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Abstract 
Objective: A follow-on study was performed for the Signal Innovations Group, Inc. (SIG) 
unexploded ordnance (UXO) demonstration at Camp San Luis Obispo, CA.  There were four 
major objectives. 1) Analyze the previous demonstration performance and validate the technical 
approach (supervised and semi-supervised classifiers) used for discrimination. 2) Explore new 
active learning procedures for acquiring training labels. 3) Evaluate the adequacy of training data 
used in the demonstration. And, 4) evaluate new enhancements to the target/sensor model for 
acquiring object polarizabilities from the sensor data. 
Technical Approach: Specific core technologies were examined and validated during the 
follow-on analysis.  These technologies fall broadly into the four analysis categories: the 
sensor/target model, feature selection, classification, and active label selection.  SIG developed a 
sensor/target model using a multi-anomaly dipole inversion.  Feature selection was performed 
using the Bayesian Elastic Net which has the benefit of retaining correlated and informative 
features for classification.  Classification was performed using two approaches: one a supervised, 
sparse Bayesian classifier, and the other a semi-supervised, parametric Bayesian classier. 
Results: The SIG multi-anomaly dipole model is effective at producing features that are easily 
recognized as being UXO where a single anomaly model would not be effective.  The semi-
supervised classifier will outperform supervised classifier when a difficult UXO is connected to 
other UXO by neighboring observations (in feature space).  Both the semi-supervised and 
supervised classifiers are robust to changes in their user-defined parameters.  Non-myopic active 
learning is effective, in general at capturing difficult UXO, and enhancing the quality of training 
data for feature selection.  When active learning is used in conjunction with feature selection, 
appropriate features can be selected from few training data. 
Benefits: The goal of the SIG discrimination process is to provide a significant degree of 
automation for UXO discrimination problems.  This study validated the robustness of key SIG 
technologies for target/sensor models, feature selection, classification, and active learning.  
These technologies are broadly applicable, and scalable to production level UXO remediation. 
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Objective 
Signal Innovations Group, Inc. (SIG) participated in the Sibert and the SLO UXO discrimination 
studies.  SIG has applied and iteratively adapted state-of-the-art UXO discrimination technology 
developed under funding provided over many years by the SERDP and ESTCP program offices.  
Following the Sibert discrimination study, and once all the ground truth labels were made 
available, a follow-on analysis provided the opportunity to gain insights and adapt the applied 
technology, and greatly aided the performance of the results in the SLO discrimination study.   
There were four major objectives specified in the statement of work for the follow-on analysis: 

• Performance analysis and validation of the technical approach for the TEMTADS, 
MetalMapper, EM61 array, and BUD sensors 

• Additional exploration of  the active learning procedures 
• Evaluation of the adequacy of the training data used in the study 
• Evaluate enhancements to the target/sensor model 

Each of these objectives was split into specific subtasks.  The subtasks are treated individually in 
the Results and Discussion. 

Background 
The detection and remediation of unexploded ordnance (UXO) remains a high priority for the 
Department of Defense. According to 2003 Defense Science Board (DSB) report [1], the UXO 
cleanup problem is a very large-scale undertaking involving multi-million acres of land in more 
than fourteen hundred test sites scattered over the continental United States. It is estimated that 
only 10% of this area is occupied by UXO. The report estimates the cost of cleanup in the order 
of tens of billions in dollars. This cost consists of detection and classification of surface, buried, 
and partially buried UXO, followed by expensive excavation of these anomalies. The problem is 
aggravated by the fact that most of the UXO detection systems produce a large number of false 
alarms. This results in digging many holes where no UXO is present. 
Significant progress has been made in the development of UXO detection and classification 
technologies over the past several years. However, most of the testing and validation of this 
technology (both in hardware designs and associated software algorithms) have been primarily 
limited to test sites with only limited application at live sites. The SLO demonstration was a ‘live 
site’ application.  For the SLO demonstration, SIG performed discrimination on the TEMTADS, 
MetalMapper, EM61 array, and BUD sensors. 
The SIG classification algorithms performed well in the sense that for the classifiers considered 
and thresholds considered, most of the UXO items were detected, and generally a substantial 
number of non-UXO were left unexcavated. This was also true of the active-learning algorithms, 
which employed no prior labeled data, and ultimately employed substantially less labeled data 
than initially provided by the ESTCP office. SIG developed an improved forward model for the 
SLO demonstration which incorporates the actual shape of the transmitter/receiver loops and 
redesigned the inversion algorithm to make it more robust. The performance of the MetalMapper 
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data were particularly impressive. In general, multi-axis and multi-coil sensor systems 
significantly outperformed the single coil electromagnetic and magnetometer sensors. 

