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EXECUTIVE SUMMARY  

To improve the algorithmic robustness and to reduce the deployable hardware size and weight of the 
precise geolocation technology developed under the project MM-1564, which is based on quadruple 
sensor integration, a deeply integrated GPS signal processing solution has been developed and 
implemented. 

In Phase I of project MM-1564, quadruple sensor-base integrated system architecture has been designed 
and implemented, according to the original SOW (Statement Of Work).  This unique architecture 
combines measurements of the Global Positioning System (GPS), inertial navigation system (INS), 
pseudolites (PLs), and a terrestrial laser scanner (TLS). State-of-the-art GPS navigation allows for cm-
accurate positioning in open areas where a sufficient number of unobstructed GPS signals is available. 
However, in covered areas (such as under dense tree foliage) a significant GPS signal attenuation may 
occur. As a result, commercial of-the-shelf GPS receivers fail to provide reliable signal measurements. 
Therefore, the GPS navigation technology is augmented in our solution by high-grade inertial navigation, 
PLs, and TLS.  

In Phase II of project MM-1564, deeply integrated GPS signal processing was incorporated into the 
quadruple navigation solution in order to enhance the navigation robustness and, optionally, to relax the 
system operational requirements including the complexity of its installation and maintenance, as well as 
the overall cost, size, weight and power consumption. Deeply integrated GPS signal processing is an 
emerging technology that has been actively developed over the past three-four years. The deep integration 
technology maintains a complete GPS signal tracking status (code phase, carrier frequency, carrier phase 
and navigation data recovery) in challenging signal environments, such as urban canyons and under dense 
foliage. This technology exploits very long coherent integration of GPS signals; coherent integration 
intervals of one second, as opposed to 20 ms signal integration conventionally utilized by GPS receivers. 
Long coherent integration is achieved by using inertial data for dynamic aiding of the GPS signal 
integration function and by applying an energy-based search algorithm for the removal (wipe-off) of 
navigation data bits. Deep integration had been demonstrated to enable processing of GPS signals in 
urban canyons, indoor environments, dense forestry areas, and in the presence of wide-band sources of 
radio-frequency (RF) interference. The unique feature of the deep integration approach is its ability to 
consistently track carrier phase of GPS signals that are attenuated by 30 dB from their open sky 
conditions. Maintaining carrier phase tracking for weak GPS signals is crucial for enabling cm-accurate 
geolocation capabilities in challenging GPS environments. 

To effectively support detection and discrimination of unexploded ordnance, the target accuracy goal for 
the geolocation technology was set to 10 cm (95%) for the absolute accuracy and 1 cm (95 %) for the 
relative accuracy, which performance level has been reached, as it was demonstrated in several tests. This 
report demonstrates the performance of a deeply integrated GPS/inertial architecture under extreme 
canopy coverage, where traditional receiver technology fails to acquire and track GPS signals. GPS and 
inertial experimental data collected in various canopy coverage areas are applied to evaluate the system 
performance. Test results demonstrate that the deeply integrated approach enables reliable trajectory 
reconstruction capabilities and maintains sub-meter level of differential positioning precision for cases 
where the GPS signal is severely attenuated by the canopy.  
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1. INTRODUCTION 

The overall goal of the research and development effort documented in this report is to develop 

precise (i.e., centimeter to sub-decimeter) geolocation technology that can support detection and 

discrimination of unexploded ordnance. The detection and remediation of munitions and 

explosives-of-concern (MEC) on ranges, munitions burning and open detonation areas, and 

burial pits is one of the US Department of Defense's (DoD) most pressing environmental 

problems. The MEC characterization and remediation activities using currently available 

technologies often yield unsatisfactory results, and are extremely expensive, due mainly to the 

inability of current technology to detect all MEC present at a site, and the inability to 

discriminate between MEC and nonhazardous items that is primarily due to insufficient precision 

of georeferencing of the geophysical images. To address the precise georeferencing aspect, 

quadruple multi-sensor fusion architecture has been developed previously (Grejner-Brzezinska 

et. al., 2011). This architecture combines measurements of Global Positioning System (GPS), 

inertial navigation system (INS), pseudolites (PLs), and a terrestrial laser scanner (TLS). 

Kinematic GPS navigation solution allows for cm-precise positioning in open areas where a 

sufficient number of unobstructed GPS signals is available. However, in covered areas, such as 

dense tree foliage, a significant GPS signal attenuation is present. As a result, commercial of-the-

shelf GPS receivers fail to provide reliable signal measurements. Therefore, the GPS navigation 

technology is augmented by high-grade inertial navigation, PLs, and TLS.  

The effort reported herein extends the previously developed approach by investigating into the 

use of deeply integrated GPS/inertial technology in dense forestry areas. The idea is to 

incorporate deeply integrated GPS signal processing into the quadruple navigation solution in 

order to enhance the navigation robustness and relax the system operational requirements, 

including the complexity of its installation and maintenance, as well as the overall cost, size, 

weight and power consumption. Deep integration enables GPS measurements under severe 

signal attenuation, such as a 30 dB or a factor of 1000 power attenuation from open sky 

conditions. Augmenting the system with the capability to maintain GPS measurements for very 

weak signals increases significantly the GPS coverage in difficult environments, such as dense 

canopy areas. Increased availability of GPS measurements improves the robustness of the 

navigation solution. Specifically, additional GPS measurements can be efficiently exploited for 
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the identification of GPS and PL signals that are corrupted by multipath reflections from 

surrounding trees. Increased GPS availability will also enable reduction of the system 

operational requirements. Particularly, it is expected that the incorporation of deep integration 

will decrease the use of pseudolite-based navigation, up to a complete elimination of the 

pseudolites, in order to reduce the cost. In addition, deep integration should enable reduction in 

deployment complexity of the TLS component, and, overall, reduce the requirements of inertial 

sensors’ performance.  

Two key technological enablers of the deeply integrated GPS/inertial architecture include:   

a) open-loop software architecture for robust signal tracking in challenging GPS 

environments (van Graas et al., 2009)  

b) deep integration of GPS signal tracking with inertial navigation (Soloviev et al., 2008) for 

recovery of GPS signals in extreme attenuation conditions 

To enable robust tracking of GPS signals in challenging environments and under changing 

conditions, open-loop software receiver architecture is applied as opposed to traditional closed-

loop solutions. The receiver operates with batches of GPS signal samples. For each batch, the 

receiver estimates GPS signal parameters that include code phase, carrier frequency, and carrier 

phase. The open-loop tracking architecture first acquires the GPS signal using a fast Fourier 

transform (FFT)-based parallel search and then fine zooms on signal parameters. The open loop 

approach is particularly beneficial for robust tracking in challenging signal environments. The 

FFT-based correlation component reconstructs the accumulated complex GPS amplitude as a 

function of amplitude vs. code phase and Doppler shift from the FFT search space and then 

estimates signal parameters, including code phase, Doppler frequency shift and carrier phase, 

directly from this function. As a result, the signal can be observed immediately after it reappears 

after a temporary loss and its tracking status can be immediately recovered.  

To enable processing of attenuated GPS signals, the open-loop signal approach is augmented by 

long coherent integration. Coherent signal integration is performed by fusing GPS signal 

processing with measurements of inertial sensors. Deep integration has been demonstrated to 

maintain a complete tracking status (i.e., tracking of the code phase, carrier frequency, carrier 
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phase and recover of navigation data bits) of weak GPS signals with the carrier-to-noise ratio 

(C/No) as low as 15 dB-Hz (Soloviev et al., 2008). 

To evaluate performance of the deeply integrated solution in forestry areas, test data were 

collected in suburban tree-covered area of Columbus, Ohio, as well as in dense canopy 

environments of Wayne National Forest, Athens County, Ohio.  

The remainder of the document is organized as follows. First, architecture of the deeply 

integrated solution is reviewed. Next, test setup is described. Finally, test performance results are 

presented. In addition, feasibility tests were carried out to assess the applicability of Flash 

LiDAR technology, as an implementation device for the TLS component of the prototype 

geolocation system. 
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2. OVERVIEW OF THE DEEPLY INTEGRATED ARCHITECTURE 

Deep integration provides a self-contained high-sensitivity tracking solution that maintains a 

complete tracking status for GPS signals with very low C/No values1. Particularly, CA-code 

phase, GPS Link 1 (L1) frequency and carrier phase tracking is maintained for a 15 dB-Hz C/No 

level or, equivalently, for the received signal power of -160 dBm. The 15 dB-Hz tracking 

threshold corresponds to the tracking threshold of state-of-the-art high sensitivity COTS 

receivers. However, contrary to the deep integration technology, state-of-the-art COTS GPS 

receivers do not support a complete tracking status in the high-sensitivity mode (generally, only 

the CA-code tracking is maintained, while the carrier tracking function is not provided) and often 

require external aiding for high-sensitivity GPS operations (e.g., aiding of navigation data bits).  

2.1 The Concept 

Figure 2.1 shows a high-level diagram of the deeply integrated GPS receiver technology 

(Soloviev et al., 2008).  

