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1 INTRODUCTION 

This demonstration is designed to illustrate the discrimination performance at a challenging live-

site of a suite of advanced electromagnetic induction (EMI) modeling approaches developed to 

go beyond the simple dipole model in accuracy and predictive ability. The core of the suite 

consists of the orthonormalized volume magnetic source (ONVMS) model for target 

characterization, a target-counting pre-processing procedure based on joint diagonalization (JD), 

and an implementation of the differential evolution (DE) algorithm for nonlinear optimization 

used to locate targets. The study used cued data sets collected at Camp Butner in North Carolina 

using two next-generation EMI sensors, the Geometrics MetalMapper (MM) and the Time-

domain Electro-Magnetic Towed Array Detection System (TEMTADS) developed by the NRL 

and G&G Sciences. The site was contaminated with fuzes and a mix of 37-mm and 105-mm 

munitions. Each data set was inverted with the purpose of estimating the number of targets 

producing each anomaly and the parameters associated with each target, both extrinsic—its 

orientation, location and depth—and intrinsic—its total volume magnetic source amplitude 

(ONVMS), which depends on its size, shape and material properties. The inverted intrinsic 

parameters were then used to classify the targets, and in the end we generated sensor-specific 

dig-lists for each EMI instrument and submitted them to the Institute of Defense Analyses (IDA) 

for independent scoring. 

1.1 Background 

The Environmental Security Technology Certification Program (ESTCP) recently launched a 

series of live-site UXO blind tests taking place in increasingly challenging and complex sites [1-

4]. The first classification study was conducted in 2007 at the UXO live-site at the former Camp 

Sibert in Alabama using two commercially available first-generation EMI sensors (the EM61-

MK2 and the EM-63, both from Geonics) [1]. At that site, the discrimination test was relatively 

simple: one had to discriminate large intact 4.2 mortars from smaller range scrap, shrapnel and 

cultural debris, and the anomalies were very well separated. 

The second ESTCP discrimination study took place in 2009 at the live-UXO site at Camp San 

Luis Obispo (SLO) in California and featured a more challenging topography and a wider mix of 

targets of interest (TOI) [4]. Magnetometers and first-generation EMI sensors (again the Geonics 

EM61-MK2) were deployed on the site and used in survey mode for a first screening. 

Afterwards, two advanced EMI sensing systems—the Berkeley UXO Discriminator (BUD) and 

the Naval Research Laboratory’s TEMTADS array—were used to perform cued interrogation of 

a number of the anomalies detected. A third advanced system, the Geometrics MetalMapper, was 

used in both survey and cued modes for anomaly identification and classification. Among the 

munitions buried at SLO were 60-mm, 81-mm, and 4.2 mortars and 2.36 rockets; three 

additional types of munitions were discovered during the course of the demonstration. 

The third site was chosen to be the former Camp Butner in North Carolina [2]. This 

demonstration was designed to investigate evolving classification methodologies at a site densely 

contaminated with small UXO (in this case mostly 37-mm projectiles). 
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1.2 Brief site history 

Please refer to the ESTCP Live Site Demonstration Plan [3]. 

1.3 Objective of the demonstration 

The advanced EMI models we present here (ONVMS and JD) were developed under SERDP 

Project MM-1572 [5] and tested against TEMTADS data sets collected at the Aberdeen Proving 

Ground (APG) test site in Maryland and in a retrospective analysis of cued TEMTADS data 

collected at the San Luis Obispo site [6-10]. The present test of discrimination performance 

considers data taken at Camp Butner; this live site was densely contaminated with small targets 

such as 37-mm projectiles and fuzes, adding another level of complexity into the classification 

and thus further demonstrating the robustness of the advanced EMI models for live-site UXO 

discrimination. 

Overall, the principal objective of this demonstration was to demonstrate the models’ 

classification performance for live-site UXO problems. The specific technical objectives were to: 

1. Demonstrate the advanced EMI models’ classification accuracy and their applicability to 

live-site UXO discrimination problems. 

2. Illustrate and document the robustness of the data inversion and discrimination models. 

3. Invert targets’ intrinsic parameters and identify robust classification features. 

4. Indentify all seeded and native UXO. 

5. Eliminate at least 75% of the targets that do not correspond to TOI. 

6. Indentify sources of uncertainty in the classification process and include them in a dig/no-

dig decision process. 

7. Understand and document the applicability and limitations of the advanced EMI 

discrimination technologies in the context of project objectives, site characteristics, and 

suspected ordnance contamination. 
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2 TECHNOLOGY 

The advanced EMI models and statistical signal processing approaches developed and tested 

over the past three years under SERDP Project MM-1572 [5] were able to detect and identify 

buried UXO ranging in caliber from 25 mm up to 155 mm. The technique was seen to be 

physically complete, fast, accurate, and clutter-tolerant, and provided excellent classification in 

both single- and multiple-target scenarios when combined with multi-axis/transmitter/receiver 

sensors like TEMTADS and MetalMapper [11]. We start our technology description with an 

overview in Section 2.1 of the orthonormalized volume magnetic source model, which we use to 

represent the signatures and extract the properties of multiple subsurface targets simultaneously 

in an efficient manner. We then discuss in Section 2.2 a data pre-processing approach based on 

joint diagonalization that often allows one to make certain judgments on the number and type of 

unknown targets without the need to perform inversion. In Section 2.3 we discuss our complete 

inversion procedure, which combines ONVMS with Differential Evolution optimization, and we 

conclude in Section 2.4 by presenting our classification procedures. 

2.1 The orthonormalized volume magnetic source model 

The advanced models we have developed for UXO discrimination include the normalized 

surface magnetic source (NSMS) model [12] and the orthonormalized volume magnetic source 

(ONVMS) model [13]. The ONVMS model can be considered as a generalized volume dipole 

model: in it, an object’s response to a sensor is modeled mathematically using a set of equivalent 

point-like analytic solutions of the Maxwell equations (usually dipoles, though charges are also a 

possibility) distributed over a computational volume located under an EMI sensor and potentially 

containing anomalies. The amplitudes of the sources are proportional to the component of the 

primary magnetic field; once this dependence is normalized out, the ONVMS strengths are 

determined directly from the data using a set of orthogonal functions. 

Overall, we make the usual EMI assumptions: we neglect displacement currents everywhere, as 

well as electric fields and conduction currents in air and soil. The primary magnetic field 

generated by the sensor penetrates the objects in its vicinity to some degree, inducing eddy 

currents and magnetic dipoles inside them, which, in turn, produce a secondary or scattered 

magnetic field. This is the field that we propose to represent as being due to a volumetric 

distribution of magnetic dipoles: 

 
sc

3

1 ˆ ˆ( , ) (3 ) ( , ) ( , ) ( , )
4

v v v

V V

p p dv G p dv
R

         H r RR I m r r r m r , (1) 

where p {t, f }  is time or frequency, R̂  is the unit vector along R  r  r
v

, r
v

 is the position 

of the v -th infinitesimal dipole in the volume V, r is the observation point, and I  and G(r, r
v
)  

are respectively the identity and Green dyads. The induced magnetic dipole moment m( r
v
, p)  at 

point r
v

 on the surface is related to the primary field through m( r

, p)  M( r

v
, p) Hpr ( r

v
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M( r
v
, p)  is the symmetric polarizability tensor. The secondary magnetic field at any point can 

be expanded into a set of orthonormal functions 
i
(r)  as 

 H(r)  
i
(R

i
) b

i
i1

N
v

 , (2) 

where we have also introduced the expansion coefficients b
i
. The 

i
 are linear combinations of 

dipole Green dyads and are guaranteed to be orthonormal as a result of the Gram-Schmidt 

orthogonalization procedure; thanks to this property, the amplitudes of the tensor elements 

M
i
( p)  can be determined without having to solve a linear system of equations. Two great 

advantages of ONVMS are that it takes into account the mutual couplings between different 

sections of the targets and that it avoids matrix singularity problems in multi-object cases. It 

treats single- and multi-target scenarios on the same footing. Once the tensor elements and 

locations of the responding dipoles are determined, one can group them in space and determine 

the total polarizability tensor within each group, which is then jointly-diagonalized in time to 

extract the temporal decay law of its diagonal elements. These diagonal elements have been 

shown to be intrinsic to the objects, and can be used, either on their own or in combination with 

other quantities, in discrimination processing [14]. The theoretical basis of the ONVMS model is 

outlined in Appendix C. 

