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1 INTRODUCTION 

This demonstration is designed to illustrate the discrimination performance at a challenging live-

site of advanced electromagnetic induction (EMI) modeling approaches, that are based on the 

normalized surface magnetic source NSMS model. The model is an extension of the simple 

dipole model, and provides better accuracy and discrimination ability. The approach combines 1. 

the NSMS for modeling targets EMI responses; 2. the differential evolution (DE) algorithm for 

nonlinear optimization to locate the target, and 3. Statistical classification approach for 

classifying targets as UXO and non-UXO. The study used cued data sets collected at San Luis 

Obispo, Calaifornia using three next-generation EMI sensors, the Geometrics MetalMapper 

(MM), the Time-domain Electro-Magnetic Towed Array Detection System (TEMTADS) 

developed by the NRL and G&G Sciences, and Berkley UXO Discriminator (BUD) developed at 

the Lawrence Berkeley National Laboratory (LBNL). The site was contaminated with 60 mm, 81 

mm, 2.36 inch and 4.2 inch  munitions. During this study, first targets extrinsic (location and 

depth) and intrinsic (the total NSMS, which depends on its size, shape and material properties) 

parameters were estimated from the data. Then, the inverted intrinsic parameters were used to 

classify the targets, and finally, sensor-specific dig-lists were generated for each EMI instrument 

and submitted to the Institute of Defense Analyses (IDA) for independent scoring. 

1.1 Background 

The Environmental Security Technology Certification Program (ESTCP) has recently launched a 

series of live-site UXO blind tests taking place in increasingly challenging and complex 

environments [1-4]. The first classification study was conducted in 2007 at the UXO live-site at 

the former Camp Sibert in Alabama using two commercially available first-generation EMI 

sensors (the EM61-MK2 and the EM-63, both from Geonics) [1]. At that site, the discrimination 

test was relatively simple: one had to discriminate large intact 4.2 mortars from smaller range 

scrap, shrapnel and cultural debris, and the anomalies were very well separated. 

The second ESTCP discrimination study took place in 2009 at the live-UXO site at Camp San 

Luis Obispo (SLO) in California and featured a more challenging topography and a wider mix of 

targets of interest (TOI) [4]. Magnetometers and first-generation EMI sensors (again the Geonics 

EM61-MK2) were deployed on the site and used in survey mode for a first screening. 

Afterwards, two advanced EMI sensing systems—the Berkeley UXO Discriminator (BUD) and 

the Naval Research Laboratory’s TEMTADS array—were used to perform cued interrogation of 

a number of the anomalies detected. A third advanced system, the Geometrics MetalMapper, was 

used in both survey and cued modes for anomaly identification and classification. Among the 

munitions buried at SLO were 60-mm, 81-mm, and 4.2 mortars and 2.36 rockets. 

  

1.2 Brief site history 

Please refer to the ESTCP Live Site Demonstration Plan [3]. 
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1.3 Objective of the demonstration 

The advanced EMI models we present here (NSMS and JD) were developed under SERDP 

Project MM-1572 [5] and tested against TEMTADS data sets collected at the Aberdeen Proving 

Ground (APG) test site in Maryland [6-10]. The present test of discrimination performance 

considers data taken at SLO. This live site was contaminated with 60-mm, 81-mm, and 4.2 

mortars and 2.36 rockets; and three additional types of munitions were discovered during the 

course of the demonstration. 

Overall, the principal objective of this demonstration was to demonstrate the models’ 

classification performance for live-site UXO problems. The specific technical objectives were to: 

1. Demonstrate the classification accuracy of the NSMS model and its applicability to live-site 

UXO discrimination problems in terms of the signal to noise ratio and number of targets. 

2. Illustrate and document the robustness of the data inversion and discrimination models. 

3. Invert targets’ intrinsic parameters and identify robust classification features. 

4. Indentify all seeded and native UXO. 

5. Indentify sources of uncertainty in the classification process and include them in a dig/no-

dig decision process. 

6. Understand and document the applicability and limitations of the advanced EMI 

discrimination technologies in the context of project objectives, number of targets, site 

characteristics, and suspected ordnance contamination. 
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2 TECHNOLOGY 

The advanced EMI models and statistical signal processing approaches have been developed and 

tested under this SERDP Project MM-1572 [5]. Namely the methods were tested against the 

TEMTADS data sets  from the APG test-site. The methods were able to detect and identify 

buried UXO ranging in caliber from 25 mm up to 155 mm. The technique was seen to be 

reasonably fast, accurate, and clutter-tolerant, and provided excellent classification in single-

target scenarios when combined with multi-axis/transmitter/receiver sensors like TEMTADS 

[11]. To further evaluate the performance of this technology, in this work advanced EMI data 

inversion and classification studies are conducted for SLO, CA live-site.  

We start our technology description with the overview of the NSMS (section 2.1), which we use 

to represent the signatures and extract the properties of subsurface targets in an efficient manner. 

In Section 2.2 we outline the Gaussian mixture model for target classification. In Section 2.3 we 

discuss the geometries and sensing modalities of the advanced EMI sensors, as well as the 

procedures we have in place to model the way the sensors establish primary fields and measure 

subsurface responses. We first describe the MetalMapper, and then continue with TEMTADS 

and BUD. Finally, in Section 2.4 we present the SLO data sets classification results obtained 

using the combined NSMS approach and advanced classification procedures. 