Materials and Methods 
The technical methods used for the follow-on study are summarized by study objective. 
Performance analysis and technical approach validation 
SIG performed both supervised and semi-supervised classification at SLO.  The supervised 
classifier was a sparse Bayesian classifier (SBC, [2]) and the semi-supervised classifier was a 
parametric neighborhood-based classifier (PNBC, [3]).  These two approaches share some 
characteristics.  First, they both incorporate user-defined prior distributions to prevent the trained 
model from over-fitting the training data.  This purpose of this attribute is to improve prediction 
on test data.  Second, both SBC and PNBC represent predictions as posterior probabilities rather 
than decisions.  This distinguishes them from other common machine learning classifiers such as 
the support vector machine whose predictions are decisions rather than probabilities. 
PNBC is semi-supervised because it attempts to improve prediction by leveraging information 
about the autocorrelation of unlabeled samples in feature space.  This contrasts with supervised 
classification, where the only information that influences prediction is the responses of labeled 
data.  PNBC and SBC will give identical results when the influence of unlabeled observations is 
removed from PNBC.  Thus, SBC is a subset of PNBC.  This highlights one key point of 
interpretation.  When many labeled observations are available for training, the need for 
information about the configuration of unlabeled samples is reduced.  The result is that, given a 
large training set, PNBC should be tuned to perform more like SBC. Conversely, the benefits of 
semi-supervised classification are most apparent when sample sizes are small.  These qualities 
prove important when comparing the performance of PNBC and SBC. 
Active learning / Training Data Adequacy 
During the performance assessment active learning was done only for the TEMTADS and EM61 
data.  The actively learned training data yielded a better performing classifier with fewer training 
data than a random sample of observations.  This was highlighted in the final report.  SIG has 
abandoned the active learning technique used in those cases, however.  This myopic approach 
required that one label was selected at a time, and then the classifier needed to be retrained.  It is 
not practical to acquire a single label of training data, dig it in the field, and then retrain the 
model.  Instead SIG has adopted a non-myopic active learning approach (NMAL) that allows for 
a batch of new labels to be requested at once. 
NMAL occurs in two phases.  The first phase is called basis selection.  The algorithm acquires a 
broad representation of feature space in the absence of a classifier.  In this phase, outliers are 
typically identified depending on how many bases are chosen.  SIG developed an algorithm for 
selecting an optimal number of bases dependent on the natural clustering of observations in 
feature space and the desired representation of these clusters in the dataset.  The features are first 
transformed into an orthogonal set of principal components.  The amount of data variability 
encompassed by each component determines its importance. For the MetalMapper sensor data 
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most of the data variability was captured using 4 components.  After transforming the data into 
these 4 component axes, an unsupervised clustering was performed on the data using a Gaussian 
Mixture Model.  The segmentation algorithm for this GMM selected not only the cluster 
membership but also the number of clusters.  For the MetalMapper data, this resulted in 5 
clusters.  SIG set the number of initial bases to be 20.  This yielded one observation from each of 
these natural clusters across each important dimension of the dataset.  The results of such basis 
selection should not only be representative of the breadth of responses in the dataset, but should 
also capture outlier responses that do not cluster with other observations in feature space. 
The second phase of NMAL is done with a classifier in place.  In this phase NMAL seeks to 
acquire new labels that simultaneous decrease uncertainty in under-sampled regions of the 
feature space and refine the existing classifier boundary. New labels are acquired until additional 
labels have little new information for the classifier.  SIG performed both phases of NMAL on the 
MetalMapper sensor data at SLO.  A total of 100 training points were acquired. 
The features selected for a given classifier can and should change during active learning as the 
amount of training data increases.  There are two reasons for this.  First, the quantity of features 
could change to accommodate increasing model complexity.  As the number of training points 
increase, the number of features in the model may increase as the data suggests with little loss in 
generality assuming a sparse classification method like SBC or PNBC is used.  Second, when 
training data are few, there may be spurious correlations with features that are not, in general, 
discriminative features.  As the number of training data increases during active learning, these 
spurious correlations should decrease and better, more general features should be selected.  SIG 
examined these two processes are examined in the context of non-myopic active learning 
(NMAL). 
The technique used for feature selection is the Bayesian elastic net (BENet).  BENet employs a 
sparseness prior equivalent to a convex combination of L1-norm and L2-norm penalties in a least 
squares optimization formulation [4], [5].  The sparseness prior of the BENet model jointly infers 
the essential subset of relevant features, including correlated features, for a given classification 
task. Rather than encouraging the selection of a single feature in a set of correlated important 
features (like similar approaches such as RVM), the BENet model encourages the selection of all 
correlated important features. By performing sparse and grouped feature selection, the BENet 
algorithm provides a more robust approach to feature adaptability and the interpretation of 
important features, requiring fewer training data samples to achieve robust statistical support. 
Sensor/Target Model Enhancements Study 
Spatial overlap between UXO and clutter is not uncommon. For those cases, a single dipole 
model [6] will fail and the extracted features will ‘UXO-like’.   SIG has developed an efficient 
multi-anomaly dipole model to extract better features. The multi-anomaly model is a 
straightforward extension of the single anomaly model.  It assumes that the received magnetic 
field at each receiver is simply the sum of scattered magnetic fields from all possible anomalies.  
The scattered field from each single anomaly is estimated using the well-known dipole model.  
The received magnetic field at one specific receiver can be expressed as follows 
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anomaly’s position vector. I  is the identity dyad, and im  is the dipole moment associated with 
the ith anomaly, which is determined by the incident magnetic field and the polarizability tensor 
of that anomaly.  The coupling among all anomalies is not taken into account. Numerical 
experiments have shown that ignoring coupling works fine for most cases. 
To extract the parameters efficiently, the unknowns are grouped into two parts associated with 
the anomaly positions and polarizability parameters, respectively. An iterative approach is 
employed to solve the problem.  The anomaly positions are assumed to be known in each 
iteration.  The polarizability parameters of all anomalies are estimated directly according to the 
raw data without optimization.  Once polarizability parameters are known, the anomaly positions 
are updated via global optimization. The above iterative process repeats until the results 
converged. 

