnetic data.

Processing of electromagnetic data produc-
es a unique intrinsic response (or fingerprint) 
for each target, which can then be matched 
with responses for known ordnance types. As 
depicted in Figure 2, electromagnetic instru-
ments actively transmit a time-varying, pri-
mary magnetic field that illuminates the Earth. 
The variation of the primary field induces cur-
rents in the ground, and these currents produce 
a secondary field that a receiver on the surface 
can measure. EM sensors measure the decay of 
these secondary fields after the primary field is 
switched off. The secondary fields, in turn, pro-
vide information regarding electrically conduc-
tive items in the ground.

EM sensors designed for UXO applications 
come in a wide variety of geometries, ranging 
from cart systems with multiple transmitters 
and receivers to single loop, man-portable 
systems. The Geonics EM-61, an ubiquitous 
time-domain instrument, transmits from a 
single horizontal coil. When the primary field 
is terminated, the EM-61 measures the de-

caying secondary field in a horizontal receiv-
er loop at four discrete time channels. This 
instrument is robust, easy to use and conse-
quently, popular for UXO detection and oth-
er environmental applications. However, the 
range of time channels is fairly short, and the 
paucity of receiver and transmitter combina-
tions (relative to newer systems) limits this in-
strument’s classification capability.

Table 1 shows EM sensors, which have 
been applied to UXO detection and classifica-
tion problems. This is not a comprehensive list 
of EM sensors, but is intended to illustrate the 
recent evolution of sensors from few channels 
to many channels over a long period of time 
and the shift toward configurations with mul-
tiple transmitters and receivers.

Two types of surveys, or search patterns, are 
common with EM instruments.6 A detection-
mode survey passes the sensor over an area 
along closely spaced parallel lines, typically 
such that adjacent sensor passes are between 
50 and 100 cm apart. Sometimes perpendic-
ular lines are also acquired to maximize data 
coverage over targets and ensure their illumi-
nation from multiple angles. The data are ac-
quired approximately every 10 cm along each 
line. Towed arrays of EM sensors can quick-
ly cover large areas, while single-sensor push-
cart systems are much slower. Pushcart or 
man-portable EM systems are therefore bet-
ter suited to the cued-interrogation mode of 
surveying. In this mode, a DGM survey ini-
tially identifies anomalies, and high fidelity 
data are subsequently acquired over each tar-
get. Recently developed systems for station-
ary cued interrogation (e.g., MetalMapper and 
TEMTADS, Table 1) illuminate the target with 
multiple transmitters and receivers, thereby 
circumventing the requirement for accurate 
positioning of moving sensors.

Primary field from
transmitter loop excites
eddy currents in 
buried target

Receiver loop measures 
induced field due to 
eddy currents

Eddy currents

Figure 2. Electromagnetic induction survey. Eddy currents are induced in a buried target by a time-
varying primary field. Decaying secondary fields radiated by the target are then measured by a 
receiver at the surface.

Classification
Once a digital geophysical map with a 

ground-based sensor is acquired, a number of 
processing steps are required to produce a pri-
oritized dig list of targets for excavation. Fig-
ure 3 shows the typical processing involved in 
advanced classification.

Target selection identifies anomalies in the 
digital geophysical map down to a pre-defined 
amplitude threshold. The threshold is usually 
based upon the minimum expected data am-
plitude for the smallest target of interest (i.e., 
UXO) at a site. All designated targets are then 
revisited to acquire cued-interrogation data 
from each one.

Each designated anomaly is character-
ized by estimating features from the cued 
data, which subsequently allows a data ana-
lyst to discern UXO from nonhazardous clut-
ter. These features may directly relate to the 
observed data (e.g., anomaly amplitude at the 
first time channel), or they may be the param-
eters of a physical model. The former approach 
is appealing in its simplicity but is generally 
not an effective strategy for classification. 
An ordnance item at depth will produce a 
small anomaly amplitude and might be left in 
the ground with a dig list based solely upon 
anomaly amplitude. Most classification strate-
gies therefore use physical modeling to resolve 
such ambiguities.

Bell et al., Pasion and Oldenburg, and 
Zhang et al. give detailed descriptions of 
the physical modeling used for processing 
EM data.8,9,10 In the feature estimation stage, 
these models are fit to the observed EM data 
for each target anomaly. This fitting is analo-
gous to fitting a straight line to data via least-
squares regression. In that case the model is 
parameterized by slope and intercept; here 
the model is parameterized by target location, 
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Sensor Geometry Time channels 

EM-61 

  

MetalMapper 

  
 

TEMTADS 

  
 

MPV 

  
 

BUD 

  

Table 1. Electromagnetic sensors used for UXO detection and classification. Red and black lines in the middle column indicate transmitters and 
receivers, respectively.