2.2 Joint diagonalization data preprocessing 

Advanced electromagnetic induction (EMI) sensors currently feature multi-axis illumination of 

targets and tri-axial vector sensing, or exploit multi-static array data acquisition [11]. They 

produce data of high density, quality, and diversity, and have been combined with advanced EMI 

models to provide superb classification performance [14] relative to the previous generation of 

single-axis monostatic sensors [15-17]. To take advantage of the rich data sets that these sensors 

provide, we recently developed and successfully demonstrated a discrimination-oriented data 

pre-processing scheme based on joint diagonalization (JD) [13]. Let us illustrate the method by 

describing its TEMTADS implementation. TEMTADS consists of 25 transmit/receive pairs of 

square coil antennas, each consisting of a 35-centimeter (cm) transmitter loop surrounding a 

concentric 25-cm receiver coil, arranged in a 5  5 square grid. The sensor activates the 

transmitter loops in sequence, one at a time, and for each transmitter all receivers receive, 

measuring the complete transient response over a wide dynamic range of time ranging from 

approximately 100 microseconds (s) to 25 milliseconds (ms) and distributed over Nq = 121 time 

channels.  The sensor thus provides 25  25 spatial data points at any given time channel tq, 

q = 1, 2,…, Nq. If we define Hk,m as the z-component of the magnetic field measured by the m-th 

receiver coil when the k-th transmitter is active, then each row of the measured multi-static 

response (MSR) data matrix 
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is a measured data vector for the k-th transmitter, where k = 1, 2, …, K. For the TEMTADS 

system M = 25 is the number of receivers and K = 25 is the number of transmitters. For each time 

channel the M  K MSR matrix can be decomposed into its eigenvectors U(tq) and eigenvalues 

D(tq) using the singular value decomposition (SVD) to obtain 

 H(t
q
)  U(t

q
)D(t

q
)UT (t

q
) . (4) 

However, in order to relate the eigenvalues to the number of potential targets, we need to find a 

unitary matrix V of eigenvectors shared by all {H(t
q
)}

q1

N
q  matrices that simultaneously removes 

all their off-diagonal elements: 

 D(t
q
)  V

T
H(t

q
)V ,      q = 1, …, Nq. (5) 

In general, it is not the case that the matrix V will cancel all the off-diagonal elements of all the 

D(tq), but a unitary V can be sought that minimizes the sum of their squares; this is the gist of the 

JD approach [18]. The diagonal elements of D(tq) are the time-dependent eigenvalues of the 

measured MSR matrix and contain information about the targets that contribute to a given signal. 

Our studies show that three diagonal elements of the MSR matrix usually suffice to describe one 

target. We have also found that JD is a robust technique for extracting signals due to targets for 

data with low signal to noise ratios. See Appendix C for a more detailed exposition of the 

method. 

2.3 EMI Data inversion: A global optimization technique 

Determining a buried object’s orientation and location is a non-linear problem. Inverse-scattering 

problems are solved by defining an objective function [5] that measures the mismatch between 

modeled and measured magnetic-field data and proceeding to find its global minimum. Standard 

gradient search approaches often suffer from a profusion of local minima that sometimes result 

in incorrect location and orientation estimates. To avoid this problem we recently adapted and 

incorporated a different class of global optimization search algorithms, among them differential 

evolution (DE) [19-20], a heuristic, parallel, direct-search method for minimizing non-linear 

functions of continuous variables that is straightforward to implement and has good convergence 

properties. We have combined DE with ONVMS to invert digital geophysical EMI data [5, 14]. 

All EMI optimizations are split into linear and nonlinear parts, alternating between the two and 

iterating to minimize the objective function. Once the target locations are found, the amplitudes 

of the responding ONVMS are determined and used to classify the object relative to the targets 

of interest. 
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2.3.1 Discrimination parameters 

To classify targets in this demonstration we used ONVMS combined with DE optimization and 

JD to invert for the locations and electromagnetic signatures of the TOI. The model provides at 

least three independent principal-axis total ONVMS parameters per target that can be used for 

discrimination. The total time-dependent ONVMS depends on the size, geometry, and material 

composition of the object in question: 1) Early time gates bring out the high-frequency response 

to the shutdown of the exciting field; the induced eddy currents in this range are superficial, and 

a large total ONVMS amplitude at early times correlates with large objects and large surface 

area. 2) At late times, when the eddy currents have diffused completely into the object and low-

frequency harmonics dominate, the EMI response relates to the metal content (i.e., the volume) 

of the target. Thus a smaller but compact target has a relatively weak early response that dies 

down slowly, while a large but thin or hollow object has a strong initial response that decays 

quickly. Thus the extracted ONVMS parameters can be used to form feature vectors for 

classification. 

2.3.2 Classification approaches 

The power-law/exponential-decay parameters extracted from total ONVMS time-decay curves 

tend to follow definite patterns when TOI of the same kind are interrogated under different 

conditions. The parameters thus tend to cluster together in ways that provide clues as to the 

features of the different TOI present in a survey, and by comparing total ONVMS parameters of 

unknown objects to those of previously characterized targets one can predict the class/cluster to 

which the unknown targets belong. 

There are many clustering techniques available, such as K-means [21], principal component 

analysis [22], and support vector machines [18, 21, 23-28], which are largely heuristically 

motivated and do not require an underlying statistical model. A possible alternative is the model-

based clustering method, which is based on the assumption that the data are composed of a finite 

mixture of different distributions of the same type (e.g., multivariate Gaussians) but 

characterized by different sets of parameters. This procedure has the obvious advantage that it is 

possible to choose the optimal number of clusters and the distributions that best fit the data using 

some objective statistical criterion—such as the Akaike Information Criterion (AIC) or the 

Bayesian Information Criterion (BIC)—while for the other methods those questions are open to 

discussion. 

Clustering methods can also be categorized into unsupervised and supervised. Supervised 

clustering uses parameters extracted from a set of training/calibration samples, whereas 

unsupervised clustering applies the same classification criteria to all targets, regardless of size, 

composition, and decay curves. The former is obviously advantageous in that it utilizes as prior 

knowledge additional information from the training data. Several supervised clustering 

techniques like support vector machines [18, 21, 23-28] and template matching have been 

applied to UXO discrimination. A straightforward approach to implement model-based 

supervised clustering is to (a) estimate the parameters from the training sample and (b) use the 

estimated values of the parameters to classify the TOI in the blind test dataset. A drawback of 

this method is that only the training set is used to estimate the parameters and information from 

the blind dataset is completely ignored. To avoid this, during this study a semi-supervised 
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classification algorithm  was applied in order to create custom training sets. Decay parameters 

such as Mαα (t1), and Mαα (t1) / Mαα (tn), where tn is a given time channel and Mαα is the total 

ONVMS along the -th axis, were used to cluster the inverted parameters into classes. We 

assumed that there were K clusters and that each of them was described by a parametric 

continuous or discrete distribution (e.g., a Gaussian). This let us arrange total ONVMS-extracted 

time-decay parameters in the n  m matrix Y = [Y1, Y2, …, Ym], with n the number of anomalies 

and m the number of chosen parameters. Taking each Yi to follow an m-dimensional mixture of 

normal distributions allowed us to express the total K-cluster distribution as 

 F(Y
i
)  w

k
f

i
(Y

i
|

k
,

k
)

k1

K

 , (6) 

where wk, is the mixing weight of cluster k, 
k1

K w
k
 1 , and 

 

 
   11 1

( | , ) exp
22

T

i i k k i k k i k
m

k

f


 
  

 
Y Y Y     


 (7) 

is the probability density of the k-th normal distribution with a mean vector μk (an m  1 vector) 

and a variance-covariance matrix σk (an m  m matrix). The mixing weight wk is defined as the 

proportion of anomalies that belong to the k-th cluster. The parameters μk, σk, and wk are 

estimated by the maximum likelihood (ML) criterion using the expectation maximization 

algorithm [29]. 

