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Acronyms

• AUC: Area Under Curve (area under the ROC curve)
• EMI: Electromagnetic Induction
• EM: Expectation Maximization
• FAR: False Alarm Rate
• MAP: Maximum A Posterior
• MRTDB: Munitions Response Target Database
• QC: Quality Control
• ROC : Receiver Operating Characteristic
• SOI: Single Object of Interest
• SVM: Support Vector Machine
• TEM: Time Domain Electromagnetics
• TEMTADS: Time Domain Electromagnetic Towed Array Detection System
• TOI: Target of Interest
• UBC: University of British Columbia
• UXO : Unexploded Ordnance

Abstract

Background. This research program has been focused on advanced technologies for de-
tection and discrimination of military munitions. The underlying premise of the program
has been that there is an inherent limitation in the information content associated with
magnetometer and EMI sensors deployed for UXO cleanup. To optimize UXO classifica-
tion one must integrate all available information, both within the measured data itself and
within a priori knowledge one may possess. An important class of prior knowledge is rep-
resented by the sensor physics, and by placing as much physics as possible into the models
and classification features, one removes the need to rely on the limited sensor data to infer
such phenomenology. Statistical classifiers are also required to maximize the information
extracted from the measured data to infer the unknown model parameters. Further, the sta-
tistical classifiers may be used to appropriately exploit other forms of information inherent
to the data. For example, while performing classification one may exploit the contextual
information provided by all of the unlabeled data at a given site, while also appropriately
leveraging related information in data measured at previous sites.

Objective. The overall objective of the research has been to integrate advanced Bayesian
statistical models and classifiers with leading geophysical models, to enhance the ability to
extract information from limited sensor data, with the goal of markedly improving UXO
classification performance on complex cleanup missions. The technology has been directed
toward general magnetometer and EMI sensors. A key aspect of the research is to de-
velop sophisticated but practical technology, appropriate for real-world UXO cleanup. The
technology is directed toward difficult geology, terrain, and complex ordnance and clutter
distributions.

Technical Approach. The research program has exploited the complementary skills of
the Duke and UBC/Sky investigators. In the research program a focus has been placed on
integrating the statistical inference engines developed at Duke with the sophisticated physics-
based models developed at UBC/Sky. The particular statistical techniques into which the
advanced geophysical models have been integrated include semi-supervised learning, multi-
task and life-long learning, and active learning. We also have developed new techniques
that explicitly account for the imbalance in UXO and non-UXO items at a typical site,
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with this of significant importance when computing the risk associated with leaving an item
unexcavated.

Benefits. By integrating the Duke and UBC/Sky technology, the Bayesian statistical mod-
els have been aided by improved geophysical models, and vice versa. This new technology
has the potential to significantly improve the DoD’s ability to do practical UXO cleanup.
The experience of the investigators within the ESTCP Demonstration Studies has guided
selection of the open research questions to be investigated, advancing the likelihood that
the research products will constitute new science while also being of importance to practical
UXO cleanup.
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1. Objective

This research program has been focused on advanced technologies for detection and dis-

crimination of military munitions. The underlying premise of the program has been that

there is an inherent limitation in the information content associated with magnetometer and

EMI sensors deployed for UXO cleanup. To optimize UXO classification one must integrate

all available information, both within the measured data itself and within a priori knowledge

one may possess. An important class of prior knowledge is represented by the sensor physics,

and by placing as much physics as possible into the models and classification features, one

removes the need to rely on the limited sensor data to infer such phenomenology. While

advanced physical models are critical, they are however not enough. Statistical classifiers

are required to maximize the information extracted from the measured data, to infer the

unknown model parameters. Further, the statistical classifiers may be used to appropriately

exploit other forms of information inherent to the data. For example, while performing clas-

sification one may exploit the contextual information provided by all of the unlabeled data

at a given site, while also appropriately leveraging related information in data measured at

previous sites. One may also exploit prior knowledge concerning the density of UXOs and

non-UXOs at typical cleanup sites.

The overall objective of this research program has been to integrate advanced Bayesian

statistical models and classifiers with leading geophysical models, to enhance the ability to

extract information from limited sensor data, with the goal of markedly improving UXO

classification performance on complex cleanup missions. The technology has been directed

toward general magnetometer and EMI sensors, including the new generation of EMI sensors

becoming available. A key aspect of the research has been to develop sophisticated but

practical technology, appropriate for real-world UXO cleanup. The technology is directed

toward difficult geology, terrain, and complex ordnance and clutter distributions.

2. Background

The 2003 Defense Science Board report on unexploded ordnance (UXO) projected that a

reduction in false alarm rates from 100:1 to 10:1 would save $36 billion on remediation

projects within the United States (Delaney and Etter, 2003). This cost reduction was

expected to be achieved by improvements in sensor and data processing technologies. These

goals have been met, and sometimes exceeded, in recent demonstration projects conducted

by the Environmental Security Technology Certification Program (ESTCP) (e.g. Billings

et al. (2010)).

Advances in electromagnetic (EM) sensors have been crucial to these successes: the data

provided by multi-static, multi-component EM platforms are much improved inputs into

the inversion and discrimination algorithms applied to this problem. Figure 1 compares the
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geometry and time channels of the commercial standard Geonics EM-61 with two multi-

static EM instruments designed for UXO discrimination. The Time Domain Electromag-

netic Towed Array Detection System (TEMTADS) is comprised of an array of 25 horizontal

transmitter loops arranged in a 5x5 grid, with horizontal receivers measuring the vertical

field arranged concentric to these transmitters. The transmitters are fired sequentially and

the secondary field response is recorded in all receivers simultaneously. This configura-

tion provides a diverse data set which is better able to constrain target parameters. The

MetalMapper sensor has also greatly improved the reliability of estimated parameters by

transmitting orthogonal primary fields and measuring all components of the secondary field

in multiple receivers. Both MetalMapper and TEMTADS systems are deployed in a static

(or cued) mode: previously-detected targets are interrogated with a stationary sensor. This

removes the requirement for accurate geolocation that complicates data acquisition with a

moving sensor such as the EM-61.

Figure 1. Left to right: Mono-static EM-61 and multi-static MetalMapper
and TEMTADS sensors for unexploded ordnance detection and discrimina-
tion. Top row shows sensor geometry, with solid and dashed lines indicating
receiver and transmitter coils, respectively. Bottom row shows time channels.
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Figure 2. Flow chart for advanced discrimination of UXO.

Given digital geophysical data acquired with a sensor, a number of processing steps are

required to produce an ordered list of targets for excavation. Figure 2 shows the typical

processing involved in advanced discrimination. In the following sections we provide brief

descriptions of the forward modelling, inversion, and discrimination required to generate a

dig list.

2.1. The TEM dipole model. Essential to most electromagnetic data processing for UXO

discrimination is the time (or frequency) dependent dipole model (Bell and Barrow (2001),

Pasion and Oldenburg (2001), Zhang et al. (2003)). This model provides a simple parametric

representation of the response of a confined conductor. The secondary magnetic field is

computed as

(1) Bs(r, t) =
p(t)

r3
(3(p̂(t) · r̂)r̂− p̂(t))

with r = rr̂ the separation between target and observation location, and p(t) = p(t)p̂(t) a

time-varying dipole moment

(2) p(t) =
1

µo
P(t) ·Bo.

The induced dipole is the projection of the primary field Bo onto the target’s polarizability

tensor P(t). The polarizability tensor is assumed to be symmetric and positive definite and

so can be decomposed as

(3) P(t) = ATL(t)A

with A an orthogonal matrix which rotates the coordinate system from geographic coor-

dinates to a local, body centered coordinate system. The diagonal eigenvalue matrix L(t)

contains the principal polarizabilities Li(t) (i = 1, 2, 3), which are assumed to be independent

of target orientation and location.

Features derived from the dipole model have been successfully used to discriminate be-

tween targets of interest (TOI) and non-hazardous metallic clutter. In particular the ampli-

tude and decay of the principal polarizabilities provide a simple parameter set for discrimi-

nation. For a sensor with N channels, these target features can be computed as

amplitude =
N∑
j=1

Ltotal(tj)

decay(tk, tj) =
Ltotal(tk)

Ltotal(tj)

(4)
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with the total polarizability Ltotal(tj) defined as the sum of the polarizabilities at each time

channel

(5) Ltotal(tj) =
3∑
i=1

Li(tj).

The decay parameter is a ratio of total polarizabilities at selected channels. For tk > tj we

have decay(tk, tj) < 1, so that a larger decay parameter is diagnostic of a slow decaying total

polarizability.

The amplitude and decay parameters are physically meaningful because, to first order,

a confined conductor can be modelled as a simple LR loop which is inductively coupled to

transmitters and receivers on the surface. The current response of this loop is a decaying

exponential which is fully described by an amplitude and time constant (West and Macnae,

1991). In practice, UXO are characterized as large, thick-walled items and so produce large

amplitude, slow decaying polarizabilities relative to metallic debris.

2.2. Parameter estimation with the dipole model. The dipole forward model de-

scribed in the previous section is an example of the forward modelling operation

d = F{m}.

The data vector d is generated by a forward modelling operator F operating on the model

vector m. When real data are acquired, the related inverse problem is to estimate model

parameters which produced the observed data. In the presence of noise, the inverse problem

can be written as

m̂ = F−1{dobs}.

where the observed data dobs are the true data plus noise ε

dobs = d + ε.

For electromagnetic data the number of observations typically outnumbers the number of

model parameters in a parametric forward model. The inverse problem is therefore overde-

termined and the solution involves minimizing an objective function which quantifies the

misfit between observed and predicted data. A common choice is the least squares (L2)

misfit function

(6) φd = ‖Wd(dobs − F{m})‖2.

The diagonal data weighting matrix Wd weights the contribution of a datum based on its

estimated standard deviation σi

(7) Wdii =
1

σi
.
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Minimization of the L2 norm is equivalent to maximizing the likelihood function of the data

given the model (Menke, 1989). This assumes that

(8) dobsi = dpredi + εi,

the noise on the data is independent and Gaussian distributed (εi ∼ N(0, σi)). While the

central limit theorem can be employed to justify the assumption of Gaussian noise, it is

often difficult in practice to characterize the uncertainties on the data. Data uncertainty is

usually estimated as a percentage of each observed datum plus a noise floor. This weighting

is particularly important for inversion of time-domain electromagnetic data, which can decay

over several orders of magnitude in the range of measured channels. Weighting the data by an

estimated standard deviation ensures that early time, large amplitude data do not dominate

the misfit. In addition, an appropriate floor value ensures that small amplitude data do not

dominate the misfit after scaling by a percentage. The choice of data standard deviations

remains something of an educated guess which can be informed by data pre-processing. For

example, a noise floor can be estimated for each time channel by windowing regions where

no significant signal is observed. In contrast, magnetic data have much less dynamic range

and it is often sufficient to specify a noise floor of a few nanotesla when inverting for dipole

model parameters.