 

Figure 2.1 Generic architecture of the deeply integrated GPS/inertial solution 

The deep integration approach eliminates conventional tracking loops and starts with the fusion 

of GPS and inertial data at the earliest processing stage possible by combining RF GPS samples 
                                                           
1 It is computed as 10*log10(E*B/sigma_noise^2), where E is the signal energy and B is the bandwidth. 

Σ 
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with sampled inertial measurements. Inertial data provide the dynamic reference trajectory for 

the GPS signal integration inside GPS receiver correlators. Particularly, parameters of the 

internally generated replica GPS signal are adjusted for dynamic changes using the inertial 

aiding. Correlator outputs are used to estimate GPS signal parameters that include CA-code 

phase shift, carrier Doppler frequency shift, and carrier phase. Estimated GPS signal parameters 

are applied to periodically calibrate the INS error states to maintain a sufficient accuracy of the 

inertial aiding of GPS signal integration. 

Coherent signal integration over 1 s intervals is applied to recover very weak GPS signals (at a 

15 dB-Hz level).  The coherent integration time of 1 s exceeds the duration of data bits (0.02 s) 

in the GPS navigation message. A bit wipe-off is thus required to avoid energy losses during 

signal accumulation. A computationally efficient algorithm was, therefore, developed to search 

through possible bit combinations and choose the combination that maximizes the signal energy 

(Soloviev et al., 2009). Consequently, no external bit aiding is required. 

The open-loop tracking approach computes GPS signal measurements from signal accumulation 

results. During the signal accumulation, a 3D GPS signal function (which is a complex signal 

amplitude vs. possible values of code shift and Doppler frequency shift) is constructed for every 

accumulation epoch. The signal parameters are then estimated directly from this function without 

employing traditional tracking loops. The main advantage of the open-loop tracking, as 

compared to traditional closed-loop techniques, is in the optimized robustness of GPS signal 

processing, which is especially beneficial in adverse environments such as urban (indoor and 

outdoor), dense canopy and interference scenarios. For instance, in dense urban canyons, signals 

drop in and out constantly (Soloviev et al., 2007), and a traditional tracking loop generally fails 

to lock onto a signal that is only available over several seconds or less. In contrast, an open loop 

receiver detects the signal as soon as it (re)appears, by identifying the energy peak in the 3D 

signal function, and immediately estimates signal parameters from the peak identified. To 

optimize the computational efficiency, the open-loop tracking is implemented utilizing the coarse 

zoom/fine zoom strategy (van Grass at al., 2009). In this case, signal energy peak is searched 

using a relatively coarse resolution of the 3D GPS signal function. Commonly used correlators, 
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with early, prompt and late code replicas and inphase and quadrature carrier components, are 

then placed around at the peak value to refine the resolution of signal parameters.   

Another key feature of the deeply integrated architecture is that it supports independent tracking 

of individual satellite channels. This is illustrated in Figure 2.2. 

Satellite signals are accumulated independently for each tracking channel over the entire 

accumulation period. Signal accumulation results are utilized by open-loop discriminators to 

compute adjustments to signal parameters that are generated by numerically controlled 

oscillators (NCOs). For example, adjustment to the carrier phase is calculated based on a four-

quadrant arctangent function of the inphase (I) and quadrature (Q) accumulation results (van 

Graas et al., 2009). GPS measurements are then derived from NCO signal parameters for each 

satellite channel that is being tracked. This approach is different from the vector-tracking 

implementation (Bhattacharyya and Gebre-Egziabher, 2010-2011), where signal accumulation 

results are generally sampled at a 20-ms accumulation point and are then fed into the joint filter 

that computes the overall navigation and clock solution. Independent signal tracking for 

individual satellites maintains stochastically independent signal measurements for different 

satellite channels. The main benefit is that these measurements can be exploited for data quality 

monitoring, for example, by using Receiver Autonomous Integrity Monitoring (RAIM) 

techniques (Grover Brown, 1998), or GPS/INS integrity check (Farrell, 2006), which is 

especially beneficial in GPS-challenged environments such as dense forestry areas where large 

outliers can be present due to multipath errors. The measurement quality monitoring approach 

that was incorporated into the deeply integrated architecture is discussed later in this section. 
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Figure 2.2 Independent tracking of individual satellite channels 

To enable long coherent accumulation of GPS signals and subsequent carrier phase tracking, 

inertial navigation must provide a reference dynamic trajectory that is accurate at a centimeter-

per-second (cm/s) level. This is achieved by utilizing carrier phase measurements for the in-flight 

INS drift calibration. Specifically, the Kalman filter that estimates INS drift terms (see Figure 2.1 

above) exploits GPS carrier phase as its measurement observable. One of the key aspects of the 

filter design is the use of carrier phase in degraded GPS environments.  In such environments, 

the total number of satellites is generally insufficient to enable phase ambiguity resolution. Yet, 

the use of sub-centimeter accurate phase measurements is extremely beneficial, especially, for 

integration with lower-quality inertial units. Therefore, integer ambiguities are eliminated by 

differencing carrier phase over time and applying temporal phase differences as filter 

measurements. This approach is referred to as the dynamic-state INS calibration (Farrell, 2002;  

Wendel et al., 2006). It observes projections of position changes (instead of absolute position) on 

platform-to-satellite line-of-sight (LOS) and estimates the rest of inertial error states, including 

velocity errors, attitude errors and sensor biases, from these observations. 

ϕ1 

ϕN 
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2.2 The Measurement Model 

GPS observables of the Kalman filter for the satellite j are formulated as follows: 

( ) ( ) ( )
( ))T()T(),T(                       

)T(),T()T(),T()T(~)T(~
2

)T(r~

1-mjmj1-mrcvr

1-mjSV1-mjmjSVmj1-mm
1L

mjGPS

eeR

ReRe

−

−−+−−=∆
jacmjacm ϕϕ

π

λ
 (2.1) 

 

Where 

 

˜ ϕ acm j
(Tm ) and 

 

˜ ϕ acm j
(Tm -1) are carrier phase measurements for the current and previous 

accumulation intervals, respectively; 𝜆𝐿1 is the carrier wavelength; (. , .) is the vector dot 

product; ej is the satellite/receiver LOS unit vector; 
  

 

RSVj
 is the satellite position vector;   

 

R rcvr  is 

the receiver position vector; and, the tilde sign indicates the presence of errors (primarily noise 

and multipath) in temporal range changes that are computed from carrier phase measurements. 

Note that carrier phase changes in Equation (2.1) are compensated for the satellite motion along 

the LOS (the second and third terms in the right-hand side of the equation) and for changes in 

relative satellite/receiver geometry (the forth term in the right-hand side of the equation). Hence, 

only the receiver motion term remains in the GPS observable of the Kalman filter. 

In Equation (2.1), the satellite position vector 
jSVR is calculated based on ephemeris data, while 

the receiver position vector   

 

R rcvr (Tm −1) is estimated based on code phase measurements obtained 

at the previous measurement epoch (i.e., for the previous signal integration interval). The LOS 

unit vector e is computed as 
  

 

e j = RSVj
− R rcvr

 
 
  

 
 RSVj

− R rcvr , where  .  is the vector absolute value. 

It can be shown [11] that 

 

∆˜ r GPS j
 is expressed as follows: 

  

 

∆˜ r GPS j
(Tm ) = − e j (Tm ),∆R(Tm )( )+ ∆δt rcvr (Tm ) + ε j  (2.2) 
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where   

 

∆R  is the position change between GPS updates; 

 

∆δt rcvr  is the accumulated clock drift; 

and, εj is the carrier phase error term that combines thermal noise and multipath error 

components. The analysis presented in (van Graas and Soloviev, 2004) indicates that errors in 

temporally differenced ephemeris and atmospheric delays generally stay below the noise and 

multipath error level. Therefore, these errors are not included into consideration. The Equation 

(2.3) defines inertial observables of the Kalman filter: 

    

 

∆˜ r INS j
(Tm ) = -e j (Tm ),∆ ˜ R (Tm )( + ˜ C b

N (Tm ) − ˜ C b
N (Tm -1)( )⋅ Lb) (2.3) 

In Equation (2.3): 

 is the INS-based position change between GPS updates;  

 

˜ C b
N

 is the INS-computed direction cosine matrix for the coordinate transformation from the 

body (b) frame to the navigation (N) frame); and, 

Lb is the lever arm vector from the inertial measurement unit to the GPS receiver with vector 

components being resolved in the body-frame. 

The filter measurement observation vector is defined as a difference between inertial and GPS 

observables:  

 

y Kalman (Tm ) =
∆˜ r INS1

(Tm ) − ∆˜ r GPS1
(Tm )

...
∆˜ r INSNSV

(Tm ) − ∆˜ r GPSNSV
(Tm )

 

 

 
 
 
 

 

 

 
 
 
 
 (2.4) 

 

where NSV is the total number of visible satellites. The filter states include: 

• INS error states: 18 states total, including: delta position errors,   

 

δ∆R , for the error in position 

change between consecutive GPS update epochs (3 states); velocity error states   

 

δV  (3 states); 

attitude error states 

 

δθ  (3 states); delta attitude error states, 

 

δ∆θ , for the change in the attitude 

R~∆
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errors between carrier phase measurement epochs (3 states); sensor bias states dgyro and baccel 

(3 states for gyros and 3 states for accelerometers);  

• GPS receiver clock states: receiver clock drift accumulated between consecutive carrier phase 

updates 

 

∆δt rcvr  
; and, receiver clock drift 

 

δÝ t rcvr . 