DGM Target
picking

Cued
interrogation

Feature
estimation

Quality 
control Classification

Figure 3. Processing steps for UXO classification.
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orientation and polarizabilities. The polarizabilities are intrinsic to each 
target and hence classification decisions can be made based on the match 
of the estimated values to those of known UXO types. Figure 4 shows an 
example of this fitting procedure and the recovered polarizabilities for 
MetalMapper data acquired over a 37-mm projectile.

Figure 5 compares typical polarizabilities for UXO and non-UXO 
items. The primary polarizability (L1) aligns with the long axis of the 
target. UXO generally have larger amplitude, slower decaying polariz-
abilities relative to small clutter. Shape information is encoded in sec-
ondary polarizabilities (L2 and L3). Most UXO have a circular cross 
section and will have L2 ≈ L3. In contrast, for irregularly shaped clutter, 
these parameters differ significantly. These differences in polarizabili-
ties allow for distinction between buried UXO and clutter.

An important step in UXO data processing is visual quality control 
of the fit to each target. The example in Figure 4 represents the ideal 
case: a near-perfect fit to the data and an excellent correspondence be-
tween the estimated polarizabilities and expected values for the target’s 
class. However, feature estimation is often complicated by neighboring 
target anomalies or low signal strength from small or deep (> 30-cm) 
targets. In these particular situations, noise will affect the fitting to the 
observed data, and may produce unreliable polarizabilities. An addi-
tional complication sometimes encountered in data processing can be a 

strong background soil response superimposed on the target response. 
Soil compensation algorithms can be applied to the EM data to remove 
these effects and recover reliable polarizability estimates.11

Careful inspection of all fits by expert data analysts is essential to 
ensure that the field data for each target anomaly can support classifica-
tion decisions. When data quality is poor for individual targets, the data 
may be reacquired or, in the worst case, the target must be dug as a pre-
caution. With newer sensor data and careful field practices, the number 
of anomalies that cannot be analyzed is usually negligible (less than 1% 
of the total).

Case Study: Pole Mountain
MetalMapper data were collected for an ESTCP demonstration of 

classification technologies at Pole Mountain, Wyoming (U.S.), in July 
2011. The conditions at this site were relatively benign: Soil response was 
minimal, and little topography or vegetation impeded data collection. 
A total of 2,370 items were excavated at Pole Mountain, with 160 of 
these items identified as UXO. The UXO fell into six classes: Stokes 
mortars, 60-mm mortars, 75-mm, 57-mm and 37-mm projectiles, and 
small industry-standard objects (see representative photos in Figure 
5). While ESTCP dug all targets, the identities of the objects were un-
known to the analysts who needed to develop a classification strategy 

Figure 5. Comparison of representative polarizabilities for UXO and non-UXO items.
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Figure 4. Fitting MetalMapper data. (a) Observed data (top row) and data predicted by fitting a physical model to the observed data 
(middle row). Bottom row shows the (negligible) difference between observed and predicted data. Each column shows the X, Y and 
Z components of the measured data, with MetalMapper receiver locations indicated by white circles. The black circle is the estimated 
location of the target. Numbers at the bottom of each column indicate the range of data values (in arbitrary units). Colored images 
map blue and red to low and high data values, respectively. (b) Estimated polarizabilities (colored lines) recovered via fitting, overlain 
on known polarizabilities for 37-mm projectiles. The excellent correspondence between recovered and reference polarizabilities indi-
cates—with high confidence—that the detected target is a 37-mm item.
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Figure 6. Decay versus size features space for Pole Mountain. Each point represents an individual target, with markers colored based on the 
similarity of the estimated polarizabilities to known UXO. Insets show estimated polarizabilities for selected targets, with heavy dashed lines 
indicating the expected reference polarizabilities for that item’s class.

and decide which items were potentially haz-
ardous UXO and which were harmless shrap-
nel or range debris.

Figure 6 shows a plot of size and decay pa-
rameters for all Pole Mountain targets. These 
parameters are computed from each tar-
get’s estimated polarizabilities and provide a 
convenient way of visualizing the variability 
of target properties across the site. UXO are 
roughly characterized by large amplitude, 
slow-decaying polarizabilities and cluster in 
the upper right portion of Figure 6. Clutter 
items are generally smaller, fast-decaying and 
cluster near the origin. The degree of overlap 
between these two clusters dictates the diffi-
culty of the classification task. The Pole Moun-
tain data represents an easy classification task 
where UXO and non-UXO polarizabilities are 
readily distinguished. This is illustrated for 
selected items in Figure 6.