If the forward modelling operator is linear, then there is a single minimum to the misfit

function and the best-fitting model can be obtained in one step by solving a linear system

of equations. For a nonlinear forward model there may be multiple minima of the misfit

function and the solution of the inverse problem cannot be obtained in one step. This is

usually the case in UXO applications: all forward models described above are nonlinear

functions of the input model parameters. Iterative approaches to the nonlinear inverse

problem involve minimizing a quadratic approximation to the objective function with respect

to the model perturbation (δm) at each iteration. For example, the Gauss-Newton method

solves

(9) JTWd
TWdJδm = −JTWd

TWd(dobs − F{m})

with J the Jacobian matrix of sensitivities. Given an initial guess for the model parameters,

we can solve the above equation for a model perturbation which will reduce the misfit. We

then update our model with this perturbation and repeat the procedure until a convergence

criterion is achieved (e.g. ‖δm‖ < ε). Iterative methods can converge to local, suboptimal

minima and so it is common practice to initialize these algorithms from multiple starting

models.

We emphasize that quality control (QC) of fits to observed data is a necessary and im-

portant step. Because we often have a poor handle on the noise, metrics such as the final

data misfit and correlation coefficient may not always be reliable for deciding whether a fit is

successful. QC’ing magnetic data is relatively quick, as there is only one channel of data to

consider, but TEM data often requires visual inspection of multiple channels in plan view,
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lines, and individual soundings to determine whether a fit is adequate. Figure 3 shows a

display used for QC of MetalMapper data fits. Quality control is presently a major bottle-

neck in UXO data processing, and in section 4.1 we present a detailed analysis of methods

for automating the QC process using MetalMapper data sets.
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2.3. Classification. The end product of geophysical data processing is a diglist which ranks

targets from most to least likely to be ordnance, as well as a “stop dig” point (or operating

point) on the diglist where digging can be safely terminated. In some cases targets beyond

the operating point will be left in the ground. Some sites, however, will require total clearance

in order to satisfy environmental regulations. In this case the template for field operations

is excavation of high risk targets (as identified on the diglist) by expert disposal teams, with

low risk targets excavated by labor under expert supervision. The cost savings of advanced

discrimination is realized in the reduction in the number of targets dug by EOD (explosive

ordnance disposal) technicians and the choice of operating point is less critical because we

are guaranteed to find all detected ordnance.

To rank targets for digging, we use the information in our observed geophysical data.

Features of the observed data, estimated without resorting to inversion with a physics-based

model, can sometimes suffice as criteria to classify ordnance and non-ordnance targets.

For example, in Williams et al. (2007) a bivariate Gaussian distribution is fit to observed

EM61 data at each time channel and the average width of the anomaly, as measured by the

estimated covariance matrix, is then used as a criterion to rank ordnance (wide anomaly)

ahead of clutter (small anomaly). This approach significantly outperformed a statistical

classification approach employing features estimated with the dipole model. This can work

when ordnance is significantly larger than clutter, but may fail if there are large, deep

clutter which can generate broad anomalies. Furthermore, a horizontal target can sometimes

produce an anomaly which is better described by a bimodal distribution (i.e. two Gaussians,

see Pasion (2007)). Data features are nonetheless useful when data quality is not sufficient

to support estimation of useful parameters in an inversion or when time constraints preclude

processing with inversion.

Parameters of models estimated from inversion can resolve some of the ambiguities of

data features because model parameters can be related to intrinsic target properties. An

intuitive template matching approach to classification compares estimated model parameters

with those previously derived from a library of known targets. Classification with TEM data

is often performed by comparing estimated polarization decays with library responses and

then ranking a target based on some measure of closeness between observed and expected

responses. Care must be taken here to use parameters which can be reliably estimated:

late time polarizations are more susceptible to noise and poor polarization estimates may

unduly affect the discrimination decision. Pasion et al. (2007) solve this problem with

a fingerprinting algorithm that inverts for target location and orientation while holding

polarizations fixed at their library values. Reducing the model’s degrees of freedom in this

way makes the inversion less susceptible to fitting the noise. Targets are then dug based upon

the proposed library item which produces the best fit to the observed data. We can regard

this method as incorporating information from our target library directly into the inversion,

whereas conventional template matching uses library information in the classification stage.
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Library methods assume that there is a true set of model parameters that, under ideal

circumstances, can be perfectly reconstructed from an observed data set. Statistical classifi-

cation algorithms which have been applied to UXO classification can be regarded as Bayesian

solutions to the classification problem: we treat the parameters of interest as fundamentally

uncertain random variables which are characterized by probability distributions. We then

try to learn these probability distributions from a sample of labelled targets for which ground

truth is known (the training data), and then formulate a decision rule that tries to minimize

the probability of making an incorrect decision for unlabelled targets (the test data). One

approach to formulating the decision rule is to fit some assumed parametric distributions to

each class of targets in the training data, and then assign a test target to the class distribu-

tion which is most likely. The class distributions are defined in a multidimensional feature

space spanned by some subset of estimated model parameters, or transformations thereof.

The success of a statistical classifier is measured by its ability to generalize to the unseen

test data (i.e. correctly classify), and having a training data set which is representative of

class variability in the test data set is crucial. In Aliamiri et al. (2007), for example, class

distributions are generated by simulating data for each target class in a range of orienta-

tions and depths, and then inverting these synthetic data. This assumes that simulations

can capture the noise conditions which are encountered in experimental data. Alternatively,

training data can be generated by full clearance of selected grids in a geophysical prove-out.

Active learning techniques for iteratively selecting targets to build the training data set,

based upon reducing uncertainties in the resulting classifier, are developed in Zhang et al.

(2004b). In section 4.2 we further investigate active learning for UXO classification using

recent methods developed at Duke.
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3. Methods

3.1. The Semi-supervised Learning Algorithm. We introduce the details of a graph-

based semi-supervised algorithm applied to UXO sensing. Semi-supervised learning is ap-

plicable to any sensing problem for which all of the unlabeled data are available at the same

time, and therefore this approach is applicable to most wide-area sensing problems of in-

terest to the UXO community. In practical applications semi-supervised learning has been

found to yield superior performance relative to the widely applied supervised algorithms.

However, all of the discussion simplifies to the case for which we consider purely supervised

classifiers, and in the experiments with real data we have found that results with supervised

classifiers are often adequate (due to sufficient training data). The presentation below for

semi-supervised classifiers presents the framework in its most general sense.

3.2. The Graph Representation of a Partially Labeled Data Manifold. Let G =

(X ,W) be a graph, where X = {x1, x2, · · · , xN} is the set of vertices and W = [xij]N×N

is the affinity matrix with the (i, j)-th element wij indicating the strength of immediate

connectivity between vertices xi and xj. For the purpose of data classification, the vertex

set X coincides with the set of data points (labeled or unlabeled), and wij is a quantitative

measure of the closeness of data points xi and xj. In the semi-supervised setting, only a

subset of X are provided with class labels, and the remaining data points are unlabeled, and

therefore we have a partially labeled graph.

Although there are many alternative ways of defining the connectivity wij, here we consider

a radial basis function

wij = exp(−‖xi − xj‖2

2σ2
i

)(10)

where ‖ · ‖ represents the Euclidean norm; selection of the parameter σi is detailed below.

While the affinity matrix may provide a reasonable local similarity among the data points,

it is not a good representation of the global similarity measure of the data sets. Following

Szummer and Jaakkola (2002), we construct a Markov random walk based on the affinity

measure, which is capable of incorporating both the high-density clustering property and

the manifold structure of the data set. Specifically, we induce a Markov transition matrix

A = [aij]N×N , where the (i, j)-th element

aij =
wij∑N
k=1wik

(11)

gives the probability of walking from xi to xj by taking a single step. In general we are

interested in a t-step random walk, the transition matrix of which is given by A raised to

the power of t, i.e., At = [a
(t)
ij ]N×N . The At is row stochastic, where each element a

(t)
ij

represents the probability that the Markov process starts from xi and ends at xj by taking

t-step random walks. As a special case, At degenerates to an identity matrix when t = 0,

which means one can only stay at a single data point when no walk is performed.
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In specifying the Markov transition matrix in (10) we have used a distinct σ for each data

point x. In the random walk, σ can be thought of as the step-size. Therefore location-

dependent step-sizes allow one to account for possible heterogeneities in the data manifold

— at locations where data are densely distributed a small step-size is enough, whereas at

locations where data are sparsely distributed a large step-size is necessary to connect a data

point to its nearest neighbor. A simple choice of the heterogeneous σ is to let σi to be a

fraction of the shortest Euclidean distance between xi and all other data points in X . This

ensures each data point is immediately connected to at least one neighbor.

3.3. Neighborhood-Based Learning. Any two data points xi and xj are said to be t-

step neighbors, denoted as xj
t∼ xi, if a

(t)
ij > 0. Then Nt(xi) = {x : x

t∼ xi} ⊆ X , which

represents the set of t-step neighbors of xi, is called the t-step neighborhood of xi. When

t = 0, the neighborhood shrinks to a single data point, N0(xi) = {xi}. We define the

probability of label yi given the t-step neighborhood of xi as

p(yi|Nt(xi),θ) =
N∑
j=1

a
(t)
ij p(yi|xj,θ)(12)

where the magnitude of a
(t)
ij automatically determines the contribution of xj to the neigh-

borhood, thus we are allowed to run the index j over the entire X . Expression p(yi|xj,θ)

is the probability of label yi given a single data point xj (zero-step neighborhood) and it’s

represented by a standard probabilistic classifier parameterized by θ. We consider binary

classification with y ∈ {−1, 1}, and choose the form of p(yi|xi,θ) as logistic regression

classifier

p(yi|xj,θ) =
1

1 + exp(−yiθTxj)
(13)

where we assume a constant element 1 is prefixed to each feature vector x (the prefixed x

is still denoted as x for notational simplicity), thus the first element in θ is a bias term.

Arbitrarily one may set y = 1 as corresponding to a UXO, and y = −1 as corresponding to

a non-UXO.