2.3.3 Classification using template matching 

Template matching is a classification approach that identifies an unknown target by comparing 

its extracted features—here the total ONVMS—to those of a set stored in a reference library. The 

comparison can be carried out either 1) by using code that computes least-squares mismatches or 

2) by visual inspection. To avoid false negatives and classify targets accurately we used both 

approaches. 

2.4 Details of classification schemes  

The discrimination process comprises three sequential tasks: data collection, data inversion, and 

classification. Each EMI sensor produces unique data sets and therefore requires its own data 

inversion and classification schemes. This section summarizes the data inversion and 

classification schemes for the 5  5 TEMTADS array and the MM sensor. 
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Figure 1. TEMTADS multi-static response matrix eigenvalues versus time for (top row) a 

105-mm HE projectile and a 105-mm HEAT round, (center row) an M-48 fuze and a 37-mm 

munition, and (third row) two clutter scenarios, one with two items (left) and another with 

several (right). 
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Figure 2. TEMTADS multi-static response matrix eigenvalues versus time for some samples of 

requested anomalies. 

2.4.1 Camp Butner TEMTADS data inversion and classification scheme 

The modeling approach used to invert TEMTADS data with the ONVMS-DE algorithm is 

described in detail in [5]. Here we summarize the main steps employed to invert and classify 

TEMTADS data for the particular case of Camp Butner. 

Step 1. Data pre-processing: All TEMTADS-data were pre-processed using a Matlab code (see 

Appendix C in [30] that reads comma-delimited CSV files and translates them to ASCII files 

compatible with the ONVMS-DE code (ONVMS_MM.exe). The user needs only specify the 

path to the folder with the CSV files; the code then converts them all. 

Step 2. Use equation (3) to construct the TEMTADS MSR matrix H(tq). 

Step 3. Eigenvalue analysis: The JD algorithm constructs a multi-static response matrix using 

TEMTADS data and computes its eigenvectors and eigenvalues, the latter as a function of 

time; these are depicted for some of the Camp Butner anomalies in Figure 1 and Figure 2. 

The eigenvalues of the MSR data matrix are intrinsic properties of the targets, and each target 

has at least three eigenvalues above the threshold (the noise level is composed of low-

magnitude eigenvalues). For example, Figure 1 shows the eigenvalues extracted for a 105-

mm HE projectile, a 105-mm HEAT round, an M-48 fuze, a 37-mm projectile, and some 

clutter items. Each target is seen to have distinguishable eigenvalues, and we used these to 

make an initial classification. Note that the magnitudes of the MSR eigenvalues depend on 

the depths and orientations of the targets [5], so the user must rely only on their shapes when 

performing JD-based classification. As the number of targets increases (as in Figure 2 and 

the third row of Figure 1), so does the number of above-noise eigenvalues. We examined the 

eigenvalues’ time-decay curves for each case and used them to estimate the corresponding 

number of targets. 

Step 4. Once we estimated the number of targets and SNR for each anomaly we inverted all cued 

MM datasets using a multi-target combined ONVMS-DE algorithm. This gave us the 

extrinsic and intrinsic parameters for all targets, including the total ONVMS as shown in 

Figure 3 and Figure 4. 
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Step 5. Create a custom training list using eigenvalue time-decay curves and request the ground 

truth. For the most part, the JD-based list contained either the anomalies that had too many 

above-threshold eigenvalues, like the samples depicted in the third row of Figure 1 and in 

Figure 2, or anomalies which had very small eigenvalues. We requested two batches of 

training data. The first batch contained 65 anomalies, all of which were clutter; some had six 

eigenvalues above the noise level, while others had several eigenvalues mixed with the noise. 

The second batch consisted of 10 anomalies, of which 8 corresponded to UXO. 

 

 

Figure 3: Inverted total ONVMS time-decay profiles for four Camp Butner targets: (top row) 

105-mm HE munition and 105-mm HEAT round, and (bottom) M-48 Fuze and 37-mm projectile 

with copper band. 
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Figure 4: Inverted total ONVMS time-decay profiles for 37-mm projectiles without copper band. 

 

Step 6. Once we had the ground truth for all 75 custom identified anomalies we proceeded to 

classify all TEMTADS targets using the inverted total ONVMS as discriminating features. 

Step 7. Create ranked dig list. Armed with the custom identified training list and the inverted 

total ONVMS for each case we created a library for M-48 fuzes and 37-mm projectiles 

without copper band. We did not request training data for either of the 105-mm UXO or for 

the 37-mm projectile with copper band because we already had TEMTADS test-stand data 

for these targets. The inverted total ONVMS for the anomalies that were classified as TOI 

appear in Figure 3 and Figure 4. All the inverted total ONVMS are seen to cluster well, and 

each target has a total ONVMS with features—such as its amplitude at the first time channel, 

its decay rate, or the separation between the (blue) primary and (red and green) secondary 

components at different time channels—that make it amenable to identification. (The most 

difficult differences to discern were between the M-48 fuzes of Figure 3 and the 37-mm 

projectiles without copper band of Figure 4). These features allowed us to classify targets as 

UXO or clutter and also let us sort the UXO by caliber. With this knowledge we created a 

prioritized dig list that we cross-validated using the time-decay curves of the JD eigenvalues. 

Step 8. Submit the dig list to ESTCP. The final prioritized dig list was submitted to the Institute 

for Defense Analyses (IDA) for independent scoring. The scored results were sent back in 

the form of a receiver operating characteristic (ROC) curve, which appears in Figure 5. We 

can see that a) of the 75 targets that were dug for training, 68 targets were not TOI (shift 

along x-axis) and seven were UXO (shift along y-axis); b) for 95% TOI classification (the 

pink dot in Figure 5) only seven extra (false positive) digs are needed; c) to classify all TOI 

correctly (the light blue dot) only 21 extra (false positive) digs are needed; d) in order to 

increase the classification confidence, the algorithm requested an additional thirty digs after 

all TOI had been identified correctly. 
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Figure 5. ROC curve for the Camp Butner TEMTADS blind test. 
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Figure 6: Left: Scatter plot for all MM anomalies based on the extracted total ONVMS. Right: 

Probability function for all MM anomalies. 

2.4.2 Camp Butner MM data inversion and classification scheme 

The Geometrics MetalMapper (MM) is a commercially available advanced EMI sensor. Its 

geometric configuration is described in [11], and the ONVMS-DE-based modeling approach for 

inverting the data it provides is described in detail in [5]. The Camp Butner MM cued data sets 

were collected by teams from Sky Research and Geometrics. A data analysis revealed that the 

Geometrics MM data had a smaller SNR than the Sky Research data. In addition, it was found 

that the y-receiver of sensor #3 was not working properly when Geometrics took their 

measurements [11]. To accommodate this prior information it was necessary to exclude this 

receiver from all Geometrics MM data sets and perform two kinds of classification (statistical 

and library-matching) to provide cross-checks. Moreover, it was necessary to pay extra attention 

to the Geometrics MM data when performing library (fingerprint) matching: any anomaly whose 

primary total ONVMS resembled the total primary ONVMS of any TOI was ranked as a TOI or 

included in the custom training list. Below we summarize the main steps taken during inversion 

and classification of Camp Butner MM data. 

Step 1. Extract the total ONVMS for each anomaly: We ran the program ONVMS_MM.EXE to 

extract the parameters for all targets. 

Step 2. Create a custom training list: For classification we used the ratio of the inverted total 

ONVMS at the 30
th

 time channel to that at the first. The values of log10 [Mzz(t1) / Mzz(t30)] 

versus log10 [Mzz(t1)] are plotted on Figure 6 (left) for all the data. They clearly exhibit a wide 

spread of values. To use these features for statistical classification, and for determining 

clusters and a classification probability function, we first divided the scatter plot of Figure 6 

(left) into 11 subsections (shown in the figure). Then to each of these subsections we applied 

a Gaussian mixture model (implemented as part of Matlab’s Statistics Toolbox) assuming 

that it contained five clusters. (The number of subsections and the number of clusters are not 

critical at this early stage. We selected the quoted values to ensure that all clusters were 

found and at the same time to minimize the number of anomalies whose ground truth was 
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requested.) From the Gaussian mixture model we found the mean and standard deviation for 

each cluster and built a global classification probability function, depicted in Figure 6 (right). 