 Results and Discussion  
SLO Discrimination Study Performance Analysis and Technical Approach Validation 
(TEMTADS, MetalMapper, EM61 Array, BUD) 
Comparison of the results from both the supervised and semi-supervised classifier approaches 
There was little difference in the performance of SBC and PNBC for most sensor datasets at 
SLO.  In general, PNBC had dug UXO with more unnecessary digs, initially.  The fact that SBC 
typically dug 60-80% of the UXO with less than 50 unnecessary digs suggests that knowledge 
about the larger structure of the labeled and unlabeled data available with PNBC was important 
only in select cases.  This was especially true when UXO and clutter were not highly separable.  
In these cases adding information about the structure of unlabeled data ends up correlating more 
unlabeled clutter to labeled UXO.  As a result the unlabeled clutter is assigned a higher 
probability of being UXO than if these correlations were not known by the classifier. 
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The situation where PNBC outperformed SBC was in the total number of clutter dug to capture 
the last UXO.  This, of course, is the most important measure of classifier performance, as the 
cost for leaving UXO in the ground is treated as infinite.  There were at least four challenging 
UXO, and the ability of a classifier to capture these UXO determined the total number of clutter 
dug.  In general, PNBC and SBC required many digs to capture these challenging UXO.  For the 
MetalMapper sensor, however, PNBC captured every UXO with only 120 clutter dug (Figure 1).  
SBC required 600.  It is important to note that the global rate at which UXO were dug relative to 
clutter were virtually identical between SBC and PBNC in this case.  The only difference 
between the two classifiers was that it took an extra 480 digs to capture the last UXO.  The 
interpretation of this result is that PNBC benefitted from knowing the clustering of unlabeled 
observations in feature space.  The UXO were highly separable from the clutter, in general.  So, 
the supervised classifier boundary was well-defined.  However, a single, challenging UXO was 
present past the boundary and there were many clutter that were slightly closer to labeled UXO 
in features space.  As a result, the supervised algorithm dug these clutter ahead of the final, 
difficult UXO.  However, this UXO was part of a cluster in feature space that was connected to a 
labeled UXO.  Even though there were many observations that were closer in terms of raw 
feature space, these observations were not as well-connected to the labeled UXO.  Thus, the 
challenging, unlabeled UXO was given higher probability in the classification. 
Optimality of the parameters chosen for each classifier in the SLO study 
There are two parameters that can be adjusted for both SBC and PNBC.  The first parameter, 
which is shared by both PNBC and SBC, is the correlation width of the radial Gaussian kernel.  
This parameter determines how similar the labels of nearby observations should be.  It is this 
correlation length that allows the classifier to be nonlinear in feature space.  The second 
parameter of SBC, 𝛾, controls the sparseness of the classifier.  To make a discrimination model 
general, a subset of all possible basis vectors is used in the final classification.  The weights of all 
other basis vectors go to 0 and are effectively removed from the model.  If all training basis 