The fundamental difference between the classifier in (12) and the typical logistic regression

classifier is that the logistic-regression classifier predicts yi using xi alone, while the semi-

supervised approach considered here predicts yi by using xi and the feature vectors in the

neighborhood of xi. The neighborhood of xi is formed by all xj’s that can be reached from

xi by t-step random walks, with each xj contributing to the prediction of yi in proportion

to a
(t)
ij , the probability of walking from xi to xj in t steps. The role of neighborhoods is then

conspicuous — in order for xi to be labeled yi, each neighbor xj must be labeled consistently

with yi, in the degree proportional to a
(t)
ij ; in such a manner, yi implicitly propagates over the

neighborhood. By taking the neighborhoods into account, it is possible to learn a classifier

with only a few labels present and yet the classifier learned is much less subject to over-fitting

than when ignoring the neighborhoods. This is addressed in greater detail below.
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Let L ⊆ {1, 2, · · · , N} denote the set of indices of labeled data. Assuming the labels are

conditionally independent, we obtain the likelihood function

p({yi, i ∈ L}|{Nt(xi) : i ∈ L},θ) =
∏
i∈L

p(yi|Nt(xi),θ)

=
∏
i∈L

N∑
j=1

a
(t)
ij p(yi|xj,θ)(14)

which is the joint probability of observed labels given the t-step neighborhood of each cor-

responding data point. Estimation of θ may be achieved by maximizing the log-likelihood,

which however may yield over-fitting, especially when the number of labeled samples is

small. To enforce sparseness of θ (sparseness has been demonstrated as an important prop-

erty Tipping (2001), discouraging overfitting), we impose a zero-mean Gaussian prior on

each dimension of θ,

p(θ|Λ) =
|Λ|1/2

(2π)d/2
exp(−1

2
θtΛθ)(15)

where Λ = diag{λ1, λ2, ..., λd} are hyper-parameters, d is the dimensionality of x. Each

hyper-parameter has an independent Gamma distribution, resulting in

p(Λ|α, β) =
d∏
i=1

Gamma(λi|αi, βi)

=
d∏
i=1

βαi
i

Γ(αi)
λαi−1
i exp(−λiβi)(16)

Marginalizing Λ, we obtain the prior distribution conditional directly on α and β,

p(θ|α, β) =

∫
p(θ|Λ)p(Λ|α, β) dΛ(17)

The posterior of θ follows from (14) and (17),

p(θ|α, β, {yi,Nt(xi) : i ∈ L})

= Z−1
∏
i∈L

N∑
j=1

a
(t)
ij p(yi|xj,θ)

∫
p(θ|Λ)p(Λ|α, β) dΛ(18)

where Z is a normalization constant. We are interested in the maximum a posterior (MAP)

estimate of θ, which maximizes (18) or, equivalently,

`(θ)
def.
= ln p(θ|α, β, {yi,Nt(xi) : i ∈ L}) + lnZ

=
∑
i∈L

ln
N∑
j=1

a
(t)
ij p(yi|xj,θ)

+ ln

∫
p(θ|Λ)p(Λ|α, β) dΛ(19)
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The θ obtained by maximization of `(θ) generally is not subject to over-fitting due to two

reasons — the neighborhoods incorporated into the first term of `(θ) encourages smoothness

along the manifold, and the second term of `(θ) enforces sparseness of θ.

3.4. The Learning Algorithm. We maximize (19) by employing an expectation-maximization

(EM) algorithm. For any {δij : δij ≥ 0,
∑N

j=1 δij = 1} and {q(Λ) :∈ q(Λ)dΛ = 1}, we apply

Jensen’s inequality to the righthand side of (19) to obtain the lower bound

`(θ) ≥ Q(θ|δ, q) def.=
∑
i∈L

N∑
j=1

δij ln
a
(t)
ij p(yi|xj,θ)

δik

+

∫
q(Λ) ln

p(θ|Λ)p(Λ|α, β)

q(Λ)
dΛ(20)

where the equality holds when

δij =
p(yi|xj,θ)a

(t)
ij∑N

k=1 p(yi|xk,θ)a
(t)
ik

(21)

q(Λ) =
p(θ|Λ)p(Λ|α, β)∫
p(θ|Λ)p(Λ|α, β)dΛ

(22)

The EM algorithm consists of iteration of the following two steps.

(1) E-step: computing {δij} and q(Λ) using (21) and (22);

(2) M-step: compute the re-estimate of θ as

θ = arg max
θ̂

Q(θ̂|δ, q)(23)

The convergence is monitored by checking `(θ), which is guaranteed to monotonically in-

crease over the EM iterations.

There are two noticeable points regarding the technical details. First, since (16) is conju-

gate to (15), q(Λ) is of the same form as (16) with updated hyper-parameters α, β,

q(Λ) =
d∏
i=1

Gamma(λi|αi +
1

2
, βi +

1

2
θ2i )

=
d∏
i=1

(βi + 1
2
θ2i )

αi+
1
2

Γ(αi + 1
2
)

λ
αi− 1

2
i e−λi(βi+

1
2
θ2i )(24)

and the integral in the dominator of (22) has an analytic form∫
p(θ|Λ)p(Λ|α, β)dΛ

=
1

(2π)d/2

d∏
i=1

βαi
i

Γ(αi)

Γ(αi + 1
2
)(

βi + 1
2
θ2i
)αi+

1
2

(25)

which is useful in checking the convergence of `(θ) in (19).
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Secondly, in computingQ(θ̂|δ, q) by (20), one needs to compute γ(θ̂)
def.
=
∫
q(Λ) ln p(θ̂|Λ)dΛ,

and it is found that

γ(θ̂) = −1

2
θ̂ TEq(Λ|θ)θ̂

= −1

2
θ̂ Tdiag [Eq(λ1),Eq(λ2), · · · ,Eq(λd)] θ̂(26)

with

Eq(λi) =
αi + 1

2

βi + 1
2
θ2i
.(27)

3.5. Active Learning. In the UXO-classification problem, it is a given that excavation will

ultimately be performed. The principal objective is to excavate as high a percentage of UXO

as possible, while leaving as much of the non-UXO as possible unexcavated. Recall that the

primary expense in UXO cleanup is the excavation of non-UXO items, since the density of

such is typically much higher than the amount of UXO, and the sensor signatures of UXO

are often very similar to those of many types of non-UXO. Given that excavation will be

performed in any case, one may ask whether the initial set of excavations may be performed

with the purpose of improving the performance of the algorithm. Specifically, one may ask

which unlabeled sensor signature would be most informative to improved classifier perfor-

mance if the associated label could be made available. As discussed below, this question is

answered in a quantitative information-theoretic manner. When the expected information

content of such an excavation drops below a prescribed threshold, excavation for the purpose

of improved learning is terminated, and then the algorithm is used to define the probability

that all remaining unlabeled signatures correspond to UXO. Importantly, in active learning

the algorithm desires to learn about the properties of the UXO and non-UXO at the site,

and therefore in this phase an excavated non-UXO should not be termed a “false alarm”.

Such active learning has been performed previously in a related UXO-cleanup study Zhang

et al. (2004a); the distinct character of the algorithm discussed below is that this process is

here placed within the context of semi-supervised learning.

3.6. Active Learning with Semi-Supervised Classifier. For active label selection, we

consider a Gaussian approximation of the posterior of the classifier

p(θ|D) ' N (θ|θ̂,H−1)(28)

where θ̂ is the estimate of the classifier learned from the above EM algorithm, and H is the

posterior precision matrix H = ∇2(− log p(θ|{yi,Nt(xi) : i ∈ L}). By treating γ(θ̂) in (26)

as deterministic, we obtain an evidence-type approximation Tipping (2001):

H =
∑
i∈L

N∑
j=1

δij p(yi|xj,θ)(1− p(yi|xj,θ))xjx
T
j

−∇2 ln γ(θ̂)(29)
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With one more data point xi∗ with label yi∗ as the next labeled data, assuming that the

MAP estimate of θ̂ remains the same after including the new data point, then the posterior

precision changes to

H′ =
∑

i′∈L∪{i∗}

N∑
j=1

δi′j p(yi′|xj,θ)(1− p(yi′|xj,θ))xjx
T
j

−∇2 ln γ(θ̂)(30)

For active label selection, we could further simplify the equation for the precision matrix by

considering the degenerated connectivity matrix A(t=0), which is an identity matrix, such

that

δij = {
1, for i = j

0, for i 6= j
(31)

Following this, the new precision matrix becomes

H′ = H + p(yi∗|xi∗,θ)(1− p(yi∗|xi∗,θ))xi∗x
T
i∗(32)

Our criterion for active learning is to choose the feature vector for labeling that maximizes

the mutual information between the classifier θ and the new data point to be labeled, which

is the expected decrease of the entropy of θ after xi∗ and yi∗ are observed,

I =
1

2
log
|H′|
|H|

=
1

2
log
{

1+p(yi∗|xi∗,θ)[1−p(yi∗|xi∗,θ)]xTi∗H
−1xi∗

}
(33)

The mutual information I is large when p(yi∗|xi∗,θ) ≈ 0.5, therefore, our active learning

prefers label acquisition on samples with uncertain classification, based on the current classi-

fier based upon available labeled data. Further, considering the term xTi∗H
−1xi∗, the mutual

information criterion prefers samples with high variance.

The assumption that the mode of the posterior distribution of the classifier remains un-

changed with one more labeled data point is not good at the beginning of the active learning

procedure. However, empirically we have found that it is a very good approximation after

the active learning procedure has acquired as few as 15 labels, for the examples consid-

ered here. In practice the computational cost associated with retraining the classifier with

each active-labeled-acquired labeled data is insignificant relative to the time required for

excavation, and therefore the classifier weights are updated with each new acquired label.

4. Results and Discussion

4.1. Comparison of Expert QC, Auto QC and No QC using MetalMapper data.

4.1.1. Introduction. Prior to construction of a dig list (classification), data and inversion

results usually undergo a quality control (QC) check with the primary objective being to

fail models (or entire inversion results) deemed unreliable and which may negatively impact
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the performance of the classification process. With MetalMapper data we typically run two

inversions to solve for model parameters associated with (1) a single object (SOI); and (2)

two objects (2OI); these produce three different models of the underlying putative target.