Note that the Kalman filter is formulated in the complementary form and estimates INS errors in 

navigation states rather than estimating the states themselves. The extended Kalman filter (EKF) 

formulation is applied. Accordingly, linearized Kalman filter measurements are derived by 

applying the first-order Taylor series expansion to observation equations (2.3) through (2.5). For 

the filter state vector that includes the states in the order defined above, the row j of the Kalman 

filter measurement observation matrix, HKalman, that corresponds to the satellite j observation is 

derived as: 

    

 

H Kalman j
= −e j

T 01×3 e j
T ⋅ ˜ C b

N (Tm ) − ˜ C b
N (Tm -1)( )⋅ Lb[ ]× −e j

T ⋅ ˜ C b
N (Tm -1) ⋅ Lb[ ]× 01×3 01×3 1 0[ ] (2.5) 

 

where 

 

01×3 is the one-by-three zero row; and, 

 

×  denotes the skew-symmetric matrix. The 

measurement covariance is setup up as a diagonal matrix (i.e., measurement errors for different 

satellites are assumed to be uncorrelated), with the diagonal terms defined by the standard 

deviation of carrier phase error (that is set at a sub-cm level). With the measurement observation 

matrix defined by equation (4), the Kalman filter implements its estimation routine using a 

standard strapdown INS error propagation mechanism [9] to implement the prediction update.  

As mentioned previously, measurement quality monitoring is applied to remove outliers. Figure 

2.3 illustrates the algorithmic solution.  
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Figure 2.3 Measurement quality monitoring for detection and identification of outliers 

The algorithm first attempts to implement an internal GPS quality check that is based on RAIM. 

The RAIM-based check is applied for cases where the number of available satellites is five or 

more. If the internal quality check detects the presence of a failure or insufficient satellites (less 

than five) are available to execute RAIM, then INS-based quality check is also implemented. 

INS-based quality check predicts GPS measurements using inertial data, compares predicted 

measurements with actual measurements and removes those measurements for which large 

discrepancies between predicted and measured values are found.  

The failure detection is based on the QR-factorization parity check of the least mean square 

(LMS) estimation algorithm that computes position change from temporal changes in carrier 

phase. The computations are described in step-by-step details in reference (van Graas and 

Soloviev, 2004). Temporal carrier phase changes are computed and adjusted for satellite Doppler 

and geometry terms (as formulated by Equation (2.1) above). Adjusted carrier phase changes are 

then applied to formulate observations for the LMS estimation: 
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H ⋅
∆R

∆δt rcvr
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 
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∆rGPS1

...
∆rGPSNSV

 
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 
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+

ε1

...
εNSV

 

 

 
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 

 
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,  H =

-e1 1
... ...

-e NSV
1

 

 

 
 
 

 

 

 
 
 

 (2.6) 

where NSV is the number of available satellites. QR-decomposition of the observation matrix H yields:   

  

 

H = q ⋅ r  (2.7) 

where q is an orthonormal matrix (i.e.,   

 

q-1 = qT ) and r is an upper triangular matrix, i.e. 
  

 

r =
U
0

 

 
 

 

 
 . 

For the case of position change (3 components) and clock drift estimation, U is an 

 

4 × 4  upper 

triangular matrix and 0 is a

 

M − 4( )× 4  zero matrix. Note that 

 

M > 4   is required to perform QR-

decomposition, i.e. at least one redundant measurement is needed. Based on Equations (2.5) and 

(2.6) and using the orthonormal matrix property: 

  

 

qT ⋅
∆rGPS1

...
∆rGPSNSV

 

 

 
 
 

 

 

 
 
 

= r ⋅
∆R

∆δt rcvr

 

 
 

 

 
 − qT ⋅

ε1

...
εNSV

 

 

 
 
 

 

 

 
 
 
 (2.8) 

The transpose of the q matrix is partitioned as follows: 

  

 

qT =
qU

qp

 

 
 
 

 

 
 
 

 (2.9) 

where   

 

qU and   

 

qp are 

 

4 × M  and 

 

M − 4( )× M  matrices, respectively. From Equations (2.8) and (2.9) 

it follows that 

  

 

qU ⋅
∆rGPS1

...
∆rGPSNSV

 

 

 
 
 

 

 

 
 
 

= U ⋅
∆R

∆δt rcvr

 

 
 

 

 
 + qU ⋅

ε1

...
εNSV

 

 

 
 
 

 

 

 
 
 

qp ⋅
∆rGPS1

...
∆rGPSNSV

 

 

 
 
 

 

 

 
 
 

= −q( p) ⋅
ε1

...
εNSV

 

 

 
 
 

 

 

 
 
 

 (2.10) 
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The first part of equation (9) is applied for the LMS solution. The second part provides parity 

residuals:  

  

 

p = qp ⋅
∆rGPS1

...
∆rGPSNSV

 

 

 
 
 

 

 

 
 
 

= −q( p) ⋅
ε1

...
εNSV

 

 

 
 
 

 

 

 
 
 
 (2.11) 

The residual vector p determines the projection of the error vector into the LMS solution null 

space. The parity residual test compares parity elements with elements of a threshold vector γ 

that is defined by 3-sigma values of carrier phase noise that is transformed into the parity space, 

i.e.: 

 

γ = γk[ ],  γk = 3 αk

α = q( p) q( p)( )T
σε

2  (2.12) 

where 

 

σε
2

 

is the standard deviation of error in carrier phase temporal differences. Note that we do 

not explicitly assume a single satellite failure case that is used by GPS RAIM techniques to 

define failure protection levels of the integrity monitoring procedure. An exceeded threshold 

simply means that measurement failures can be present and the quality monitoring needs to 

further check the measurements using the GPS/inertial approach that is described next.  

If the RAIM-based quality check identifies the presence of outliers or if the measurement 

availability is insufficient to support the RAIM, the INS-based quality check is further used to 

verify the measurements (if necessary, i.e. for cases of limited satellite availability) and isolate 

the failed measurement channels.  The quality check procedure predicted and measured values of 

adjusted phase differences, i.e.: 

 

∆˜ r GPSj
− ∆˜ r INSj

− ∆δˆ t rcvr ≤ 3σ j → fault − free

otherwise,  failure is detected
j = 1,...,NSV

 
(2.13) 

where 

 

∆δˆ t rcvr  is the Kalman filter estimate of the receiver clock drift that is accumulated between 

GPS updates; and, σj is the sigma value of the prediction/measurement difference for the fault-
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free case. This value is computed based on the INS error covariance and standard deviation of 

the carrier phase error: 

 

σ j
2 = H Kalman j

⋅ P ⋅ H Kalman j

T + 2σε j

2  (2.14) 

where P is the Kalman filter state covariance matrix and 

 

σ j  is the standard deviation of the 

carrier phase measurement error. The factor of two multiplication is applied herein since 

temporal differences in carrier phase are utilized for GPS measurements. 
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3. TEST AREA 

Figure 3.1 shows a picture of the test setup that was used to acquire experimental data. 

 
 

(a) (b) 
 

Figure 3.1 Test setup; a: OSU GPSVan, b: OU GPS software receiver 

 

Equipment was mounted in the OSU GPSVan vehicle that is shown in Figure 3.1a.  The data 

collection suite includes: 

• NovAtel OEM-V GPS receiver that provides GPS signal measurements (pseudo-ranges 

and carrier phase); 

• Instrumentation-grade radio-frequency (RF) front-end (Ohio University Transform-

domain Instrumentation GNSS Receiver, TRIGR (Gunawardena et al., 2007)) and data 

collection server that were used to acquire and store raw GPS signal samples, i.e. GPS 

signal that is down-sampled to the baseband. The front-end and server are shown in 

Figure 3.1b; 

• GPS antennas; and, 

• Honeywell H764G navigation-grade inertial measurement unit (IMU) with the stand-

alone position drift of 0.8 nmi/hr. 
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In order to evaluate the system performance for lower-grade IMU options, tactical-grade and 

lower-grade inertial data were emulated by adding simulated errors (including gyro drift, gyro 

noise, accelerometer bias and accelerometer noise) to experimental data recorded by the 

navigation-grade inertial unit. Additional gyro-drift for emulated tactical-grade data was 

simulated as a first order Gauss-Markov process with a one-sigma value of 10 deg/hr and a 1 hr 

time correlation interval. Simulated gyro noise corresponds to the random walk of 4 

 

deg/ hr . 

Accelerometer bias was simulated as a first-order Gauss Markov process with the standard 

deviation of 0.1 mg and 1 hr correlation time; 0.1 mg/s2 accelerometer noise was also simulated.  

Test data were collected in suburban tree-covered environments of Columbus, Ohio and in dense 

forestry areas of Wayne National Forest in Athens County, Ohio. Figure 3.2 shows an example 

data collection environment in the Wayne National Forest. 

 

Figure 3.2 Example test environment: dense canopy scenario in the Wayne National Forest, 

Ohio 
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The images show dense canopy coverage where only very limited portions of clear sky are 

available. 

Experimental data were post-processed by three solution options that include: 

1) Kinematic GPS position solution that was obtained by post-processing NovAtel receiver 

measurements using  Waypoint software products; 

2) Tightly-coupled GPS/INS software package developed by the Satellite Positioning and 

Inertial Navigation (SPIN) Laboratory at The Ohio State University; this package 

exploits the tightly coupled integration approach that uses carrier phase measurements 

with resolved integer ambiguities for the inertial drift estimation; and, 

3) Deeply integrated GPS/INS architecture. 