Figure 1. The supervised (left) and semi-supervised (right) classifier performances on MetalMapper 
data for SLO. The features were provided by Snyder Geoscience, which were further pruned by the 
SIG feature selection algorithm. 
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vectors were used, then the model would fit perfectly to the training data, but could be a poor 
predictor of the unlabeled data.  Increasing 𝛾 causes the weights on many basis vectors to tend 
toward zero and results in a sparse solution.  The second parameter of PNBC is the number of T-
steps on the graph of observations.  The graph in PNBC is described by the probability of 
moving from one observation to its nearest neighbor under a Markov random walk.  One T-step 
is equivalent to a single move from a focal point to its nearest neighbor.  T-steps greater than one 
increase the length of the Markov random walk to include additional neighbors. Thus, a T-step of 
3 corresponds to a Markov random walk from the focal point to its nearest neighbor, the nearest 
neighbor to the second point, and the nearest neighbor to the third point.  The larger the T-step is 
the stronger the correlation within clusters of observations.  Increasing the T-step is similar in 
effect to increasing the correlation length of the radial Gaussian kernel except that the correlation 
between points is constrained by the neighborhood structure of the data. 
SIG performed a sensitivity analysis of the SBC and PNBC parameters using the TEMTADS 
sensor data for SLO.  For each parameter combination a classifier was created using the 
predefined training set and then posterior probabilities were calculated for the unlabeled test 
data.  Then, the area under the ROC curve (AUC) for each classifier was calculated.  While this 
performance metric is not more important than the number of unnecessary digs before the last 
UXO is captured, it is less sensitive to the particularities of the test dataset.  So, it was used as 
the performance measure for the sensitivity analysis.  The results of the sensitivity analysis were 
compared to the parameter settings during the performance assessment (Figure 2).  AUCs were 
above 0.895 for all parameter combinations, and across a broad range of parameter settings the 
AUCs were above 0.92.  For SBC extremely sparse models (high gamma) and extremely over-fit 
models (low gamma) tended to perform worse.  PNBC performed well over the space of 
parameters examined and selected operating point was at near peak performance.  We conclude 
that both PNBC and SBC are robust to changes in their user-defined parameters. 