The two inversions produce three independent models for each anomaly. A model that is

failed during QC is not used during classification. An anomaly for which all models are

failed during QC is categorized as ”cannot analyze”. Anomalies in this category must be

dug and accordingly are placed at the top of a dig list. During QC an inversion may, for

example, be failed if the fit between the predicted and observed data exceeds some misfit

criteria, or visually if the fit is judged to be poor (e.g., Figure 4). A model may be failed

if, for example, the predicted location falls on an inversion boundary and/or the predicted

polarizabilities are judged to be unrealistic. This commonly occurs in 2OI solutions and is

characterized by a model that is very deep, frequently lying on or near a horizontal inversion

boundary, with polarizabilities that are relatively large in amplitude (e.g., Figure 5). It

is not uncommon that such a model has the minimum polarizability misfit with respect to

reference polarizabilities. Because classification is typically based on polarizability matching,

these types of models must be omitted (failed).
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Figure 4. Anomaly 1951 of the Beale C MetalMapper dataset (37mm pro-
jectile at 11cm depth). The misfit between observed (blue lines and dots) and
predicted (green lines and dots) is very large for almost all receiver/transmitter
combinations. This inversion result should be classified as ”cannot analyze.”
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Figure 5. Anomaly 2015 of the Beale C MetalMapper dataset (small frag
at 4cm depth). In this example one of the models from the 2OI (model 2)
is unrealistic. The predicted location (yellow circled numbered ”2” in target
location map; top right) lies on an inversion boundary (dashed line), just
outside the frame of the MetalMapper (grey square). The location map is
underlain by the gridded EM61 data, which shows that the anomaly is very
weak. The predicted depth for model 2 (lower right) is very deep (80cm).
The predicted polarizabilities for model 2 (red, black and green lines in panel
with asterisk) are very large in amplitude in relation to the polarizabilities
predicted for the other models, and with respect to the weak EM61 anomaly.
These are classic symptoms on an unrealistic model which should be failed
and not considered in the classification stage. Because model 2 provides the
best fit to one of the reference polarizabilities (75mm; broken grey lines in the
polarizability plots) a dig list based on polarizability matching would place this
anomaly much earlier in the list if model 2 was included in the classification
process.

Visual QCing of a dataset can be a tedious and time consuming process, particularly for

large datasets. Because of this, even with the best QC tools at hand, QCing is a process

that is subject to errors, one of which may prove costly by resulting in a TOI not being dug.

Inconsistency is also an issue; due to the somewhat subjective nature of the QC process, a

dataset QCed by different analysts will invariably result in different model selections, which

may result in dig lists of varying levels of success. At some level visual QC of data may

always be desirable due to the ability of the human eye of an experienced analyst to detect

issues with the data or model that a specific set of quantitative measures may not pick up.
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However, as datasets become larger, or for working with data in the field under tight time

constraints, some element of automated QC would be beneficial for decreasing the overall

analysis time and providing reliable QC decisions based on a specific set of criteria based,

for example, on measures of data and/or model quality. To investigate this, we use cued

MetalMapper data from recent live site demonstrations to investigate the performance of

dig lists created from datasets that have been QCed using different methods:

(1) Expert QC: visual QC performed by an experienced analyst.

(2) Auto QC: automated QC based on a specific set of rules relating to measures of data

or model quality.

(3) No QC: all models are used; no models are failed. The dig lists we generate for our

tests are based on simple criteria such as polarizability match with known reference

items and/or polarizability decay. The four datasets we use, and measures of dataset

quality, are listed in Table 1.

Dataset N (All) N
(TOI)

DS
(All)

DS
(TOI)

MSNR
(All)

MSNR
(TOI)

Pol.
Qual.
(TOI)

L123
Msft
(TOI)

Beale P 1438 131 1.42 0.30 40.60 157.00 3.48 0.25
Beale C 1438 131 1.68 0.48 17.30 146.00 3.15 0.32
Butner 2304 171 1.20 0.07 60.10 192.00 2.64 0.41
Pole 2370 160 0.66 -0.69 146.00 250.00 6.78 0.12

Table 1. MetalMapper datasets used for testing. These are described in more
detail in the text. All/TOI refers to all anomalies (from all passed models as
determined by expert QC) and TOI anomalies, respectively. N is the number
of anomalies. DS is median data shoddiness - an ad hoc measure of data/model
inferiority (described in more detail below) - lower values are better. MSNR
is median model signal-to-noise ratio calculated using predicted and residual
data - higher values are better. Pol. Qual. is median polarizability quality
- an ad hoc measure of polarizability smoothness and shape - higher values
are better. L123 Msft is the median minimum misfit with all reference items
calculated using all three polarizabilities (L1, L2 and L3) - lower values are
better. Numbers highlighted in green/red correspond to the best/worst values
for each measure. Beale P refers to data collected by Parsons at Camp Beale;
Beale C refers to data collected by CH2M Hill at Camp Beale using the same
instrument.

4.1.2. Test Sets 1 and 2: Beale MetalMapper P and C. MetalMapper (MM) data were col-

lected at the Camp Beale live site demo (July 2011) by two different production groups:

(1) Parsons (P); and (2) CH2M Hill (C). The two groups used the same instrument and,

as far as is known, acquisition parameters. Differences in the two datasets should be due

primarily to field practices which could, for example, affect the accuracy with which the

instrument was centered over an anomaly, or processing approach (such as selection of ap-

propriate background files for background noise subtraction). Total number of anomalies in
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the Beale dataset is 1438 with 131 of these being TOI. TOI fall into five classes: (105mm,

81mm, 60mm, 37mm and ISO). Smaller items such as fuzes are treated as clutter in these

tests. In the first test set we use the Parsons MetalMapper data which, by most measures

of data and model quality, is slightly better than the CH2M Hill dataset (Table 1). Even

for TOI with the poorest quality data the recovered primary polarizabilities using Parsons

data are reasonably accurate with respect to the polarizabilities of the known item based

on ground truth. For the CH2M Hill data, there are 2 TOI for which the recovered primary

polarizabilities do not closely match any reference polarizability.

Test Set 1: Beale MetalMapper P. A decay versus size feature space plot for the expert-

QCed Beale P data, including ground truth information, is shown in Figure 3. Based on the

ground truth the generally good separation between TOI and non-TOI suggests that clas-

sification should be relatively straightforward. Notice that the expert visual QC resulted

in failing a large number (approximately two-thirds) of the models, as defined by a human

expert in the viewing of UXO data.

Figure 7 shows ROC curves for two dig lists created independently by different analysts

using different approaches. Both dig lists were based on a dataset that had undergone the

same visual QC by an expert analyst. One of the dig lists used a simple approach based

primarily on a match between all three polarizabilities, as well as polarizability size, decay

and quality. This list did not find all TOI before the stop dig point. All TOI were found

after 595 non-TOI digs. The second dig list used a Support Vector Machine (SVM) two

stage discrimination strategy, with early digs trained on all polarizabilities and later digs

trained on total polarizability (L1+L2+L3). This list was more successful, finding all TOI

before the stop dig point after 264 non-TOI digs. The latter represents our best result for

the Beale P dataset and can be considered as the baseline for comparisons with the tests

presented below.

Figure 8 shows ROC curves for dig lists derived from expert-QCed data using matching

on the primary polarizability (L1) to determine dig order. Two results are shown using (1)

all 42 time channels (maximum t=7.91ms); and (2) the first 30 time channels (maximum

t=2.23ms) for computing the polarizability misfit fit. Surprisingly, the performance of this

very simple approach to dig list construction are significantly better than the best of the

officially submitted dig lists (Figure 7), with all TOI found after 124 and 153 non-TOI digs,

respectively.

Figure 9 shows an equivalent set of ROC curves based on matching of all three polarizabil-

ities. Note the performance is much poorer because the data are not capable of constraining

the secondary and tertiary polarizabilities for some of the TOI (Figure 10). For the remain-

der of the results presented for the Beale datasets we will omit ROC curves derived based

on a match to all three polarizabilities because these results are all inferior to the results

based on L1 matching. We will also omit ROC curves based on matching on the first 30
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time channels because the results obtained using all time channels are consistently either

better or approximately the same.

Figure 11 shows ROC curves based on L1 matching for data with no QC. Using both SOI

and 2OI models results in all TOI being found after 268 non-TOI digs. This performance

is similar to that of the SVM-based dig list shown in Figure 4. Interestingly, using only the

SOI model for each anomaly provides much better performance, with all TOI found after

126 non-TOI digs. Clearly the non-QCed dataset with both SOI and 2OI models contains

several non-TOI items with 2OI models that provide a good L1 match to a reference item.

The performance of the SOI-only dataset is similar to that obtained with the expert-QCed

dataset (Figure 8).

As an alternative to polarizability matching, a more conservative dig list can be created

based wholly, or in part, on the decay of the total polarizability (measured between time

channels 1 = 0.106ms and 29 = 2.006ms). Figure 12 shows the ROC curve for a dig list
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Figure 7. Official scoring for Beale P using Expert-QCed data. Dig list or-
der for the ROC curve on the left was based primarily on a simple match
to all three polarizabilities, as well as polarizability size, decay and quality.
The ROC curve on the right is based on a dig list constructed using a Sup-
port Vector Machine (SVM) two stage discrimination strategy with early digs
trained on all polarizabilities and later digs trained on total polarizability
(L1+L2+L3). Blue dot denotes stop dig point. Yellowish dot denotes point
at which all TOI are found. The simple approach missed two TOI; the final
TOI was found after 595 non-TOI digs. The SVM approach found all TOI
after 264 non-TOI digs.

based only on decay using data with no QC. The performance is significantly worse than

the dig lists based on L1 matching which used the expert-QCed dataset (Figure 8) or the

SOI-model-only dataset with no QC (Figure 11).

A less conservative approach would be to base the dig list order on polarizability matching

for early digs, and decay for later digs. Figure 13 shows ROC curves for two dig lists that

employ this approach with data that have undergone no QC. The dig list that transitions

to using decay after 200 digs performs well, but still not as good the dig lists based on L1

matching which used the expert-QCed dataset (Figure 8) or the SOI-model-only dataset

with no QC (Figure 11). However, we shall see below that with the Beale C dataset, in
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Figure 8. ROC curves for Beale P using Expert-QCed data. Dig list order is
based on match between primary polarizability (L1) of the predicted and best
fitting reference item. The ROC curve on the left used all 42 time channels
(0.11-7.91ms) when computing fits; the ROC curve on the right used the first
30 time channels (0.11-2.23ms). Labeled point on the ROC curve denotes the
last TOI to be dug. Number refers to the number of non-TOI digs. Inset table
lists the anomaly number (Targ), the corresponding non-TOI dig number (Dig
#) and the type of ordnance (Ord) for the last ten TOI dug.

which the quality of the recovered polarizabilities is poor for a number of TOI, the approach

of transitioning to a list based on decay is more beneficial.

For testing the performance of automated QC we first use a simple decision process for

passing or failing a model based on three data and model metrics (Figure 14):

(1) Model SNR (MSNR) is a measure of SNR using the ratio of the size of the predicted

data to the (smoothed) data residuals.