The end product of classification process-
ing is an ordered list of targets prioritized by 
how well they match the polarizabilities of 
known UXO. The data analyst also specifies a 
stop dig point in this dig list at which all re-

maining targets are deemed nonhazardous 
clutter and can be safely left in the ground. Se-
lecting the stop dig point is crucial to the suc-
cess of remediation efforts at a site: The analyst 
must ensure all UXO are found while mini-
mizing the number of unnecessary digs. 

At Pole Mountain, a stop dig point that 
found all 160 UXO was easily chosen, result-
ing in only 153 non-UXO digs. Figure 7 shows 
the resulting reduction in digs relative to con-
ventional data processing with the EM-61 in-
strument. These dramatic savings are typical 
of results obtained with next-generation sen-
sors such as the MetalMapper, coupled with 
advanced classification techniques.

Conclusions
Sensor and data processing technologies 

developed under the ESTCP program have 
repeatedly achieved excellent classification 
performance in blind field demonstrations. 
Results depend on the difficulty of the classi-
fication task and the quality of the field data. 
However, improvements in field procedures, 
including real-time processing of acquired 

Ex
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2,370

313

UXO

Non-UXO

DGM Classification
Figure 7. Comparison in total number of tar-
gets excavated in order to find all (160) UXO 
at Pole Mountain, for conventional data pro-
cessing of a digital geophysical map acquired 
with the EM-61 and advanced classification 
with the Metal Mapper.

data, are expected to make results similar to 
those attained at Pole Mountain more routine.

The current ESTCP development empha-
sis is based on testing smaller, man-porta-
ble systems such as the Handheld Berkeley 
UXO Discriminator (BUDHH) and the Man-
Portable Vector Sensor (Table 1 on page 
59) and on deploying vehicular sensors to 
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increasingly challenging sites (higher clut-
ter densities, more varied ordnance types). 
The man-portable systems can be deployed 
at challenging sites with variable topography 
or dense vegetation. Results from the 2011 
demonstration at Beale Air Force Base indi-
cate that these systems will provide similar 
improvements in classification as their larger 
antecedents.12 

The large-scale field demonstrations 
ESTCP sponsored demonstrated the feasibili-
ty of significantly reducing the costs of UXO 
cleanup by deploying advanced sensor tech-
nologies coupled with classification algo-
rithms. While the existing set of hardware 
tends to be heavy, bulky, power-hungry and 
relatively fragile, some systems have been 
transitioned to production companies under-
taking large-scale UXO remediation projects. 
Another iteration in hardware development 
will be required before large numbers of field 
personnel possess rugged, lightweight and 
field-ready instrumentation. The future pros-
pects for achieving significant reductions in 
the costs and time frames required for UXO 
remediation are extremely promising and 
worthy of future investment. 

See endnotes page 67

The authors would like to acknowledge the 
Strategic Environmental Research and Devel-
opment Program and Environmental Security 
Technology Certification Program for support-
ing the research and field studies described 
here. This paper was prepared using funding 
from SERDP Project MR-1629.  

Laurens Beran completed his Master 
of Science and doctorate degrees in 
geophysics at the University of British 
Columbia in Vancouver, Canada. He 
is a geophysicist with Black Tusk 
Geophysics and a research associ-
ate at UBC. He specializes in devel-
opment and application of statistical 
algorithms for UXO classification. 
Laurens is principal investigator on 
two Strategic Environmental Research 
and Development projects examining 
practical classification techniques.

Laurens Beran
Research Geophysicist
Black Tusk Geophysics
Suite 112A, 2386 East Mall
Vancouver, BC V6T 1Z3 / Canada
Email: laurens.beran@btgeophysics.com
Website:   
   http://www.btgeophysics.com

Barry Zelt received his Master of 
Science and doctorate in geophysics 
from the University of British Columbia. 
Until recently his world revolved around 
crustal-scale seismology, but since 
2010 he has specialized in UXO detec-
tion and classification. He is the primary 
programmer of Black Tusk’s interactive 
classification software. He is also an ex-
perienced user of the software as an an-
alyst of several Environmental Science 
Technology Certification Program 
live-site demonstration datasets. 

Barry Zelt
Research Geophysicist 
Black Tusk Geophysics
Email: barry.zelt@btgeophysics.com

Stephen Billings has more than 16 
years of experience working with 
geophysical-sensor data, including 10 
years where he mostly concentrated 
on improving methods for UXO detec-
tion and characterization. He is the 
president of Black Tusk Geophysics, 
Inc. and an adjunct professor in Earth 
and Ocean Sciences at the University 
of British Columbia. He has been a 
principal investigator on 10 completed 
munitions detection-related projects 
sponsored by Strategic Environmental 
Research and Development and the 
Environmental Science Technology 
Certification Program. He is 
based in Brisbane, Australia.