Step 3. Request the ground truth for selected anomalies: Using the classification probability 

function we created a first custom training dig list that contained 55 anomalies (i.e., one 

anomaly for each cluster identified in the preceding step) and requested the ground truth. The 

success of classification depends on the selection of features, the separation between 

different classes in feature space, and the ability of the sensor data to constrain the estimated 

features. We would like to emphasize that in some cases, due to poor signal-to-noise ratio (a 

particularly common occurrence for Camp Butner Geometrics MM data), the feature vectors 

from UXO targets were corrupted (see Figure 7) or were similar to those from clutter. In such 

cases, and given our previous studies (SLO), we recognized that automatic statistical 

discrimination algorithms had limitations. As a consequence we decided to have the final 

classification decision be made by expert judgment, overriding automated classification if 

necessary. This was achieved by inverting all the MM data using the combined ONVMS-DE 

algorithm as though there were one, two or three targets present and comparing the resulting 

total ONVMS amplitudes case-by-case. Whenever we spotted significant differences we 

examined the curves visually, like in the sample case of Figure 7, and, based on this 

examination, requested the ground truth for an additional 60 Geometrics MM anomalies. 

Create a ranked dig list: Using the requested ground truth for 121 training anomalies and the 

the inverted total ONVMS for each case we created libraries for the 105-mm and 37-mm 

projectiles and the M48 fuzes. The inverted total ONVMS for the anomalies that were correctly 

correctly classified as TOI appear in Figure 8 and Figure 9. The ground truth from the custom 

training data set also let us classify all targets as either TOI or not TOI using the probability 

function of Figure 6 (right). The classification based on the supervised clustering is plotted in  

Step 4. Figure 10: the red circles correspond to TOI and the green dots to clutter. 

Step 5. Submit the dig list to ESTCP: Using the clustering and library-matching techniques we 

classified the anomalies as TOI or not TOI. The ranked list was submitted to the IDA for 

scoring. The results are shown on Figure 11. 

 

Figure 7: Inverted magnetic dipole polarizability (left) and total ONVMS (right) time-decay 

profiles for MM anomaly #2504. The thin red lines show a library sample, while the thick blue 

and green lines show the inversion results. 
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Figure 8. Inverted total ONVMS time-decay profiles from Camp Butner MM data sets: (top row) 

105-mm HE shells and 105 mm HEAT rounds, (bottom row) M-48 Fuzes and 37-mm projectiles. 
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Figure 9. Inverted total ONVMS time-decay profiles from Camp Butner MM data sets for 

37-mm projectiles without driving copper bands. 

 

Figure 10: Result of the supervised clustering classification for the Camp Butner MM anomalies 

using the logarithms of Mzz(t1) / Mzz(t30) and Mzz(t1). The supervised clustering was trained with 

calibration data. The green  markers correspond to clutter and the red ones to TOI. 
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Figure 11: ROC curve for the Camp Butner MetalMapper blind test. 

Step 6. The scored results for the 2291 Camp Butner MM anomalies, depicted in Figure 11, show 

that a) of the 121 targets that were dug for training, 120 targets were not TOI (shift along x-

axis) and one was (shift along y-axis); b) for 95% TOI classification (pink dot in Figure 11) 

eight extra (false positive) digs are needed; c) to classify all TOI correctly (light blue dot) 

only 32 additional digs are needed; d) for increased classification confidence the algorithm 

requested 33 additional digs after all the TOI were identified correctly. 
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3 PERFORMANCE OBJECTIVES 

The performance objectives of this ESTCP live site discrimination study were: to achieve high 

probability of discrimination of UXO from among a wide spread of clutter; to process all data 

sets; to minimize the number of data that could not be analyzed or decided upon; to minimize the 

number of false positives; and to identify all UXO with high confidence. The performance 

objectives are summarized in Table 1. 

 

 

Table 1: Performance objectives 

Performance 

Objective 
Metric Data Required Success Criteria 

Maximize correct 

classification of 

munitions 

Number of targets of 

interest retained 
 Prioritized anomaly 

lists 

 Scoring reports from 

the Institute for 

Defense Analyses 

(IDA) 

The approach correctly 

classifies all targets of 

interest 

Maximize correct 

classification of non-

munitions 

Number of false alarms 

eliminated 
 Prioritized anomaly 

lists 

 Scoring reports from 

the IDA 

Reduction of false alarms 

by over 75% while 

retaining all targets of 

interest 

Specification of no-dig 

threshold 

Probability of correct 

classification and 

number of false alarms 

at demonstrator 

operating point 

 Demonstrator-

specified threshold 

 Scoring reports from 

the IDA 

Threshold specified by the 

demonstrator to achieve 

the criteria specified 

above 

Minimize the number 

of anomalies that 

cannot be analyzed 

Number of anomalies 

that must be classified 

as “Unable to Analyze” 

 Demonstrator target 

parameters 

Reliable target parameters 

can be estimated for over 

90% of anomalies on each 

sensor’s detection list. 

Correct estimation of 

target parameters 

Accuracy of estimated 

target parameters 
 Demonstrator target 

parameters 

 Results of intrusive 

investigation 

Total ONVMS  ± 10% 

X, Y  < ± 10 cm 

Z  < ± 5 cm 

size  ± 10% 
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3.1 Objective: maximize correct classification of munitions 

An effective technology for discrimination of munitions should maximize the number of targets 

of interest (TOI) it can classify as such (thus distinguishing them from non-TOI) with high 

confidence. 

3.1.1 Metric 

Identify all seeded and native TOI with high confidence using advanced EMI discrimination 

technologies. (The Program Office did not quantify “high confidence.” Our estimates were based 

on using the extracted total ONVMS as input to statistical classification algorithms and expert 

judgment. Every anomaly that was close to a TOI cluster in feature space and had 810f  , 

where f is the probability density function of equation (7), was considered a possible TOI; the 

expert then inspected the corresponding TONVMS curve for symmetry (manifested by equal 

secondary and tertiary TONVMS) and signal-to-noise ratio.) 

3.1.2 Data requirements 

We analyzed data from two instruments, the 5  5 TEMTADS array and the MetalMapper. For 

each sensor we identified custom training data sets. We requested the ground truth for the custom 

training data sets and used it to validate the models for each specific sensor. We generated dig-

lists that were scored by the IDA. 

3.1.3 Success criteria evaluation and results 

The objective was considered to be met if all seeded and native UXO items could be identified 

below an analyst-specified no-dig threshold. 

3.1.4 Results 

The objective was successfully met. All TOI, both seeded and native, were identified using our 

advanced EMI discrimination technology. The ROC curves for the Camp Butner test 

demonstrate that all TOI were classified correctly, both for TEMTADS (Figure 5) and the 

MetalMapper (Figure 11). 

3.2 Objective: maximize correct classification of non-munitions 

The technology aims to minimize the number of false negatives, i.e., maximize the correct 

classification of non-TOI. 

3.2.1 Metric 

We compared the number of non-TOI targets that can be left in ground with high confidence 

using the advanced EMI discrimination technology to the total number of false targets that would 

be present if the technology were absent. 
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3.2.2 Data requirements 

This objective required prioritized anomaly lists, which our team generated independently for 

each sensor, and for its evaluation we needed scoring reports from the IDA. 

3.2.3 Success criteria evaluation and results 

The objective was considered to have been met if the method eliminated at least 75% of targets 

that did not correspond to TOI in the discrimination step. 

3.2.4 Results 

This objective was successfully met. The advanced forward EMI models were able to extract 

robust classification parameters. Using the extracted parameters the classification algorithms 

were able to eliminate at least 93% of non-TOI targets, as stated by the IDA. 

3.3 Objective: specify a no-dig threshold 

This project aims to provide a high-confidence classification approach for UXO-site managers. 

A critical quantity for minimizing the residual risk of UXO and providing regulators with 

acceptable confidence is a specific no-dig threshold. 

3.3.1 Metric 

We compared an analyst’s no-dig threshold point to the point where 100% of munitions were 

correctly identified. 

3.3.2 Data requirements 

To meet this requirement we needed scoring reports from the IDA. 