(2) Data shoddiness (DS) is an ad hoc measure of data/model inferiority, combining

several different measures: (1) data misfit (residual divided by observed); (2) corre-

lation between observed and predicted data; (3) jitter (point-to-point difference) in

the observed data; (4) fraction of data above the standard deviation; and (5) size of

the difference between L2 and L3.
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Figure 9. ROC curves for Beale P using Expert-QCed data. Dig list order
is based on match between all three polarizabilities (L1, L2 and L3) of the
predicted and best fitting reference item. The ROC curve on the left used all
42 time channels (0.11-7.91ms) when computing fits; the ROC curve on the
right used the first 30 time channels (0.1-2.23ms).

(3) Predicted target depth (Z).

The decision process comprises three criteria (Figure 14). The no contact criterion tries

to identify cases where the data are of very poor quality because there is no object within

the instrument’s field of view. The model-based criterion fails models with unrealistically

deep predicted depths. The data-based criterion fails models based on poor quality data

and with non-UXO like polarizabilities.

We tried three different variations based on the scheme shown in Figure 14. Test 1 used

the criteria shown in Figure 14. The resulting dig list found all TOI after 235 non-TOI digs.

Figure 15 shows the result, in feature space, of applying Test 1 versus no QC. The auto QC

process resulted in 672 failed models. Many of these are large in size and lie in a position in

feature space that is typical of a relatively strong ground response. Note that in comparison

to expert QC, the auto QC Test 1 failed far fewer models (672 versus 3039). In Test 2 the

model based criteria was changed to Z > 0.6m. Models with large predicted depths tend
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Figure 10. Predicted (red, black green lines) and best fitting reference po-
larizabilities (broken grey lines) for the two most difficult TOI of the Beale P
dataset. Anomaly 1965 (left) is an ISO at 20cm depth; anomaly 2532 (right)
is an ISO at 19cm depth. Note the poor quality of L2 and L3 (black and green
lines, respectively); however, both of these anomalies show a reasonably good
L1 (red line) match with the ISO reference polarizabilities.

to be unrealistic. The risk in reducing the depth cutoff is that a valid, and perhaps best,

model will be eliminated. The resulting dig list found all TOI after 184 non-TOI digs. Test

3 used the same criteria as Test 2, but the auto QC was applied only to the 2OI models; all

SOI models were passed. The resulting dig list found all TOI after 169 non-TOI digs. ROC

curves for these tests are shown in Figure 16.

All three auto QC tests produced results which perform better than the SVM-based dig

list (Figure 7). However, none of auto QC tests performed as well as the expert-QCed dig

list, (Figure 8) or the dig list using only SOI models with no QC (Figure 11).

In Figure 17 we show another simple decision process (auto QC Test 4) designed specifi-

cally to eliminate unrealistic deep 2OI models. If model a is a 2OI model, it is failed if it is

either (1) absolutely deep; or (2) relatively deep in relation to the other 2OI model (b) and

the data/model are of poor quality. Figure 18 shows the result, in feature space, of applying

Test 4 versus no QC. The auto QC process resulted in 241 failed models.
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Figure 11. ROC curves for Beale P using No QC (no models were failed).
Dig list order is based on match between primary polarizability (L1) of the
predicted and best fitting reference item. For the ROC curve on the left both
SOI and 2OI models were used; the ROC curve on the right used only the SOI
model for each anomaly.

Figure 19 shows ROC curves for dig lists based on L1 match, decay, and combinations

of L1 match and decay using auto QC Test 4. For all of these dig lists, the performance

is marginally better than not applying auto QC. However, none of these lists perform as

well as the dig list based on L1 matching which used the expert-QCed dataset or the SOI-

model-only dataset with no QC . Note that while auto QC Test 4 failed significantly fewer

models than Test 1 (241 versus 672), the resulting dig list based on L1 matching for Test

4 (Figure 19 top left) performs better than Test 1 (Figure 16 top left), with all TOI found

after 202 non-TOI digs (compared to 235 non-TOI digs for Test 1).

Using other metrics and/or different parameters for the decision criteria may result in

better performance - further research is required. It is also necessary to investigate how

the different QC approaches work with different datasets. To address this we now present

results using the Beale C dataset.
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Figure 12. ROC curve for Beale P using No QC (no models were failed).
Dig list order is based on decay of the total polarizability.
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Figure 13. ROC curves for Beale P using No QC (no models were failed).
Dig list order is based on L1 matching for early digs, then decay of total
polarizability for later digs. The transition point occurs after 250 digs for the
curve on the left, and after 200 digs for the curve on the right.
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Figure 15. Decay versus size feature space plots for Beale P data. Size is
the size of the total polarizability at the first time channel. Decay is the ratio
of size of the total polarizability at channel 1 (0.106ms) to the size at channel
29 (2.006ms). Left: no QC, i.e., all models are passed. Right: auto QC Test
1. ”+” symbols are passed models; blue dots are failed models. Yellow stars
represent reference items. Auto QC resulted in 672 models being failed.
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Figure 16. ROC curves for Beale P using Auto QC. Dig list order is based on
match between primary polarizability (L1) of the predicted and best fitting
reference item. Test 1 used the criteria shown in Figure 14. In Test 2 the
model based criteria was changed to Z > 0.6m. Test 3 used the same criteria
as Test 2, but the auto QC was applied only to the 2OI models; all SOI models
were passed.
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Figure 17. Automated QC (auto QC Test 4) decision flowchart for failing
deep 2OI models. 2OI model a is failed if it is absolutely deep (model based
criterion) or relatively deep in relation to 2OI model b and the data quality is
low (model/data-based criterion).
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Figure 18. Decay versus size feature space plots for Beale P data. Left: no
QC, i.e., all models are passed. Right: auto QC Test 4 to eliminate unrealistic
deep 2OI models. ”+” symbols are passed models; blue dots are failed models.
Yellow stars represent reference items. Auto QC resulted in 241 models being
failed.
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Figure 19. ROC curves for Beale P using Auto QC Test 4 to eliminate
unrealistic deep 2OI models. The auto QC decision process is shown in Fig-
ure 17.
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Test Set 2: Beale MetalMapper C. A decay versus size feature space plot for the expert-

QCed Beale C data, including ground truth information, is shown in Figure 20. The feature

space plot shows the separation of TOI from non-TOI items is similar to the Beale P dataset

(Figure 6), but there are a few challenging TOI that are quite distant from their expected

location in feature space (e.g., anomalies 1951 and 2091). The expert visual QC resulted in

similar number of model failures (approximately two-thirds of the models).
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Figure 20. Decay versus size feature space plot for Beale C data showing
all passed (”+”) and failed (blue dot) models as determined by visual QC
performed by an expert analyst (expert QC). Yellow stars represent reference
items. Other large symbols represent TOI for passed models. Passed models
indicated by ”+” are non-TOI. The two most difficult items (anomalies 1951
and 2091) are identified.

Figure 21 shows ROC curves for two dig lists created independently by different analysts

using different approaches. Both dig lists were based on a dataset that had undergone the

same visual QC by an expert analyst. One of the dig lists used a multi-stage approach fea-

turing matching all three polarizabilities for early digs, matching the primary polarizability

for later digs, and decay for still later digs. This list missed one TOI; all TOI were found

after 513 non-TOI digs. The second dig list used a Support Vector Machine (SVM) two stage

discrimination strategy with early digs trained on all polarizabilities and later digs trained
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on total polarizability. This list missed two TOI; all TOI were found after 764 non-TOI

digs. The former represents our best result for the Beale C dataset and can be considered

as the baseline for comparisons with the tests presented below.
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Figure 21. Official scoring for Beale C using Expert-QCed data. Dig list
order for the ROC curve on the left was based on a multi-stage approach fea-
turing matching all three polarizabilities for early digs, matching the primary
polarizability for later digs, and decay for still later digs. The ROC curve on
the right was constructed using a Support Vector Machine (SVM) two stage
discrimination strategy with early digs trained on all polarizabilities and later
digs trained on total polarizability (L1+L2+L3). Blue dot denotes stop dig
point. Yellowish dot denotes point at which all TOI are found. The multi-
stage approach missed one TOI; the final TOI was found after 513 non-TOI
digs. The SVM approach missed two TOI; the final TOI was found after 764
non-TOI digs.

Figure 22 shows the ROC curve for a dig list derived from expert-QCed data using match-

ing on the primary polarizability (L1) to determine dig order. As with the Beale P data

we also created dig lists using matching on all polarizabilities and matching using only the

first 30 time channels; however, the dig lists based on L1 match using all time channels

consistently performed best. In the ROC curves for many of the Beale C dig lists for which

we present results, anomalies 2091 and 1951 (Figure 23) occur very late in the list. The
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recovered polarizabilities for these anomalies bear no resemblance to the reference polariz-

abilities, so any dig list based solely on polarizability matching will have these items very

late in the list. For judging the performance of the different QC approaches based solely

on polarizability matching with these data, it is best to ignore these two anomalies. In so

doing, the dig list based on expert-QCed data finds all other TOI after 118 non-TOI digs.
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Figure 22. ROC curve for Beale C using Expert-QCed data. Dig list order
is based on match between primary polarizability (L1) of the predicted and
best fitting reference item. Dashed blue line on the inset table marks point at
which all TOI except difficult anomalies 2091 and 1951 (Figure 23) are found.

Figure 24 shows the ROC curves based on L1 matching for data with no QC. Using

both SOI and 2OI models results in all TOI (except anomalies 2901 and 1951) being found

after 102 non-TOI digs. Unlike with the Beale P data, using only the SOI model for each

anomaly does not provide better performance: all TOI (except anomalies 2901 and 1951)

are found after 129 non-TOI digs. This suggests that with the Beale C dataset there are

relatively fewer scrap items with 2OI models that provide a good L1 match to a reference

item. In addition, for some of the TOI, one of the 2OI models provides a significantly

better polarizability match than the SOI model. The performance of these two dig lists



37

0.001 0.005

10
0

Time (ms)

C 769 - Trg 2091 - Mod 1 (SOI)  

 

 

37mm_deep_IVS

0.001 0.005

10
0

Time (ms)

C 652 - Trg 1951 - Mod 1 (SOI)  

 

 

small_ISO_IVS

Figure 23. Predicted (red, black green lines) and best fitting reference po-
larizabilities (broken grey lines) for the two most difficult TOI of the Beale C
dataset. Anomaly 2091 (left) is an ISO at 10cm depth; anomaly 1951 (right) is
a 37mm projectile at 11cm depth. All three polarizabilities for both of these
anomalies are so poorly recovered that any dig list based on polarizability
matching alone will have these anomalies late in the list.

are only slightly better/worse than the performance obtained with the expert-QCed dig list

(Figure 22), respectively.