Evaluation of positioning precision was performed as follows. Precise reference trajectory that is 

based on kinematic carrier phase GPS solution is not available in dense forestry areas. As a 

result, direct precision evaluation cannot be performed. Therefore, we considered three 

alternative options:  

1) Consistency of the reconstructed test trajectory: This option uses consistency of the 

motion trajectory to validate the positioning precision. This includes, displaying the 

trajectory in Google Earth, or in any orthoimagery available, and validating that it closely 

follows the road; comparing forward and return paths and demonstrating consistency of 

the results.   

2) Attenuation of open-sky GPS signals to emulate forestry data: Analysis of forestry data 

allows evaluation of the signal attenuation factor that is applied to GPS signals during the 

propagation through the canopy. This signal attenuation is artificially injected to open-

sky GPS signals. Attenuated GPS signals are then processed by the deeply integrated 

solution and results are compared to the reference kinematic GPS trajectory that is 

available in open-sky environments. Therefore, for the second precision evaluation option 

we implemented the following steps. First, GPS signal attenuation in dense forestry areas 

was analyzed. Second, open-sky test segments with reliable kinematic reference 

trajectory were chosen. Third, signal attenuation that closely resembles the attenuation 
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due to canopy was added to open-sky GPS signals (by adding simulated broadband 

noise). Forth, attenuated signals were processed by the deeply integrated architecture to 

compute the position solution. Finally, fifth, the deep integration solution was compared 

to the reference trajectory.  

3) Consistency of positioning results between multiple test trials: For this type of evaluation, 

experimental data were collected for multiple trajectories driven along the same path. 

Position estimation results for different test trials were then compared to each other. 
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4. PERFORMANCE ANALYSIS 

Initial data collects were organized in Columbus, Ohio, and then the major data acquisition 
campaign was performed in the Wayne National Forest, Athens County, Ohio. 

4.1 Columbus Data Analysis 

Figure 4.1 shows example test results for a tree-covered suburban area in Columbus. 

 

Figure 4.1 Example test results: tree-covered suburban areas of Columbus, OH 

Deep integration Tight GPS/INS integration 

GPS-only trajectory 
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Kinematic GPS, tightly-coupled GPS/INS and deeply integrated GPS/INS position trajectories 

are plotted by entering longitude and latitude estimates of the navigation solution into Google 

Earth. Tight coupling and deep integration solutions are shown for the case of navigation-grade 

inertial unit. The kinematic GPS solution can maintain position estimation for those portions of 

the test path where unobstructed sky view is available. As a result, the solution is extremely 

sparse and supports the required navigation capabilities for a very limited portion of the test. In 

contrast, both tightly-coupled and deeply integrated approaches support the trajectory 

reconstruction for the entire duration of the test. For the majority of the test route, tight 

integration and deep integration produce similar results. However, for some limited portions of 

the test where increased tree coverage was present, the use of deep integration improves the 

solution precision. This is exemplified in Figure 4.2. 

 

Figure 4.2 Improvement in position precision achieved by deep integration 

Tight integration drifts off 
the road 

Deep integration keeps 
the vehicle on the road 
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In this example, tightly coupled solution drifts off the road (the maximum lateral position error is 

15.4 meters), while deep integration maintains position estimates within the correct road lane 

that was driven during the test. 

4.2 Wayne National Forest Data Analysis 

Figure 4.3 shows the kinematic GPS solution for the example test scenario in the Wayne 

National Forest. Similar to the Columbus test results, the GPS-only option maintains position 

estimates only when the test trajectory crosses over open-sky areas, which severely limits 

trajectory reconstruction capabilities. 

 

Figure 4.3 Wayne National Forest test example: Kinematic GPS solution 

Figure 4.4 shows example test results for the tight integration option that uses the navigation-

grade inertial unit. The results presented demonstrate that tight integration supports precise 

positioning capabilities for limited segments of the test trajectory, while large solution 

discontinuities can be present for the other parts of the test route. 
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Figure 4.4 Wayne National Forest test example: Position solution of tight integration with the 

navigation-grade IMU 

Figure 4.5 shows example deep integration test results. The solution is presented for the case 

where GPS signal samples are combined with navigation-grade IMU data. As shown in Figure 

4.5, deep integration enables reliable trajectory reconstruction for the entire test route. No 

discontinuities are present in the deeply-integrated position solution. Forward path and return 

path are closely spaced and distinguishable, which corresponds to the actual path driven where 

the forward and return trajectories were generally separated by 1-2 m. The reconstructed 

trajectory closely follows the actual test route (a country road that was driven by the test vehicle) 

both for relatively open areas and forestry areas with extreme foliage density. At the end of the 

test loop, the reconstructed trajectory returns to the starting point. 

Reliable trajectory reconstruction 
for limited segments 

Large position drift can be 
present 
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Figure 4.5 Wayne National Forest test example: Position solution of the deeply integrated 

GPS/inertial with the navigation-grade IMU 

Entire trajectory 

Reconstructed trajectory accurately 
follows the country road 

Return path 

Forward path 

Dense forest I 

Dense forest II 
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Figure 4.6 shows example simulation results for the case where emulated tactical-grade inertial 

measurements were applied for the deep integration. A tactical-grade IMU was emulated as 10 

deg/hr (1 sigma value) gyro drift and 3 deg/sqrt(hr) (1 sigma value) gyro noise; and 1 milli-g 

(mg) (1 sigma value) accelerometer bias and 0.01 m/s2 (1 sigma value) accelerometer noise. 

 

Figure 4.6 Wayne National Forest test example: Position solution reconstructed by deep 

integration that uses the tactical-grade IMU 

As shown in Figure 4.6, deep integration still maintains a reliable trajectory reconstruction when 

the navigation-grade inertial unit is substituted by the tactical grade option.  

For lower-grade IMUs (emulated as 100 deg/hr gyro drift and 30 deg/srt(hr) gyro noise; 2 mg 

accelerometer bias and 2 m/s2 accelerometer noise), it was found that inertial drift performance 

does not allow for cm/s accurate aiding of the GPS signal accumulation. As a result, deep 

integration is not able to support robust trajectory reconstruction capabilities in dense forestry 

areas.  
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We have also investigated sensitivity of the deeply integration solution to the use of data quality 

monitoring algorithm and reduced signal integration time. Figure 4.7 shows the test results for 

the case where the tactical-grade inertial data is used and the data quality control is not 

implemented. The results clearly show that the trajectory reconstruction becomes unreliable in 

this case. Therefore, it is crucial to detect measurement outliers and exclude them from the EKF-

based navigation solution. 

 

Figure 4.7 Wayne National Forest test example: Trajectory reconstruction results without 

measurement quality control 

Figure 4.8 shows test results for the tactical-grade IMU and the case where the signal 

accumulation interval is reduced to 20 ms; i.e., an unaided open-loop GPS receiver tracking is 

applied and the deep integration option is not used. 
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Figure 4.8 Wayne National Forest test example: Trajectory reconstruction results with reduced 

(20-ms) signal accumulation 

Overall, a smooth trajectory reconstruction is maintained. However, for select portions of the 

trajectory the reconstructed solution deviates from the road and solution jumps can be present. 

Specifically, the jump value in the left-hand zoomed image is about 3.8 m, the jump in the right 

hand zoomed-image is 6 m, approximately. Hence, the decrease of the signal integration interval 

still maintains a continuous trajectory reconstruction, but decreases the solution precision to the 

level of a few meters. 

As mentioned previously, GPS forestry signals were emulated for open-sky portions of test 

trajectories, where the kinematic GPS solution is available and can be used as a reference, in 

order to evaluate the absolute precision performance of the deeply integrated solution. Figure 4.9 

shows typical C/No estimates recorded in dense forestry areas.   
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Figure 4.9 C/No estimates in forestry environments, Wayne National Forest Test  

(different colors correspond to different satellites) 

Accordingly, simulated broad-band noise was added to open-sky GPS signal samples, such that 

the resultant C/No ratio corresponds to C/No values that were observed under dense canopy. 

Figure 4.10 shows an example test trajectory where “canopy-like” attenuation was applied to 

(relatively) open-sky GPS signals. The overall duration of the test was approximately three 

minutes. This was the longest interval where the clear sky data was available. 
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Figure 4.10 Example open-sky test trajectory applied for the precision evaluation of the deeply 

integrated GPS/INS solution 

Figure 4.11 shows precision evaluation results for navigation-grade and tactical-grade IMUs. 

The position residuals herein are computed as the difference between the deep integration 

position estimates (derived from artificially attenuated GPS signals) and position estimates of the 

kinematic GPS solution that was computed from the open-sky GPS signal measurements.  

The position precision is primarily limited by the un-calibrated heading error that cannot be 

accurately estimated due to the lack of vehicle maneuvers. As a result, navigation-grade and 

tactical-grade inertial integration options exhibit similar precision performance. The example 

plots presented demonstrate sub-meter positioning precision (the maximum error is about 0.4 

meters). Overall, test results presented in this section demonstrate that the deep integration 

approach serves as a reliable option for enabling precise position capabilities in dense forestry 

areas. 
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Figure 4.11 Example precision evaluation results: Deep integration computed from artificially 

attenuated GPS signals vs. kinematic solution (derived from open-sky GPS data) 
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As it was stated previously, the final performance evaluation metrics includes comparing 

trajectory reconstruction results for multiple trials driven along the same path. These results 

demonstrate that a meter-level agreement between different independently reconstructed 

trajectories is generally achieved. Figures 4.12 through 4.15 show example results that include 

two test trajectories. 