2.1 The Normalized Surface Magnetic Source model  

The most frequently used method for representing the EMI response of a metallic target in both 

frequency and time domains approximates the whole object with a set of orthogonal co-located 

point dipoles that fire up in response to the primary field; the induced dipole moment is related to 

the primary field through a symmetric polarizability tensor. The use of this dipole approximation 

is motivated by its speed and simplicity; this simplicity, however, rests on assumptions that often 

become problematic and limit the model’s usefulness. One such assumption is that the buried 

target of interest is either far enough from the transmitter loop, or small enough, that the primary 

field is essentially uniform throughout its extent. Usually, complex targets composed of different 

materials and different sections that contribute appreciably to the response—and, in the case of 

UXO, containing such complicating features as fins and rings—simply cannot be modeled 

accurately with a single point dipole. Such cases require more advanced methods that will 

capture the underlying physics correctly. One such technique is the NSMS model. 

The NSMS method [12-15] can be considered as a generalized surface dipole model, and indeed 

reduces to the point dipole model in a special limiting case. The NSMS approach models an 

object’s response to the primary field of a sensor by distributing a set of equivalent elementary 

magnetic sources—normally oriented dipoles in this case—over an auxiliary surface that 

surrounds it. Such a surface distribution can be hypothetically generated by spreading positive 

magnetic charge over the outer side of the equivalent surface (usually a prolate spheroid) and an 

identical distribution of opposite sign on its inner side [16], resulting in a double layer of 

magnetic charge separated by an infinitesimal distance. This double layer introduces the proper 

discontinuities in the tangential components of the magnetic flux density vector B  but does not 

affect the transition of its normal component, which must always be continuous given the lack of 

free magnetic charges in nature. The resulting magnetic-moment distribution radiates a field that 
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by construction satisfies the governing EMI equations and can thus account for the secondary 

field outside the object. The particulars of location and orientation are divided out by 

normalizing the dipole density at every point with the component of the primary magnetic field 

normal to the surface. The resulting surface amplitude   of the NSMS distribution is a property 

of the object, and its integral Q  over the surface constitutes a sort of global magnetic 

polarizability that is independent of the computational constructs—primary field, surrounding 

surface, object location and orientation, etc.—introduced for its determination. The surface 

amplitude can be determined directly for library-matching purposes by minimizing the difference 

between measured and modeled data for a known combination of object and sensor at a given 

relative location and orientation. 

The NSMS model is based upon the assumption that the entire scatterer can be replaced with a 

very thin auxiliary surface shell. The primary magnetic field strikes the shell and induces on it a 

surface magnetization. The normal component of the magnetic field flux is always continuous 

across a boundary (no free magnetic charges exist in the universe) between two media, the total 

scattered magnetic field can be represented with surface magnetic sources as 

 sc ( ) ( , ) ( ') ( , ) ( ') ( ')pr

S S
G s ds G s s ds        

  H r r r m r r M H  (1) 

where 

 
3 2

1 3
( , ) ,    =

4
I

R R

 
    

 

RR
G r r R r r . (2) 

Thus the EMI response of a permeable and conducting metallic object can be represented using 

a surface density on magnetic dipoles m(s'), that is proportional to a normalized surface 

distribution ( ')sM  through 

 pr( ) ( ') ( )s s s  m M H , (3) 

the integral of ( ')sM over the surface provides the total NSMS, ( ')total
S

s ds M M ,  contains all 

the information about an object that could be of need in the UXO discrimination problem, 

incorporating the effects of heterogeneity, interaction with other objects, and near- and far-field 

effects.  

2.2 Gaussian mixture models 

2.2.1 Model-based supervised clustering  

Targets of interest (TOI) with similar features (i.e., dipole polarizabilities or total NSMS) are 

likely to show similar power-law/exponential time decay patterns under various conditions, and 

as a result these patterns form clusters when plotted in a convenient and pertinent space. It is 

possible to identify an unknown target by comparing its time-decay parameters to those of a set 

of previously characterized, previously clustered objects and assigning it to the category where 

its profile fits best. Such “supervised” clustering allows the use of additional information from 

the training data as prior knowledge; on the other hand, it uses only the training set to estimate 

the parameters and completely ignores the blind data, which is potentially quite useful. The test 
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data set, moreover, is usually much larger than the training sample, implying that the unused 

information may be substantially richer than what is contained in the training sample. 

Let us assume that there are K clusters and that each cluster is mathematically described by a 

parametric continuous or discrete distribution function (usually a Gaussian, as in this case). The 

classification parameters (extracted for example by fitting the total NSMS or ONVMS with a 

Pasion-Oldenburg time-decay law) can then be arranged in an n  m matrix denoted by 

Y = [Y1, Y2, …, Ym], where Yi, i = 1, 2, …, n, is a vector, n is the number of anomalies, and m is 

the number of parameters. Each Yi can be considered to follow an m-dimensional mixture of 

normal distributions expressed as 

 F(Y
i
)  w

k
f

i
(Y

i
|

k
,

k
)

k1

K

 , (4) 

where w
k
 is the mixing weight of cluster k  (defined as the proportion of anomalies that belong 

to it), 
k1

K w
k
 1 , and 

 f
i
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i
|

k
,

k
) 

1


k
(2 )m

exp 
1

2
(Y

i
 

k
) 

k

1(Y
i
 

k
)







 (5) 

is the probability density of the k-th normal distribution with the m1  mean vector 
k
 and the 

mm  variance-covariance matrix 
k
. The parameters 

k
, 

k
, and w

k
 are estimated by the 

maximum likelihood (ML) criterion using the Expectation Maximization (EM) algorithm. 

