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Sonar Detection and Classification of Underwater UXO and 
Environmental Parameters 

 
 

 
Abstract 

Objective: The objective of the current research is to work towards resolving issues that affect 
sonar detection and classification/identification (C/ID) of underwater UXO using sonar.   
Background: Based on extensive assessments of other sensor technologies carried out at NSWC 
PCD for underwater Navy applications, sonar is expected to play an indispensible role in 
underwater UXO remediation.  Acoustics can be used to probe for targets over a significant 
range and, being a wave phenomenon, can be used to image buried targets for discrimination 
from clutter.  However, environmental factors can make detection and discrimination 
problematic, often making imagery insufficient to discriminate targets from clutter.   
Technical Approach: We leverage on-going Navy sponsored sonar tests to collect data to further 
the model development and validation needed to keep sonar models and simulations such as PC 
SWAT and the more recent finite-element-based models up to date for UXO applications.  This 
modeling capability and test data is then used both to build a database of sonar target signals 
useful for developing and evaluating C/ID algorithms that separate UXO from bottom clutter and 
to look for and understand target signatures that appear sufficiently unique for classification. 
Results: Work carried out during 2009-2011 covered four primary areas: controlled pond and 
tank measurements, finite element (FE) development and modeling, classification analysis, and a 
laboratory study of muddy sediments.  Sonar target data in both monostatic and bistatic 
configurations were collected at NSWC PCD’s freshwater test pond in 2009-2010, which were 
processed to provide representations of target intensity in a variety of spaces (coordinate space 
for imagery, frequency vs target aspect, frequency, vs time, etc.).  Data were also collected 
within NSWC PCD’s small-scale test tank on a 1/16-scale UXO and other simple target shapes 
in 2011 to study more diverse scattering configurations not accessible in the full-scale 
measurements.  FE algorithms were developed and used to generate plots of target strength as a 
function of aspect angle and frequency to compare with the experimental results.  FE represents 
another cost effective alternative to field measurements for creating databases of real target and 
clutter responses needed for classification analysis.  Classification analyses performed on target 
acoustic data collected in the freshwater pond demonstrated the feasibility of class separating 
different targets using features derived from non-image representations of the target. Unlike 
image-based classification, this methodology was even shown capable of discriminating between 
targets of the same size and shape but different material composition.  Finally, research carried 
out by Boston University to estimate or measure the environmental parameters of muddy 
sediments needed in sonar simulations has resulted in an electro-chemical model of mud that 
explains sound speed and attenuation trends seen in data.   
Benefits: A substantial database of target responses is often required to train and test C/ID 
algorithms.  The data collected here augment existing databases and the models developed and 
validated enable further augmentation through simulation.  Furthermore, this work supports a 
physics-based understanding of target responses to enable better selection of classification 
features, which would be more robust against environmental factors.  These efforts respond to 
SERDP SON MMSON-09-01. 
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Objective 
 
MMSON-09-01 specified needs for studies focusing on “wide area assessment” and the 
“acoustic response of munitions and environment” in underwater areas.  The research performed 
in this project responds to these points by investigating issues associated with using sonar as a 
tool for finding and characterizing UXO.  Sonar has been the Navy’s workhorse for detection 
and discrimination of underwater objects from clutter through analysis of image features.  
However, new features need to be identified for UXO due to their more varied shapes and sizes, 
and difficulties arise for buried ordnance (like most UXO) because the wave attenuation and 
inhomogeniety in ocean sediments make detection less predictable and high-resolution imaging 
more difficult.  Even when imaging can be done, important image features (e.g., 
highlight/shadow features) are lost.  Therefore, modeling, data collection, and data analysis is 
performed as a primary component of this project to develop the understanding of factors that 
affect the acoustic response of proud and buried munitions when searched with both side-scan 
sonar used for wide area assessment and bottom-looking sonar for detection of completely buried 
targets.  The knowledge gained would be used to 
 

 test new ways to improve signal-to-noise (SNR) against targets 
 improve ability to discriminate UXO from clutter 
 validate simulation software for generating sonar data 
 enable UXO sonar performance prediction. 

 
A particular interest in this effort is on identifying target phenomena yielding features with 
robust discriminatory power for separating UXO from clutter.  This final report will summarize 
the results obtained towards these goals based on the modeling, data collection, and data analysis 
performed during this project. 
 

Technical Approach 
 
The approach taken to enable wide area assessment of UXO contamination with sonar is to build 
a high fidelity simulation capability that can be used to test overall performance of various sonar 
under varying conditions.  At NSWC PCD, simulation of image-based sonar performance has 
generally been carried out using software such as the Personal Computer Shallow Water 
Acoustic Toolset (PC SWAT), so improving and validating this software for UXO applications 
with insight gained from modeling and data analysis continues to be done as needed.  However, 
growing concerns over small or buried targets that are difficult to image to the resolution needed 
for effective classification has driven a need to extract either more or different information from 
the target response.  To meet this need, this project investigates and compares the detection and 
discriminatory potential of target information collected and/or processed and combined in 
different ways. 
 
The best information to extract from the target response and the best sonar configuration to 
obtain it remains to be determined.  However, recent efforts fusing target aspect and spectral 
characteristics from backscatter echoes has been shown to yield potentially good features for 
distinguishing targets from clutter.  This was demonstrated by training statistical pattern 
recognition algorithms such as support vector machines and relevance vector machines with 
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feature vectors extracted from representations of the target strength in aspect vs frequency space.  
Thus, high resolution imagery is not required.  While use of these statistical tools for automated 
target recognition (ATR) is growing, a danger is that insufficient training can produce good 
classification using existing data sets with little assurance of robustness against new data sets.  
Robust discrimination depends on training with data sets that sufficiently sample the range of 
feature variability exhibited by targets and clutter, which is typically not known a priori and can 
require a large amount of training data.  Because collecting sufficient data for training can be 
very costly, the approach taken to help test the ATR component of sonar performance combines 
results of several efforts to make sure a diverse set of data for classifier training and testing is 
created.  First, dedicated UXO and clutter acoustic measurements in NSWC PCD’s pond 
facilities (Fig. 1) are carried out in both monostatic and bistatic configurations to provide a 
controlled but diverse dataset of realistic target responses.  This is further supplemented with 
leveraging the Navy’s investment in the development of an efficient, high-fidelity, Finite 
Element (FE) simulation capability to accommodate complex targets in realistic environments.  
Physics-based interpretations of target responses are used to select target characteristics for ATR 
use.  The premise is that training data requirements can be reduced if target characteristics 
known to be unique to UXO can be found.  Measurements in a small-scale test tank utilizing 
small targets on a fine-grained bed of sediment were also utilized to compare target physics in 
different scattering configurations.  Scattering configurations yielding strong signals that target 
physics provides a clear connection to target elastic properties are desired.  
 
In addition to these efforts, Boston University (BU) completed a study of mud sediments 
initiated to enable remote estimation of acoustic parameters needed in sonar simulations in 
muddy environments.  In their research, an electrochemical model of mud is combined with an 
effective medium model to include compressibility effects due to entrained bubbles.  The 
presence of bubbles is known to be an important factor in decreasing the sound speed, which is 
an important input parameter that is not easily estimated for muds.  Past measurements of the 
sound speed characteristic of the high porosity Dodge Pond mud were found to have a sonic 
speed less than that observed by Wood and Weston (1); i.e., a compressional speed 3% less than 
that of water.  Other experiments performed on muddy sediments at frequencies greater than a 
kilohertz are consistent with the Dodge Pond observations when micro-bubbles are present.  
Observed speeds of gas bearing mud were typically Cmud ~(0.91-0.97)Cw.  A theoretical 
treatment of "muddy sediments," the Card House Theory (2), is proposed to estimate the slow 
sound speed and frequency dispersion as a function of mud porosity.  The presence of micro-
bubbles can lower the sound speed consistent with the Mallock-Wood equation when the bubble 
size distribution and mean bubble separation are less than the wavelength of the propagating 
wave.  Since measurement of the bubble size distribution within mud is difficult, theoretical 
limits on the size distribution in the complex card house structure can be useful in interpreting 
measurements on muddy sediments.  
 
Except for BU’s work, more details on the approach taken for these efforts follow.  A complete 
description of BU’s objectives, approach, and results are provided in their final report (3), which 
is attached in the Appendix. 
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Controlled pond measurements: Drs. J. Kennedy and J. Lopes performed pond measurements 
in NSWC PCD’s pond facility (Fig. 1) in collaboration with researchers from the University of 
Washington Applied Physics Laboratory (APL-UW) (Drs. S. Kargl and K. Williams) and 
researchers from Washington State University (WSU) (Prof. P. Marston).  Bottom target 
scattering measurements were carried out on a set of realistic and canonical shaped targets (Fig. 
2) chosen to allow both variety for ATR analysis and simplicity for benchmarking and 
facilitating physical interpretation.  Measurement configurations were set up to collect data in 
monostatic (co-located source and receiver) and bistatic (not co-located) modes against targets 
 

 
Figure 2.  Targets used in pond scattering measurements. 