3.3.3 Success criteria evaluation and results 

The objective would be met if a sensor-specific dig list placed all the TOI before the no-dig point 

and if additional digs (false positives) were requested after all TOI were identified correctly. 

3.3.4 Results 

This objective was successfully met for all data sets (see Figure 5 and 

Figure 10). The stop-dig threshold was specified based on the mismatch between the primary 

total ONVMS for the TOI library items and for the test anomalies. Both the magnitudes and 

shapes of the time-decay curves were used for the final classification and stop-digging decisions. 

All uncertain or difficult targets were included in the custom training lists. 
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3.4 Objective: minimize the number of anomalies that cannot be analyzed 

Some anomalies may not be classified, either because of the data are not sufficiently 

informative—the sensor physically cannot provide the data to support classification for a given 

target at a given depth—or because the data processing was inadequate. The former is a measure 

of instrument performance for all anomalies for which all data analysts converge. The latter is a 

measure of the quality of a data analysis when a target diagnostic differs from those made by 

other analysts. 

3.4.1 Metric 

The metric for this objective is the number of anomalies that cannot be analyzed by a particular 

method, and the intersection of all anomaly lists among all analysts. 

3.4.2 Data requirements 

Each analyst submitted their anomaly list. IDA scored all lists and returned a list of anomalies 

that could not be analyzed by any analyst (“cannot analyze” or “failed classification”). 

3.4.3 Success criteria evaluation and results 

The objective was met if at least 95% of a set of selected anomalies could be analyzed. 

3.4.4 Results 

This objective was successfully met. All four data sets for all anomalies were analyzed. Not a 

single anomaly was ranked as “cannot analyze.” 

3.5 Objective: correct estimation of target parameters 

The combined ONVMS-DE algorithm provides intrinsic and extrinsic parameters for the 

different targets. The intrinsic parameters were used for classification, while the extrinsic 

parameters (i.e., the target locations) were utilized for residual risk assessment. 

3.5.1 Metric 

The classification results entirely depend on how accurately these parameters are estimated. 

3.5.2 Data requirements 

To achieve this objective we inverted and tabulated the intrinsic and extrinsic parameters for all 

targets. To validate extracted extrinsic parameters we needed results of intrusive investigations. 

3.5.3 Success criteria evaluation and results 

The objective was met if the targets’ intrinsic parameters varied within +10%, the extracted x-y 

location within +10 cm, and the depth within +5 cm. 
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3.5.4 Results 

After learning the ground truth for the extrinsic parameters we evaluated the estimates given by 

our procedure. We look at target depth in more detail, as it is the easiest parameter to compare. 

Figure 12 and Figure 13 show (for the MetalMapper and TEMTADS, respectively) the 

distribution of depth errors (defined here by model data| |Z Z ) The MetalMapper discrepancies 

have a mean of 4.53 cm and a standard deviation of 4.53 cm; for TEMTADS the mean is 

4.37 cm and the standard deviation is 3.76 cm. The agreement between inverted and actual 

values is good. 

The error in horizontal location, defined by model data 2 model data 2 1/2(( ) ( ) )X X Y Y   , obeys a 

similar distribution. For the MetalMapper we find a mean of 8.5 cm and a standard deviation of 

10.5 cm, while for TEMTADS the mean is 9.3 cm and the standard deviation is 11.4 cm. 

We can see that the discrepancies in depth are on average smaller than 5 cm, while the average 

horizontal error is smaller than 10 cm. Thus the objective was successfully met. 
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Figure 12. Histogram of depth errors (defined as model data| |Z Z ) for the set of Camp Butner 

MetalMapper anomalies. The distribution shown has a mean of 4.53 cm and a standard deviation 

of 4.53 cm. There is good agreement between the estimates and the ground truth. 
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Figure 13. Histogram of depth errors for the Camp Butner TEMTADS anomalies. The mean 

error here is 4.37 cm and the standard deviation is 3.76 cm. Again we see acceptable agreement 

with the ground truth. 
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4 TEST DESIGN 

The only required test at the Camp Butner site entailed collecting target characterization training 

data: Using a calibration pit, the data-collection team made a series of static measurements of 

example targets at several depths and attitudes in order to cross-check models, confirm Tx and 

Rx polarity for the sensors, and characterize the so-called “library targets.” 

4.1 Site preparation 

N/A 

4.2 Demonstration schedule 

 Preparation 

Calibration 

Blind data set  Post-survey 

analysis 

Tasks and demonstration stages 
Aug2010 

Sep 

’10 

Oct 

’10 

Nov 

’10 

Dec 

’10 

Jan 

’11 

Feb 

’11 

1. Invert all calibration data x         

2. Invert 5  5 TEMTADS data   x      

3. Invert MM data   x      

4. Build custom training data sets and request 

ground truth for TEMTADS 

   x     

5.  Build custom training data sets and request 

ground truth for MM 

   x     

6. Redefine the MM classifier and request more 

training data if necessary 

  x     

7. Redefine the TEMTADS target classifier and 

request additional training data if necessary 

  x     

8. Generate MM dig list and submit to IDA    x      

9. Generate TEMTADS dig list and submit to 

IDA 

   x     

10. Conduct retrospective analysis if needed      x x  

REPORTING:  

11. Draft demonstration report       x  

12. Final demonstration report       x 

Figure 14. Gantt chart showing a detailed schedule of the activities conducted at Camp Butner. 
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5 DATA ANALYSIS PLAN 

We analyzed all cued data for the MetalMapper and TEMTADS sensors and produced 

prioritized dig lists for independent scoring. 

5.1 Extracting target locations 

Target locations were determined relative to the sensor coordinate system using the differential 

evolution algorithm. Object responses were modeled with ONVMS. This combined ONVMS-DE 

algorithm was run for single- and multi-target cases and provided target locations. 

5.2 Extracting target intrinsic parameters  

5.2.1 Single targets 

The combined ONVMS-DE algorithm yields the targets’ intrinsic total ONVMS, which we used 

for classification. The total ONVMS contains three moments, Mxx(t), Myy(t), and Mzz(t), along the 

primary axes in the target’s own reference frame. These moments are similar to simple dipole 

moment components but carry more information, accounting for the targets’ inherent 

heterogeneities. The ONVMS-DE algorithm outputs the time-decay curves of the target’s total 

ONVMS tensor Mij(tk). The next step is to determine the time decay of the primary components 

of the total ONVMS in the target’s reference frame. While this can be done by standard 

diagonalization (i.e., finding M(tk) = V(tk)D(tk)V
T
(tk), where V(tk) contains the eigenvectors of 

M(tk), it is more convenient to perform a joint diagonalization, M(tk) = VD(tk)V
T
, where now the 

eigenvectors are shared by all time channels; this allows us to extract more reliable total 

ONVMS values and reduce uncertainty. The resulting temporal decays of the total principal 

ONVMS for the Camp Butner anomalies are illustrated in Figure 3 and Figure 4 for TEMATDS 

and in Figure 8 and Figure 9 for the MetalMapper. The results show that the inverted parameters 

are clustered very well for large targets. As the target size decreases the magnitude of the 

extracted total ONVMS has a progressively larger spread (especially for MM data), but the 

shapes of the time-decay curves remain the same, indicating that both the shape and the 

magnitude of the ONVMS should be considered trying to achieve accurate classification. 

5.2.2 Multi-target cases 

A similar approach is carried out if more than one subsurface target is expected. The DE 

algorithm now searches for the locations and the total ONVMS of several objects. Such multi-

target inversion is crucial in the field for cases in which a signal from a UXO is mixed with EMI 

signals from nearby clutter. Our two-target inversion code yields three sets of location and total 

ONVMS estimates: one for Target 1, one for Target 2, and a combined estimate with Targets 1 

and 2 represented by a single object. (In the case of 3-target inversion, seven sets of data are 

expected: only Target 1, only Target 2, only Target 3, Targets 1 and 2 as a single object, Targets 

2 and 3 as a single object, Targets 1 and 3 as a single object, and all three targets acting as a 

single object. In the general case of n targets one expects n(n – 1) + 1 sets of ONVMS curves). 
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5.3 Selection of intrinsic parameters for classification 

Most UXO are bodies of revolution, and consequently the two secondary polarizability elements 

are degenerate. However, live-site UXO discrimination studies have repeatedly shown that this 

symmetry can be compromised due to low SNR, especially for small or deep targets. A good 

classification of object features can then be obtained by using only the principal component of 

the total ONVMS, Mzz(t). Furthermore, to limit the number of relevant features for use in 

classification we extract parameters exclusively from the main polarizability Mzz(t), both to 

represent size (via Mzz(t1)) and wall thickness (via Mzz(t1) / Mzz(tn)). The interested reader is 

referred to Section 2.4. 