This simple and intuitive supervised method usually performs well if the number of TOI within 

each known cluster in the training sample is sufficiently large to ensure high accuracy of the 

estimates of 
k
 and 

k
. For small training samples these estimates are subject to large errors—

in some cases, if the number of targets within a cluster is smaller than the number of parameters, 

the estimated variance-covariance matrices may not even be positive definite. Furthermore, 

much information from the test dataset has not been fully utilized. The test dataset is usually 

much larger than the training sample, implying that the unutilized information may be 

substantially more than that contained in the training sample. To overcome this problem we use 

unsupervised clustering and derive 
k
 and 

k
 from blind-test data using an iterative EM 

algorithm. 

2.2.2 Unsupervised classification using the multivariate normal mixture approach 

Mixture distribution is perhaps the only model-based approach among existing methods of 

clusterization and pattern recognition. Its attractive features are that (a) it is not necessary to 

specify what class each observation belongs to (i.e., the classification is “unsupervised”) and that 

(b) the method estimates the membership probability which results in confusion matrix  . 

Let x
1
,...,x

n
 be m-dimensional feature vectors that we want to split into K  classes. It is assumed 

that each x
i
 belongs to one of K  classes that are described by densities 

1
(x),...,

K
(x) . If 

k
 0  
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denotes the probability of x  belonging to class k , then the mixture density is the linear 

combination 

 (x) =
k=1

K


k


k
(x) , (6) 

where 

 
k=1

K


k

= 1.  (7) 

In the case of a normal distribution we have 

 
=1

( ; , )
K

k k k

k

N x Ω  (8) 

for the mixture, where the mean kμ  and the covariance matrix kΩ  are different for the different 

clusters and subject to estimation along with probabilities 
k
. Since the density of N(x;

k
,

k
)  is 

 
1/2/2 11
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2

m

k k k k k k k 
  

   
 

x; Ω ) = ( Ω x Ω x   , (9) 

the method of maximum likelihood prescribes the maximization of a nonlinear function: 
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,
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This task is not easy because the function is unbounded (it may go to  ), and this creates 

numerical obstacles. The expectation-maximization (EM) algorithm  is used to determine 


k
,

k
,

k
 as follows: 

1. Let the initial estimates of 
k
,

k
,

k
 be given (for example, we can take 

k
=1/ K , 

=k xΩ S , and 
k
 from K ). 

2. Compute the elements of the confusion matrix   as the probability that a given 

observation x
i
 belongs to class k : 

 

=1
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=
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3. Adjust the probabilities accordingly: 
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1

n


ik
i1

n

 . (12) 
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4. Recompute the means 

 
k

= i=1

n


ik
x

i

n
k

 (13) 

and covariance matrices 

 
2

= ,
2

n x k
k

n k

a

a n





S S
Ω  (14) 

where: 

 S
k

=
i=1

n


ik

(x
i


k
)(x

i


k
) . (15) 

5. If the values are different from the previous iteration return to Step 1 and continue 

until reaching convergence. 

 

2.3 Modeling of advanced EMI systems 

A wide range of different electromagnetic induction sensing technologies, with novel 

waveforms, multi-axis transmitters, and scalar/vector receivers have been recently developed 

under SERDP-ESTCP programs. These advanced EMI sensors—including the MetalMapper, the 

TEMTADS array, and the Berkeley UXO discriminator (BUD) provide measurements that 

feature a combination of high spatial diversity, different viewpoints, and a very wide dynamic 

range and which do full justice to the vector character of the electromagnetic field.  

2.3.1 MetalMapper 

The MetalMapper (MM) is an advanced EMI system for UXO detection and discrimination 

developed primarily by G&G Sciences and commercialized by Geometrics. The system has three 

mutually orthogonal transmitter rectangular loops. It is able to illuminate a target with primary 

fields from three independent directions from a single spatial field point. The 1 m  1 m Z 

transmitter loop is located at ground level. The Y transmitter loop, also 1 m  1 m, is centered 56 

cm above the Z loop, as is the 0.98 m  0.98 m X transmitter (Figure 1). The targets are 

illuminated from different directions depending on the geometry between a particular 

transmitting loop and the target. The system has seven 10-cm-side receiver cubes placed at seven 

unique spatial points on the plane of the Z transmitter loop. The receivers measure the vector 

dB / dt  at each of the seven points, thus providing 63 independent readings of the transient 

secondary magnetic field for each instrument location. The positions of the receiver cubes’ 

centers with respect to the Z transmitter loop (whose center we consider as the local origin of 

coordinates for the system) are given in Table 1. 
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Figure 1: The MetalMapper during SLO site deployment (left) and its schematic diagram (right). 

Table 1: MetalMapper receiver locations with respect to the center of the Z transmitter loop. 

Rx # X [cm] Y [cm] Z [cm] 

0  39  39 5 

1  –26  26 5 

2  13  13 5 

3  0  0 5 

4  –13  –13 5 

5  26  –26 5 

6  –39  –39 5 

 

The MM transmitters are modeled as infinitely thin rectangular wires. The primary magnetic 

induction produced at any observation point r by the T-th loop is determined simply from the 

Biot-Savart law, 

 , ,0

3
1 ,

[ ]
( ) ,   1,2,3

4

TxN
T T i T i

T

i T i

I
T

R



 

 
 

R
B r , (16) 

where, , ,T i T i
 R r r , r

T ,i
is the location of the i-th current element, and ,T i  is the tangential 

length vector for the i-th subsection of the T
th

 loop. In what follows, and unless we note 

otherwise, we divide each transmitter coil into N
Tx
 40  subsections whenever we calculate the 

primary magnetic induction using Eq. (16).  
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Figure 2. The MetalMapper geometry. The observation point r is defined with respect to the 

global Cartesian coordinate system XYZO; r
3,i  is the location of the i-th current element on (in 

this case) the T = 3 transmitter, which carries a current I
3
 in the direction 

3,i
. 