 

Figure 4.12 Trajectory reconstruction consistency for multiple tests: Google Earth representation 

of deep integration position estimation results; green and blue dots correspond to two 

independent test trajectories driven along the same path 
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Figure 4.13 Trajectory reconstruction consistency for multiple tests: Google Earth representation 

of deep integration position estimation results; green and blue dots correspond to two 

independent test trajectories driven along the same path; zooming on select test segments 
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Figure 4.14 Consistency of trajectory reconstruction for multiple tests: local ENU representation 

of deep integration position estimation results 

 

Figure 4.15 Consistency of trajectory reconstruction for multiple tests: local ENU representation 

of deep integration position estimation result; zooming on a select portion of the test trajectory 
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5. GEOLOCATION NAVIGATION SOFTWARE MODULES 

5.1 AIMS PRO QUADRUPLE INTEGRATION NAVIGATION SOFTWARE 

5.1.1 Introduction 

The original AIMS PRO software package has been developed in Microsoft Visual Studio C++ 
environment. The development platform was chosen mainly for performance reasons, though 
many algorithmic components were originally implemented and tested in Matlab environment. 
However, as computer systems have improved in processing power and Matlab execution 
performance has been increased recently, the Matlab environment is quite adequate and there is 
no need to convert the code to VC++. In addition, the software receiver component is completely 
in Matlab implementation. Therefore, the AIMS PRO navigation software has been also fully 
implemented in Matlab in the second phase of the project, as it provides a better environment for 
further developments, testing, etc. Obviously, all the new functionalities developed during this 
project have been programmed only in Matlab. 

This section shortly describes the software design and usage of the GPS/IMU based multi-sensor 
integration software module using the Matlab environment. The design and development of this 
Matlab based software module is to be served as the SDK (Software Development Kit) for 
further prototype development of GPS/IMU related multi-sensor integrated systems; for 
example, the GPS/IMU integration with a variety feedback from image sensors, such as LiDAR, 
flash LADAR, camera, etc. These extensions go beyond the spherical target based feedback, 
developed in the first phase of the project. 

The major features of this GPS/IMU based multi-sensor integration software module include: 

• GPS/IMU integration using an Extanded Kalman filter (EKF) 

• 24-dimensional state vector to model the platform position (3), velocity (3), 
attitude/orientation (3), accelerometer bias (3), gyro bias (3), accelerometer scale factor 
error (3), gyro scale factor error (3), and GPS antenna level arm offset w.r.t IMU body 
center (3, optional, not needed if the level arm offset is accurately known or ignorable) 

• Using psi-angle linearized inertial error model 

• Using 6-state driven process noise model (3 accelerometer measurement noise and 3 gyro 
measurement noise) 

• Autonomous stationary detection based on accelerometer and gyro outputs to trigger 
ZUPT (Zero velocity measurement UPdaTe) 
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• NON-Holonomic Constraint (NHC) for vehicle or personal navigation systems (pushcart 
or backpack sensor configurations) 

• Ability to accommodate measurement update for the position, and orientation changes 
between two epochs 

o By augmenting two state vectors into one state vector 

• Support loosely-coupled (LC) integration mode 

o Supporting position measurement update 

o Supporting velocity measurement update 

• Support tightly-coupled (TC) integration mode (some components are still in testing 
phase) 

o Support GPS and GLONASS dual-frequency data processing 

o Support GNSS RINEX 2.1 data format 

o Support IGS SP3 precise ephemeris for GPS and GLONASS  

o Only support one reference and one rover stations 

o GNSS (GPS + GLONASS) single-difference code and carrier phase measurement 
update on both L1 and L2 frequencies 

o Additional state vector (number of single-differences between two receivers) to 
model the ionospheric delay residuals, modeling as random walk 

o Additional state vector (number of single-differences between two receivers) L1 
ambiguities, modeling as random constant 

o Additional state vector (number of single-differences between two receivers) L2 
ambiguities, modeling as random constant 

o Integer AR (Ambiguity Resolution) based on LAMBDA method 

The following provides a basic description of the AIMS PRO extended Matlab implementation; 
the Kalman filtering details are omitted, and only the input/output and integration functionality 
are discussed. 
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5.1.2 System Settings 

To control the navigation filtering process, the system parameters, inputs and outputs are 
interfaced by the function “make_filter_option.m”; details are shown in Table 1. 

Field Default Description 

posFileName '' GPS Position (and Velocity) File Name 

posFileType 0 GPS Poisition (and Velocity) File Type 

0: Text File Format (Time, lat, lon, ht, RMS X, RMS Y, 
RMS Z, (Vx, Vy, Vz, RMS Vx, RMS Vy, RMS Vz)), note: 
Velocity is optional 

1: Binary file format (Time, lat, lon, ht, RMS X, RMS Y, 
RMS Z) 

posFileName and posFileType are required to be 
correctly set for LC (loosely-coupled) Integration 

GPS/GNSS position (and velocity) setting for LC (loosely-coupled) integration 

refRinexObs 
 

'' reference station rinex observation file name 
 

rovRinexObs 
 

'' rover station rinex observation file name 

gpsRinexNav '' GPS rinex navigation file name 
 

gloRinexNav '' GLO rinex navigation file name 
 

gpsOrbitSp3 '' GPS precise orbit file name 
 

gloOrbitSp3 '' GLO precise orbit file name 

GPS/GNSS raw data (reference and rover RINEX observations, broadcast and precise 
ephermis)  for TC (Tightly-coupled) integration 

sensorType 
 

'' IMU sensor type (HG1700, H764G, LN100, LN200, 
MEMS IMU400CC, etc.) 
 

imuFileName '' IMU binary raw data file name (format 1+6 : time, fxyz, 
wxyz) 

navFileName '' IMU binary navigation solution file (format 1+9 : time, 
lat, lon, ht, Vn, Ve, Vd, Heading (yaw), Pitch, Roll) 
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C eye(3) 
 

IMU axis rotating matrix to get initial roll and pitch 
close to 0, this is mainly due to the IMU hardware 
assembly 

IMU (Inertial sensor) settings 

levelArmOffset [0.0 0.0 0.0] GPS Level Arm Offset w.r.t IMU body center, row 
vector (1x3) 

GNSS and IMU spatial relationship settings 

sigma_pos 10.0 initial sigma for position state vector, if the initial 
position is known, then decrease this value 

sigma_vel 
 

0.01 initial sigma for velocity state vector, normally 
assumed to be stationary at the begin 

sigma_roll 
 

0.0 initial sigma for roll, if 0.0, the actual value will be set 
according to the sensorType 

sigma_pitch 
 

0.0 initial sigma for pitch, if 0.0, the actual value will be set 
according to the sensorType 

sigma_yaw 0.0 initial sigma for yaw, if 0.0, the actual value will be set 
according to the sensorType 

imu_sigma_acc_bias 
 

0.0 initial sigma for acceleration bias, if 0.0, the actual 
value will be set according to the sensorType 

imu_sigma_gyro_bias 
 

0.0 initial sigma for gyro bias, if 0.0, the actual value will be 
set according to the sensorType 

imu_sigma_acc_scale_factor 
 

0.0 initial sigma for acceleration scale factor, if 0.0, the 
actual value will be set according to the sensorType 

imu_sigma_gyro_scale_factor 
 

0.0 initial sigma for acceleration scale factor, if 0.0, the 
actual value will be set according to the sensorType 

sigma_levelArmOffset 0.0 GPS Level Arm Offset accuracy (to turn off estimation, 
set a value <=0.0) 

GNSS/IMU integration Kalman filter initial covariance settings 

noise_acc 
 

0.0 accelerometer measurement noise, if 0.0, the actual 
value will be set according to the sensorType 

noise_gyro 
 

0.0 gyro measurement noise, if 0.0, the actual value will be 
set according to the sensorType 

GNSS/IMU integration Kalman filter driving noise characteristics settings 
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imaFileName 
 

'' Image file name 

Image sensor settings 

sigmaNHC 

 

0.0 Non-Holonomic Constraint (NHC) sigma (<=0.0 => turn 
off NHC) 

sigmaZUPT 

 

0.0 Sigma for ZUPT measurement constraints (<=0.0 => 
turn off ZUPT) 

autoZUPT_bias_fxyz 

 

9.8 bias/sigma/bandwidth for automatically-detect ZUPT 
using acceleration measurements 

autoZUPT_sigma_fxyz 

 

0.05 bias/sigma/bandwidth for automatically-detect ZUPT 
using acceleration measurements 

autoZUPT_bw_fxyz 

 

20 bias/sigma/bandwidth for automatically-detect ZUPT 
using acceleration measurements 

autoZUPT_bias_wxyz 

 

0.0 bias/sigma/bandwidth for automatically-detect ZUPT 
using gyro measurements 

autoZUPT_sigma_wxyz 

 

0.001 bias/sigma/bandwidth for automatically-detect ZUPT 
using gyro measurements 

autoZUPT_bw_wxyz 

 

20 bias/sigma/bandwidth for automatically-detect ZUPT 
using gyro measurements 

waveletDN_level 

 

0 Wavelet-based de-noising (0 => turn off smoothing), 
required Wavelet toolbox  

initAlign_second 5 seconds used for initial alignment 

System parameters settings 

isOutNED 

 