5.4 Training 

Our classification approach is based on custom training data. At the first stage of the process we 

used a semi-supervised clustering technique to indentify potential site-specific TOI. Below are 

the basic steps performed during training data selection; for more details regarding each specific 

sensor see Section 2.4. 

(a) The targets’ intrinsic features, Mzz(t1) and Mzz(t1) / Mzz(tn), were selected from the 

extracted total ONVMS. The time channel n was chosen based on feature separation. 

EMI data sets were produced for all anomalies using both single- and multi-object 

inversions. 

(b) Initial clustering was performed. The ground truth was requested for all targets whose 

features were located closest to the corresponding cluster centroid and had TOI-like 

ONVMS features. 

(c) Clusters containing at least one TOI were identified, and a smaller domain was selected 

within the feature space for further interrogation. 

(d) Additional clustering was performed within the selected domain, and those targets with 

features closest to the corresponding cluster centroids were probed for ground truth. The 

clusters with at least one identified UXO were marked as suspicious. The total ONVMS 

curves were inspected within the selected domain. 

(e) All targets whose features (based on multi-object inversion and library matching) fell 

inside any of the suspicious clusters were used to train the statistical classifier and the 

library-matching procedure. 

5.5 Classification 

(f) Probability density functions were extracted for single- and multi-target scenarios. 

(g) All of the unknown targets were scored based on the probability density functions. 

(h) Dig lists were produced for both single- and multi-object cases and compared to each 

other to find similarities and differences. 

(i) All items were further analyzed using library matching, and all total ONVMS time-decay 

curves were inspected visually. 
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(j) A set of anomalies were identified and additional training data sets were requested. The 

new information was incorporated into the Gaussian mixture model and all items were re-

scored. 

(k) Based on the previous steps a classification threshold was selected and a final dig list was 

produced. 

5.6 Decision memo 

The algorithms used to select training data and to perform inversion and classification for the 

Camp Butner test are described in Section 2.4. Using the inversion, clustering, classification and 

data-requesting procedures outlined above we produced a ranked anomaly list formatted as 

specified by the IDA[31]. 
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6 COST ASSESSMENT 

Time and resources were tracked for each task to assess the cost of deploying the technology at 

future live sites. A summary of the time needed to classify each anomaly successfully appears in 

Table 2. This assessment does not include actual data-taking, as our team did not perform that 

work. Neither does it include computer runtime, which usually takes place “in the background” 

(i.e., concurrently with other tasks, overnight, etc.), nor the one-time cost involved in developing 

the code. The quoted values are, of course, averages: some anomalies can be identified almost 

instantaneously, while others require much time and effort. The estimates stem from personal 

observation—the requirement to systematically keep track of the time was made official after the 

results had been submitted. Finally, the values given correspond to the times needed by a 

seasoned expert. Analysts with less experience initially took on average twice as long to identify 

and classify each anomaly, but quickly became much faster. 

 

Table 2: Cost model for advanced EMI model demonstration at the former Camp Butner 

Cost Category Description Cost 

Pre-processing  

Time required to perform eigenvalue extraction, 

check data quality, and estimate the number of 

potential anomalies 

15 sec/anomaly 

Parameter extraction  Time required extract target feature parameters  15 sec/anomaly  

Classifier training Time required to optimize classifier design and train 30 sec/anomaly 

Classification and 

construction of a 

ranked anomaly list 

Time required to classify anomalies in the test set 

and construct the ranked anomaly list 
30 sec/anomaly 

Total  90 sec/anomaly  
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7 MANAGEMENT AND STAFFING 

Figure 15 is the organization chart for the personnel involved in the demonstration. Their 

responsibilities are as follows: 

1. Fridon Shubitidze – Principal Investigator. Developed and implemented most of the 

preprocessing and inversion routines used. Classified MetalMapper data using a Gaussian 

mixture model. 

2. Irma Shamatava – Sky Research Geophysicist. Participated in the inversion and 

classification of TEMTADS data. 

3. Alex Bijamov – Engineer at Dartmouth College. Classified TEMTADS data via semi-

unsupervised parameter clustering. 

 
 

 

Figure 15: Project management hierarchy. 

Fridon Shubitidze, PI: 

 

MM data inversion and classification 

 

Mrs. Irma Shamatava: 

 

TEMTADS inversion and classification 

Dr. Alex Bijamov, Dartmouth College: 

TEMTADS data feature-parameter 

clustering and classification  
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9  APPENDICES 

9.1 Appendix A: Health and Safety Plan (HASP) 

As this effort does not involve field data collection, no HASP is required. 

9.2 Appendix B: Points of Contact 

Points of contact (POCs) involved in the demonstration and their contact information are 

presented in Table 3. 

Table 3: Points of Contact for the advanced EMI models’ demonstration 

POINT OF 

CONTACT 

Name 

ORGANIZATION 

Name 

Address 

Phone 

Fax 

E-mail 

Role in 

Project 

Dr. Fridon 

Shubitidze 

Sky Research, Inc. 

  

Tel: 603 643 2876 

Fax: 603-643-5161 

fridon.shubitidze@skyresearch.com 

 

PI 

Erik Russell Sky Research, Inc. 

3 Schoolhouse Ln, 

Etna, NH 03750, 

USA 

Tel: 541-552-5197 

Fax: 603-643-5161 

Erik.Russell@skyresearch.com 

 

 

Project 

Coordinator 

       
 

  

Dr. Herb 

Nelson 

ESTCP Program 

Office, 

ESTCP Office 

901 North Stuart St, 

Suite 303 

Arlington, VA 

22203-1821 

Tel: 703-696-8726  

Herbert.Nelson@osd.mil 

 

ESTCP 

Munitions 

Management 

Program 

Manager 

mailto:Nicolas.lhomme@skyresearch.com
mailto:Joy.rogalla@skyresearch.com
mailto:Herbert.Nelson@osd.mil
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9.3 Appendix C:  

9.3.1 The orthonormalized volume magnetic source model 

Most EMI sensors are composed of separate transmitting and receiving coils. When the operator 

activates the sensor, a current runs through the transmitter, resulting in the establishment of a 

(“primary” or “principal”) magnetic field in the surrounding space (Figure 16). According to the 

elementary atomic model of matter, all materials are composed of atoms, each with a nucleus 

and a cloud of orbiting electrons. The electrons cause circulating currents and form microscopic 

magnetic dipoles. For most materials, in the absence of an external magnetic field the magnetic 

dipoles of atoms have random orientations, resulting in no magnetic moment. According to 

Faraday’s law, an external time-varying magnetic field induces eddy currents in conducting 

bodies by an alignment of the magnetic moments of the “spinning” electrons and a magnetic 

moment due to a change in the orbital motion of electrons. These currents and magnetization in 

turn generate a (“secondary” or “scattered”) magnetic field that also varies with time and induces 

measurable currents in the receivers. The induced magnetic dipoles/eddy currents are distributed 

inside the object and produce a magnetic field intensity H outside. The magnetic field due to the 

 i -th source can then be expressed at any observation point r  as the matrix-vector 

productEquation Section (Next) 

 H
i
(r)  G

i
(r)m

i
, (A.1) 

where m
i
 is a 1  6 dimensional vector whose components (Mxx,i, Mxy,i, Mxz,i, Myy,i, Myz,i, Mzz,i) 

are the elements of the target’s magnetic polarizability tensor M , and []  is the 3  6 matrix 
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whose elements are as follows: 
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When there are several such sources, the total field can be expressed as a superposition: 

 H(r)  G
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Before going further we note that our method takes as input the (in principle unknown) number 

M of radiating sources. For advanced EMI sensors such as the MetalMapper and 2  2 and 5  5 

TEMTADS arrays we have developed a procedure based on joint diagonalization, sketched in 

Section 9.3.4, that estimates M starting from raw data and with no need for inversion. For other 

sensors one may proceed by letting M vary as part of an optimization routine. 