The MM receiver assembly consists of seven cube sensors. Each of these measures along three 

orthogonal directions the induced voltages that, from Faraday’s law, correspond to the negative 

of the time derivative of the secondary magnetic flux through the area spanned by the different 

coils. The induced voltage in the R -th sensor along the  -th direction, where R  0, ,6  and 

  z, y,x , is computed using 

 ,

,

1

( )
ˆ 
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R

N
i i R o

R R i R
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V d s
t t



  




 
     

 


B r rB
s n , (17) 

where s
R

  is the area of the relevant coil (all of which are 10 cm  10 cm squares in 

MetalMapper) and ˆ
n  is the unit vector perpendicular to it, s

i,R

  and r
i,R

  are respectively the i -

th sub-area and vector location point on s
R

 , B
i
(r

i,R

 )  
o
H

i
(r

i,R

 )  is the magnetic induction 

(proportional to the magnetic field H
i
(r

i,R

 ) ) produced at r
i,R

  by a source placed at r
o
. Within the 

NSMS model, H
i
(r

i,R

 )  is calculated using equation (1) in section 2.1. In what follows we always 

divide s
R

  into N
Rx
 4  sub-areas.  
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Figure 3: Photo of the TEMTADS in deployment at APG site (left) and a schematic diagram of 

its Tx/Rx sensors (right). 

2.3.2 TEMTADS   

The NRL time-domain EMI sensor array TEMTADS is a next-generation system designed for 

subsurface target discrimination. The sensor consists of 25 transmit/receive pairs, each composed 

of a 35-cm square transmitter loop surrounding a 25-cm square receiver loop, arranged in a 

rectangular 5  5 grid with 40-cm neighbor-to-neighbor separation [11] (Figure 3). The sensor 

activates the transmitter loops in sequence, one at a time, and for each transmitter all receivers 

receive, measuring the complete transient response over a wide dynamic range of time going 

approximately from 100 microseconds (s) to 25 milliseconds (ms) and distributed in 123 time 

gates. The sensor thus provides 625 spatial data points at each location, with unprecedented 

positional accuracy. 

In modeling for TEMTADS, the transmitter loops are idealized as infinitesimally thin 

35 cm  35 cm square loops. The primary field produced at any observation point by a given 

transmitter loop is determined from equation (16). We use 20TxN   for TEMTADS unless we 

note otherwise. The TEMATDS measured signal is modeled using equation (17), assuming 

  z  throughout and receiver sizes of 25 cm  25 cm and dividing each receiver into 9RxN   

sub-areas.  

 



Demonstration report  Advanced EMI models for SLO 

SERDP 1572 11 August 2012 

 

Figure 4: Schematic diagram of the BUD system. 

2.3.3 BUD 

The Berkeley UXO discriminator (BUD) is an advanced standalone time-domain system 

developed at the Lawrence Berkeley National  to detect and discriminate UXO in the 20-mm to 

155-mm size range, and consists of three orthogonal coil transmitters. The horizontal Z-coils are 

vertically separated by 26 and have a 39  39 footprint. The Y- and X-vertical coils are 

mounted on the diagonals between the Z-coils (see Figure 4): the X-coils are 45.5  23.5 while 

the Y-coils are 45.5  22.5 in size, and both are separated by 6. The BUD illuminates targets 

in three independent directions, which induce eddy currents in all three modes. BUD has eight 

pairs of differenced receiver coils placed horizontally along the two diagonals of the upper and 

lower planes of the Z-transmitter loops. The pairs are located on symmetry lines trough the 

center and are wired in opposition so as to cancel the primary magnetic field during transmission. 

Figure 5 shows the BUD system in operation. 

The BUD transmitter loops were modeled as idealized infinitely thin square loops. The primary 

fields produced at any observation point by the transmitters are determined using a suitable 

modification of equation (16), again with N
Tx
 40 . The BUD measured signals are modeled 

using equation (17) as 

 , 0 , 0

, , , ,

1 1

( ) ( )
ˆ V ,    

Rx RxN N
i i R i i R

R i R i R i R i R

i i

s
t t 

   
       

 
 

B r r B r r
s s s z  (18) 

where r
i,R

and r
i,R

are the locations of the Rx and Rx receivers, given in Table 2. For the case of 

BUD we divide the receivers into N
Rx
 9  sub-areas. 
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Figure 5: The BUD system in operation. 

Table 2: BUD receiver locations with respect to the origin.  

Rx # X [cm] Y [cm] Z 

[cm] 
Rx # X [cm] Y [cm] Z [cm] 

1  35.48 35.48 0 1’ –35.48 –35.48 66 

2  –35.48 35.48 0 2’ 35.48 –35.48 66 

3  –35.48 –35.48 0 3’ 35.48 –35.48 66 

4  35.48 –35.48 0 4’ –35.48 35.48 66 

5  19.29 19.29 0 5’ –19.29 –19.29 66 

6 –19.29 19.29 0 6’ 19.29 –19.29 66 

7  –19.29 –19.29 0 7’ 19.29 19.29 66 

8 19.29 –19.29 0 8’ –19.29 19.29 66 
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2.4  SLO data sets classification results  

Our group conducted SLO classification studies using the advanced EMI models. Namely, the 

combined NSMS-DE algorithm was used for data inversion and classification parameter 

extractions, and library matching and Gaussian mixture models were used for classification. 