False output solution is NED (local coordinate system, North-
East-Down) w.r.t a reference starting point or not 

true : => NED (output local coordinate system) 

false: => Lat, Lon, Ht 
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solOutputFileName 'KF_sol.txt' File name for output Kalman filter solutions. File 
format is: Time (1: GPS week second), NED (2,3,4: m ) 
or BLH (Lat(2: radian), Lon(3: radian),Ht(4: m)), 
Vned(5,6,7: m/s), RPY (Roll(8: radian), Pitch(9: radian ), 
Yaw/Heading(10: radian)), RMS ECEF XYZ (11,12,13: 
m), RMS Vned(14,15,16: m/s),RMS RPY(17,18,19: 
radian) 

errOutputFileName 

 

'KF_err.txt' 

 

File name for output Kalman filter error state vector. 
File format is: Time (1: GPS week second), 
Accelerometer biases  (2,3,4: m/s2), gyro biases 
(5,6,7:radian/s) , accelerometer scale factor errors 
(8,9,10:unitless), gyro scale factor errors (11,12,13: 
unitless), antenna level arm offset (14,15,16: m), RMS 
of accelerometer biases (17,18,19:m/s2), RMS of gyro 
biases (20,21,22: radian/s), RMS of accelerometer scale 
factor errors (23,24,25: unitless), RMS of gyro scale 
factor errors (26,27,28: unitless), RMS of level arm 
offset (29,30,31: m) 

ambOutputFileName 'KF_amb.txt' File name for output Kalman filter ambiguity fixing 
information. File format: Time(1), baseline component 
NED (2,3,4), reference variance (5), LAMBDA ratio (6), 
number of DD (double-difference) pairs (7), reference 
satellite ID1 (8), rover satellite ID1 (9), L1 ambiguity 
(10:cycle), L2 ambiguity(11:cycle), reference satellite 
ID2 (12), rover satellite ID2 (13), L1 ambiguity 
(14:cycle), L2 ambiguity(15:cycle), ... 

outToScreen true Print Kalman filter solution (Time, NED/BLH, Vned, 
RPY) to screen or not 

Table 5.1 System parameters, input and output settings 

 

5.1.3 Sensor Fusion 

The sensor integration is done by the function “gps_imu_filter.m”.  This function takes 
the output from the function “make_filter_option.m” and fuses all the sensors’ 
measurements based on the settings. The sensor integration algorithm executes in the following 
steps: 

1. Load TC (Tightly-coupled) integration related data (reference and rover station RINEX data, 
broadcast and precise GNSS orbit data) 
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2. Load LC (Loosely-coupled) integration related data (position and velocity data together with 
associated RMS data) 

3. Load IMU data, including the following optional pre-processing: IMU data re-sampling,  
rotating according to pre-defined rotating matrix, and IMU data wavelet-based de-noising 

4. Load initial navigation solution or IMU initial alignment 

5. EKF (Extended Kalman filter) navigation filter setup (initial covariance and platform motion 
noise covariance settings according to pre-defined values or IMU sensor type) 

6. Optional autonomous ZUPT detection before filtering 

7. Organize related output information 

8. Enter inertial sensor measurement loop 

1. Time update of EKF 

 State propagation in time: free inertial navigation using the current inertial 
measurements (accelerations and angular rates), and previous epoch's 
navigation solutions 

 Covariance propagation in time:  

• psi-angle inertial linearized error model 

• accelerometer and gyro platform motion noise 

2. Form GNSS single-difference measurements between two receivers if GNSS 
observations are available at current epoch 

 satellite orbit evaluation 

 add corresponding state vectors (ionospheric delay residuals, L1 ambiguity 
and L2 ambiguity) for new satellites 

 remove corresponding state vectors for dropped satellites 

 single-differential (SD) code measurement update for all satellites 

 single-differential (SD) carrier-phase measurement update for all satellites 

 Integer AR (ambiguity resolution) search using LAMBDA for L1 and L2 
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 constraint integer double-difference (DD) ambiguities if DD ambiguities are 
fixed  

3. Position measurement update if position is available 

4. Velocity measurement update if velocity is available 

5. ZUPT measurement update if stationary condition is detected 

6. NHC (Non-holonomic constraint) if NHC option is set 

7. Image measurement update if image solution is available 

8. Output solution to files and screen 

9. Move to next epoch 

9. Close output files 

The solution visualization is supported by two functions “plotkf.m” and “ploterr.m“. 
Before calling these two functions, use load functions to load Kalman filter solution file to kf 
and error state vector file to err. See Appendix 9.1 and 9.2 

 

5.2 DEEP INTEGRATION NAVIGATION SOFTWARE 

5.2.1 Introduction 

The deep integration software package was implemented and tested in Matlab programming 
environment. Main components of the software package include software GPS receiver; 
strapdown inertial navigation mechanization; inertial aiding of GPS signal accumulation over an 
extended integration interval for processing of weak signals; and, estimation of inertial drift 
terms via a tightly coupled Kalman filter. The Matlab development environment was primarily 
chosen for the convenience of its debugging and graphical representation tools. In addition, 
Matlab execution performance has been increased recently and is comparable to implementations 
in C and C++. The main computational load of the deep integration software is associated with 
the software receiver implementation and, specifically, with its signal correlation engine. In 
order to accelerate the software into real-time, this engine has to be implemented in a dedicated 
hardware such as FPGA or a DSP board. The rest of the software functionality is close to real-
time performance requirements (even when implemented in Matlab) and does not need any 
specialized implementation platforms. 



Multi-Sensor Geolocation for Detection and Discrimination of Unexploded Ordnance 
 

45 
 

This section shortly describes the software design and usage of the GPS/INS deeply integrated 
software module in the Matlab environment. The design and development of this Matlab-based 
software is to be served as the SDK (Software Development Kit) for further prototype 
development of deeply integrated systems. 

The major features of the deep GPS/INS integration software module include: 

• Software GPS receiver component including generation of replica signals; correlation of 
replica signals with incoming GPS signals that are down-sampled to a baseband; 
correlation of incoming and replica signals over a specified interval; wipe-off of 
navigation data bits; and, estimation of code and carrier phase signal measurements based 
on correlation results; 

• Strapdown INS mechanization including INS initialization; attitude computations and 
velocity and position integration routines; 

• GPS/INS integration using a complementary Extended Kalman filter (EKF) that applies 
GPS pseudoranges and temporal changes in GPS carrier phase as measurement 
observables; 

• Aiding of GPS signal accumulation using inertial data and satellite ephemeris, which 
includes computation of changes in code and carrier signal parameters over the 
accumulation interval; 

• 21-dimensional state vector to model the INS position error (3), INS position change 
error (3), INS velocity error (3), INS attitude/orientation error (3), INS accelerometer bias 
(3), INS gyro bias (3), GPS receiver clock error states (3);  

• Using psi-angle linearized inertial error model; 

• Using 6-state driving process noise model (3 accelerometer measurement noise and 3 
gyro measurement noise). 

The following section provides a basic description of the deep integration Matlab 
implementation; the software receiver and Kalman filtering details are omitted, and only the 
input/output and integration functionality are discussed. 

5.2.2 Sensor Fusion 

The sensor integration is done by the function “Deep_GPS_Inertial_ver1.m”.  This 
function loads test data from specified data files and then implements deep integration 
processing routines. The integration algorithm executes in the following steps: 
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10. Load pseudorange range and carrier phase measurements of a stand-alone GPS receiver from 
a specified file (RANGE_Aug31.mat for current settings);  

11. Load position solution measurements of a stand-alone GPS receiver from a specified file 
(NovAtel_BESTPOS_Aug31.mat for current settings); 

12. Load IMU data from a specified file (IMU_Data_Aug31_2.mat for current settings); 

13. Load GPS/INS tightly coupled solution from a specified file (GPSINS_Aug31.mat for 
current settings) for comparison purposes;  

14. Load software receiver initialization results and ephemeris data (from 
Ephemeris_Aug31.mat and RCVR_init_Aug31.mat for current settings); 

15. Perform initialization of main structures including: 

- GPS initialization (GPSStructInitialization3.m); 
- Preliminary INS initialization (INSStructInitialization5_2.m and 

INSInitialization_temp.m);  
- Initialization of software receiver tracking channels (TrackingChannels_Init.m); 
- Initialization of Kalman filter (FilterStuctInitialization_temp.m); 

16. Enter deep integration processing loop 

17. Read IMU measurements from a data file (GetIMUMeasurements.m) 

18. Perform strapdown INS updates (INSNavUpdates4.m); 

19. Perform Kalman filter prediction updates (KalmanFilterPredictions.m); 

20. If the INS navigation solution is initialized, compute dynamic reference trajectory for 
extended accumulation of GPS signals (AidingTrajectory.m); 

21. Read measurements of the unaided GPS receiver (GetGPSMeasurements3_5.m); 

22. Compute GPS position and velocity solution and, if the INS navigation solution is initialized, 
compute Kalman filter observables for the unaided GPS receiver 
(KalmanFilterGPSObservables7_5.m); 

23. Save position and velocity solution of the unaided receiver into an output array structure; 
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24. If the INS navigation solution is initialized, perform deep integration acquisition of weak 
GPS signals (DeepIntegration_Acquisition.m); 

25. If the INS navigation solution is initialized, perform deep integration tracking of weak GPS 
signals (DeepIntegraton_Tracking.m); 

26. If the INS navigation solution is initialized, compute Kalman filter observables of the deeply 
integrated receiver (DeepIntegration_KalmanFilterGPSObservables.m); 