Figure 2. Sensitivity analysis of the user-defined parameters for SBC (left) and PNBC (right).  The 
colored values are the AUCs of classifiers trained using a single combination of parameters.  The 
parameter settings for the performance evaluation are highlighted 
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Overall discrimination failure analysis and performance assessment 
The classifier performances for both PNBC and SBC across all sensors were excellent in terms 
of AUC.  The major difference between approaches was in the number of anomalies dug to 
reveal the last few UXO.   Some classifier and sensor combinations performed well on these 
difficult anomalies (e.g. the PNBC classifier on the MetalMapper sensor data captured all UXO 
with only 120 unnecessary digs).  For most classifiers, however, there was at least one anomaly 
that proved difficult to discriminate.  Four of the challenging anomalies from SLO are 
highlighted here and an explanation is given for why they were difficult (Figure 3).  Two of the 
anomalies (ID s 444 and 241) were difficult because there were multiple objects nearby (the top 
two anomalies of Figure 3).  The poor features of these anomalies are partially due to the fact 
that the two munitions were among the smallest in size.  No 81mm or larger munitions were 
challenging due to nearby clutter, though these munitions existed in the dataset.  The features of 
these, small, challenging anomalies could be improved by using a multi-anomaly dipole 
inversion.  The other two difficult anomalies (IDs 1386 and 1285) were difficult because signal 
quality was poor.  Unlike the other challenging anomalies, these responses could not be 
improved by using multi-anomaly dipole inversions.  They could be discriminated by using 
active learning if their responses were significantly different from other clutter, even if they did 
not exhibit the ‘standard’ UXO response.  Their responses are similar to other clutter, though.  
No clear analysis method exists for distinguishing them.  Better field protocols are the only 
obvious solution to such difficult anomalies.  Inferior signal quality can make even large 
munitions (e.g. ID1386: 81mm) difficult to discriminate. 

Figure 3. EM61 responses for 4 anomalies that were challenging to discriminate at SLO.  The top 
two anomalies are shown with their pictures. 
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Active Learning Follow-on Analysis 
Investigation of an integrated method of active learning with feature selection 
For this analysis SIG used the MetalMapper sensor at SLO.  There were a total of 53 features: 
the log polarizabilities for each of the three axes at 12 time gates, 3 parameters for each axis 
fitting a negative exponential model to the polarizabilities, and 9 shape features describing 
nonlinear combinations of polarizabilities (e.g. symmetry, eccentricity, aspect ratio).  SIG 
performed feature selection using BENet and then a non-linear classification based on the 
selected features using PNBC.  20 labels were acquired initially using NMAL.  A classifier was 
then created, and 10 rounds of NMAL were performed.  The total number of actively acquired 
labels was 120.  For each round of active learning feature selection was performed using BENet.  
The selected features evolved as more observations were collected during batch active learning, 
but eventually came to a relatively stable distribution (Figure 4).  In every round the 
polarizabilities of axis one at the last few time-gates were important, and SIG’s measure of 

Figure 4.  Feature weights for all the even rounds of active learning.  Selected features that were 
used for classification are highlighed (red circles).  Feature names for selected features are also 
shown.  The abbreviations are: tx – time gate x, ax – axis x,  r01 – exponential model intercept, 
and r03 – exponential model decay rate. 