Figure 1.  The NSWC PCD freshwater 
pond facility: 13.7 m deep, 110 m long by 
80 m wide with 1.5 m thick sand bottom. 
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that were both proud and buried and illuminated at above and below the critical grazing angle of 
the bottom.  Targets were typically oriented with their axes parallel to the bottom surface but 
some data on a cylinder tilted up at the surface was also collected.  In 2009, shallow-grazing 
angle data were collected by the NSWC PCD/APL-UW/WSU team using two rails deployed on 
the sand bottom in a basic arrangement as depicted in Fig. 3.  Sources and receivers attached to 
towers moved along the rails allowed synthetic aperture sonar (SAS) data to be collected over a 
frequency band of 3-50kHz.  The rail lengths allowed both monostatic and bistatic data to be 
collected over a 90o aspect range, although full 360o looks at each target were achieved by 
having divers rotate the target. 

 
 

Figure 3.  Basic configuration for 2009 shallow grazing angle scattering measurements. 

 
In 2009, a set of high-grazing angle data were also collected by NSWC PCD on the set of 2ft-
long cylinders shown in Fig. 2 using the single-rail backscatter configuration depicted in Fig. 4.  
The targets were deployed both proud and buried and oriented parallel to the rail.  The ground 
ranges shown allowed data collection at nominal bottom grazing angles of 30o and 40o when the 
sensor platform was closest to the targets. 

 
 

 
 

Figure 4.  Basic configuration for 2009 high grazing angle scattering measurements. 
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In 2010, another data collection effort by the NSWC PCD/APL-UW/WSU team was set up in 
NSWC PCD’s pond using a different layout to collect shallow angle data more efficiently.  
Multiple targets were deployed at 1.5m or 3m intervals parallel to APL-UW’s rail and filtering 
algorithms were used in post processing to separate the various target signals.  This is depicted in 
Fig. 5 along with the set of targets used.  Monostatic and bistatic signals from the full range of 
aspect angles on each target were collected, employing divers to rotate the targets at 20o 
intervals. 
 

             
 

Figure 5.  Basic configuration for 2010 shallow grazing angle scattering measurements. 

 
Finally, in 2011, an ONR-funded target scattering measurement in NSWC PCD's test pond was 
leveraged to support SERDP UXO data collection for targets in a half buried configuration.  This 
data complements the proud and buried measurements on similar targets carried out in the past.  
Two targets at a time were deployed and rotated from -80 to +80 degrees in 20 degree steps 
while monostatic SAS data was collected using sources and receivers mounted on NSWC PCD's 
rail.  Four UXO targets total were deployed over the 6 days of testing: the Al artillery shell 
replica, the steel artillery shell replica, the 155 mm howitzer shell, and the slotted Al cylinder.  
 
Tank measurements: In 2011, leveraging an ONR-funded research effort, a circular line-scan 
(c-scan) capability was designed, constructed and automated in NSWC PCD’s small-scale test 
tank (Fig. 6) to explore the utility of multistatic geometries involving circular scans.  The tank 
measures 8ft wide x 12ft long x 8ft deep and is fitted with overhead rails supporting a computer-
controlled mount that can be moved down the rails or rotated in a horizontal plane.  Sources and 
receivers can be suspended from rods at the end of a cross beam attached to the mount to 
implement a circular scan track.  One c-scan geometry is shown in Fig. 7.  The bistatic receiver 
is held in a fixed location, while the monostatic source/receiver is scanned along a circular track.  
This configuration permits simultaneous measurement of monostatic and bistatic target 
scattering.  Targets are placed in the center of rotation and the data are processed to produce 
circular synthetic aperture sonar images and target strength vs. aspect angle.  A 1.5in layer of 
fine glass beads held in a 2ft- square wood tray is used to simulate a sand bottom when needed.  

      Targets deployed: 
● 155 mm howitzer shell (top)  
● 81 mm mortar (cement filled) 
● 152 mm TP-T round  
● Small Al cylinder with notch 
● Steel artillery shell 
● Al replica of artillery shell 
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Measured sound speed, density, and attenuation within the simulated sand (see Fig. 7) were 
confirmed to be within realistic bounds when the frequency band used in the tank (~50kHz-
1.5MHz) is scaled down to the desired frequency band for full sized targets. 
  
A set of scaled targets consisting of aluminum cylinders, steel spheres, an aluminum cone, and 3 
machined 1/16th-scale UXO shapes were used in the tank measurements.  The UXO shapes were 
copies of the 100 mm steel artillery shell seen in Fig. 5, machined out of aluminum, brass, and 
steel.  These targets are shown in Fig. 8. 

 
Figure 6.  NSWC PCD’s scaled-model acoustic tank.  The photo on the right shows the empty interior along 

with the overhead rails, which support the sources and receivers. 

 
 

 
Figure 7.  A c-scan track used to collect monostatic and bistatic scattering data from targets deployed on a 

simulated sand bottom. 

Simulated sand: 
77μm avg grain size       
1.97g/cm3 sed den  
1793.2m/s sound sp  
127.2Np/m att @1 MHz  
0.37 void fraction  
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Figure 8.  Scaled UXO (left and center) target and canonical target shapes (right) used in tank data collection.  

Targets are displayed against graph paper with 1in bolded squares.  

 
Finite Element (FE) simulation: Development of a capability to carry out finite element 
simulations for realistic targets on or in the seafloor has been funded for several years at NSWC 
PCD by the Office of Naval Research (ONR).  Both our last SERDP project (MR-1506) and the 
present project has leveraged this work to help extend its use for building a database of UXO 
target signatures.  The approach taken so far has been to develop and check a set of algorithms 
written for the COMSOL Multiphysics software package.  These produce highly efficiently 
gridded solutions for elastic targets on or buried under a typical ocean bottom.  Solution grid 
configurations and sizes were formulated to maintain uniform error across specified frequency 
bands.  Reduced grid size formulations taking advantage of target symmetries were introduced.  
Boundary conditions that allowed reduced FE volume sizes around elongated targets were 
derived and tested.  Coupling the FE solutions to analytic propagation formulas based on the 
Helmholtz equation was performed to allow fast simulations out to long ranges.  Verification and 
validation of much of these FE components on a set of proud and buried canonical targets 
(spheres and cylinders) was performed by comparing against benchmarks computed with 
transition matrix solutions.  Tests of the existing FE system have mostly been run on dedicated 
workstations but the current FE software has recently been transported to a scalable architecture, 
25 processor, multi-blade rack computer.  Thus, computational turnover has been increased by a 
factor of 25 by distributing portions of long runs among the processors.  With incorporation of 
the latest COMSOL upgrade, parallel processing of complex problems should also be possible, 
although implementation of this capability remains to be tested. 
 
Processing and ATR tools: While the measurements and FE simulations performed will provide 
data that can be used to train and test ATR algorithms for non-image based classification, 
software tools were also developed to increase the effectiveness of this data.  A capability has 
been developed into PC SWAT to imbed target data either collected or simulated into imagery 
from past field surveys; thus, making available an infinite number of new target-in-environment 
combinations that can be processed for imagery or other target spaces to be fed into ATR 
classifiers.  This is further enabled by developing and applying algorithms for isolating target 
signals from given measured data sets so they can be swapped or recombined into new data sets.  
This processing ignores multiple scattering effects between targets but this is usually a good 
approximation where targets are not very close.  The resulting target signal isolation algorithms 
also make data collection more efficient by allowing simultaneous sonar measurements on 
multiple targets within a limited area.  Even though their signals overlap in the raw SAS data, 
signals for each target can be separated and subsequently processed into imagery or aspect vs 
frequency space for feature extraction.  A Matlab toolbox was written based on these signal 
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isolation algorithms to enable manipulation of the target and clutter data collected at the NSWC 
PCD pond.  The newly created data can be stored as a database containing reverse beamformed 
"raw" data, SAS beamformed imagery, and frequency-aspect responses. 
 