27. If the INS navigation solution is initialized, save GPS/INS residuals of delta position and 
position into output data arrays; 

28. If the INS navigation solution is initialized, perform Kalman filter estimation updates 
(StateEstimation2.m); 

29. If the INS navigation solution is not initialized, attempt to perform “in-flight” INS 
initialization based on GPS position and velocity measurements 
(INSInitialization6.m); 

30. If the INS initialization process is just being completed, update the Kalman filter structure 
accordingly (FilterInitialization1_2.m); 

31. Reset INS error states (AgentStateReset7.m); 

32. Save data into output arrays including deep integration position estimates (ENU and LLH 
format); velocity estimates; gyro drift and accelerometer bias estimated; and, Kalman filter 
covariances; 

33. Exit the loop; 

34. Plot processing results. 
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6. LASER SENSOR DEVELOPMENTS 

6.1 Introduction 

Laserscanning systems have seen enormous growth in the geospatial data acquisition industry in 
the past decade, mainly because of the excellent performance offered by this technology and the 
explicitness of the 3D data; a review on LiDAR technology can be found in (Shen and Toth, 
2008) and on advanced data processing in (Vosselman and Maas, 2010). More importantly, laser 
sensing technologies have seen remarkable developments in the past few years. The single laser 
sensor-based systems still dominate the geospatial market but new multi-sensor and integrated 
array sensors have been introduced and increasingly used recently. At the beginning of the 
project, only single sensor-based systems were available where mechanical scanning provides for 
either profile or 2D range measurements. While these solutions provide good measurement 
performance, the slowness of the scanning has two drawbacks: (1) artifacts are introduced in 
dynamic environment, and (2) the data acquisition is time-consuming. Multi-sensor systems 
provide significant performance improvement, as a linear array of is used for scanning, and thus, 
a profile can be directly measured in a short time or one dimension is eliminated from 2D 
scanning. Consequently, these systems typically offer two orders of improvement in speed, and 
clearly, they are fast enough for considering their use in a reengineered version of the prototype 
used for testing in this project. In the integrated array sensor category, Flash LiDAR systems 
provide excellent performance, acquiring 2D depth images at 10-30 image/second rates. In fact, 
this fast observation capability is not needed to meet the geolocation requirements of this project. 

Flash LiDAR, also called Flash LADAR, is a substantially different sensing technology 
compared to pulsed and CW LiDAR techniques, as it is based on an sensor array, so a it can 
capture a whole 3D, also called depth or range, image with intensity data in a single step. Flash 
LiDAR can use both basic solutions to emit laser, either a single pulse with large aperture will 
“flash” the area for a short time or in CW mode a continuous laser “light” provides steady 
illumination in the area. One of the first and early Flash LiDAR models, the SWR3000 
(Kahlmann, 2006) is based on CW approach, offering an operating range up to 7.5 m and a frame 
rate of 15 Hz. All the Flash LiDAR systems are based on solid state semiconductor technologies, 
and there is a large variety of solutions and, consequently, operating parameters. Advanced 
modern systems can reach the 1,500 m range, which makes them deployable on airborne 
vehicles. Because of their smaller size, and less power requirements, they are attractive for 
mobile platforms. Flash LiDAR technology goes back to the late 90’s, but started to reach 
maturity just recently. The issues are the limited power that should illuminate the area and the 
complex circuitry, typically avalanche photodiode detector (APD), needed to detect the few 
photons, backscattered from objects. There are several Flash LiDAR systems in low-end 
category, while professional-grade systems are mainly manufactured by two companies, 
Advanced Scientific Concept, Inc., offering three products (ASC), and Raytheon Vision 
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Systems, mainly focused on sensor developments (Bailey et al., 2010). Flash LiDAR systems 
have been rapidly advancing in both the professional and commercial markets; the typical sensor 
array size is in the 128x128 and 256x256 range. Airborne Flash LiDAR systems are already 
available in military reconnaissance and are increasingly tested in civilian mapping too. In the 
commercial market, there are many small and inexpensive systems, which may only work 
indoors, as the emitted laser energy of these sensors is very low and ambient radiation outdoors 
prevent reliable operations.  

To assess the feasibility of Flash LiDAR for the purpose of this project, experiments were 
conducted using the Microsoft Kinect sensor. Clearly, this sensor is not robust to be considered 
for a deployable geolocation system, yet it has all the characteristics that can expected from 
future professional grade Flash LiDAR systems. Note that strictly speaking, Kinect is not a Flash 
LiDAR sensor, as it uses structured near IR light for depth recovery, but for practical reasons, it 
can be viewed as Flash sensor, as it provides identical depth images. 

6.2 Kinect Sensor 

The Kinect sensor is a motion sensing input device for the Xbox 360 video game console, 
originally developed by PrimeSense (PrimeSense), and acquired by Microsoft. The primary 
purpose is to enable users to control and interact with the Xbox 360 through a natural user 
interface using gestures and spoken commands without the need to touch a game controller at all. 
The Kinect has three primary sensors: a Flash LiDAR (3D camera), a conventional optical RGB 
sensor (2D camera), and microphone array input. The device is USB-interfaced, similar to a 
webcam, and appears as a “black box” for the users. 

Very little is known of the sensors, internal components and processing methods stored in the 
firmware. The laser, IR, emitter projects a structured light pattern of random points to support 3D 
recovery. The 2D camera can acquire standard VGA, 640x480, and SXGA, 1280x1024, images 
at 30 Hz. The color formation is based on Bayer filter solution, transmitted in 32-bit and 
formatted in the sRGB color space. The FOV of the 2D camera is 57° x 43°. The 3D camera can 
work in two resolutions with frame sizes of 640x480 and 320x240. The range data comes in 12-
bit resolution. The sensors’ spatial relationship is shown in Figure 6.1. The approximate 
difference between the laser emitter and detector that form a stereo par is about 7.96 cm, and the 
baseline between the 2D and 3D cameras is about 2.5 cm. 
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Figure 6.1 Kinect XBOX 3600 sensor, including 2D and 3D imaging sensors 

Microsoft provides an SDK (Windows 7, Visual Studio 2010 Enterprise, and DirectX) to support 
application developments, including both polled and event-based access to the image data 
streams (Microsoft). In addition, skeletal tracking of up to two people is also supported. Kinect 
has a default measuring range of 0.8 m and to 3.9m (no ambiguity), which can be extended; our 
experiences indicate that up to 10 m range, reliable depth images can be acquired. The available 
open source drivers provide additional the opportunity to acquire raw data and a very powerful 
SDK is also available. In our investigation the SensorKinect driver (Github) was used with 
OpenNI (OpenNI) and all the subsequent processing was done in Visual Studio C++ and Matlab. 

The Kinect sensor installation in a backpack configuration used in our testing is shown in Figure 
6.2 

 

Figure 6.2 Personal navigator (PN) sensor assembly with Kinect sensor 

Laser emitter Laser sensor (3D camera) 

RGB sensor (2D camera) 
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6.3 Sensor Repeatability Test 

The repeatability of the range measurement is an essential aspect of using depth imaging sensors, as it 
provides the assessment of the ranging precision in short term. To determine the sensor repeatability 
performance, a planar target was imaged from a distance ranging from 0.5 m to 5 m in 0.1 m steps. 
Figure 6.3 shows 3D (depth) images of the target from two different distances. 

  

  
(a) (b) 

Figure 6.3 Pseudo color 3D images taken at 150 (a) and 270 (b) cm ranges; first row entire 
images and second raw images of the planar target extracted 

 

The measurement was repeated six times, so a total of 46 x 6 images were acquired and 
processed. The planar target has a size of 180 cm x 60 cm, so its FOV in the image changes a lot. 
Consequently, the number of points obtained by the 3D sensor from the reference planar target 
varies over a large range, from 200K down to 10K. 
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In the first step, the standard deviation was computed on a point basis for each distance. The 
repeatability results, shown in Figure 6.4, clearly indicate a near linear dependency on the range; 
note a quadratic function is the theoretical model. The overall performance for the whole range is 
lower than 0.5%, which is quite excellent compared to earlier Flash LiDAR results (Kahlmann et 
al., 2006). 

  
(a) (b) 

 

Figure 6.4 Repeatability results; (a) absolute and (b) relative performance 

 

6.4 Plane Fitting Performance 

To achieve a better performance characterization, plane fitting was performed based on principal 
point component analysis and the fitting error was calculated in the plane normal direction. The 
fitting error, shown in Figure 6.5, has an interesting shape, as the curve has a local maximum in 
the central part of the range, near the ambiguity range. There is no obvious explanation for this 
character, except that the decreasing number of points can result in improving fits. In addition, 
this curve, as well as all error curves, looks sort of jagged or “discontinuous” which could be 
partially associated with rounding up the numbers during internal processing of the sensor 
firmware. 
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Figure 6.5 Standard deviation of plane fitting error in surface normal direction 

 

Based on the six measurement sets, the fitting plane residual errors were calculated and basic 
statistical parameters were determined, including maximums and STD, for each range. Figure 6.6 
shows the results, including a maximum error envelope and the STD (a) as well as well as only 
the STD with error envelope (b). The results clearly indicate good accuracy performance, as at 
the shortest object distance, the STD is lower than 1 mm and the maximum error is 1 cm, while 
at 3.5 m (the ambiguity limit) the STD is 7 mm and the maximum is 5 cm. Theoretically, the 
STD function should be of quadratic form based on the used calculation method, yet the curve 
looks almost linear. Normalized for the range, the STD is about 0.2% of distance while the 
maximum error is about 1.6%, as shown in Figure 6.7. 