 

0 20 40 60
-10

-5

0

5
x 10

-3

 t1
2a

1

 t0
6a

3

 t0
7a

3

 sy
mmetry

feature index

w
ei

gh
t

ElasticNet Weights
(Training Round 2)

 

 

0 20 40 60
-0.1

-0.05

0

0.05

0.1

 t1
1a

1 t1
2a

1

 sy
mmetry

feature index

w
ei

gh
t

ElasticNet Weights
(Training Round 4)

 

 

0 20 40 60
-0.05

0

0.05

0.1

0.15

 t0
8a

1 t0
9a

1

 t1
0a

1

 t1
1a

1

 t1
2a

1

 r0
1a

1

 r0
3a

1

 sy
mmetry

feature index

w
ei

gh
t

ElasticNet Weights
(Training Round 6)

 

 

0 20 40 60
-0.1

-0.05

0

0.05

0.1

 t0
8a

1
 t0

9a
1

 t1
0a

1
 t1

1a
1

 t1
2a

1

 r0
1a

1 r0
3a

1

 sy
mmetry

feature index

w
ei

gh
t

ElasticNet Weights
(Training Round 8)

 

 

0 20 40 60
-0.05

0

0.05

0.1

0.15

 t0
8a

1
 t0

9a
1

 t1
0a

1

 t1
1a

1 t1
2a

1

 r0
1a

1

 r0
3a

1

 sy
mmetry

feature index

w
ei

gh
t

ElasticNet Weights
(Training Round 10)

 

 

0 20 40 60
-0.1

-0.05

0

0.05

0.1

 t0
8a

1
 t0

9a
1

 t1
0a

1

 t1
1a

1
 t1

2a
1

 t1
2a

3 r0
1a

1
 r0

3a
1

 sy
mmetry

 de
ca

yR
ate

feature index

w
ei

gh
t

ElasticNet Weights
(Training Round 12)

 

 