In addition to sharing the pond data collected with both APL-UW and other ONR funded 
researchers at NSWC PCD for ATR analysis, a SERDP funded ATR component was carried out 
at NSWC PCD, focused on taking advantage of physics-motivated features to class separate 
UXO targets.  The ATR approach here emphasized non-imaging techniques to complement 
existing image-based methods.  It also emphasized feature selection rather than classifier 
development because the technology for classifiers is considered mature enough that significant 
improvements in ATR reliability (i.e., more robust class separation) are expected to come from 
better selection of features used in training.  Implicit in this is that the choice of classifier to train 
is not as important as the features selected to train with.  Therefore, the classifier used to test 
class separation performance in the results discussed below is not chosen based on the state-of-
the-art but, rather, on the one most intuitive to implement for the feature set chosen. 
 
New features from the collected pond data that are characteristic of a target’s elastic properties or 
that arise from viewing the target in a new way were sought and assessed.  Features are generally 
deduced from phenomena seen in a space of some measured target property as a function of one 
or two other parameters varied in the data collection; e.g., target strength as a function of target 
aspect and frequency.  To facilitate selection of feature vectors for classification analysis, various 
methods were used to augment elastic signals and view target phenomena among different 
targets to assess how well those phenomena differentiated the targets. 
 
Two types of features were tried in the work reported here.  First, features extracted from plots of 
target strength vs.  target aspect and frequency that are associated with elastic surface waves 
excited on cylindrical targets were fed into a K-means clustering algorithm to demonstrate their 
effectiveness in distinguishing 4 like-shaped targets of differing material construction.  In a 
second study, simple target energy threshold masks that have been filtered to remove target 
specular reflections and statistically “orthogonalized” through training in time-frequency space 
were shown to be effective at distinguishing between backscatter signals from several UXO 
projected onto time-frequency space. 
 

Results 
 
Results from project MR-1666 are described below according to the major tasks performed: 
controlled measurements and data analysis, FE development and modeling, and classification 
analysis. 
 
Controlled measurements and data analysis: Two major test events were carried out during 
2009 and 2010 in collaboration with APL/UW and WSU in NSWC PCD’s freshwater test pond.  
These involved targets deployed on a flat sand bottom at various depths.  SAS data were 
acquired using both monostatic and bistatic scattering configurations to investigate the potential 
advantages of nonstandard sonar detection and classification configurations.  Some initial results 
and analysis of data from the pond tests were published in papers (4) and (5), which are attached 
in the Appendix for further detail.  To assess the relative advantages of different representations 
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of the target, the data were processed in three ways:  imagery, projections onto target aspect 
angle vs frequency (“acoustic color”) space, and projections onto spatial frequency vs frequency 
space.  The last is produced as an intermediate step in wavenumber algorithm beamforming (6) 
and is, therefore, of interest for extracting additional target information that efficiently 
complements imagery.  Examples of these representations are shown in Figs. 9-11 for 
backscatter by 4 proud targets (2ft Al cylinder, 2ft pipe, bullet shape, and mortar) insonified at 
20o and 40o grazing angles. 
 
In general, all three representations of the 4 targets produce useful distinguishing characteristics.  
For example, in Fig. 9, the cylindrical shapes are easily distinguished from the bullet and mortar 
by their shape and dimensions, even when observed at different grazing angles.  Even the two 
cylinders exhibit distinctly different reverberation and elastic reradiation patterns.  However, 
despite adequate SNR for detection, the smaller bullet and mortar shapes are more difficult to 
distinguish between because the resolution is insufficient to produce unambiguous shapes and 
dimensions.  For these targets, representations like those in Figs. 10 and 11 may be more useful 
because they focus on properties of the isolated target signal rather than using image 
characteristics that depend on differences between signals from various parts of the target and the 
background.  Thus, the characteristics observed in Figs. 10 and 11 do not require high spatial  
 

    
 

     
Figure 9.  Backscatter SAS imagery processed from data collected around target broadside at 20o (top 

images) and 40o grazing angles (bottom images). 



11 

resolution but they can be sensitive to the environment.  From the standpoint of classification, it 
is desirable to project target signals onto spaces that exhibit phenomena unique to the target and 
that remain robust to changes in the environment.  A preliminary look at the issue of 
environmental sensitivity was addressed with SAS backscatter data collected in 2008 and 2009 
and projected onto a target acoustic color space.  Measurements on a proud 2ft long x 1ft 
diameter solid Al cylinder carried out in 2008 were repeated during the 2009 test to test 
repeatability of the measurements.  A comparison of the resulting acoustic color plots is shown 
in Fig. 12.  Clear differences arise in the two cases.  Of particular note is the generally weaker 
end-on response (90o) in 2009 and the apparent loss in 2008 of the elastic cylinder resonance at 
6.6kHz and 50o aspect.  Preliminary calculations suggest these differences are, at least partially, 
due to a modification of the interference between the specular echo from the target and the echo 
that includes a single bounce off the bottom.  More simply, in FY 2008, the sand surface behaved 
more like a soft boundary and, in FY 2009, it behaved more like a hard one due to consolidation, 
resulting in a phase shift in the reverberant echo component.  Additional data collected after the 
sediment was stirred up by divers using a dredge system (used for target burial) and allowed to 
resettle, produced an acoustic color plot similar to that obtained in FY 2008. 
 
It is notable that subtle differences in the properties of a sand bottom can lead to fairly significant 
differences in the acoustic color plot of a target.  This comparison emphasizes the care needed  
 

  
 

  
Figure 10.  Backscatter acoustic color processed from data collected around target broadside at 20o (top plots) 

and 40o grazing angles (bottom plots). 
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Figure 11.  Backscatter spatial frequency vs frequency plot processed from data collected around target 
broadside at 20o (top plots) and 40o grazing angles (bottom plots). 

 
 
 

 
Figure 12.  Comparison of acoustic color for a 2ft long x 1ft diameter solid Al cylinder processed from data 

collected in 2008 and 2009. 
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when preparing data sets for training of statistics-based classification algorithms.  A set that 
exhibits the full range of variation induced by the environments that a target can appear in should 
be used.  Otherwise, in the present case, algorithms trained on 2008 data might not recognize the 
same target in 2009. 
 
Bistatic UXO scattering data were also collected in 2009-10 and, likewise, a database of these 
target signals is available for use in ATR-related physics and classification performance studies.  
Sample data from 2010 using the set-up in of Fig. 5 is shown in Fig. 13, where the NSWC PCD 
sonar tower projects the signal received at the sonar platform moved along the APL-UW rail.  A 
pulse compressed “smile” for each of the 6 targets listed in Fig. 13 is indicated with red arrows 
for 5 data collection runs where the axis of each target is arranged proud at the five orientations 
shown relative to the APL-UW rail.  The corresponding SAS beamformed images of the 40o 
cases over the 30-50kHz band are also shown in the lower right.  As might have been expected, 
compared to the backscatter imagery (not shown) for this target angle, the bistatic imagery 
exhibits higher SNR due to the more favorable orientation for receiving specular reflections.  
This indicates some value to bistatic detection which we explored further in 2011 in NSWC 
PCD’s scale-model test tank. 
 
Tank Measurements:  A c-scan capability was set up in NSWC PCD’s scale-model tank to 
enable simultaneous measurement of monostatic and bistatic target scattering over a continuous 
range of look angles (J. La Follett, P. Malvoso, R. Lim, NSWC PCD).  This facilitated study of 
the relative advantages of monostatic vs bistatic detection of targets deployed on and under the 
seafloor. 

  
Figure 13.  Bistatic target scattering data (left) and processed imagery (right) from 2010 pond measurements. 

• 155 mm empty howitzer projectile (top)  
• 81 mm mortar (filled with cement) 
• Machined aluminum replica of artillery shell 
• Solid steel artillery shell 
• Small aluminum cylinder with notch 
• 152 mm TP-T round (bottom) 
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Figure 14.  Picture (left) of 8 stainless steel 1.6 mm diameter spheres (red arrows).  There is a ring, not 

present during the experiment, included in the photo to demonstrate the size of the spheres.  Monostatic time-
series data (upper right).  Bistatic time-series data (lower right).  The time-domain data are plotted on a dB 

scale. 

 
Results from a scattering measurement are shown in Fig. 14.  The source/receiver grazing angle 
is approximately 6°.  The target field consisted of 8 1.6 mm diameter solid stainless steel spheres 
(ka = 3.5 at the center frequency) in burial states ranging from 10% to 100% buried.  The targets 
are indicated by red arrows (left) and the burial state increases from left to right.  The monostatic 
time series is shown in the upper right.  The bistatic time series is shown in the lower right.  The 
brightest bistatic arc is not target related and corresponds to sound that travels directly from the 
source to the receiver or is reflected once from the sediment.  This is also the cause of the very 
bright region at 180 degrees where the source and bistatic receiver are directly across the circular 
track and are perfectly aligned.  This enhancement is notched out in the time domain before the 
data can be processed to produce circular SAS (CSAS) images.  The phenomena that persist in 
time after this bright direct-path detection are due to sediment reverberation.  Target arcs are 
evident in both time series plots as sinusoidal curves with relatively smooth amplitudes.  
 