The superposition (A.3) can be used to carry out one- and multi-object inversions starting from 

data taken at an ensemble of points. All the measured H -values—which can pertain to multiple 

transmitters, multiple receivers, changing sensor locations, and different vector components—are 

strung together in a one-dimensional array, while the corresponding Green functions are stacked 

as matrix rows. The resulting composite G matrix can then be (pseudo)inverted to find the 

strengths of the sources. This procedure, which is nothing other than the dipole model if each 

body is taken to be represented by one source only, works well for one or two sources, but for 

larger numbers becomes very time-consuming (since the Green matrix becomes very large) and 

increasingly ill-posed, usually requiring regularization. The ONVMS method is designed to 

circumvent these difficulties. 
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Figure 16: A metallic object under the transmitter. The target’s EMI response at the receiver coil 

can be calculated from the equivalent surface or volume magnetic dipole moment dm. 

9.3.2 Orthonormal Green functions 

The method starts from the realization that the matrix-vector product (A.1) is valid at any 

observation point r  and, in particular, at every point r
s
 on the plane surface delimited by 

TEMTADS. If we introduce the inner product 

 A, B  AT Bds
S  AT Bds

Rx
0

  AT Bds
Rx

1
  , (A.4) 

where the integral is computed over the “sensitive” surfaces of the sensor (which are contiguous 

in the case of TEMTADS, but not necessarily for other instruments), and if furthermore we can 

find a basis of Green functions orthogonal under this measure, 

 H(r
s
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, (A.5) 

where 
jk

 is a Kronecker delta, then it is possible to find the source amplitudes b
j
 without costly 

and ill-conditioned inversions simply by exploiting the sifting property of the orthogonal basis: 

 
k
,H  

k
,

j
b

j
j1

M

  F
k


kj
b

j
j1

M

  F
k
b

k
 (A.6) 

and thus 

 b
k
 F

k

1 
k
,H , (A.7) 

which clearly does not involve solving a linear system of equations; it is necessary to invert only 

the 6  6 matrix F
k
. Moreover, this definition of the coefficients b

j
 guarantees that they are 

“optimal” in the sense that the expansion (A.5) yields the least mean-square error 

H  
j1

M 
j
b

j
,H  

j1

M 
j
b

j
 [32]. 

To construct the set of orthonormal Green functions we resort to a generalization of the Gram-

Schmidt procedure [33]. Assuming that the Green matrices are linearly independent—i.e., that 

we cannot have a collection of distinctly located dipole sources combining to produce no 

measurable field unless their amplitudes all vanish—we define 



Demonstration report  Advanced EMI models for Camp Butner 

 37 April 2012 

 


1
 G

1
,


2
 G

2
 

1
A

21
,


m
 G

m
 

k
A

mk
k1

m1

 ,


M
 G

M
 

k
A

Mk
k1

M 1

 ,

 (A.8) 

where the 6  6 matrices A
jk

 obey A
jk
 0 for j  k . Enforcing the orthogonality relation (A.5) is 

equivalent to setting 
n
,G

m
 F

n
A

mn
 for n  m , and using this relation twice in definition (A.8) 

we find that 
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where the overlap integral C
mn
 G

m
,G

n
. 

At the end of the process it is necessary to recover an expansion expressed, like (A.1), in terms 

of the actual Green functions, in part because the functions 
j
 are orthogonal (and defined) only 

at points on the receivers, and in part because of the non-uniqueness of the coefficients b
j
 due to 

the arbitrary order in which the G
j
 enter the recursion (A.8). To that end, we express 

 
m
 G

k
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 , (A.10) 

and to find the coefficients B
mk

 we compare expansion (A.10) term by term to the definition 

(A.8) and use the rule that A
jk
 0 for j  k  to find 
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in terms of which we recover the physical polarizability elements: 
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9.3.3 ONVMS procedure 

With all the pieces in place, we can sketch an algorithm to invert EMI data using the ONVMS 

model: 

1) Given a number of sources and their tentative locations, find the Green tensors G
i
 using 

equation (A.2) and compute the overlap integrals G
mn

 using the inner product (A.4). 

2) Determine the first normalization factor, F
1
 G

1
,G

1
, and use it to find all the Gram-

Schmidt coefficients A
mn

 with n 1: A
m1
 F

1

1C
1m

. 

3) Set m  2 ; compute, in sequence, 

a) The coefficients A
mn

 with n  2, ,m1  using equation (A.9); 

b) The function 
m

 using the expansion (A.8); 

c) The normalization factor F
m
 

m
,

m
; 

 increase m  by 1 and iterate until all sources have been included. 

4) Once all the A
mn

, F
m

, and 
m

  are known, find B
mq

 using (A.11). 

5) Use the orthonormality of the new Green functions to determine the source amplitudes 

using b
q
 F

q

1 
q
,Hdata

, as in (A.7). Take the measured field to be piecewise 

constant—i.e., constant throughout each receiver—when evaluating the integrals. 

6) Use the computed b
q
, B

mq
, and G

m
, along with the expansion (A.12), to generate the 

secondary field prescribed by the given number of sources at the given locations. 

7) Compare the model prediction with the measured data, vary the source locations, and 

iterate until the least-squares discrepancy between prediction and measurement attains a 

suitable minimum. 

The procedure as written applies to only one time gate, but the extension to fully time-dependent 

functions is straightforward: we need only substitute the vectors b
q
 and H

data  for two-

dimensional arrays where the columns denote time. The relations between the two, namely (A.7) 

and (A.12), acquire multiple right-hand-sides, and the optimization mentioned on Step 7 of the 

algorithm is constrained further. As a final remark we note that rigorously speaking the 
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coefficients b
q
 (and, for that matter, the amplitudes m

k
) are not the polarizabilities themselves 

but relate more closely to their time derivatives [34-35]. 

The great advantage of the ONVMS technique is that it takes into account mutual couplings 

between different parts of targets and avoids matrix singularity problems in cases with multiple 

objects. Once the polarizability tensor elements and the locations of the elemental responding 

dipoles are determined one can group them according to their volume distribution. For each 

group a total polarizability tensor can be computed and diagonalized using joint diagonalization, 

the topic of Section 9.3.4. The resulting time-dependent diagonal elements have been shown to 

be intrinsic to the objects and can be used, on their own or combined with other quantities, in 

discrimination processing. 

9.3.4 Joint diagonalization for multi-target data pre-processing  

In real-life situations the targets of interest are usually surrounded by natural and artificial debris 

with metallic content, including, for instance, the remains of ordnance that did explode. Thus it is 

usually not clear how many objects are producing a given detected signal; all sensing methods, 

including EMI, are fraught with detection rates that overwhelm cleanup efforts and hike their 

cost. Here we introduce a data pre-processing technique based on joint diagonalization (JD) that 

estimates the number of targets present in the field of view of the sensor as it takes a data shot, 

and, in a good number of cases, even provides the capability to perform real-time 

characterization and classification of the targets without the need for a forward model. 

Joint diagonalization has become an important tool for signal processing and inverse problems, 

used as part of independent component analysis [22], blind source separation or BSS [36], 

common principal component analysis, and, more recently, kernel-based nonlinear BSS [37]. We 

further extend the applicability of the method by using it to detect and locate buried targets 

without the need for inversion. As we say above, a variation of the method can be used to 

extricate time-dependent electromagnetic signatures from attitude information. Here we will 

outline the detailed procedure as applied to the TEMTADS sensor array, a time-domain device 

with 25 transmitter/receiver pairs that provides 625 measurements over Ng = 123 time gates at 

each sensor location. Equation Section (Next) 

9.3.5 The multi-static response matrix 

JD estimates the eigenvalues and eigenvectors of a square time- or frequency-dependent multi-

static response (MSR) matrix synthesized directly from measured values. To construct the MSR 

matrices one just has to stack the 625 readings at each time gate in a 25 × 25 array so that each 

column stands for one of Nt transmitters and each row represents one of Nr receivers: 
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S , (B.1) 
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where the element Hij is the field measured by the i-th receiver when the j-th transmitter is fired. 