Stephen Billings
President
Black Tusk Geophysics
Email:  
   stephenbillings@btgeophysics.com

Research and Development
CALL FOR PAPERS

Research and Development Section Sponsored by

The Journal of ERW and Mine Action is seeking submissions for 
publication in its peer-reviewed Research and Development section. All  

articles on new and current trends and concepts in R&D will be considered.

Please submit materials to:
Editor-in-Chief, The Journal of ERW and Mine Action

Email: cisreditor@gmail.com

For complete submission guidelines:
http://cisr.jmu.edu/journal/index/guidelines.htm



67

A.3. Practical strategies for classification of unexploded ordnance.

L. S. Beran, B. C. Zelt, L. R Pasion, S. D. Billings, K. A. Kingdon, N. Lhomme, L. Song,

D. W. Oldenburg (2012). Practical strategies for classification of unexploded ordnance.

Geophysics, 78, pp. E41− E46.



Practical strategies for classification of unexploded ordnance
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ABSTRACT

We present practical strategies for discriminating between buried unexploded ordnance
(UXO) and metallic clutter. These methods are applicable to time-domain electromag-
netic data acquired with multi-static, multi-component sensors designed for UXO clas-
sification. Each detected target is characterized by dipole polarizabilities estimated via
inversion of the observed sensor data. The polarizabilities are intrinsic target features
and so are used to distinguish between UXO and clutter. We illustrate this processing
with four data sets from recent field demonstrations, with each data set character-
ized by a number of metrics of data and model quality. We then develop techniques
for building a representative training data set and show how the variable quality of
estimated features affects overall classification performance. Finally, we demonstrate
a technique to optimize classification performance by adapting features during target
prioritization.

INTRODUCTION

Since 2009, the Environmental Science Technology Certification Program (ESTCP) has con-
ducted a series of field demonstrations to test technologies for detection and classification of
unexploded ordnance (UXO). Beginning with a relatively simple classification task (identi-
fication of large 4.2” mortars at Camp Sibert, Billings et al. (2010)), the demonstrations
have progressively increased in difficulty. Most recently, the 2011 Camp Beale demon-
stration required classification of small items (37 mm projectiles and fuzes) in challenging
terrain. Throughout the demonstration program, advanced classification technologies have
significantly outperformed conventional approaches (Prouty et al. (2011), Shubitidze et al.
(2011), Steinhurst et al. (2010), Billings et al. (2010)). For example, standard classification
with Geonics EM-61 sensor data at Camp Beale required excavation of 56% of non-UXO
in order to find all UXO (Pasion et al., 2012). In contrast, a typical advanced classification
result identified the same set of UXO with only 20% of non-UXO dug. This reduction in
false alarm rate results in significant cost savings during site remediation. These successes
rely upon:

1. Multi-static, multi-component time-domain electromagnetic (TEM) sensor data. Fig-
ure 1 shows the MetalMapper sensor, developed under ESTCP for UXO classifica-
tion. The sensor is comprised of three orthogonal transmitters and seven receiver
cubes measuring the EMF induced by the decaying secondary magnetic field radiated
by a buried conductive target (Prouty et al., 2011). Other “next generation” TEM
systems designed for UXO classification include: the Time-domain Electro-Magnetic
Multi-sensor Towed Array Detection System (TEMTADS, Steinhurst et al. (2010)),
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Figure 1: Metalmapper sensor. Left: deployment at Pole Mountain. Right: sensor geome-
try. Transmitters and receivers are indicated by dashed and solid lines, respectively.

the One-Pass TEM array (OPTEMA, Billings (2011)), the hand-held Berkeley UXO
Detector (BUDHH, Gasperikova et al. (2011), and the Man-Portable Vector sensor
(MPV, Lhomme (2012)). All of these sensors rely upon multi-static geometries to
ensure diverse excitation of the target response.

Most multi-static platforms are deployed in a cued mode: targets identified in an
initial detection survey are re-visited and interrogated with a few soundings. For
example, the MetalMapper acquires cued data for each target at a single location,
ideally directly on top of that target.