Time-domain beam forming algorithms were developed to process the c-scan data and produce 
CSAS images.  Figure 15 shows the CSAS images resulting from the monostatic (upper right) 
and bistatic (lower right) time-domain data in Fig. 14.  Compared with the bistatic image the 
monostatic image exhibits higher along track resolution but lower SNR.  The lower bistatic 
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Figure 15.  On the left is the monostatic CSAS image resulting from the upper-right time-domain data in Fig. 
14.  On the right is the bistatic CSAS image resulting from the lower-right time-domain data in Fig. 14.  The 

data are plotted on a dB scale and the amplitudes have not been corrected to account for the different 
sensitivities of each receiver.  As a result, the absolute amplitudes are not comparable between the two images 

but relative amplitudes against the background (i.e., SNR) may be compared.  

 
 

Figure 16.  Picture (left) of 1/16 scale solid Al UXO replica resting on graphing paper with 1 inch large 
squares (the small squares are .2 inch).  Monostatic CSAS image of the UXO resting proud on simulated 

sediment (upper right).  Bistatic CSAS image of the UXO resting proud on simulated sediment (lower right).  
The data are plotted on a linear scale and the amplitudes have not been corrected to account for the different 
sensitivities of each receiver.  Therefore, the absolute amplitudes are not comparable between the two images. 

monostatic bistatic 

cm cm 

cm 
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resolution is a consequence of the different receiver apertures (the monostatic receiver has a 0.5 
mm physical aperture while the bistatic receiver aperture is 19 mm) and/or the moving 
monostatic source.  Target locations in the images are consistent with their actual locations as 
shown in Fig. 14.  Also, the amplitudes of the target images are consistent with the target burial 
states; the amplitudes decrease from left to right as the burial state increases from approximately 
proud to fully buried.  
 
Additional examples of CSAS images for proud scaled targets are shown in Figs. 16 and 17.  The 
target shown in Fig. 16 is a 1/16 scale version of the solid aluminum UXO replica used by 
NSWC PCD and APL-UW in full scale experiments discussed previously at the test pond.  Both 
monostatic (upper right) and bistatic (lower right) CSAS images are shown.  As in Fig. 15, the 
monostatic and bistatic scattering data were obtained simultaneously with one scan.  Images 
corresponding to an identical measurement for a solid 45° aluminum cone having a 19 mm base 
are shown in Fig. 17.  As in Fig. 16, both monostatic (upper right) and bistatic (lower right) 
images are shown. 
 
Comparing the monostatic and bistatic CSAS images of various targets in Figs. 15 – 17  
 

 
Figure 17.  Picture (left) of .8 inch solid Al cone resting on graphing paper with 1 inch large squares (the 

small squares are .2 inch).  Monostatic CSAS image of the cone resting proud on simulated sediment (upper 
right).  Bistatic CSAS image of the cone resting proud on simulated sediment (lower right).  The data are 

plotted on a linear scale and the amplitudes have not been corrected to account for the different sensitivities 
of each receiver.  As a result, the absolute amplitudes are not comparable between the two images. 
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demonstrates some potential advantages for the bistatic geometry.  For the target field data in  
Fig. 15, the two fully buried spheres (far right in the picture) do not appear to be visible in the 
monostatic image.  However, there are bright regions in the bistatic image (yellow arrows) that 
do seem to correspond to these targets due to the apparent improved signal level, relative to the 
sediment reverberation, in the bistatic data.  The sediment reverberation may be masking the 
buried target signatures in the monostatic image.  For the scaled UXO images in Fig. 16, there 
are distinct differences.  The specular glints from the UXO tip and end dominate in the bistatic 
configuration and appear stronger relative to the background level than any of the corresponding 
monostatic returns.  The images for the proud solid cone, Fig. 17, show a similar amplitude 
effect.  The bistatic specular reflections dominate the image and provide an outline of the target’s 
base, while the most visible part of the cone in the monostatic image is the tip.  Further analysis, 
accounting for the different receiver sensitivities, needs to be performed to make quantitative 
comparisons of the amplitudes of the bistatic and monostatic data.  However, a distinct 
advantage of the monostatic CSAS processing for this target is excellent shape rendition, which 
can aid image-based classification. 
 
Circular bistatic geometries also permit demonstration of several novel bistatic target signatures.  
Certain elastic target responses have time-domain signatures that arrive earlier than sound 
following the direct source-receiver path or a path involving one sediment bounce.  The time-
domain data, for a free-field 1 inch solid stainless steel sphere (ka = 50 at the center frequency), 
shown in Fig. 18 demonstrate this effect.  At an angle of 0° the source is directly across from the 
receiver, the forward scattering position.  At an angle of 180°, or φ = 0° in Fig. 7, the source is 
positioned between the target and the receiver and there is a resulting drop in received target 
scattering signal.  The timing of the elastic response indicated by a red arrow is consistent with a 
ray path involving a leaky Rayleigh wave that is launched on the source-side of the target and  

 
Figure 18.  Bistatic time-series data for a free-field 1 inch diameter solid stainless steel sphere.  The source 

and receiver configuration is shown in Fig. 7 but the angle origin is shifted by 180° from φ.  The time-domain 
data are plotted on a dB scale normalized to the brightest pixel.  Backscattering is at an angle of 180 degrees 
and forward scattering is at 0 degrees.  The arc (green arrow) corresponding to sound that travels directly 

from the source to the receiver has a bright enhancement at 0 degrees when the source and receiver are 
perfectly aligned.  Two elastic responses related to surface waves are indicated by the black and red arrows. 
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then detaches on the receiver-side.  The surface wave travels with a phase velocity roughly twice 
that of the surrounding fluid, CR = 2.97 mm/µs.  As a result, the surface wave segment of the ray 
path causes the disturbance to arrive 5.7 µs before sound that travels directly from the source to 
the receiver without interacting with the target.  The black arrow indicates a backscattering 
enhancement that is also related to high-frequency surface waves.  
 
The monostatic/bistatic configuration shown in Figure 19 (left) was used to demonstrate novel 
bistatic target signatures in free-field for a 5:1 solid aluminum cylinder with flat ends.  This 
configuration permits simultaneous measurement of the backscattering and direct forward 
scattering as a function of target aspect angle.  In the forward scattering time series (lower-right), 
there are two “half-moon” shapes at 0° and 180° (red arrows).  The first of these  
 

 
Figure 19.  Diagram (left) of the circular-scan setup for free-field target measurements having a monostatic 

source/receiver with a bistatic receiver mounted directly across the circular scan line.  Both the 
source/receiver and the bistatic receiver are translated on a circular path simultaneously, while keeping their 
relative positions fixed.  The bright vertical lines (black arrow) are not target related.  They are the result of 
sound traveling directly from the source to the receiver.  A stationary 5:1 .5 inch diameter solid aluminum 
cylinder is suspended in the center of rotation.  The backscattering time-series data (upper right) and the 

forward scattering time-series data (lower right) are plotted as a function of aspect angle.  The time-domain 
data are plotted with a 50 dB dynamic range and normalized to the brightest pixel in each plot.  At angles of 0 

and 180 degrees (red arrows) the source is broadside to the target. 
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(green oval) extends from roughly 166° to 194°.  This angle range is consistent with the cutoff 
angle of 13.5° for transmission of sound from water into a longitudinal wave with CL = 6.41 
mm/µs.  The artifact vanishes as the angle of incidence is increased beyond that value.  This 
behavior is symmetric about broadside, as expected.  At broadside, the timing is also consistent 
with a longitudinal wave that is transmitted though the side of the cylinder.  For a 12.7 mm  
diameter cylinder at broadside, this type of elastic response would arrive 6.5 µs before the direct 
path, which is in agreement with the observed timing difference to within 0.5 µs.  
 
Similarly, the broader artifact (purple oval) that arrives next in the time series, Fig. 19 (lower 
right), is consistent with a transmitted shear wave where Cs = 3.17 mm/µs.  The corresponding 
cutoff angle is 28.1°.  This is in agreement with the angle range of roughly ± 30° evident in Fig. 
19 (purple oval).  The timing is also consistent with a shear wave that is transmitted though the 
side of the cylinder.  For a 12.7 mm diameter cylinder at broadside, this type of elastic response 
would arrive 4.5 µs before the direct path and that is in agreement with the observed timing 
difference to within 0.5 µs.  
 