The second step of the procedure is to diagonalize the 123 matrices at one stroke so they all share 

a single set of orthonormal eigenvectors. In other words, given the MSR matrix S(tk) at the k-th 

time gate, we look for a unitary matrix V such that the products 

 D
k
 V

T
S(t

k
)V  (B.2) 

are “as diagonal as possible” (i.e., their off-diagonal elements vanish within a preset tolerance). 

By diagonalizing all the matrices simultaneously we separate the time-dependent intrinsic 

features of the responding sources (and hence the interred objects), which get encapsulated in the 

eigenvalues, from the other factors—notably the location and orientation of the target with 

respect to the sensor—that influence the signal but do not change as the data are being taken; 

these get bundled into the eigenvectors. (The fact that the locations and orientations can be 

dissociated in this way from the electromagnetic signatures is an upside of the low frequencies of 

the quasistatic EMI range, because the relevant Green functions are time-independent.) Thus the 

measured data can be resolved as a superposition of “elemental” sub-signals, each corresponding 

to an elementary dipolar source, whose combination corresponds to the buried objects. Each 

source—and the corresponding field singularity—can moreover be localized numerically: the 

TEMTADS geometry is such that the diagonal of the unprocessed MSR matrix mimics a set of 

monostatic measurements, akin to those taken with a handheld sensor, which peak sharply when 

there is a target directly underneath. The maxima in the diagonal thus point to the 

transmitter/receiver pairs closest to any responding sources. These location estimates can be 

grouped and correlated to the eigenvalue distributions to estimate target locations. 

9.3.6 Interpretation and diagonalization of the MSR matrix 

We now proceed to express our above considerations quantitatively.  Initially we consider the 

transmitter assembly, which in TEMTADS consists of a set of coplanar square loops forming a 

regular grid. The Biot-Savart law gives the primary magnetic induction established at the 

location ri of the l-th source when the j-th transmitter antenna (whose area is 
  


Tx
j

) is excited 

immediately before shutoff by a current Ij: 

 B
jl
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jl
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. (B.3) 

This primary field induces in the l-th source a dipole moment given by 

 m
jl
 U

l


l
U

l

T
B

jl

pr , (B.4) 

where the Euler rotation matrix U relates the instrument’s coordinate axes to the principal axes 

of the source, and the diagonal polarizability matrix i, the only quantity intrinsic to the source, 

measures the strength with which the primary field induces a moment along each of those axes. 

According to Faraday’s law, the signal measured by a receiver coil is the electromotive force 

given by the negative of the time derivative of the secondary magnetic flux through the coil. 

Since the field at point r of a dipole of moment m placed at r0 is given by 



Demonstration report  Advanced EMI models for Camp Butner 

 41 April 2012 

 B 


0

4
 m

r  r
0

| r  r
0

|3









 ,    and thus   B ds  m 


0

4
d l 

r  r
0

| r  r
0

|3
   

by straightforward application of Stokes’s theorem, one obtains that the signal sampled at time tk 

by the i-th receiver (of area 
Rx

i

) when the l-th source is excited by the j-th transmitter is 
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where a dot over a variable indicates its time derivative. In equations (B.3) and (B.5) the line 

element dl lies on the x-y plane, and as a consequence the Green functions are similar in 

structure to those of the simple model presented in Section 2.2. Note that we have included the 

exciting current Ij and the transmitter and receiver areas in the definition of the signal; we have 

explicit knowledge of these quantities and can factor them out. If only the l-th source is 

illuminated, we construct the MSR matrix for the complete transmitter/receiver array by tiling Nr 

 Nt instances of the expression (B.5): 

 S G
sc

U
l


l
U

l

T (Gpr )T , (B.6) 

where the primary (or transmitter) dyad G
pr

 is of size Nt  3, the secondary (or receiver) dyad G
sc

 

is of size Nr  3, and the response matrix UlU
T
 is 3  3. When there is more than one source 

present, the MSR matrix of equation  (B.6) is readily generalized: 
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where we see that the features intrinsic to the targets can be separated formally from the 

particulars of the measurement—that is, from the geometry and dimensions of the sensor and the 

sensor-target attitude. The array S has size Nr × Nt and is square if Nr = Nt, as is the case with 

TEMTADS. This allows us to diagonalize the matrix but does not suffice to guarantee that the 

extracted information is useful—i.e., that the eigenvalues and eigenvectors are real, and that the 

latter are orthonormal. For that to hold we must have a real, symmetric matrix, which requires 

   
G

l

sc  G
l

pr  G
l
. This cannot be rigorously true, because the receivers cannot coincide exactly 

with the transmitters, but holds approximately for TEMTADS if we factor the exciting current 

and the coil areas out of S, as we did in equation (B.5). The diagonalization we perform is thus a 

particular case of a singular value decomposition (SVD), and in what follows we use 

“diagonalization” as shorthand for “SVD of a symmetric matrix.” 
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The decomposition (B.7) exhibits the actual polarizability elements but is not directly available 

to us because the Green tensors are not orthogonal. To see what we do get when we diagonalize 

S we can perform the SVD on G: 

 S GUU
T
G

T  W V
T
UU

T
V



W

T  WZZ
T
W

T  YY
T  (B.8) 

In the intermediate step we have used the fact that the matrix within the brackets is real and 

symmetric and thus has a purely real eigendecomposition. Result (B.8) shows that the eigenvalue 

matrix , though time-dependent, is not solely composed of source responses, but also contains 

location and orientation information extracted from the Green tensors. The eigenvectors, 

likewise, include information from both the polarizabilities and the measurement particulars. 

We also see in the decomposition (B.8) that S contains an unknown “hidden dimension”—3N, 

where N is the number of sources—in the size of the block-diagonal response matrix. Numerical 

diagonalization (or, in general, the SVD) of S will impose this middle dimension to be Nr = Nt. 

Ideally, the method should be able to resolve up to N
r

/ 3   responding sources, or eight for 

TEMTADS, but the actual number is lower. For one, the procedure will resolve targets only 

when they are spatially separated: two distinct dipoles sharing one location decrease the rank of 

the G matrices, and hence of S, by 3. In any case, diagonalization of S can again let us estimate 

the number of targets illuminated by the sensor; since the only time-dependent quantities are the 

intrinsic polarizabilities of the sources, we expect the additional information provided by the 

time decay of the eigenvalues to be useful for classification. 

The development outlined above corresponds to each time gate taken separately. To make sense 

of the time-dependent information we have to find a way to “follow” each of the eigenvalues as 

the signal decays. (A similar process must be carried out when using the dipole model for 

inversion.) One could in principle diagonalize the MSR matrix at each time channel, and the 

eigenvectors, which depend only on geometry and pose, should stay constant; however, it is not 

possible to know a priori the order in which the eigenvalues will be given by the diagonalization; 

this fact—not to mention noise and experimental uncertainty—makes it inevitable to have to 

disentangle the tensor elements by hand, which is easily done wrong. Instead, we explicitly look 

for an orthogonal matrix of eigenvectors that diagonalizes all the MSR matrices simultaneously. 

The procedure we employ is a generalization of the method for single matrices, and is well-

known; it is sketched in next Section. 

9.3.7 Algorithm for joint diagonalization 

The joint diagonalization algorithm we use [36, 38-39] is a generalization of Jacobi’s procedure 

to find the eigenvalues of a single matrix. Formally we set out to solve the optimization problem 
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which we accomplish by making repeated Givens-Jacobi similarity transformations designed to 

gradually accumulate the “content” of the matrices on their diagonals until a certain tolerance 
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level is reached. The transformations are of the form A(t
q
) A (t

q
) V

rs
A(t

q
)V

rs

T , with the matrix 

Vrs being the identity but with the four elements Vrr, Vrs, Vsr, and Vss replaced by the two-

dimensional rotation array 
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where 
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The indices are swept systematically, and the procedure is repeated until convergence is reached. 

The computational burden is equivalent to that of diagonalizing the matrices one by one. The 

resulting eigenvalues and eigenvectors are all real because all the MSR matrices are symmetric. 

 