2. Advanced processing algorithms to extract intrinsic target parameters from observed
TEM sensor data. Most commonly, the TEM dipole model is used to parameterize
the response of a confined conductor. The rate of change of the secondary magnetic
field (Bs) measured by a sensor is computed as

∂Bs

∂t
(r, t) =

p(t)

r3
(3(p̂(t) · r̂)r̂− p̂(t)) (1)

with r = rr̂ the separation between target and observation location, and p(t) = pp̂ a
time-varying dipole moment

p(t) =
1

μo
P(t) ·Bo. (2)

The induced dipole is the projection of the primary field Bo onto the target’s polar-
izability tensor P(t) (Bell et al., 2001). The positive eigenvalues Li(t) (i = 1, 2, 3) of
P(t) are termed the principal polarizabilities. They are intrinsic to the target and so
can be used to make classification decisions.

Estimation of dipole model parameters via nonlinear inversion of observed sensor data is
critical to successful classification. Inversion algorithms that handle multi-object scenarios
(Bell (2006), Song et al. (2011)) and magnetic soil response (Pasion, 2007) are required to
handle the complications encountered in real data. In particular, data acquired over a de-
tected anomaly are always processed with, at a minimum, single and two-object inversions.
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The dipole polarizabilities from all models are then fed into the subsequent classification
stage.

We emphasize that quality control (QC) via careful visual inspection of data fits is
necessary to ensure that recovered parameters are reliable. Guided by data and model
quality metrics (see table 1), we look for problematic cases where low SNR, neighboring
targets, or faulty receivers adversely affect parameter estimation. If an expert analyst
decides that no reliable model can be recovered from the observed data, the detected target
is labeled as “can’t analyze” and must be dug. With good quality data and advanced
processing techniques, these cases typically comprise a small proportion (< 1%) of the total
number of detected targets.

Classification decisions are made using features derived from estimated dipole polariz-
abilities. The total polarizability

Ltotal(tj) =

3∑
i=1

Li(tj) (3)

can be useful when secondary and tertiary (L2, L3) polarizabilities are poorly constrained.
A simple representation in terms of size and decay parameters is similarly useful for vi-
sualizing the variability of target features and can give good classification results. These
parameters are computed as

size = log10

⎛
⎝

N∑
j=1

Ltotal(tj)

⎞
⎠

decay(tk, tj) =
Ltotal(tk)

Ltotal(tj)
,

(4)

withN the number of time channels. The decay parameter is usually computed with tk > tj ,
so that a smaller value of decay is diagnostic of a faster decaying total polarizability. A
logarithmic transformation is applied in the computation of the size parameter to account
for the exponential variability of the polarizabilities. In moving from using polarizability
features to using only size and decay features, useful classification information may be lost.
For example, two targets that are very close in size/decay space may have very different
polarizability features. However, as will be demonstrated, a reduced feature set can still
provide good classification performance in difficult scenarios where some polarizabilities
may be poorly constrained.

Given estimated features, a wide variety of algorithms can be used to classify detected
targets. An intuitive, rule-based approach is to rank targets based upon the match of
polarizability estimates to a pre-defined library of UXO responses (e.g. Shubitidze et al.
(2011)). Alternatively, statistical classifiers can be used to design a decision rule that is
some (generally nonlinear) combination of input features (Lee et al. (2007), Benavides et al.
(2009), Zhang et al. (2008), Liu et al. (2008)). Regardless of the classification approach,
the output of any classifier is a continuous decision statistic that is used to rank targets in
the dig list. Note that in the classification stage UXO are often referred to as “targets of
interest” (TOI), while metallic clutter is termed non-TOI.

In this paper we examine how estimated dipole polarizabilities can be used to discrimi-
nate between UXO and harmless metallic clutter. Inversion and quality control are impor-
tant prerequisites to this discussion, and detailed presentations of relevant algorithms can be
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found in Shubitidze et al. (2011) and Song et al. (2012). Our emphasis here will be on prac-
tical and objective classification techniques that have been developed and tested through
the course of the ESTCP demonstration program. For brevity we restrict our presentation
to MetalMapper data sets from recent ESTCP demonstrations. However, the techniques
presented here are generally applicable to classification with dipole polarizabilities derived
from arbitrary TEM sensor data.

The remainder of this paper is organized as follows. We first introduce MetalMapper
data sets acquired for recent ESTCP demonstrations. We then develop methods for selecting
a representative training data set of targets with known ground truth. The training data
set is subsequently used to classify the remaining, unlabeled targets. Finally, we explore
how the choice of features affects classification performance.

ESTCP METALMAPPER DATA SETS

Table 1 summarizes four MetalMapper data sets acquired for ESTCP demonstrations con-
ducted in 2010 and 2011. For each data set we compute a number of data and model quality
metrics:

(a) DS is median data shoddiness - an ad hoc measure of data/model inferiority. DS
combines several different measures: (1) data misfit (residual divided by observed); (2)
correlation between observed and predicted data; (3) jitter (point-to-point difference)
in the observed data; (4) fraction of data above the standard deviation; and (5) size
of the difference between secondary and tertiary polarizabilities (L2 and L3). Lower
values of DS are better.