Finally, there are also elastic responses at angles of 90° and 270° that arrive before the sound that 
travels directly to the receiver.  The arrival time of the earliest artifact (red circle) is consistent 
with a ray having an elastic wave segment that travels the 2.5 inch length of the cylinder at the 
bar velocity CB = 5.1 mm/µs.  This gives an arrival time of 30.2 µs before the direct path which 
is within 2.5 µs of the signal observed in the time series.  
 
The backscattering and forward scattering time-domain data in Fig. 19 can be normalized by the 
incident pulse, accounting for spherical spreading, to calculate the target strength as a function of 
aspect angle (acoustic color) shown in Fig. 20 (right).  There is a vertical notch (black arrow) 
evident in the forward scattering time series (lower left) where the strongest portion of the direct 
path has been removed in order to isolate the forward target scattering in the target strength 
calculation. 
 
The forward scattered target signatures in Figs. 19 and 20 have potential advantages for both 
target detection and classification.  The bright broadside signals (red and purple ovals) are less 
directional than the broadside monostatic specular reflection.  As a result, they are present for a 
significantly larger range of angles.  The corresponding phenomena in the target strength see Fig. 
20 (lower right), have comparable amplitudes to the broadside specular result.  Specular 
reflections that dominate backscatter signals are also largely characteristic of the source while 
the forward-scattered signals are associated with an elastic response characteristic of the target.  
Therefore, these signals should be more suitable for extracting features for non-image-based 
classification analysis if they can be separated from the source signal.  The rich structure in the 
forward scattering target strength (forward scattering acoustic color) in Fig. 20 demonstrates this 
possibility in the free-field case.  Although the forward scattered signals discussed here are seen 
in free-field in the plane of the source and receiver, their angular width and their physical origin 
suggests they may be observable also for elongated metallic targets deployed on the ocean floor 
and detected at shallow angles in a forward scattering configuration.  
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Figure 20.  Time-domain free-field data for backscattering (upper left) and forward scattering (lower left).  
Target strength for backscattering (upper right) and forward scattering (lower right).  A stationary 5:1 .5 
inch diameter solid aluminum cylinder is suspended in the center of rotation.  The time-domain data are 
plotted with a 50 dB dynamic range and normalized to the brightest pixel in each plot.  For the forward 
scattering target strength (lower right), the direct source-to-receiver pulse was notched out in the time 

domain data (lower left).  The vertical null in the data caused by this notch is indicated with a black arrow.  

 
Data/model comparisons validating test tank results:  The question of whether collecting data 
in NSWC PCDs small-scale test tank introduces any anomalous artifacts was addressed by 
comparing to T-matrix simulations.  To facilitate comparisons with T-matrix predictions, a 
measurement was performed for a 2.4 mm diameter solid stainless steel sphere resting proud on 
the scaled simulated sediment.  The time-domain bistatic scattering data are shown in Fig. 21 
(left).  The source and receiver grazing angles were 8.8° and 5.2°, respectively.  The 
source/receiver scan configuration is shown in Fig. 7 (where the angle axis has been shifted by 
180° from φ) and the center frequency was .55 MHz.  As in Fig. 18, at angles of 0° and 360° the 
source is directly across from the receiver, the forward scattering configuration.  At an angle of 
180° the source is positioned between the target and the receiver (backscattering position) and  
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Figure 21.  Time-domain bistatic scattering data (left) for a proud 2.4 mm solid stainless steel sphere plotted 

on a dB scale normalized to the brightest pixel.  Bistatic target strength (right) from a windowed subset 
(black rectangle) of the time-domain data isolating the target scattering.  The horizontal null (black arrows) 

in both plots is caused by the source blocking the receiver at 180° (backscattering), see Fig. 7 at φ = 0°. 

 
there is a resulting drop in received target scattering signal.  A subset of this data containing the 
target scattering is windowed in time (black rectangle) and then normalized by the incident pulse 
amplitude in the frequency domain.  Then, after compensating for spherical spreading, we arrive 
at the target strength as a function of bistatic scattering angle shown in Fig. 21 (right). 
 
A notable asymmetry above and below 180o is seen in both the windowed time domain signals 
and the target strength plot.  For a perfectly centered sphere, both of these should be symmetric.  
The sinusoidal curvature of the arrival times of the target scatter seen in the left of Fig. 21 is 
caused by a sphere that is not perfectly centered.  Since this imperfect centering was not 
corrected by time shifting the data before windowing the target signals to generate the target 
strength plot, a corresponding asymmetry was transferred to the target strength plot because the 
signals windowed below 180o appear to include more of the bottom reverberation noise that 
arrived before the target specular and less of the desired target reradiation after the specular. 
 
The T-matrix model prediction for the target strength in Fig. 21 is shown in Fig. 22 (left).  Model 
acoustic inputs came from measurements of the sediment properties (sound speed and 
attenuation) and tabulated values for the target compressional speed.  The target shear speed was 
found by fitting resonance features sensitive to the shear speed in measured and predicted free-
field form functions.  The plot in Fig. 22 shows the measured target strength of the proud sphere 
for comparison.  The amplitudes are plotted on a dB scale with a 40 dB range.  The angle, 
amplitude, and ka ranges are the same in both plots; however the measured target strength (right) 
is shifted by -5 dB relative to the simulation result (left).  This discrepancy is believed to be due 
to differences in the normalization procedure between measurement and simulation.  At angles 
near 0° and 360° comparisons are not valid since the measured data contain the direct path from 
the source to the receiver, while the simulation results are for target scattering alone.  Otherwise, 
per the discussion regarding the asymmetry of the target strength from measured data, it is noted  
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Figure 22.  T-matrix simulation model predictions for the target strength (left).  Measured bistatic target 

strength (right).  

 
that the results above 180o are reasonably close to the T-matrix simulation, as expected.  Aside 
from structure that is masked by the bottom bounce, the data reproduces most of the structure 
observed in the model but degraded by a reasonable level of bottom reverberation noise.  
Spurious effects from walls and experimental hardware are understood and controllable.  This 
demonstrates the tank data can be used to realistically represent target and environment 
interactions. 
 
FE development and modeling: The development of a FE capability for UXO sonar 
simulations is proceeding towards maturity with several checks of the fidelity of calculations 
having been performed for canonical target shapes on a sand bottom (D. Burnett, R. Lim, NSWC 
PCD).  Due to the envisioned complexity of real targets, a considerable effort was made to 
formulate efficient meshes for shelled structures interacting with an ocean interface like the 
seafloor.  Mesh refinements were formulated to automatically maintain only the calculation load 
needed to maintain a nominally uniform error across a wide frequency band.  Some of these 
refinements are illustrated in Fig. 23 for one of the benchmark comparisons using a spherical 
shell. 
 
Verification of these refinements for scattering by a 5%-thick, stainless-steel, spherical shell 
insonified at high (40o) and low (20o) grazing angles under proud, half-buried, and buried 
configurations is demonstrated in Fig. 24.  Although verification studies must be carried out 
using simple targets because high-accuracy benchmark solutions of the underlying linear 
acoustic equation are required, the refinements imposed on the FE solution of these targets are 
expected to be effective for all targets.  
 
Validation of the underlying linear acoustic equations solved with the FE solution engine in 
COMSOL was also checked by comparing the computed target strength acoustic color of a solid 
Al cylinder of 5:1 aspect ratio with carefully controlled free-field measurements provided by 
WSU (P. Marston and K. Baik).  This is shown in Fig. 25.  Agreement is seen to be very good 
with some small discrepancies that can be attributed to limits on what can be controlled in the 
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Figure 23.  Mesh refinements formulated for scattering by a proud spherical shell. 

 

 
 
 

Figure 24.  Verification of COMSOL-based FE 
solution for scattering by a spherical shell. 
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measurements: e.g., not having the exact material parameters for the Al cylinder as FE inputs, 
small variations in uniformity of the material properties of the target, limited experimental SNR, 
or lower measurement resolution than produced in the FE computation.  Lower measurement 
resolution can be the result of limited tank size, which limits the amount of raw time-domain 
signal that can be collected before contaminating wall reverberation appears.  Nonetheless, the 
range of agreement seen here is likely the best that can be expected when comparing with 
measurements. 
 