Each anomaly was treated as a single well separated target, i.e.  no multi-target scenarios were 

considered. The target response was approximated with set of magnetic dipoles distributed on a 

spherical surface of radius 5 cm. This sphere is divided into 17 subsurfaces, each of which is 

assumed to contain a magnetic-dipole distribution of constant density. Once the location of the 

sphere’s center is determined then the magnitude of each responding source is obtained and the 

total NSMS is calculated. The SERDP Program Office provided us with training data sets for the 

analysis of the algorithms testing performance.  

2.4.1 SLO TEMTADS Classification  

The SERDP office provided us the 188 TEMTADS calibration data, that we used to build a 

library of the expected total NSMS values for TOI. This library was then used on the rest 1282 

test cells for classifying anomalies as TOI-and non-TOI-s. We used all 115 TEMTADS time 

channels that span, in approximately logarithmic fashion, a lapse of time between 100 μs and 24 

ms. The inversion code assumed that the TEMTADS instrument was always placed 30 cm above 

the ground.  

For each data set we run the combined NSMS-DE to estimate object extrinsic (locations and 

depth) and intrinsic (total NSMS) parameters. The inverted total NSMS curves for SLO 

TEMTADS calibration (green lines) and blind data sets (red lines) are depicted in Figure 6 and 

Figure 7 for partial 2.36 rockets, 4.2 mortars, 81-mm projectiles, 2.36 rockets, and 60-mm 

mortars. The results indicate that the inverted and calibration total NSMS time decay curves are 

similar and are good discriminators. Also, as the size of the TOI decreases the inverted total 

NSMS time decay curves show a larger spread, making them harder to discriminate. 
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Figure 6: Inverted total NSMS time decay profiles for the 2.36 partial rocket. The green lines 

depict calibration data and the red lines correspond to blind SLO TEMTADS data sets. 

 
Figure 7: Inverted total NSMS time decay profiles for 4.2 mortars (top left), 81-mm projectiles 

(top right), 2.36 rockets (bottom left), and 60-mm mortars (bottom right) in the SLO 

TEMTADS test. The green lines depict calibration data and the red lines correspond to blind data 

sets. 
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Figure 8: Result of the supervised clustering classification for the SLO-TEMTADS anomalies 

using the logarithms of M


(t
1
)  and M


(t

1
) / M


(t

80
) . The supervised clustering has been trained 

with calibration data. The red markers correspond to clutters and the white ones to TOI. 

Once the total NSMS were determined, the values of log10(  
M


(t

1
) / M


(t

80
) ) versus 

log10(  
M


(t

1
) ) were extracted for each anomaly, and semi-supervised Gaussian mixture model 

was used to classify the targets as TOI-and non-TOI. These values are plotted in Figure 8 for all 

TEMTADS data sets as red and white dots. In addition, Figure 8 shows distribution of the 

Gaussian mixture classification function (color map distributed between blue (zero level) and red 

(maximum value, one) colors). We see that the inverted parameters are well clustered, and, those 

of TOI are noticeably distinct from all others, suggesting that this two-dimensional feature space 

should provide good classification.  

We combined the Gaussian mixture model and library matching classification results and built a 

dig list. The dig list was submitted to the IDA for scoring. The scored results in ROC curve form 

are depicted for all TOI and individual TOI-s in Figure 9 and Figure 10. 
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Figure 9: ROC curve for SLO TEMTADS test data. 

 

 

Figure 10: ROC for SLO TEMTADS data for individual TOI. 
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The results show that our classification approach was able to correctly identify most TOI. It was 

able to classify large  4.2" and  81 mm mortars and well-separated 2.36 " rockets, 60 mm 

mortars, which produced high signal to noise ratios. It had difficulties to tag correctly two 2.36 

rockets and five 60-mm mortars, which were mostly placed with other targets or had small 

signal-to-noise ratios.  

2.4.2 SLO MM Classification  

The SERDP office provided us 2492 SLO cued MM data sets. Each data set was inverted using 

the combined NSMS-DE algorithm for single objects. to extract the extrinsic and intrinsic 

parameters of the targets. The extracted intrinsic parameters (NSMS) were used to classify 

targets as UXO and non-UXO targets and a prioritized dig list was created. The dig list was then 

submitted to the SERDP office for independent scoring, which was carried out by personnel 

from the Institute for Defense Analyses (IDA). Our discrimination results are summarized in 

Figure 11 and Figure 12. Our classification technique was able to correctly identify all big UXO, 

(the 2.36, 81-mm and 4.2 projectiles) for MetalMapper data. The algorithm missclassified only 

one seeded 60-mm mortar, MM anomaly# 1285. The missed TOI was buried at 35 cm depth, and 

the inverted total NSMS for the anomaly are significantly different compared to the total NSMS 

for a library 60 mm mortar, Figure 13. Based on these differences, the anomaly #1285 was 

ranked as non-TOI target.  

 

Figure 11: ROC curve for SLO MetalMapper test data. 
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Figure 12: ROC curve for SLO MetalMapper data sets: individual TOI. 
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Figure 13: The total NSMS for MM anomaly #1285 (solid lines) and a library 60 mm mortar 

(dashed lines).   
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Figure 14: ROC curves for SLO BUD discrimination studies. 