(b) MSNR is median model signal-to-noise ratio calculated using predicted and residual
data - higher values are better.

(c) Pol. Qual. is median polarizability quality - an ad hoc measure of polarizability
smoothness and shape - higher values are better.

(d) L123 Msft is the median minimum misfit with all reference items calculated using all
three polarizabilities (L1, L2 and L3) - lower values are better.

Decay versus size feature space plots with ground truth information for all data sets are
shown in figure 2.

Camp Beale

MetalMapper data were collected at the Camp Beale (California) live site demo (July 2011)
by two different production groups: (1) Parsons (P); and (2) CH2M Hill (C). The two groups
used the same instrument and, as far as is known, acquisition parameters. Differences in the
two data sets should be due primarily to field practices which could, for example, affect the
accuracy with which the instrument was centered over an anomaly, or processing approach
(such as selection of appropriate background files for background noise subtraction). Total
number of anomalies in the Beale data set is 1438 with 131 of these being UXO. The UXO
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Dataset N (All) N
(UXO)

DS
(All)

DS
(UXO)

MSNR
(All)

MSNR
(UXO)

Pol.
Qual.
(UXO)

L123
Msft
(UXO)

Beale P 1438 131 1.42 0.30 40.60 157.00 3.48 0.25
Beale C 1438 131 1.68 0.48 17.30 146.00 3.15 0.32
Butner 2304 171 1.20 0.07 60.10 192.00 2.64 0.41
Pole 2370 160 0.66 -0.69 146.00 250.00 6.78 0.12

Table 1: Data and model quality metrics for MetalMapper ESTCP demonstration data
sets. Metrics are described in more detail in the text. All/UXO refers to all anomalies and
UXO anomalies, respectively. N is the number of anomalies. Larger font values displayed in
bold and italics correspond to the best/worst values for each measure, respectively. Beale
P refers to data collected by Parsons at Camp Beale; Beale C refers to data collected by
CH2M Hill at Camp Beale using the same instrument.

fall into five classes: (105mm, 81mm, 60mm, 37mm and a small “industry standard object”,
or ISO). Smaller items such as fuzes are treated as clutter in these data.

By most measures of data and model quality, the Parsons MetalMapper data is slightly
better than the CH2M Hill data set (table 1). Even for UXO with the poorest quality
data the recovered primary polarizabilities using Parsons data are reasonably accurate with
respect to the polarizabilities of the known item based on ground truth. For the CH2M
Hill data, however, there are 2 UXO for which the recovered primary polarizabilities do not
closely match any reference polarizability.

The generally good separation between UXO and non-UXO in figure 2a suggests that
classification should be relatively straightforward for the Beale P data set. For the Beale C
data (figure 2b) the separation of TOI from non-TOI items is similar to the Beale P data
set, but there are a few challenging TOI that are quite distant from their expected location
in feature space.

Camp Butner

The Former Camp Butner (North Carolina) cued MetalMapper data set was collected in
September 2010. Two different MetalMapper sensors were used to collect data. About
60 percent of the anomalies were collected with an older instrument that produced mea-
surably poorer quality data than the newer instrument, in part because some of the re-
ceiver/transmitter components tended to malfunction. A fairly large number of the anoma-
lies (15 percent) were recollected. Total number of anomalies in the Butner data set is
2304 with 171 of these being UXO. The UXO fall into three classes: (105mm, 37mm and
large M48 fuzes). By some objective measures the Butner data are better than the Beale
data, but the recovered models for UXO tend to be poorer in quality, resulting in larger
misfits with respect to reference items (table 1). Relative to the Beale data sets, some of
the UXO in figure 2c (fuzes and fast-decaying 37mm projectiles) overlap the main cluster
of non-UXO, suggesting that classification will be more challenging.
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Pole Mountain

Finally, the Pole Mountain (Wyoming) cued MetalMapper data set was collected in July-
August 2011. By any objective measure, the quality of this data set is excellent and is
superior to both the Beale and Butner data sets (table 1). The good separation between
UXO and non-UXO and tight clustering of the UXO in figure 2d attest to the high quality of
the data set, and suggest that classification should not be too difficult, especially compared
to the more difficult Butner data set. The total number of anomalies in the Pole Mountain
data set is 2370 with 160 of these being UXO. The UXO fall into six classes: (Stokes
mortar, 75mm, 60mm mortar, 57mm, 37mm and small ISO). In the original analysis this
data set was divided into two parts, representing a 2 year study. For the purposes of this
retrospective study, we use the combined data set.