As the FE capability continues to mature, it is being applied to help interpret observations of 
scattering by bottom targets.  In Ref. (4), FE simulations were used to elucidate environmental 
effects observed on scattering by a proud Al cylinder on a sand bottom.  Figure 26 compares the 
FE computed target strength in acoustic color space with measured values from 2009 in the 
NSWC PCD pond (right-hand side of Fig. 12) using the measured sand parameters appropriate 
for an assumed fluid bottom.  Here, the differences were initially thought to be due to neglecting 
the shear elasticity of the bottom in the FE calculation since the sand was reported to be 
compacted and hard by divers.  Since no shear speed measurements of the sand bottom were 
possible during the test, the measurement could not be modeled with this bottom property 
included.  However, FE calculations allowing shear speeds in the bottom did not produce the 
phase shift needed in the surface reflection coefficient to reproduce the observed differences 
unless the shear speed was chosen outside a realistic range.  Resolution of these differences 
remain under investigation. 
 
In 2011, FE simulations proceeded to more complex targets and target orientations requiring 3-
dimensional (3D) modeling with a systematic focus on developing efficient solutions with 
controlled accuracy.  This included testing and resolving problems in software updates used to 
transport simulations to a 25 processor rack computer.  Simulations on an air-backed cylinder 
both in free-field and in various configurations on a sand bottom have been completed.  These 
will be used in tests of classification algorithms under development. 
 

 
Figure 25.  Validation of COMSOL-based FE solution for scattering by a free-field 5:1 solid Al cylinder. 
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Figure 26.  FE vs measurement comparison for scattering by a 5:1 solid Al cylinder deployed proud on the 

sand bottom of the NSWC PCD freshwater pond. 

Other 3D simulations concentrated on targets deployed in NSWC PCD’s pond in 2010 to help 
interpret the data collected.  For example, the “paddle” target deployed by WSU (see the notched 
Al cylinder in Fig. 5 photo) was meant to investigate the potential for exciting torsional elastic 
modes that may be unique to many elongated, finned UXO.  In Fig. 27, a comparison of FE 
generated and measured backscatter target strength plots are shown for this target in free-field.  
Here, the paddle is face up and the source and receiver are in the plane of the paddle axis.  Data 
was simulated and collected with the paddle rotated 360o around an axis perpendicular to the 
paddle axis.  This is illustrated in Fig. 28.  Per the scattering configuration depicted, plots should 
 

 
 

Figure 27.  Comparison of FE simulated and measured free-field target strength plots for WSU’s “paddle.” 

 

FE Model Measurement 

aspect angle 

aspect angle 

FEM simulation of free-field paddle Free-field measurement of paddle 
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Figure 28.  The orientation of the paddle for data generated and collected for Fig. 27.  The source field is 

incident into the page and 0o aspect = broadside. 

be symmetric around 180o.  The agreement between both plots is good but the measured result 
exhibits a more ragged appearance, especially at lower frequencies, that makes the expected 
symmetry less perfect and is attributed to unavoidable noise contamination.  Backscatter FE 
simulations and measurements for the paddle spun around its longitudinal axis in free-field and 
deployed on the bottom of NSWC PCD’s pond have also been compared and these results are 
being studied further with WSU to understand phenomena observed in the target strength plots. 
 
3D FE simulations of the solid bullet shaped UXO (see the Al artillery shell replica in Fig. 5 
photo) were also run for comparison with pond measurements as well as with 2D FE simulations 
generated by APL-UW.  Even though targets deployed on a sand bottom would require 3D 
modeling to rigorously account for all wave effects, the comparisons showed that 2D FE 
simulations that include only a couple of the bottom bounce interactions with the target will 
capture most of the backscatter response, at least, if the target is axially symmetric and multiple 
scattering with the bottom is weak.  This type of 2D modeling was utilized in the analysis of the 
Al cylinder of Ref. 4 and a similar result was found here for the UXO.  Simplifications to the FE 
modeling such as these can be valuable for speeding up generation of target databases but the 
degree to which it can be extended remain to be quantified.  While unsymmetric UXO are not 
expected to be well modeled with 2D FE, more cases involving axially symmetric UXO like the 
sample tilted case computed with 3D FE shown in Fig.29 will be checked in ongoing work. 

 

 
Figure 29.  3D FE simulation of scattering by artillery shell embedded in a sand bottom with a 25o tilt.  Plots 

of total field (left) and backscatter target strength vs.  frequency and aspect angle (right) are shown for a 
plane wave incident at a 23.27o grazing angle. 

aspect angle 

3D FE total field simulation at 10 kHz 
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Classification analysis: In addition to capturing data on targets to train and test classifiers, ways 
to ensure enough data is captured to produce robust classification were developed.  One of these 
methods imbeds new targets into imagery from past surveys in different environments (G. 
Sammelmann, NSWC PCD).  This is done by importing actual images from a given sonar 
system into PC SWAT, where the image is normalized and a reflectivity map is created as a 
function of the x and y coordinates of a point on the bottom.  This reflectivity map is used to 
normalize the direct path bottom reverberation computed by PC SWAT.  This procedure allows 
PC SWAT to compute the raw stave data needed to reproduce the original image in addition to 
other noise sources and targets. 
 
Because phase information is not known from the original image, this process does not ensure 
the targets are imbedded into the same bathymetry in the originally surveyed area but it is a more 
realistic way to combine environmental effects with target signals than adding randomly 
generated band-limited noise.  The user can imbed an arbitrary target into an existing image with 
minimal artifacts and reverberant reflections from the target and bottom are consistently phased 
in the raw data.  Absolute scattering levels from the original survey are also not known so the 
relative level is chosen to produce a realistic overall SNR.  Target signals collected in other tests 
or simulated with tools such as FE can also be appropriately scaled and summed into data 
reconstructed from the reflectivity maps to create new data sets.  This method is illustrated in 
Fig. 30 
.

 

Figure 30.  PC SWAT is used to imbed 
targets on the featureless bottom (above left) 

into the imported image from a previous 
field survey (above right).   
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Another way to capture more data for ATR use is to make data collection more efficient.  
Toward this end, an algorithm was written in MATLAB (T. Marston, NSWC PCD) to allow 
efficient isolation of target signals for subsequent processing into other target representations; 
e.g., acoustic color.  Figure 31 illustrates the technique.  The algorithm beamforms raw SAS data 
to image a limited range interval where multiple targets appear, so that signals associated with a 
target of interest can be isolated by cropping out the others in image space.  The isolated image is 
then inverse transformed back to the original data space to obtain a set of raw target signals 
without contamination from other nearby targets or clutter.  The resulting signals can then be 
reprocessed into a full image of the target area with the isolated target only or into another non-
image space.  The basic algorithm includes a user-friendly routine to simplify the signal isolation 
by allowing the user to select the region relevant to a given target using a mouse-drawn box.  
The effectiveness of the signal isolation was checked by demonstrating that subtracting the 
isolated target signals from the original data eliminates only the selected target from the original 
image, as illustrated in Fig. 32.  Provided targets are separated by a great enough distance to be 
resolved by beamforming and care is used in cropping the target in image space, very good 
isolation is expected.  This technique was used extensively to process acoustic color plots from 
the 2010 pond measurement.  Typically, to maximize measurement efficiency, 5-6 targets were 
deployed simultaneously with only 1-2m separation in the target area, resulting in significant 
overlap of target signals in the raw data so that standard processing of acoustic color for 
individual targets would be unavoidably contaminated. 
 

 
Figure 31.  Isolation of selected target signals from noisy data. 
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Figure 32.  Subtracting the isolated target signal from the original signal. 

A tool was also developed to help select optimal features for class separation among similarly 
shaped targets (G. Dobeck, NSWC PCD).  The rationale for looking at these types of targets is to 
help isolate specular phenomena from elastic ones so that the value of classification features 
derived from the last can be studied.  This would be relevant for distinguishing UXO of the same 
type that are live versus inert.  Figure 33 illustrates the variation possible.  The top row shows 
measured free-field target strength plots as a function of frequency and aspect angle for three 2ft-
long by 1ft-diameter cylinders of differing material construction.  In the bottom row, potential 
features are shown for each cylinder in the frequency/aspect space.  White areas correspond to 
regions where the corresponding target exhibits target strength at least 3dB higher than the other 
two.  Black areas correspond to regions where the corresponding target exhibits target strength at 
least 3dB lower than the other two.  Gray areas indicate common target strength levels.  At least 
for this limited data set, it is clear that extracting features from the non-gray areas should result 
in effective separation of any of the 3 targets shown from the remaining two with no error.  Of 
course, a more practical discriminator would be able to distinguish these targets from a feature 
set measured under a variety of conditions.  While 3dB was chosen here as the threshold for 
highlighting discriminatory phenomena in the target’s acoustic color space, it is anticipated that 
increasing this threshold can help find phenomena to extract more optimal features for use in a 
classifier being trained with target data collected under a variety of conditions. 
 