  
(a) (b) 

Figure 6.6 STD of residual surface fitting errors 
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Figure 6.7 Normalized statistical parameters 

 

6.5 Sphere Fitting Performance 

The sphere fitting performance is of high importance for the project, as it has a primary impact 
on the relative geolocation performance. Note it, obviously, comes after repeatability, but the 
repeatability tests performed for the spheres resulted in similar performance compared to the 
planar surface based tests. Therefore, to assess sphere fitting performance, several tests were 
carried out using highly accurate wood balls and then the very same basketballs used in the field 
tests in Phase I of the project. Figure 6.8 shows optical and depth images of the precise balls used 
for initial testing. 
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(a) (b) 

Figure 6.8 Images of precise wood targets 

 

The captured point clouds were filtered and then two spheres were fitted; the radius, center 
points and fitting error were analyzed (Molnar et al., 2012). Figure 6.9 shows example fitting 
residuals for one of the spheres at a distance of 100 cm. The results show that there is no 
significant error around the edges of the spheres indicating that there is a low correlation with 
respect to the angle of incidence. 

 

[mm] 

Figure 6.9 Sphere fitting residuals at sphere to Kinect distance of 100 cm 
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The analysis of the fitting w.r.t object distance produced unexpected results, as over 2 meters, the 
value of the radius was getting lower, as shown in Figure 6.10. The repeated measurements, even 
with multiple Kinect devices, provided the same results. The decreasing number of points with 
respect to target range cannot be the reason of this error because each sphere is covered by about 
5K points at 2 meter distance. To identify the source of this error, a new test was performed, 
where in the new arrangement two hemispheres were placed on a flat surface, giving the 
opportunity to find errors caused by peripheral points with bad conditions, see Figure 11. The 
gap between the plane and spheres is virtually zero, which means that most of the emitted points 
return even at bad incident angle. In this arrangement, it is possible to check the distance 
between the closest points of sphere and the plane and compare to the nominal radius of sphere. 
Thus, looking at the Kinect raw data, the answer to the downscaling turned out to be quite 
simple. Since the raw measurement values are transmitted over USB interface with a limited 
transmission capacity with respect to the large amount of image data, the depth values are 
transmitted as 11-bit integers. Thus, due to this coarse quantization, the spacing is growing by 
the measurement distance. For instance, a sphere with 15 cm radius has about 30 depth levels at 
90 cm object distance and only four at 3 meters, see Figure 6.12. 

 

Figure 6.10 Downscaling effect 
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Figure 6.11 Hemisphere targets on planar surface (depth image) 

 
  

(a) (b) 
 

Figure 6.12 Levels on a sphere and level number as a function of distance 

 

The cross-section and the impact of the quantization, “ringing effect” are shown in Figure 6.13. 
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(a) (b) 

Figure 6.13 Source of downscaling (a) and quantization error with sign (b). 

 
Knowing the nature of the quantization introduced error, the sphere fitting algorithm can be 
modified to account for this limitation (Molnar et al., 2012). Then, the accuracy test was 
repeated with two hemispheres in the backplane arrangement with a distance range of 90-300 cm 
in 10 cm steps. During the process of fitting spheres with the new fitting method, the radius of 
spheres, center points’ distance and their differences were analyzed. Based on the repeated 
measurements, the STD of these values was also calculated at each step, indicating a less than 10 
mm repeatability accuracy at each distance. The new fitting method performed well and confirms 
that the raw device measurement itself has good accuracy and only the quantization limits the 
performance of farther object measurements. By analyzing the radius-distance function, shown 
in Figure 6.14, it can be concluded that the maximum difference from the directly measured 
radius (152 mm) is less than 1 cm and STD is less than 3.5mm. 

 

Figure 6.14 Radius-range function of the two spheres 



Multi-Sensor Geolocation for Detection and Discrimination of Unexploded Ordnance 
 

59 
 

Compared to previous results, the new tests show that the STD of fitted radiuses has a quadratic 
form, as depicted in Figure 6.15; note that it was originally expected (Khoshelham, 2011). This 
proves that the raw depth values are more accurate compared to the quantized ones. In addition, 
it can be confirmed that the quantization error is significantly higher than measurement error. 
Thus, if the fitting is performed by the common fitting method, the error is about the 0.5% of 
object range, while for the modified method, it is less than 0.3% at 3 meter and 0.1% at 1 meter. 

 

Figure 6.15 STD of radius has a quadratic form 

 

Finally, tests were carried out with basketballs, and resulted in identical results. A sample image 
is shown in Figure 6.16; not these targets were used in the field tests of Phase I. 

  
(a) (b) 

Figure 6.16 Images of basketball targets used for performance testing 
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7. CONCLUSION FUTURE RECOMMENDATION 

This report discusses the application of the deeply integrated GPS/INS navigation approach for 

precise positioning in dense canopy environments. A top-level review of the deeply integrated 

system architecture is offered. Experimental results are presented to demonstrate the deep 

integration performance for scenarios including suburban tree-covered areas and dense forestry 

tests. Example results demonstrate that the deep integration supports reliable trajectory 

reconstruction with the positioning precision estimated to be at a sub-meter level. In order to 

support the deep integration functionality, the GPS receiver signal processing part needs to be 

integrated with a navigation-grade or a tactical-grade inertial measurement unit.   

Test results presented in the document demonstrate that the use of deeply integrated solution is 

sufficient for enabling sub-meter level precise geo-referencing capabilities. This level of 

positioning precision is sufficient to support initial scans of MEC sites that localize anomalous 

electromagnetic signatures. For a more detailed analysis of a potential MEC location, cm-

accurate relative positioning is required, which cannot be supported by deep integration 

techniques. Hence, it is envisioned, that the incorporation of deep integration into the quadruple 

system architecture will allow for the removal of the PL system component. However, TLS still 

have to be included to provide cm-level precise estimates of the relative position.  

Recent developments in laserscanning technology, in particular, in Flash LiDAR sensors may 

provide a basis for efficient implementation of the TLS component of the multisensory system in 

the near future. The initial tests with simulated sensors confirmed that cm-level accuracy is 

easily available with randomly deployed spherical targets.  
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9. APPENDIX 

9.1 AIMS PRO: Major functions 

Function name Description 

ang2qua.m Angle convert to quaternion 

att2c_nb.m Attitude convert DCM  

att2qua.m Attitude to quaternion 

b2n.m Body frame to navigation frame 

blh2C_en.m Compute rotating matrix from e-frame to navigation frame 

blh2xyz.m Lat, Lon and Ht to ECEF XYZ 

calgravmodel.m Compute gravity model 

calomega_nen.m Compute n
enΩ  

calomega_nie.m Compute n
ieΩ  

calradius.m Compute Rn and Rm 

checkzupt.m Automatically ZUPT detection 

coarsealign1.m Coarse alignment 

coarsealign2.m Coarse alignment 

coarsealign3.m Coarse alignment 

coarse_alignment.m Coarse alignment 

c_nb2att.m DCM to attitude 

c_nb2qua.m DCM to quaternion 

geoatan1.m Arctan 

geoatan2.m Arctan 

geoconst.m Related constant definition 
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gps_imu_filter.m Main Sensor fusion 

imuwavedenoise.m Wavelet-based de-noising 

make_filter_option.m Make filer option, main system setting function 

n2b.m Navigation frame to Body frame 

n2e.m Navigation frame to e-frame 

nav_ffun.m Free inertial navigation 

ploterr.m Plot error state vector 

plotkf.m Plot KF estimations 

process_noise_model.m KF process noise model 

psi_angle_error_model.m KF psi-angle error model 

qua2att.m Quaternion to attitude 

qua2C_nb.m Quaternion to DCM 

quamulti.m Quaternion multiply 

readdata.m Read binary data 

readposdata.m Read text postion & velocity data 

readrinexobs.m Read Rinex 2.10 observation data 

resampleimudata.m IMU data re-sampling 

skew.m Skew matrix 

xyz2blh.m ECEF XYZ to lat, lon, ht 
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9.2 AIMS PRO: Example 

options.posFileType = 1; 
options.posFileName = '..\20040704\data\gpsamb.bin'; % GPS position time, 
lat, lon, ht, RMS X, RMS Y, RMS Z 
options.imuFileName = '..\20040704\data\hg764_imu.bin'; % IMU Binary File 1+6 
options.navFileName = '..\20040704\data\finenav_hg764.bin'; % NAV Binary File 
1+9 
options.sensorType = 'H764G'; 
 
 
 

 

Figure 9.1 Ground track 



Multi-Sensor Geolocation for Detection and Discrimination of Unexploded Ordnance 
 

66 
 

 

Figure 9.2 Height profile 
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Figure 9.3 Velocity profile 
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Figure 9.4 Orientation profile 
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Figure 9.5 Acceleration bias estimation 



Multi-Sensor Geolocation for Detection and Discrimination of Unexploded Ordnance 
 

70 
 

 

Figure 9.6 Gyro bias estimation 
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Figure 9.7 Acceleration scale factor error estimation 
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Figure 9.8 Gyro scale factor error estimation 
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9.3 Software Modules Developed (digital version) 

9.3.1 AIMS PRO Software 

9.3.2 Deep Integration Software 
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