In Figure 25 we show ROC curves for dig lists based solely and partly on decay with

no QC. Note that these lists do significantly better at finding all TOI than the ones based

only on polarizability matching. In particularly a strategy of switching from matching

L1 polarizability to decay after 250 digs finds all TOI after 216 non-TOI digs. This is

significantly better than the submitted dig list which used expert-QCed data and employed

a multi-stage classification approach (Figure 21).

For the Beale C data we tried auto QC tests based on the criteria shown in Figure 14,

but with the model-based criteria changed to Z > 0.6m. In addition to anomalies 2091 and

1951, anomaly 1786 also appears late in the dig list (Figure 26; left). Test 2b (Figure 26;

right) used the same criteria as Test 2, but the cutoff for MSNR in the data-based criterion
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Figure 24. ROC curves for Beale C using No QC (no models were failed).
Dig list order is based on match between primary polarizability (L1) of the
predicted and best fitting reference item. For the ROC curve on the left both
SOI and 2OI models were used; the ROC curve on the right used only the SOI
model for each anomaly.

was increased to 25. The results of both of these auto QC tests are inferior to the no QC

and expert QC results.

Results of using the auto QC process shown in Figure 17 to eliminate unrealistic deep 2OI

models are presented in Figure 27. Dig lists based on entirely or partly on decay perform

marginally better than the same dig lists using data with no QC (Figure 25). The dig list

based on L1 match for early digs and decay for later digs finds all TOI after 202 non-TOI

digs. This is the best performance of all of the Beale C dig lists.

The Beale C dataset is slightly more challenging than the Beale P dataset. The recovered

polarizabilities for a few of the TOI are not of sufficient quality to support a dig list based

only on polarizability matching. However, even with no QC, a simple dig list that is based

on L1 polarizability match for early digs and decay for later digs performs very well. Auto

QCing to eliminate some of the unrealistic, deep 2OI models gives a marginal increase in

performance.
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Figure 25. ROC curves for Beale C using No QC (no models were failed).
For curve on left, dig list order is based on decay of total polarizability. For
curve on right, dig list order is based on L1 matching for early digs (1-250),
then decay of total polarizability for later digs.
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Figure 26. ROC curves for Beale C using Auto QC. Dig list order is based on
match between primary polarizability (L1) of the predicted and best fitting
reference item. Test 2 used the criteria shown in Figure 14, but with the
model-based criteria changed to Z > 0.6m. Test 2b used the same criteria
as Test 2, but cutoff for MSNR in the data-based criterion (Figure 14) was
changed to MSNR < 25.
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Figure 27. ROC curves for Beale C using Auto QC Test 4 to eliminate unre-
alistic deep 2OI models. The auto QC decision process is shown in Figure 17.
These results are slightly better than the equivalent lists that used no QC
(Figure 25).
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4.1.3. Test Sets 3 and 4: Camp Butner and Pole Mountain. In this section we apply the

same QC tests to two other MetalMapper datasets. Relative to the Beale datasets, the But-

ner data present a more challenging discrimination problem. By some objective measures

the Butner data are better than the Beale data, but the recovered models for TOI tend to

be poorer in quality resulting in larger misfits with respect to reference items (Table 1). In

contrast, the Pole Mountain dataset is of excellent quality and did not present a challenge

from a discrimination point of view due.

Test Set 3: Camp Butner. The Former Camp Butner (North Carolina) cued MetalMap-

per dataset was collected in September 2010. Two different instruments were used to collect

data. About 60 percent of the anomalies were collected with an instrument that performed

noticeably worse than the other instrument, in part because some of the receiver/transmitter

components tended to malfunction. A fairly large number of the anomalies (15 percent) were

recollected. Total number of anomalies in the Butner dataset is 2304 with 171 of these being

TOI. TOI fall into three classes: (105mm, 37mm and large M48 fuzes).

A decay versus size feature space plot for the expert-QCed Butner data, including ground

truth information, is shown in Figure 25. Relative to the Beale datasets, some of the

TOI (fuzes and faster decaying 37mm projectiles) overlap the main cluster of non-TOI,

suggesting that classification will be more challenging. The expert visual QC resulted in a

similar number of model failures (approximately two-thirds of the models).

Figure 29 shows the IDA-scored ROC curve for a dig list based on a dataset that had been

visually QCed by expert analysts. The dig list was created using a Support Vector Machine

(SVM) two stage discrimination strategy with early digs trained on all polarizabilities and

later digs trained on total polarizability. This list performed very well but missed two TOI,

with one (anomaly 1346) occurring very late in the list (after 1669 non-TOI digs).

Figure 30 shows ROC curves based on dig lists using L1 matching (left) and total decay

(right) for data with no QC. Although neither of these perform well, the last TOI to be dug

in both lists is found earlier than with the SVM list (Figure 26). A simple two stage dig

list using L1 matching for early digs (1-500) and decay for later digs performs significantly

better, with all TOI dug after 658 non-TOI digs (Figure 31).

Figures 32- 33 show ROC curves for the same three dig lists with the auto-QC Test 4

process applied to eliminate deep, unrealistic 2OI models. In all cases the performance is

better. In particular the two-stage (L1 match/decay) dig list (Figure 30) performs very well

with all TOI found after 500 non-TOI digs. Results obtained using the auto-QC process

described in Figure 14 (not shown) were worse, for example the two-stage dig list found all

TOI after 605 non-TOI digs. Figure 34 shows the decay versus size feature space plots for no

QC versus auto QC Test 4. The latter has removed many (734) of the dubious 2OI models.

The improvement in performance gained by using auto QC Test 4 with the Butner data is

more significant compared to the Beale datasets.
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Figure 28. Decay versus size feature space plot for Butner data showing
all passed (”+”) and failed (blue dot) models as determined by visual QC
performed by an expert analyst (expert QC). Yellow stars represent reference
items. Other large symbols represent TOI for passed models. Passed models
indicated by ”+” are non-TOI.
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Figure 29. Official scoring for Butner MM using Expert-QCed data. The
ROC curve is based on a dig list constructed using a Support Vector Machine
(SVM) two stage discrimination strategy with early digs trained on all po-
larizabilities and later digs trained on total polarizability (L1+L2+L3). Blue
dot denotes stop dig point. Light blue dot denotes point at which all TOI are
found. The SVM approach missed two TOI (labeled at top of plot). The final
TOI was found after 1669 non-TOI digs.
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Figure 30. ROC curves for Butner MM using No QC (no models were failed).
Dig list order for the ROC curve on the left is based on match between primary
polarizability (L1) of the predicted and best fitting reference item. Dig list
order for the curve on the right is based on decay of the total polarizability.
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Figure 31. ROC curve for Butner MM using No QC (no models were failed).
Dig list order is based on L1 matching for early digs (1-500), then decay of
total polarizability for later digs.
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Figure 32. ROC curves for Butner MM using Auto QC Test 4 to eliminate
unrealistic deep 2OI models. Dig list order for the ROC curve on the left is
based on match between primary polarizability (L1) of the predicted and best
fitting reference item. Dig list order for the curve on the right is based on
decay of the total polarizability.
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Figure 33. ROC curve for Butner MM using Auto QC Test 4 (Figure 17) to
eliminate unrealistic, deep 2OI models. Dig list order is based on L1 matching
for early digs (1-500), then decay of total polarizability for later digs.
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Figure 34. Decay versus size feature space plots for Butner data. Left: no
QC, i.e., all models are passed. Right: auto QC Test 4 to eliminate unrealistic
deep 2OI models. ”+” symbols are passed models; blue dots are failed models.
Yellow stars represent reference items. Auto QC resulted in 734 models being
failed.
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Test Set 4: Pole Mountain. The Pole Mountain (Wyoming) cued MetalMapper dataset

was collected in July-August 2011. By any objective measure, the quality of this dataset is

excellent, being superior to both the Beale and Butner datasets (Table 1). Total number of

anomalies in the Pole Mountain dataset is 2370 with 160 of these being TOI. TOI fall into six

classes: (Stokes mortar, 75mm, 60mm mortar, 57mm, 37mm and small ISO). In the actual

analysis performed by Sky Research, this dataset was divided into two parts representing a 2

year study (thus we do not have official scoring for the combined dataset). For the purposes

of this study, we use the combined dataset.

A decay versus size feature space plot for the expert-QCed Pole Mountain data, including

ground truth information, is shown in Figure 35. The good separation between TOI and non-

TOI and tight clustering of the TOI attest to the high quality of the dataset, and suggest that

classification should not be too difficult, especially compared to the more difficult Butner

dataset. The expert visual QC resulted in similar number of model failures (approximately

two-thirds of the models).

Figure 36 shows the ROC curve that would be obtained with expert QCed data using

the same approach taken to analyze the separate Pole Mountain years 1 and 2 datasets.

The dig list order is based on a combination of polarizability matching (using all three

polarizabilities), decay, size, and polarizability quality. All TOI are found after 80 non-TOI

digs. The excellent performance of this list using a simple discrimination approach reflects

the high quality of the dataset. The results of using the same procedure to develop the dig

list, but using data that have not been QCed, is shown in Figure 37. This list performs

slightly better, with all TOI found after 67 non-TOI digs, suggesting that for this very high

quality dataset, QC is not necessary. Again using the same procedure to develop the dig

list, but using auto-QC Test 4 (Figure 17) to remove deep, unrealistic 2OI models results in

no improvement (Figure 38).

Dig lists based on matching only the primary polarizability (L1), or on decay, using either

no QC or auto-QC all perform significantly worse than the results presented above, with the

last TOI being found after 300 non-TOI digs for lists based on L1 matching, and after 650

digs for lists based on decay (not shown). Similarly, dig lists based on a two stage approach,

with matching on polarizabilities for early digs and decay for later digs, do not perform as

well as the results presented in Figures 36- 38.