In addition to the tools above for augmenting a statistically-based classification process, a 
physics-based technique was investigated for distinguishing between a similar set of 4 cylindrical 
targets (R. Arietta, NSWC PCD).  Physics motivated classification can help mitigate training 
requirements if robust signatures can be identified for the desired targets.  In this study, the 
excitation of elastic surface waves was used to distinguish between 4 2ft-long by 1ft-diameter 
cylinders of differing material construction.  Data for this study were from high grazing angle 
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Figure 33.  Among a set of 3 like- shaped cylinders, a feature selection tool is applied to look for phenomena 

in the acoustic color of each target (top row) that is unique to that target (white or black regions in the 
corresponding plot below).  

 
(45o and 34o) backscatter measurements on these targets deployed proud on the bottom of the 
NSWC PCD pond in 2009.  Target strength plots for the isolated targets exhibited quasi-periodic 
spectral enhancements over a range of aspect angles that are attributed to dispersive surface 
borne Rayleigh or Lamb-type elastic waves excited and traveling along a path that navigate 
around the cylinder until they reach an end, reflect, and then travel towards the other end of the 
cylinder while radiating back towards the source/receiver.  This dynamics is illustrated in Fig. 34 
for one of the cylinders studied constructed of solid Al.  The spectral properties of the reradiation 
due to these elastic phenomena are unique to the material makeup of the structure so they should 
be useful for discrimination. 
 

 
Figure 34.  Excitation of surface Rayleigh waves at -27o target aspect on a solid Al cylinder produces quasi-

periodic structure in its target strength plot. 

cylinder 2 cylinder 1 cylinder 3 
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To make use of these phenomena, features associated with them need to be extracted.  This was 
done by selecting aspects from the target strength plots that exhibited spectral peaks with a 
certain spacing consistent with the acoustic coupling angle and surface propagation path and that 
also exhibited a specified minimum number and magnitude relative to the background.  The 
associated pings for the 4 targets were then inspected by an algorithm that creates feature vectors 
consisting of a user selected list of values.  For the present study, 5 elements were extracted: 
number of quasi-harmonic peaks, start frequency, separation between peaks, a salient factor 
(value dependent on relative size of peaks relative to the background), and aspect angle.  These 
5-element feature vectors from each target were fed into a K-means clustering algorithm, which 
can group the vectors into N clusters where N is a value that can be set to the number of different 
targets if this is known or a value iterated in a loop to determine the best clustering if the number 
of different targets is not known.  This process is illustrated in Fig. 35.  By setting N=4 for this 
initial study, the discriminatory power of the selected features was determined to be good since 
each cluster contained vectors for one target only.  Furthermore, as shown in Fig. 36, a 
MATLAB generated silhouette plot for the clusters demonstrated good confidence in the 
assignments for the vectors in each cluster.  The silhouette value for each feature vector is a 
measure of how similar that vector is to those in its own cluster compared to vectors in other 
clusters.  Values range from -1 to +1 with high values indicating similarity within a cluster. 
 
Of course, despite the good results, a caveat to this study is that it is based on a limited amount of 
data collected under conditions that allowed good SNRs on the targets included.  Further study 
with data collected under more difficult conditions and/or more realistic shapes is needed.  The 
effect of different feature vectors that include more peak related information (e.g., trends in peak 
heights and variability in peak spacing) can also be tried to improve classification performance if 
needed. 
 

 
Figure 35.  Process for using elastic information in sonar data to discriminate between 4 cylindrical targets 

with the same size and shape. 
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Figure 36.  Silhouette plot of four clusters in 5 dimensional feature space.   

 
Although the approach taken above seems to work well when the target strength has good SNR 
across a sufficient range of aspect angles and the surface elastic wave structure is apparent, this 
may not be the case for small or buried targets or targets for which this structure is corrupted by 
nearby clutter.  Since UXO may be clustered in a relatively small area, corruption is easily 
possible so another classification approach was sought in 2011 (R. Arietta, NSWC PCD) that 
only makes use of return signals with no ambiguity of assignment to targets.  This is most easily 
accomplished by looking at the strong returns that go into producing the SAS image.  This is the 
region of interest (ROI) of the target.  Here it is assumed that, in most runs past a target, a SAS 
system will encounter at least one aspect orientation of the target that produces a strong ROI; 
e.g., near broadside. 
 
A study was carried out to test the feasibility of class separation using time-frequency 
phenomena extracted from strong ROIs in target scattering data.  In general, backscattered 
signals contain specular as well as structural information that can be difficult to interpret if 
analyzed strictly in the time or the frequency domains.  Time-frequency representations 
characterize signals simultaneously in both domains and can aid in the physical interpretation of 
backscattered chirps.  However, these two dimensional representations force trade-offs in 
resolution, computational efficiency, noise reduction, and cross-term generation.  Since our goal 
is the isolation of physically meaningful features that will aid in the classification of targets, we 
are mainly concerned with the ability of the time-frequency transform to reject noise, but we are 
also concerned with the effect of the cross-term artifacts that do not represent real phenomena on 
the ability to classify targets using machine learning approaches.  
 
The time-frequency distributions chosen for our study were based on several criteria that 
preserve the underlying physical phenomena.  Fundamentally the chosen representations had to 
distribute the energy of the signal along time and frequency.  These quadratic transformations of 
the signals lead to complicated cross-terms when there are multiple sub-signals evolving in 
frequency.  One important criterion is the preservation of time and frequency shifts.  Another set 
of related properties are the conservation of energy and the marginal properties of the 
distributions that allow the energy spectral density and instantaneous power to be obtained as 
marginal integrations.  The last important criterion is the compatibility with the linear systems 
approach normally used to deal with the properties of the data collection system and propagation 
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medium.  Another criterion that is not as important as the previous ones in terms of physical 
meaningfulness but is important in terms of interpretability of the data based on our preferred 
transmit signal is the perfect localization of a linear chirp. 
 
All of these qualities are available from the Wigner-Ville and related distributions.  However, it 
seems that the presence of these properties in a distribution and the production of cross-terms are 
intricately linked.  Our approach to separate the auto-terms from the cross-terms is based on a 
comparison of a native time-frequency distribution with its reassigned version.  The 
reassignment method redistributes the values of the integration process such that the energy is 
assigned to the energy centroid of the local region and not the geometric center of the region as 
in the native transform.  For instance the Wigner-Ville time frequency distribution is compared 
to its reassigned version in order to isolate the auto-terms from the cross-terms.  These two 
subparts are then independently used in a segmentation process in order to determine the 
classification value of each.  Preliminary results show that the cross-terms do have machine 
classification value mainly because they tend to spread the signature of a target over a greater 
area of the time-frequency plane. By using both the native and reassigned distributions it may be 
possible to obtain the best of both worlds and have a human-interpretable image as well as a 
machine interpretable one. 
 
Figure 37 presents an example of a simple segmentation scheme used to class separate data from 
5 targets.  Backscatter UXO data collected in 2010 in the NSWC PCD pond were used in this 
study (upper left plot of Fig. 37).  First, strong backscatter returns available for a particular target 
were identified.  The target in the example is the Al shell replica shown in Fig. 5.  Synthetic 
aperture image processing of the field was used to limit the ROI for this target both in range and 
aspect (shaded in Fig. 37) since signals from the deployed line of targets overlapped in each data 
collection run.  Within this ROI are a set of pings from which a random subset (50-80) was used 
to produce a partition of the time-frequency plane that contained disjoint sets of time-frequency 
regions unique to each target.  To do this, a time-frequency distribution plot is created for each 
ping in the target ping subset, the resulting plots are thresholded at a chosen level, and then 
overlaid to produce an intermediate template containing common high energy regions for each 
target. As an example, the sample red ping from in Fig. 37 is windowed and transformed to 
produce the time-frequency distribution plot in the upper right of Fig. 37.  Regions in this plot 
with intensity beyond a specified level are mapped onto a template like that in Fig. 37, lower left.  
The set of templates created for each target are combined to form the intermediate template of 
high energy regions common to all.  A template of disjoint high energy regions is then created 
for each target by removing regions that overlap with regions from templates of dissimilar 
targets.  Each target was represented by a template formed from a subset of these regions. 
 
To test the separability of the targets based on these templates, 5 to 10 random pings were 
selected that were outside the original subset used to create the templates but were from each 
target's high backscatter ROI.  Segment highlights were extracted from each of these pings.  A 
composite of these highlights such as illustrated in Fig. 37, lower right, was then used to test 
against the time-frequency templates and scored by how well they were covered by them.  An 
example of this scoring is presented in the bar graph of Fig. 38, where 8 pings from each target 
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Figure 37.  An example of time-frequency processing of data (upper left) collected in NSWC PCD’s pond 
facility for the Al artillery shell.  The time-frequency transform of a windowed segment of the red ping is 

shown in the upper right.  A thresholded template is shown in the lower left.  A composite of 8 templates are 
overlaid in lower right. 

 
were used to class separate the 5 targets captured in the data.  Performance is seen to be good, 
albeit for a limited data set.  This procedure was carried out with several different time-frequency 
methods in order to determine the importance of the method's resolution, noise reduction quality, 
and cross-term artifacts, in producing robust time-frequency plane partitions that may be used to 
classify the targets. 
 