feature
selected



10 
 

symmetry (i.e. the mean squared differences between the 
log polarizabilities of axis 2 and 3 across all time gates) 
was important.  These features highlight two important 
physical features of UXO.  First, UXO are typically larger 
than the surrounding clutter and thus have responses that 
remain strong at later time gates.  Second, they are 
cylindrical: the two transvers axes are roughly the same 
size.  There was a general trend of selecting more features 
as more training data acquired.  This is expected, since 
more training data can justify a more complex model.  
But, these additional features were typically correlated 
with previously selected features.  For instance at later 
rounds of active learning, more time gates from axis one 
were used.  This highlights the strength of BENet for 
feature selection as opposed to SBC.  SBC would not select such correlated features because it 
tries to select an orthogonal set.  BENet keeps correlated features, and it may be that one of these 
correlated features has some additional information for discrimination that might predict those 
few anomalies that are difficult to discriminate. 
Perform active learning with SIG MetalMapper sensor model: 
SIG developed a classification model for the MetalMapper sensor that leverages NMAL in a 
PNBC classifier.  The focus in this section is on the information gained from active learning and 
the decision for stopping the active learning process rather than the performance of the classifier 
itself. Figure 5 shows the Fisher information gain during the second phase of active learning.  
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Figure 5. Fisher information gain 
during NMAL for the MetalMapper 
sensor data. 
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Each red line in Figure 5 separates a single round of NMAL.  There were 10 new labels acquired 
during each round of active learning.  Acquiring multiple labels whose joint information gain is 
maximal is what distinguishes non-myopic active learning from the myopic active learning used 
previously.  As more labels are acquired through NMAL the relative contribution of each 
additional point decreases.  Occasionally, a new UXO is found by NMAL that changes the 
structure of the model either by revealing new features that are important or by revealing a new 
mode of UXO in feature space.  When such a label is acquired, the information gain increases 
suddenly.  This effect can be seen in Figure 5 at rounds 2, 4, and particularly, 5. The decision to 
stop digging occurs when it is obvious that future rounds of NMAL will not reveal significant 
jumps in information gain. This occurred after 60 labels had been acquired.  But 2 more rounds 
of training labels were acquired to be sure the information gain would not change because of 
some hidden mode of UXO. 
Semi-supervised active learning investigation 
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SIG selected an initial data basis using NMAL of 20 
training points for the MetalMapper sensor data at SLO.  
Feature selection was performed.  A PNBC classifier was 
trained, and then NMAL was used to acquire 10 addition 
labels. This process was repeated 8 more times until a 
total of 100 training labels were collected.  The T-step for 
the PNBC classifier was set to 5.  The predicted 
probabilities of each anomaly reveal a good separation 
between UXO and clutter (Figure 6).  The different types 
of UXO varied in their predicted probabilities.  The 4.2 in 
mortars, being the largest UXO in the dataset, were 
among the easiest to discriminate.  Small munitions such 
as the 2.36in and 37mm mortars were more difficult.  All 
but 4 of the UXO were dug with only 150 unnecessary 
digs (Figure 7).  Two of these UXO could have been 
acquired by using a multi-anomaly model. 
Active learning did increase the rate at which UXO were 
acquired by the classifier resulting in slightly larger 
AUCs for later rounds of NMAL (Figure 8).  But, active learning did not have a significant effect 
on the total number of unnecessary digs to acquire the last UXO.  Given that NMAL is effective 
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Figure 7. ROC curve for the PNBC 
classifier at the end of NMAL.  Data 
are from the MetalMapper sensor.  
The training data are included in the 
plot (dashed line) along with the  last 
UXO acquired (red). 
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at finding outlier anomalies the fact that NMAL did not select these challenging observations for 
training suggests that they were similar to the average clutter response.  Again, this highlights the 
possibility that multiple anomalies were present.  Including a multi-anomaly dipole model in the 
classification would increase separation between the UXO and clutter responses. 
Potential of active learning and other methods for finding outliers in feature distributions 
Active learning seeks two different objectives simultaneously.  The first objective is to reduce 
uncertainty around the classifier boundary by requesting labels where posterior probabilities are 
near 0.5.  The second objective is to explore areas of the feature space that are poorly represented 
in the training data.  These are not necessarily areas on the boundary between clutter and UXO, 
but are areas of feature space that have not yet been sampled.  Meeting the first objective will not 
find outlier UXO, but meeting the second will.  And, while the both objectives are present in the 
second phase of active learning, where a classifier is already trained, the second objective is not 
present in the first phase of active learning.  In this section the two different phases of NMAL are 
examined for their efficacy at finding UXO outliers. 
To assess the ability of NMAL to reveal outliers SIG compared the number of UXO captured by 
three sampling methods as a function of posterior probability of being UXO in the final PNBC 
classifier for the MetalMapper sensor data.  The three sampling methods were random sampling, 
NMAL without a classifier and the NMAL on the PNBC classifier.  The posterior probability 
associated with the sampled observations can be interpreted as the degree to which a UXO is 
similar to the average UXO or similar to the average clutter.  Thus, UXO with posteriors close to 
zero are ‘outliers’ in that they are very similar to other clutter.  The results are intuitive given the 
objectives of the two different types of active learning (Figure 9).  NMAL associated with the 
PNBC classifier tries to refine the classifier boundary and explore the feature space.  Many of the 
UXO captured in this sample come from the 
boundary (probability approximately 0.5).  But, it 
also samples low probability UXO at a rate greater 
than a random sample presumably because these 
outliers occupy unique regions of feature space.  
NMAL without the classifier does not focus the 
samples along a classifier boundary, and, thus is 
more effective at capturing UXO that are most 
similar to clutter responses.  Both types of active 
learning capture more UXO in their sample than a 
random sample does.  The conclusion of this 
examination is that NMAL should be very efficient 
at capturing outlier UXO compared to random 
sampling. The type of NMAL used for outlier 
detection is dependent upon whether training the 
classifier is a simultaneous objective or not.  NMAL 
without the classifier could be performed after all 

Figure 9. The number of UXO as a 
function of their posterior probability for 
3 different sampling methods with a 
sample size of 120.  Note: AL in the legend 
is non-myopic. 
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the expected UXO are dug as a means of quantifying for stakeholders the degree to which the 
feature space has been covered by the sampling. 
Training Data Adequacy Study 
SIG used BENet for feature selection.  Since this method is Bayesian, the feature weights have a 
full posterior distributions estimated through Variational Bayes.  Typically, however, only the 
maximum a posteriori estimates for the weights are used.  The uncertainty in these posterior 
distributions quantifies the degree to which the data constrain the feature weights around a 
particular value.  Thus, information from the posterior distributions describes the degree to 
which feature selection is appropriate given the sample. 
Figure 10 shows the distribution of BENet feature weights during a few rounds of training.  Few 
of the features that were selected actually have high confidence of being different than zero.  