Dig lists based on matching all three polarizabilities with no QC, or with auto QC to

remove deep, unrealistic 2OI models perform reasonably well (Figure 39), but not, however,

as well as the dig lists based on a slightly more sophisticated and aggressive approach to

anomaly ranking (Figures 36- 38). This shows that for high quality data, dig lists based

on matching all three polarizabilities out-performs matching on L1 only, and an approach

which uses more features of the data can out-perform matching on all three polarizabilities.
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Figure 35. Decay versus size feature space plot for Pole Mountain data show-
ing all passed (”+”) and failed (blue dot) models as determined by visual QC
performed by an expert analyst (expert QC). Yellow stars represent reference
items. Other large symbols represent TOI for passed models. Passed models
indicated by ”+” are non-TOI.
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Figure 36. ROC curve that would be obtained with expert QCed data using
the same approach taken to analyze the separate Pole Mountain years 1 and
2 datasets. Dig list order is based on a combination of polarizability matching
(using all three polarizabilities), decay, size, and polarizability quality. All
TOI are found after 80 non-TOI digs.
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Figure 37. ROC curve for Pole Mountain MM using no QC. Dig list order
is based on a combination of polarizability matching (using all three polariz-
abilities), decay, size, and polarizability quality. All TOI are found after 67
non-TOI digs. Performance is slightly better than using expert-QCed data
(Figure 36).
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Figure 38. ROC curve for Pole Mountain MM using auto QC Test 4 to elim-
inate unrealistic, deep 2OI models. Dig list order is based on a combination
of polarizability matching (using all three polarizabilities), decay, size, and
polarizability quality. Performance is no better than using no QC.
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Figure 39. Top: ROC curves Pole Mountain MM using no QC (left) and
auto QC to eliminate unrealistic, deep 2OI models. Dig list order is based on
match to all three polarizabilities. Note that auto-QC for the Pole Mountain
data provides minimal improvement. In this case four deep anomalies (plots at
bottom), all corresponding to scrap and all fitting reference items reasonably
well, have been removed from the early part of the dig list.
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4.1.4. Summary. A summary of test results is presented in Table 4.1.4. For all four datasets,

good results can be obtained with either no QCing, or using auto QC Test 4 to eliminate

some of the unrealistic, deep 2OI models. For the two datasets with the lowest quality data

(Butner and Beale C), using auto QC and a two stage approach for dig list order (with L1

matching for early digs, and decay for later digs), provides the best results. This approach

also performed well with the Beale P dataset, although the best results were obtained using

either expert-QCed data or no QC and a dig list based on L1 matching. For the high quality

Pole Mountain dataset, excellent results were obtained using either the expert QCed data,

no QC or auto QC, and a dig list based on more features of the data. The absolute best

result, however, was obtained using no QC. This dataset is so excellent that a variety of

approaches for dig list construction would likely work very well.
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Dataset QC method Dig list order Non-TOI digs
at last TOI

Note

Beale P Expert L1,L2,L3 match decay, size,
quality

595 Offically scored result

Beale P Expert SVM: (1) L1,L2,L3 match;
(2) L1 match

264 Offically scored result

Beale P Expert L1 match 124 * Best for Beale P
Beale P No QC L1 match 268

Beale P No QC (SOI only) L1 match 126 * Best for Beale P
Beale P No QC Decay 307
Beale P No QC (1) L1 match digs 1-200; (2)

Decay digs >200
200

Beale P Auto QC Test 1 L1 match 235
Beale P Auto QC Test 2 L1 match 184
Beale P Auto QC Test 3 L1 match 169
Beale P Auto QC Test 4 (1) L1 match digs 1-150; (2)

Decay digs >150
146

Beale C Expert (1) L1,L2,L3 match: (2) L1
match; (3) Decay

513 Offically scored result

Beale C Expert SVM: (1) L1,L2,L3 match;
(2) L1 match

764 Offically scored result

Beale C Expert L1 match 1082
Beale C No QC L1 match 1185
Beale C No QC (SOI only) L1 match 1084
Beale C No QC Decay 276
Beale C No QC (1) L1 match digs 1-250; (2)

Decay digs >250
216

Beale C Auto QC Test 2 L1 match 1298
Beale C Auto QC Test 2b L1 match 1136
Beale C Auto QC Test 4 Decay 261

Beale C Auto QC Test 4 (1) L1 match digs 1-250;
(2) Decay digs >250

202 * Best for Beale C

Butner Expert SVM: (1) L1,L2,L3 match;
(2) L1 match

1669 Offically scored result

Butner No QC L1 match 1025
Butner No QC Decay 1436
Butner No QC (1) L1 match digs 1-500; (2)

Decay digs >500
658

Butner Auto QC Test 4 L1 match 934
Butner Auto QC Test 4 L1 match 1287

Butner Auto QC Test 4 (1) L1 match digs 1-500;
(2) Decay digs >500

500 * Best for Butner

Pole Mtn Expert L1,L2,L3 match decay, size,
quality

80 Equiv. to officially
scored result

Pole Mtn No QC L1,L2,L3 match decay,
size, quality

67 * Best for Pole Mtn

Pole Mtn Auto QC Test 4 L1,L2,L3 match decay, size,
quality

70

Pole Mtn Expert L1,L2,L3 match 103
Pole Mtn No QC L1,L2,L3 match 118
Pole Mtn Auto QC Test 4 L1,L2,L3 match 114

Table 2. Summary of test results for all datasets using different methods for
QCing and dig list ranking. Highlighted lines correspond to the best result for
each dataset.
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4.2. Development and testing of active learning algorithms using Sky/UBC fea-

tures. In this section we show applications of active learning algorithms to MetalMapper

data sets from ESTCP demonstrations conducted at Camp Butner and Camp Beale.

4.2.1. Application to Camp Butner MetalMapper data. As a first test of Duke active learn-

ing algorithms using Sky/UBC features, we consider a two-dimensional decay versus size

feature space extracted from ESTCP Camp Butner MetalMapper data. Figure 40 shows the

distributions of TOI and non-TOI in this feature space. In figure 40 the decay parameter is
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Figure 40. Camp Butner MetalMapper size decay features. Red circles are
test pit TOI.

computed at MetalMapper channels 1 (0.1 ms) and 36 (4.2 ms).

In this experiment we randomly seed the myopic and submodular learning algorithms with

two labelled items, then dig in batches of ten targets until 50 items are labelled. We then

train a semi-supervised classifier using the labelled training data and remaining unlabelled

test data. Figure 41 shows the performance of myopic and submodular learning approaches

for a single trial (i.e. for an initial realization of two randomly-selected training items). We

find that both learning algorithms are quite slow when applied to the full feature data set

(approximately 3000 feature vectors) and so for each realization we downsample the test

data by randomly selecting a subset of 800 clutter items. We retain all 171 TOI for every

realization.

The myopic algorithm tends to select redundant items for labelling, resulting in clusters

of labelled feature vectors and limited information from the region of overlap between TOI

and non-TOI classes. However, even in the worst case realization (top row of figure 41),
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the myopic algorithm ROC is not dramatically worse than the submodular result. This is

likely because the semi-supervised classifier exploits the unlabelled test data and so is less

sensitive to the particular realization of training data.

The submodular algorithm produces a much more sensible distribution of labelled feature

vectors, and in the best case example shown in the top row of figure 41 the algorithm does

produce an improvement in both false alarm rate (FAR) and area under the curve (AUC).

Conversely, the worst case ROC for the submodular algorithm (bottom row of figure 41) is

not significantly different from the corresponding myopic ROC, suggesting that the former

is robust to an unfavorable initial seeding of training data.

For the submodular algorithm there is a reasonable exploration of the region bordered

by the smallest TOI (37 mm). It perhaps focuses too much effort on large, slow decaying

targets that are obviously TOI (105 mm) and on small, fast decaying items. In the case of

Camp Butner this latter category of targets can safely be assumed to be non-TOI and so

we might not need to dig these items. Instead, we can provide a subset of fast-decaying test

targets as assumed non-TOI. While this is a viable approach for Camp Butner, it does risk

mislabelling smaller TOI that might be hidden in the “cloud” of clutter. For example, at the

recent Camp Beale demonstration fuzes and fuze parts similar in size to small clutter were

encountered. Querying small, fast decaying targets, as in figure 41 is therefore a prudent

practice, provided the labelling algorithm has the ability to find concealed clusters of small

TOI.



6
0

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Proportion of clutter found

P
ro

po
rt

io
n 

of
 U

X
O

 fo
un

d

ROCs

 

 

Myopic
Submodular

0 2 4
0

0.01

0.02

0.03

0.04

0.05

Size

D
ec

ay

Myopic

 

 
Clutter
UXO
Labelled

0 2 4
0

0.01

0.02

0.03

0.04

0.05

Size

D
ec

ay

Submodular

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Proportion of clutter found

P
ro

po
rt

io
n 

of
 U

X
O

 fo
un

d

0 2 4
0

0.01

0.02

0.03

0.04

0.05

Size

D
ec

ay

0 2 4
0

0.01

0.02

0.03

0.04

0.05

Size
D

ec
ay

Figure 41. Comparison of myopic and submodular learning performance applied to Camp Butner MetalMapper size-
decay features. Top row (l to r): ROCs for realization with maximum improvement in AUC for submodular algorithm
relative to myopic algorithm, selected training data for myopic algorithm, selected training data for submodular algorithm.
Bottom row: as above, but showing the realization with the maximum improvement in AUC for myopic algorithm relative
to submodular algorithm. In feature plots solid green circles indicate the initial labelled training data.
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The statistics for 50 realizations of Camp Butner test and training data are summarized

in figure 42. We see that the myopic algorithm is more susceptible to producing large

outlying false alarm rates (or small AUC), while the submodular algorithm has only one

realization that produces an outlying AUC. Preventing outlying TOI is crucial to successful

UXO discrimination, and from this experiment we can conclude that the submodular active

learning algorithm will be less susceptible to false negatives than the myopic approach.

0.92
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Figure 42. Boxplots summarizing AUC and FAR performance statistics
for myopic and submodular learning algorithms applied to Camp Butner
MetalMapper test data. Central mark indicates the median, the edges of
each box are the 25th and 75th percentiles and whiskers extend to the most
extreme data points not considered outliers. Outliers are shown as red crosses.

How well do active learning algorithms perform relative to conventional classification with

limited training data? Performance comparisons with randomly selected training data sets

seem somewhat biased in favor of active learning: the rarity of UXO at most sites means that

a random sample is unlikely to produce an adequate sample of TOI features for training.

Even in the absence of any initial groundtruth, obvious clusters of target features are often

evident in the test data and this clustering can be used to guide target sampling when

building the training data set. Furthermore, at most sites testpit measurements of known

munitions classes provide useful information about the distributions of TOI features. In

figure 43 we compare the performance of active learning algorithms with a support vector

machine (SVM) classifier trained only using 5 feature vectors estimated from TOI testpit

measurements. Binary decision rules always require features from both classes (TOI and

non-TOI). However, rather than directly sampling from the non-TOI class, we assume that

small, fast-decaying targets are clutter, without actually digging those targets during the

training stage. To identify these items, we form a matrix with element Mjk the misfit

between the jth training and kth test vectors

(34) Mjk =
N∑
i=1

(
xj(i)− xk(i)

)2
.