In ongoing study of the use of time-frequency regions for classification, analytical models of 
simple cylindrical targets have been used to try to assign regions based on an “ideal” 
partitioning.  Modeled target responses yield time-frequency distributions that visually appear 
quite similar to experimentally derived ones.  By comparing the experimentally derived disjoint 
regions of the time-frequency plane with ones that are derived from modeled cylinders of the 
same gross dimensions, one can attempt to partition the time-frequency plane of real “cylinder- 
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Figure 38. Bar graph demonstrating class separation of data from 5 targets based on templates of high 

intensity regions in time-frequency space.  Percent match is computed as the ratio of the target template area 
overlapping segment highlights of the test ping to the total target template area.  The % match averaged over 

all 8 pings in the random set is shown above. 

 

like” targets into areas that match the idealized results and those that do not.  It is hoped that this 
comparison will allow separation of the time-frequency areas into at least two types of regions.  
The time-frequency regions sought include those that will allow classification of an object as a 
man-made (cylinder-like) target and regions that are more closely associated with the specific 
type of target.  While separations like this often look promising on limited data sets, its 
robustness remains to be verified in future work. 
 

Rescoped Efforts 
 
A plan to rescope a sonar performance study originally scheduled in 2010 but cancelled due to 
data distribution issues was approved by SERDP in 2011 to encompass both more data collection 
from UXO in NSWC PCD's pond facility and the design and acquisition of a new sediment tank 
as part of an existing pier facility to be used in future high-grazing angle sonar tests against small 
UXO.  Although most of the data collected on UXO during 2009-10 were at shallow grazing 
angles, high grazing angle data was also collected over a broad aspect range on a set of 5 real 
UXO shapes at proud and flush buried configurations using the setup in Fig. 4.  The additional 
data collected in 2011 completed a series of half-buried, high-grazing angle target measurements 
on four UXO targets (see Fig. 5): the Al projectile replica, the steel projectile replica, the 155 
mm howitzer shell, and the slotted Al cylinder.  Monostatic SAS data was collected using 
sources and receivers mounted on NSWC PCD's rail.  Two targets at a time were deployed and 
rotated from -80 to +80 degrees in 20 degree steps.  The data collected have been processed into 
2-dimensional color target strength plots as a function of frequency and aspect angle. These have 
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been added to the database being circulated to promote model validation, physics analysis, and 
development of non-image classifiers. 
 
Remaining funds were used to design and purchase a sediment tank for an acoustic pier facility 
to be refurbished during 2012-13 under other funds.  The NSWC PCD test pier extends out into a 
small brackish pond that is nominally 20 ft deep. The area used for testing is protected from 
weather and a vinyl liner is used to maintain a freshwater pool that extends the full depth of the 
pond.  Over head rails allow a motorized rotator carrying targets or sonar hardware to be 
positioned over the test area and lowered into the water.  Figure 39 shows a schematic plan of the 
refurbished facility including placement of the tank to be installed inside the vinyl pool liner.  
Figure 40 shows a drawing of the sediment tank itself, which consists of another heavy vinyl 
liner supported on a frame and resting on a neoprene base.  The upper frame is kept level by the 
adjustable supports along the side and a mechanism that divers can use for smoothing the 
sediment surface was designed to roll along the top of the tank frame.  A design study carried out 
to address resolution of all construction, cost, and installation issues has been completed. The 
tank is designed to be nominally 21.5 ft square and hold a 3 ft layer of sediment.  Funds for 
purchase and installation of the tank components have been committed through one of NSWC  
 

 
Figure 39.  Schematic of the NSWC PCD Acoustic Pier Facility including the sediment tank (blue) to be 

deployed at the bottom of the lined freshwater pool.  Sonar hardware suspended from the rotator moved 
along the overhead rail (red) would be able to detect targets in the tank at high grazing angles. 

Proposed 
sediment tank 
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Figure 40.  Pictorial of the sediment tank designed for high-grazing-angle data collection from bottom targets.  

 
PCDs cost centers and the purchase is scheduled to be executed in 2013 to coincide with 
completion of the pier refurbishment.  This is believed to be a valuable investment for future data 
collection because the amount of data needed to train automated target recognition algorithms 
can be large and any means of simplifying the data collection will pay off significantly in the 
long run. 
 

Conclusions 
 
Work performed under SERDP project MR-1666 continued to work towards a high fidelity 
simulation capability that can be used to test overall performance of new sonar designs operated 
under realistic conditions.  However, detection and classification of more problematic UXO 
(e.g., those that are small and difficult to image) will likely need additional processing tools 
beyond sonar imaging to be effective.  To deal with these UXO, ways to predict the performance 
of sonar configurations that extract more information from target responses and capture these 
responses in ways that yield higher SNR were considered.  Concepts explored made increasing 
use of projections of target sonar responses onto non-imaging spaces that don’t require high 
spatial resolution to determine what the target is.  Furthermore, the target responses considered 
were not limited to backscatter since higher SNR is possible in bistatic detection configurations.  
In fact, tank measurements of free-field forward scattering from cylindrical targets suggest the 
possibility of isolating strong elastic clues from the source field contamination that usually 
precludes using this configuration.  Predicting performance under these conditions is based on 
the use of tools such as statistical classification algorithms that require a large amount of data to 
train and test with.  Otherwise, misleading, often overly optimistic, results can be produced. 

Neoprene base 

Frame 
support/levelers 

Vinyl liner 

frame 
Sediment smoother/leveler 
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The efforts carried out have focused on ways to enhance existing target response databases for 
physical analysis and testing and training of classification tools.  This included continued 
collection and processing of target data on several UXO and clutter in NSWC PCD’s pond 
facility and creating a capability to calculate target responses with FE.  A long-term goal will be 
to supplement UXO sonar response measurements with accurate FE simulations so this 
capability has been developed in a systematic manner, with comprehensive verification and 
validation studies to ensure sufficient efficiency, speed, accuracy, and ease-of-use can be 
achieved.  The FE capability at NSWC PCD has reached sufficient maturity to carry out 
simulations for targets of realistic complexity.  Production level simulations of target strength 
plots for several clutter and UXO targets have been produced, including a flat-end-capped solid 
Al cylinder, an empty, flat-end-capped cylindrical shell, WSU’s “paddle” target, and the 100 mm 
projectile in Fig. 2 in a sand bottom. 
 
Software tools were also developed to imbed target responses into realistic environments using 
PC SWAT and to increase the efficiency of data collection, processing of target representation 
schemes, and target classification.  These tools have been used to supplement the data available 
but, because some simplifying approximations were made in implementing these tools, they will 
continue to be studied as needed to fully assess their impact.  Nevertheless, their value for 
increasing classifier effectiveness is expected to be significant when compared to the expense of 
field surveys for providing the data otherwise required. 
 
In recent work, the efforts performed continue to expand and improve our understanding of the 
physics useful for classification.  Initial studies using sonar-derived features based on physics 
unique to a target’s composition has shown good performance in being able to remotely separate 
four cylindrical targets of the same size but different material construction when deployed on a 
sand bottom.  This might be relevant to discriminating live from practice UXO rounds.  While 
the features chosen were only used with a limited dataset, the potential for mitigating some of the 
training requirements of purely statistical approaches is clear.  Physics can be used to identify 
phenomena to derive features from that are less sensitive to environmental effects.  If 
environmental effects cannot be avoided, it may still be more efficient to tune a classifier using 
physics to predict the effect on the features used than to collect more data for further training.   
 
In addition, further classification analysis based on non-imaging target representations have been 
looked at.  Time-frequency distribution plots were shown to be useful for distinguishing the 
targets deployed in NSWC PCD’s pond in 2010.  When target signals are not strong over 
sufficiently wide target aspect windows, these plots may provide more useful information for 
classification by exploring the time dimensions at strong aspects for target features.  Both NSWC 
PCD and APL-UW (K. Williams) have written MATLAB routines for accessing much of the 
2010-11 pond data, including the software for isolating targets (T. Marston) and generating 
target strength plots, so that features can be derived from them and input into classifiers.  These 
have been also distributed to other NSWC PCD classification specialists not supported by 
SERDP to encourage use of the UXO data in testing their ATR algorithms. 
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