2.4.3 SLO BUD data inversion and classification studies 

The SERDP office also provided SLO BUD data sets (total 539 anomalies) for assessing our 

technology for the BUD system. We adapted NSMS_DE approach to the BUD data sets and 

applied it to first the SLO training data sets (in total 69) and then to SLO live site BUD data. We 

extracted targets intrinsic (total NSMS) and extrinsic parameters for each of the anomalies. The 

discrimination features (size and shape information) were extracted from the total NSMS time 

decay  curve and anomalies were classified using the library matching and Gaussian mixture 

model. The inverted targets were ranked as TOI and non-TOI items. The ROC curve for the SLO 

BUD data sets that was ranked independently in our group, is shown in Figure 14. The studies 

showed that only 2.36 inch rockets were misclassified. In both cases the signals from the missed 

targets were contaminated with signals from nearby non-UXO.  
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3 PERFORMANCE OBJECTIVES 

The performance objectives of this ESTCP live site discrimination study were: to achieve high 

probability of discrimination of UXO from among a wide spread of clutter; to process all data 

sets; to minimize the number of data that could not be analyzed or decided upon; to minimize the 

number of false positives; and to identify all UXO with high confidence. The performance 

objectives are summarized in Table 3. 

 

 

Table 3: Performance objectives 

 

Performance 

Objective 
Metric Data Required Success Criteria 

Maximize correct 

classification of 

munitions 

Number of targets-of-

interest retained 
 Prioritized anomaly 

lists 

 Scoring reports from 

Institute for Defense 

Analysis (IDA) 

Approach correctly 

classifies all targets-of-

interest 

Maximize correct 

classification of non-

munitions 

Number of false alarms 

eliminated 
 Prioritized anomaly 

lists 

 Scoring reports from 

IDA 

Reduction of false 

alarms by > 75% while 

retaining all targets of 

interest 

Specification of no-dig 

threshold 

Probability of correct 

classification and 

number of false alarms 

at demonstrator 

operating point 

 Demonstrator -

specified threshold 

 Scoring reports from 

IDA 

Threshold specified by 

the demonstrator to 

achieve criteria above 

Minimize number of 

anomalies that cannot 

be analyzed 

Number of anomalies 

that must be classified 

as “Unable to Analyze” 

 Demonstrator target 

parameters 

Reliable target 

parameters can be 

estimated for > 90% of 

anomalies on each 

sensor’s detection list. 

Correct estimation of 

target parameters 

Accuracy of estimated 

target parameters 
 Demonstrator target 

parameters 

 Results of intrusive 

investigation 

Total NSMS  ± 10% 
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3.1 Objective: maximize correct classification of munitions 

An effective technology for discrimination of munitions should maximize the number of targets 

of interest (TOI) it can classify as such (thus distinguishing them from non-TOI) with high 

confidence. 

3.1.1 Metric 

Identify all seeded and native TOI with high confidence using advanced EMI discrimination 

technologies. Our estimates, for "High confidence”, were based on using the extracted total 

NSMS as input to statistical classification algorithms and expert judgment. Every anomaly that 

was close to a TOI cluster in feature space (Figure 8) and had 710f  , where f is the probability 

density function of equation (5), was considered to be a possible TOI; the expert then inspected 

the corresponding TNSMS curve for symmetry (manifested by equal secondary and tertiary 

TNSMS) and signal-to-noise ratio. 

3.1.2 Data requirements 

We analyzed data from three instruments, the 5  5 TEMTADS array, the MetalMapper and 

BUD. For each sensor we used supplied training data sets. The training data were used to 

validate the models for each specific sensor. We generated dig-lists that were scored by the IDA 

for TEMTADS and MM, and by ourselves for BUD  test anomalies , respectively. Our studies 

showed that the supplied training data provided a little or no critical information for targets 

classification; Therefore, we suggested to use a custom training data set for future classification 

studies.  

3.1.3 Success criteria evaluation and results 

The objective was considered to be met if all seeded and native UXO items could be identified 

below an analyst-specified no-dig threshold. 

3.1.4 Results 

The objective was not met. Our algorithms classified most TOI correctly, however missed seven, 

one and two TOI for TEMTADS, MM and BUD sensors, respectively. Retrospective analysis 

showed that missed targets were in multi-target environment(see Figure 14), or buried deep and 

had small SNR. 

3.2 Objective: maximize correct classification of non-munitions 

The technology aims to minimize the number of false negatives, i.e., maximize the correct 

classification of non-TOI. 
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3.2.1 Metric 

We compared the number of non-TOI targets that can be left in ground with high confidence 

using the advanced EMI discrimination technology to the total number of false targets that would 

be present if the technology were absent. 

3.2.2 Data requirements 

This objective required prioritized anomaly lists, which our team generated independently for 

each sensor, and for its evaluation we needed scoring reports from the IDA or ground truth from 

the SERDP office for retrospective studies. 

3.2.3 Success criteria evaluation and results 

The objective was considered to have been met if the method eliminated at least 75% of targets 

that did not correspond to TOI in the discrimination step. 