B
era

n
et.

a
l

7
P
ra
ctica

l
stra

teg
ies

fo
r
U
X
O

cla
ssifi

ca
tio

n

0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Size

Non-TOI
37mm
57mm
60mm
75mm
ISO
Stokes

0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Size

D
ec

ay

Non-TOI
37mm
105mm
Fuze

0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 Non-TOI
37mm
60mm
81mm
105mm
ISO

0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

D
ec

ay

Non-TOI
37mm
60mm
81mm
105mm
ISO

(d) Pole Mtn(c) Butner

(a) Beale P (b) Beale C

Figure 2: Estimated MetalMapper size/decay features for ESTCP demonstration data sets. Displayed variables are dimensionless.
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DEFINING THE TRAINING DATA

Successful classification with rule-based or statistical algorithms depends upon a training
data set that is a representative sample of the (unlabeled) test data. Once data have been
acquired and inverted, estimated features for all targets must be carefully inspected and
selected items labeled (dug) to identify novel UXO types that have not yet been encountered
in the ground truth, or to identify outliers to known UXO classes. Liu et al. (2008) take
an information-theoretic approach to this problem: they iteratively label targets to reduce
the overall uncertainty in the parameters of their classifier.

We use an intuitive approach to build the training data set. During quality control of
data fits, we carry out a “supervised” analysis by manually identifying targets that closely
correspond to known TOI polarizabilities. We then define polygonal regions of interest in
size/decay feature space, as shown in figure 3. Within each region of interest we carry out
a cluster analysis of the test data polarizabilities as follows:

(a) We compute a (symmetric) misfit matrix M with elements

Mjk =

N∑
i=1

(
log(Lj(i))− log(Lk(i))

)2
, (5)

with Lj(i) the polarizability for the jth target at the ith time channel. For each test
item we therefore compute the misfit of its log-transformed polarizabilities with all
other test items. The misfit can be computed over all polarizabilities, or with the
total polarizability.

(b) We identify clusters of targets with self-similar polarizabilities. Our criteria for defin-
ing a cluster is a set of at least Ncluster (usually ≥ 3) targets for which the maximum
mutual misfit is less than a specified threshold. The misfit threshold acts as a regu-
larization parameter: a lower threshold specifies fewer clusters with fewer members,
but with greater self-similarity of the members

(c) We merge clusters from the unsupervised analysis with targets identified by the su-
pervised analysis: if any target in a cluster was manually identified as a TOI, then all
targets in that cluster are considered TOI.

(d) Finally, we request ground truth for selected targets within each cluster. For clusters
which are not associated with known TOI, we request a small number (∼ 3) of rep-
resentative targets, e.g. defined by the smallest mutual misfits within the cluster. In
the case of clusters associated with known TOI, our aim is to identify the maximum
extent of the cluster in polarizability space. This queries the region of feature space
corresponding to the greatest overlap between TOI and non-TOI and guards against
outlying TOI that may appear similar to clutter.

FEATURE SELECTION

The choice of classification features is dictated by the quality of the recovered polarizabili-
ties. As illustrated in figure 4a, in the ideal case there is a close match between the estimated
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Figure 3: Clustering Beale P features to identify TOI. Feature vectors within a user-defined
polygon (solid black) are clustered based upon their polarizability misfit (equation 5). Vec-
tors within a pre-defined misfit threshold of their closest neighbor are assigned to the cluster
and are displayed with a solid color in the size-decay space, with a black dashed line defining
the extent of the cluster. Inset plot shows corresponding polarizability features for clustered
targets, with the dashed line median polarizabilities of the cluster members. SOI and 2OI
denote vectors from single and two-object inversions, respectively.

polarizabilities for a UXO and the library polarizabilities for that item’s class. This is the
usual situation for the majority (∼ 95%) of UXO encountered in ESTCP demonstration
data sets. When a multi-static sensor is properly centered over an isolated target, near
perfect recovery of polarizabilities is expected.