In this context the feature vectors x are size-decay parameters (equation 4) normalized

by standard deviations estimated from the test data (without this normalization the size
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parameter will dominate the misfit). We then identify test feature vectors with the largest

misfit relative to training vectors and use these as assumed non-TOI when training the SVM

classifier.
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Figure 43. Left: comparison of active algorithm performance when seeded
with testpit training items, plus an additional 50 labelled targets identified
by each algorithm. Support vector machine (SVM) performance is shown
for comparison. Right: support vector machine decision surface (grayscale
image), with testpit items (red circles) and test data. The SVM is trained
using only the 5 testpit TOI feature vectors and uses unlabelled fast-decaying
test vectors as non-TOI (blue markers)

The ROC of the SVM classifier in figure 43 is a baseline for measuring the classifica-

tion performance of active learning algorithms on the Camp Butner MetalMapper data. It

represents the performance that is obtained using size-decay parameters and without any

additional labelling of the test data. Relative to this classifier, the active learning algo-

rithms trained with 50 additional digs significantly reduce the false alarm rate and increase

the AUC. In 43, both active learning algorithms are initially seeded with the 5 TOI testpit

feature vectors. This has no significant effect on the resulting ROCs relative to the simula-

tions in shown in figure 41: both algorithms can identify TOI clusters automatically and do

not require additional testpit information to succeed on these data.

4.2.2. Active learning with the SVM. To further validate the performance of Duke active

learning algorithms on ESTCP demonstration data, we develop and apply an intuitive ap-

proach to active learning using the support vector machine. The SVM formulation assumes

that the optimal decision function fSVM is a weighted sum of support vectors defining the

maximum extents of TOI and non-TOI classes. To achieve good discrimination performance

with this algorithm we must therefore query test feature vectors in the region of overlap be-

tween the two classes, i.e. close to the decision boundary fSVM = 0. Active learning with

the SVM can then proceed as follows:

(1) Train SVM algorithm with labelled training data.

(2) Label ndig test feature vectors closest to the SVM decision boundary.
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(3) Append newly labelled items to training set and return to (1) until nbatch batches of

training requests have been labelled.

In the active learning stage we wish to initially query feature vectors close to known testpit

TOI, and so we use a small kernel width σ when training the SVM (here σactive = 0.1). Once

labelling is finished, we train our final SVM classifier using a much larger kernel width

(σfinal = 1) to avoid overfitting the training data. Figure 44 compares the resulting ROC

with the previous Duke active learning results. As in figure 43, all algorithms have only

testpit TOI as initial training data, and an additional 50 test items are labelled separately

by each algorithm. The SVM achieves comparable performance to the Duke algorithms,

with a slight reduction in false alarm rate. As expected, many of the queried feature vectors

for the SVM occupy the overlapping region between TOI and non-TOI classes. While the

SVM result in this example is quite promising, we emphasize that this algorithm relies upon

good initial knowledge of the TOI classes from test pit data. If there are unknown TOI

clusters far from known TOI in the feature space, then the SVM active approach will likely

overtrain on the known TOI, producing a large false alarm rate. In contrast, the Duke active

learning algorithms are relatively insensitive to the initial training data. In the next section,

we investigate the ability of these algorithms to find novel clusters of TOI within the test

data.
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Figure 44. Left: Comparison of Duke active learning algorithm performance
with support vector machine (SVM) active learning. Right: final support vec-
tor machine decision surface (grayscale image), as in figure 43, with additional
labelled features identified by SVM active learning shown.

4.2.3. Identification of “hidden” TOI clusters. An important characteristic of a successful

active learning algorithm is the ability to identify novel TOI classes in the test data. In the

majority of ESTCP demonstrations conducted to date the TOI encountered in the field were

known a priori. However, at the San Luis Obispo (SLO) and Camp Beale demonstrations

unexpected TOI were encountered. If the new TOI are large (i.e > 81 mm), then they can be

readily identified by their size-decay parameters as well as by features diagnostic of target
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shape. Novel TOI of this type were present at SLO and were easily found by classifiers

working with size-decay parameters. Camp Beale was a much more challenging scenario:

fuzes and fuze parts similar in size to clutter were found.

In this section we focus on this problem in detail and test the ability of active learning

algorithms to find targets of interest that are not apparent in the test data as distinct

clusters.

Figure 45 shows two scenarios where a novel TOI cluster is seeded in the test data. In both

cases the cluster is comprised of twenty items with nearly identical size-decay features. In the

first scenario (top row of 45)) the TOI cluster is squarely within the cloud of clutter items.

The submodular algorithm succeeds in finding this cluster in the training stage, while the

myopic algorithm fails. Interestingly, the resulting ROC curves are not significantly different

for the two algorithms. This is likely because the final semi-supervised classifier uses the test

data to generate the decision function, so that a labelled UXO embedded within clutter will

be bumped down the dig list. When discrete clusters of small TOI occur, it may therefore

be appropriate to initially train a classifier that overfits the training data (i.e. with very

small kernel widths). This will ensure that initial digging efforts focus on known, training

UXO. We can then revert to a classifier with larger kernels to achieve good generalization

to the test data.

In the second scenario in figure 45 (bottom row), we introduce an even smaller, faster

decaying TOI cluster that lies near the edge of the clutter distribution. Both active learning

algorithms find this cluster, but only the submodular algorithm results in an acceptable

ROC curve. The training data generated from the myopic learning seemingly leads the

semi-supervised classifier to ignore the seeded cluster.

From this experiment we conclude that the submodular active learning algorithm devel-

oped at Duke is capable of finding novel clusters of TOI. However, when TOI clusters are

embedded within clutter, it may be necessary to adapt the final classifier to aggressively

overfit the training data in the early stages of digging.
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Figure 45. Comparison of myopic and submodular learning performance applied to Camp Butner MetalMapper size-
decay features, with artificial clusters of TOI seeded in the test data.
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4.2.4. Active learning with polarizabilities. Thus far we have focused on active learning in a

simple two-dimensional feature space. However, polarizabilities estimated with next genera-

tion sensor data (e.g. MetalMapper) are sufficiently well constrained that excellent discrimi-

nation performance can be achieved by training classifiers directly on these parameters. For

example, Shubitidze (2010) achieved near perfect discrimination performance on the Camp

Butner MetalMapper data. This is in contrast to monostatic sensors (e.g. the Geonics

EM-61): these instruments produce poorly constrained model estimates over a limited time

range and so it is advisable to work with size-decay parameters (or even just the decay

parameter) when ranking targets.
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Figure 46. Comparison of myopic, submodular and SVM active learning
performance applied to Camp Butner MetalMapper total polarizability fea-
tures. Myopic and submodular algorithms have the same false alarm rate.

Figure 46 shows discrimination performance for active learning algorithms applied to log-

transformed total polarizabilities (equation 5) from Camp Butner. In this example we use

estimated polarizabilities at all 42 MetalMapper channels, and we initialize all algorithms

with features from test pit TOI. Training submodular and myopic algorithms on these fea-

tures does not produce any performance improvement relative to using size-decay features

(shown in figure 43). In contrast, the SVM active algorithm has an increased AUC when

trained on total polarizabilities. However, there is some difficulty finding the final TOI and

consequently the FAR for the SVM active is increased relative to the analogous size-decay

result.

Figure 47 shows a second comparison of active learning algorithms, here applied to

MetalMapper data from the 2011 Camp Beale demonstration. In this example we con-

sider classifiers trained on either total or primary polarizabilities (log-transformed in both

cases). The summation of polarizabilities will necessarily be dominated by the primary po-

larizability, so that there is a strong correlation between total and primary polarizability



67

feature sets. However, the total polarizability may be affected by poorly constrained tran-

verse (secondary and tertiary) polarizabilities. In these cases we may obtain a good library

match with the primary, but not with the total.

In figure 47 all active learning algorithms achieve comaparable false alarm rates, with

myopic and submodular algorithms attaining identical performance in all cases. These algo-

rithms do slightly better when trained on primary polarizabilities. Active learning with the

SVM has good initial performance (high AUC) when trained on total polarizabilities, with

a marginal reduction in false alarm rate for primary polarizabilities.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Proportion of clutter found

P
ro

po
rt

io
n 

of
 U

X
O

 fo
un

d

 

 

Myopic
Submodular
SVM active

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Proportion of clutter found

P
ro

po
rt

io
n 

of
 U

X
O

 fo
un

d

(a) Beale P

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Proportion of clutter found

P
ro

po
rt

io
n 

of
 U

X
O

 fo
un

d

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Proportion of clutter found

P
ro

po
rt

io
n 

of
 U

X
O

 fo
un

d

(b) Beale C

Figure 47. Comparison of myopic, submodular and SVM active learning
performance for Beale MetalMapper data sets. Left: classification on total
polarizabilities, right: classification on primary polarizabilities. Myopic and
submodular algorithms have the same false alarm rate in these examples.
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4.3. Development of a munitions response target database. A primary objective of

this project has been the integration of feature estimation capabilities developed by the

SKY/UBC group with advanced classification algorithms from Duke University. To this

end, we have implemented a web-accessible munitions response target database (MRTDB)

comprised of sensor data, ground truth and estimated features from all ESTCP demonstra-

tions dating back to San Luis Obispo in 2009. This is intended as a platform for researchers

at Duke, UBC, and the broader UXO community to further test algorithms for feature

extraction and classification. Similar standardized data sets within the machine learning

community serve as testbeds for algorithm development and also promote reproducible re-

search.

While this effort to some extent parallels development of a library of TOI polarizabilities

within UX-Analyze (Keiswetter, 2009), our database includes responses for all demonstra-

tion targets, including both TOI and non-TOI. This provides researchers with the tools to,

for example, characterize the variability of TOI polarizabilities across sites, or test the ability

of a discrimination algorithm to distinguish between TOI and clutter of similar size.

The MRTDB is hosted at www.skyresearch.com/mrtdb, and users can log in with the

username estcpuser and password estcpuser!. Arbitrary queries of the database can then

be constructed by specifying desired fields in the browser interface, as illustrated in figure 48.

The following fields can be specified:

• Site

• DigType (TOI, Cultural Debris, Munitions Debris, No Contact)

• Target number

• Class (e.g. 37 mm, 105 mm, etc.)

• Length

• Depth

• Dip

The database then returns a table of targets meeting the query criteria. Sensor data, images,

or features for selected targets can be downloaded in a zip file. In addition, users can view

individual inversion results in a PDF file. The PDF contains images of all inversion results,

including both passed and failed models. PDFs for each data type are accessed via links in

the Data column, as shown in figure 48.

Importing new data sets and ground truth into the database is straightforward, and we

will maintain this resource as the ESTCP demonstrations continue beyond 2012. We will

also leverage this work in the new start SERDP project MR-2226 (Decision support tools for

munitions response performance prediction and risk assessment). Successful classification

performance prediction given arbitrary site conditions will exploit data sets and features

from previous demonstrations.
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Figure 48. MRTDB interface and example search results
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