3.2.4 Results 

This objective was not met. In this study, only single object NSMS-DE algorithm was used for 

targets parameters inversion and classification. The classification algorithm was unable to 

classify all TOI-s correctly, particularly in case of multi targets and when targets were buried 

deep i.e. small SNR. To overcome these problems in the future, we developed the ortho-

normalized volume magnetic source (ONVMS) and the joint diagonalization (JD) techniques for 

modeling multi targets response and estimating number of potential targets. The ONVMS and JD 

techniques were successfully demonstrated during camp Butner, NC [17]  and Camp Beale, CA 

[17] ESTCP classification studies. 

3.3 Objective: specify a no-dig threshold 

This project aims to provide a high-confidence classification approach for UXO-site managers. 

A critical quantity for minimizing the residual risk of UXO and providing regulators with 

acceptable confidence is a specific no-dig threshold. 

3.3.1 Metric 

We compared an analyst’s no-dig threshold point to the point where 100% of munitions were 

correctly identified. 

3.3.2 Data requirements 

To meet this requirement we needed scoring reports from the IDA. 

3.3.3 Success criteria evaluation and results 

The objective would be met if a sensor-specific dig list placed all the TOI before the no-dig point 

and if additional digs (false positives) were requested after all TOI were identified correctly. 
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3.3.4 Results 

This objective was not met successfully for all data sets. The stop-dig thresholds, based on the 

library matching and Gaussian mixture model were specified at the point before all TOI were 

identified. Our retrospective studies showed that the missclassified TOI were surrounded by 

other targets, or had small SNR.  

3.4 Objective: minimize the number of anomalies that cannot be analyzed 

Some anomalies may not be classified, either because of the data are not sufficiently 

informative—the sensor physically cannot provide the data to support classification for a given 

target at a given depth—or because the data processing was inadequate. The former is a measure 

of instrument performance for all anomalies for which all data analysts converge. The latter is a 

measure of the quality of a data analysis, when a target diagnostic differs from those made by 

other analysts. 

3.4.1 Metric 

The metric for this objective is the number of anomalies that cannot be analyzed by a particular 

method, and the intersection of all anomaly lists among all analysts. 

3.4.2 Data requirements 

Each analyst submitted their anomaly list. IDA scored all lists and returned a list of anomalies 

that could not be analyzed by any analyst (“cannot analyze” or “failed classification”). 

3.4.3 Success criteria evaluation and results 

The objective was met if at least 95% of a set of selected anomalies could be analyzed. 

3.4.4 Results 

This objective was successfully met. All four data sets for all anomalies were analyzed. Not a 

single anomaly was ranked as “cannot analyze.” 

3.5 Objective: correct estimation of target parameters 

The combined NSMS-DE algorithm provides intrinsic and extrinsic parameters for the different 

targets. The intrinsic parameters were used for classification, while the extrinsic parameters (i.e., 

the target locations) were utilized for inversion algorithms assessment. 

3.5.1 Metric 

The classification results entirely depend on how accurately these parameters are estimated. 
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3.5.2 Data requirements 

To achieve this objective we inverted and tabulated the intrinsic and extrinsic parameters for all 

targets. To validate extracted extrinsic parameters we needed results of intrusive investigations. 

3.5.3 Success criteria evaluation and results 

The objective was met if the targets’ intrinsic parameters varied within +10%.  

3.5.4 Results 

Estimated Classification parameters for large TOIs were varied within + 10 %. Similar trends 

were achieved for most middle-size TOI-s in cases of high SNR, but the trend  diverged for small 

SNR cases. These studies indicated that more noise-tolerant approaches were needed for live site 

UXO classification. We responded to this by extending the NSMS model to the ONVMS model 

and adapting the JD technique for data pre-processing.   
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4 TEST DESIGN 

The only required test at the SLO site entailed collecting training data for target characterization: 

Using a calibration pit, the data-collection team made a series of static measurements of example 

targets at several depths and attitudes in order to cross-check models, confirm Tx and Rx polarity 

for the sensors, and characterize the so-called “library targets.” 

4.1 Site preparation 

N/A 

4.2 Demonstration schedule 

 Preparation 

Calibration 

Blind data set  Post-survey 

analysis 

Tasks and demonstration stages 
Aug2009 

Sep 

’09 

Oct 

’09 

Nov 

’09 

Dec 

’09 

Jan 

’10 

Feb 

’10 

1. Invert all calibration and training data x         

2. Invert 5  5 TEMTADS data   x      

3. Invert MM data   x      

4. Generate MM dig list and submit to IDA    x      

5. Generate TEMTADS dig list and submit to 

IDA 

   x     

6. Invert BUD data and generate dig list      x   

7. Conduct retrospective analysis if needed       x x 

REPORTING:  

8. Draft demonstration report       x  

9. Final demonstration report       x 

Figure 15. Gantt chart showing a detailed schedule of the activities conducted at SLO. 
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5 DATA ANALYSIS PLAN 

We analyzed all cued data for the MetalMapper, TEMTADS and BUD sensors and produced 

prioritized dig lists for independent scoring. 

5.1 Extracting target locations 

Target locations were determined relative to the sensor coordinate system using the differential 

evolution and gradient descent search algorithms. Object responses were modeled with NSMS. 

This combined algorithm was run for single-target cases and provided target locations.  

5.2 Extracting target intrinsic parameters  

The NSMS algorithm yields the targets’ intrinsic total NSMS, which we used for classification. 