In more challenging scenarios however, some of the estimated polarizabilities can deviate
from the expected, reference values, as shown in 4b. The secondary and tertiary polariz-
abilities, in particular, are sometimes poorly constrained. This is because these parameters
are sensitive to low SNR data that may arise, for example, when the sensor is poorly
positioned, the target is near its maximum detectable depth, or an incorrect background
correction is used in processing. In addition, background geologic response or overlapping
target signatures that are not properly accounted for in the inversion can act as significant
noise sources. If the SNR remains sufficiently high, we may still be able to recover a reli-
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Figure 4: Example polarizability estimates for three targets (a-c) from the Beale P data
set. Insets show polarizability estimates (solid lines), reference polarizabilities (dashed
lines), and ground truth photos corresponding to indicated size/decay features.

able primary, or total, polarizability, as in b. In the worst case (figure 4c), all estimated
polarizabilities will be poorly constrained and a classification strategy that relies solely on
polarizability matching may fail to find these difficult UXO. The simplest representation in
size/decay space may help to identify these outliers sooner than a strategy that relies on
polarizabilities throughout classification. We also remark that a rule-based approach that
prioritizes larger, slow-decaying items (on the basis of size/decay parameters) may identify
novel UXO that are not in our polarizability library (e.g. the Stokes mortar in the Pole
Mountain data set, figure 2d)

Figure 5 compares receiver operating characteristics (ROCs) for rule-based classifiers
trained on the following features:

(a) L123: library matching using all polarizabilities

(b) L1: library matching using primary polarizability

(c) Ltot: library matching using total polarizability

(d) Size/decay: threshold on linear combination of size/decay features.
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Within each data set all classifiers used the same set of labeled targets, generated via the
clustering procedure outlined in the previous section.

We remark that overall data and model quality metrics in table 1 are generally predictive
of classification performance. In the best case (Pole Mountain), excellent performance is
obtained using all feature sets. The optimal performance at Pole Mountain is obtained
using a classifier that uses all polarizabilities. However, for mediocre data sets (Beale P and
Butner) classifying with all polarizabilities produces good initial performance but later has
difficulty finding targets with poorly constrained L2 and L3. This results in a high false
alarm rate. More conservative feature sets (i.e. size/decay, L1) produce much lower false
alarm rates for these data sets. Finally, for the most challenging data set (Beale C) the
size/decay and L1 features still provide an improvement over using all polarizabilities, but
no objective classification strategy can find the outlying UXO in this case.
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Figure 5: Receiver operating characteristics for classification strategies applied to ESTCP
MetalMapper data sets. Markers indicate the point on each ROC at which all UXO are
found. Bracketed numbers in legends indicate the required number of non-TOI digs for
each method.

The variable quality of polarizability features within a given data set suggests a clas-
sification strategy that adapts features as digging proceeds. Figure 6 shows one possible
approach: we initially dig using all polarizabilities and then switch to a more conservative
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feature set - in this case Ltotal. The point at which to switch can be identified on a plot
of the sorted decision statistic. In this context the decision statistic is based on the min-
imum misfit of the estimated polarizabilities with library polarizabilities. Analogous to a
Tikhonov curve (Oldenburg and Li, 2005), we select the point on the (normalized) deci-
sion statistic curve closest to the origin as the point to switch between feature sets. This
produces an ROC intermediate to classification with the individual feature sets: with the
two-stage classifier we get good initial performance using all polarizabilities and the same
false alarm rate as when we use Ltotal throughout.

0 500 1000 1500 2000 2500
0

5

10

15

20

Dig number

D
ec

is
io

n 
st

at
is

tic

188

0 500 1000 1500 2000

80

100

120

140

160

Number of non-TOI digs

N
um

be
r 

of
 T

O
I d

ig
s

Butner

L123 (1410)
Ltot (726)
L123/Ltot (726)

Figure 6: Two-stage classification. Left: plot of the sorted decision statistic for first stage
(all polarizabilities) classifier. Blue circle indicates automatically-selected point at which we
switch to classification with total polarizabilities. Right: comparison of ROCs for classifiers
applied to Butner data set. Two stage classifier is denoted L123/Ltot. Two stage classifier
and classifier trained on total polarizability only (Ltot) achieve the same false alarm rate.

CONCLUSIONS

While data from multi-static, multi-component TEM sensors such as the MetalMapper
generally support reliable classification, care is still required in the analysis of each data
set. As exemplified by the the Beale C and P data sets, different operators using the same
sensor at the same site can strongly affect data quality. The challenge for the data analyst is
then to recognize problems with the data and adapt the classification strategy accordingly.

When requesting training data, we use a combination of manual identification of likely
TOI during quality control and user-guided clustering to determine the extents of the dis-
tributions of TOI and to identify novel target classes. This has produced good performance
on the demonstration data sets considered here. This approach may fail if there are small,
unique targets of interest (e.g. fuze components) hidden within the clutter “cloud” in fea-
ture space. Developing objective and reliable criteria to find these items is an ongoing
research challenge.

Practical experience with ESTCP demonstration data sets has shown that feature selec-
tion is critical to successful classification. While information is lost when the feature space
is reduced to the primary (or total) polarizability or size/decay features, these parameters
retain sufficient information to produce good classification performance while preventing
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outlying TOI from occurring late in the dig list.
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