The total NSMS contains three moments, Mxx(t), Myy(t), and Mzz(t), along the primary axes in the 

target’s own reference frame. These moments are similar to simple dipole moment components 

but carry more information, accounting for the targets’ inherent heterogeneities. The NSMS-DE 

algorithm outputs the time-decay curves of the target’s total ONVMS tensor Mij(tk). The next 

step is to determine the time decay of the primary components of the total NSMS in the target’s 

reference frame. While this can be done by standard diagonalization (i.e., finding 

M(tk) = V(tk)D(tk)V
T
(tk), where V(tk) contains the eigenvectors of M(tk), it is more convenient to 

perform a joint diagonalization, M(tk) = VD(tk)V
T
, where now the eigenvectors are shared by all 

time channels; this allows us to extract more reliable total NSMS values and reduce uncertainty.  

  

5.3 Selection of intrinsic parameters for classification 

Most UXO are bodies of revolution, and consequently the two secondary polarizability elements 

are degenerate. However, live-site UXO discrimination studies have repeatedly shown that this 

symmetry can be compromised due to low SNR, especially for small or deep targets. A good 

classification of object features can then be obtained by using only the principal component of 

the total NSMS, Mzz(t). Furthermore, to limit the number of relevant features for use in 

classification we extract parameters exclusively from the main polarizability Mzz(t), both to 

represent size (via Mzz(t1)) and wall thickness (via Mzz(t1) / Mzz(tn)).  

5.4 Training 

We used the supplied training data set for algorithm training and optimization.  At the first stage 

of the process we used a semi-supervised clustering technique to identify potential site-specific 

TOI.  

5.5 Classification 

(a) Probability density functions were extracted for single targets. 
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(b) All of the unknown targets were scored based on the probability density functions.  

(c) All items were further analyzed using library matching, and all total NSMS time-decay 

curves were inspected visually. 

(d) A classification threshold was selected and a final dig list was produced. 

5.6 Decision memo 

The algorithms used supplied training data for building library of TOI-s and to perform inversion 

and classification for the SLO test are described in Section 2.4. Using the inversion, clustering 

and classification procedures outlined above we produced a ranked anomaly list formatted as 

specified by the IDA[18]. 
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6 COST ASSESSMENT 

This work conducted under the SERDP#1572 project. There were some code development and 

adjustment during these classification studies, which are excluded from cost assessment.  We did 

our best to track time and resources for each classification task. A summary of the time needed to 

classify each anomaly appears in Table 4. The quoted values are, of course, averages: some 

anomalies can be identified almost instantaneously, while others require much more time and 

effort. 

 

Table 4: Cost model for advanced EMI model demonstration at SLO  

Cost Category Description Cost 

Pre-processing  
Time required to analyze training data and check 

data quality, build the total NSMS library for TOI-s 
60 sec/anomaly 

Parameter extraction  
Time required extract target feature parameters for 

test data 
40 sec/anomaly  

Classifier training 
Time required to optimize classifier using the 

training data set.  
40 sec/anomaly 

Library matching 

technique  

Time required for an expert: to visually  inspect the 

inverted total NSMS and compare them to a library 

target's total NSMS; to make classification decision.  

120 sec/anomaly 

Classification and 

construction of a 

ranked anomaly list 

Time required to classify anomalies in the test set 

and construct the ranked anomaly list 
60 sec/anomaly 

Total  320 sec/anomaly  
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7 MANAGEMENT AND STAFFING 

Figure 16 is the organization chart for the personnel involved in the demonstration. Their 

responsibilities are as follows: 

1. Fridon Shubitidze – Principal Investigator. Developed and implemented most of the 

preprocessing and inversion routines used. Classified MetalMapper data and BUD data 

sets using library matching and a Gaussian mixture model. 

2. Irma Shamatava – Sky Research Geophysicist. Participated in the inversion and 

classification of TEMTADS data. 

3. David Karkashadze – A visiting professor at Dartmouth College. Classified TEMTADS 

data using library matching and semi-supervised parameter clustering. 

 
 

 

Figure 16: Project management hierarchy. 

Fridon Shubitidze, PI: 

 

MM and BUD data inversion and classification 

 

Mrs. Irma Shamatava: 

 

TEMTADS inversion and classification 

Dr. David Karkashadze, Dartmouth 

College: TEMTADS data feature-

parameter clustering and classification  
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 APPENDICES 

7.1 Appendix A: Health and Safety Plan (HASP) 

As this effort does not involve field data collection, no HASP is required. 

7.2 Appendix B: Points of Contact 

Points of contact (POCs) involved in the demonstration and their contact information are 

presented in Table 5. 

Table 5: Points of Contact for the advanced EMI models’ demonstration 

POINT OF 

CONTACT 

Name 

ORGANIZATION 

Name 

Address 

Phone 

Fax 

E-mail 

Role in 

Project 

Dr. Fridon 

Shubitidze 

Sky Research, Inc. 

  

Tel: 603 643 2876 

Fax: 603-643-5161 

fridon.shubitidze@skyresearch.com 

 

PI 

Erik Russell Sky Research, Inc. 

3 Schoolhouse Ln, 

Etna, NH 03750, 

USA 

Tel: 541-552-5197 

Fax: 603-643-5161 

Erik.Russell@skyresearch.com 

 

 

Project 

Coordinator 

       
 

  

Dr. Herb 

Nelson 

ESTCP Program 

Office, 

ESTCP Office 

901 North Stuart St, 

Suite 303 

Arlington, VA 

22203-1821 

Tel: 571 372-6400  

Herbert.Nelson@osd.mil 
 

ESTCP 

Munitions 

Management 

Program 

Manager 

  

mailto:Nicolas.lhomme@skyresearch.com
mailto:Joy.rogalla@skyresearch.com
mailto:Herbert.Nelson@osd.mil