Figure 10. BENet feature weights used for feature selection during the even rounds of NMAL.  
The marginal posterior distributions of feature weights are shown with +-1 standard deviation 
(thick blue segments) and a 95% credible interval (thin blue segments).  Selected features are 
highlighted in red.  The bottom right plot show the feature weights for a BENet model where all 
labels were used for training. 
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This is true even for a model where all the labels were used 
for training, the best possible model.  The message from 
this pattern is that a lot of overlap exists between clutter and 
UXO in a linear feature space.  In spite of this, SIG’s 
feature selection approach tended to select features during 
active learning that were important in the best model.  SIG 
is confident that feature selection is appropriate with few 
samples. 
The above comparison is qualitative, comparing the features 
selected during active learning to the features that would be 
important the best model.  A more quantitative comparison 
can be achieved by measure the difference between the 
distributions of posteriors of the feature weights during 
active learning and the distribution of posterior weights for 
the best model.  The features weights are assumed to be 
drawn from a multivariate normal distribution.  The 
difference is between the feature weights during NMAL to the feature weights of the best model 
using Kullback-Leibler (KL) divergence (Figure 11).  If the amount of training data were a 
limiting factor in selecting the best features, then the KL divergence would decrease 
monotonically as the number of training data increased.  This was not the case, however, and 
suggests that feature selection can be done effectively with few training points.  At the very least, 
the type and quality of the training points is more important for feature selection than quantity of 
training points. 
Sensor/Target Model EnhancemeNts Study 
Investigation of the multi-anomaly model for SLO cued sensor data 
An example is shown in Figure 12. There are two anomalies under the ground.  One is a 37mm 
mortar, and the other is clutter. The polarizability curves based on the one anomaly mode are not 
indicative of a UXO. The fit error is quite large (31% relative to the measured data), which 
implies that the extracted features are not usable. With the two-anomaly model, the fit error 
decrease to 8.9%, and the polarizability curves associated with the second and third axes of the 
anomaly reveal a more symmetric anomaly. That is, the extracted features based on two-anomaly 
model look more like a UXO. 
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Figure 12 Polarizabilities of a one anomaly model (left) and two anomaly model (right) as a 
function of time for a 37mm mortar. 

When overlapping signatures are present and detectable, investigate reliability of multi-anomaly model 
inversions for UXO discrimination in SLO data 
The success of UXO discrimination depends on the quality of the classifier and the accuracy of 
the anomalies’ features.  The latter is strongly associated with the data quality and the 
assumptions of the multi-anomaly dipole model.  One of these assumptions is the number of 
anomalies. Selecting the wrong number of anomalies could result in worse features.  
Determining the number of anomalies is a challenging topic in the UXO discrimination 
community. However, multi-sensor detecting system like TEMTADS makes this problem 
solvable. TEMTADS consists of 25 matched transmitter/receiver pairs.  Since the number of 
transmitters and receivers are equal, it is possible to construct a full incident field matrix for each 
time gate and then find the number of anomalies by performing principal component analysis. 
For TEMTADS, the matrix with one specific time gate can be formed as follows 
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where each column represents the received magnetic fields at different receivers due to the 
incident field of one transmitter. Either SVD (singular value decomposition) or eigenvalue 
decomposition can be applied to the above matrix to find the principle components.  The 
principal components of all time gates are then aligned.  Joint diagonalization can be used for 
this purpose. 
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Figure 13 Eigenvalues as a function of time for a 37 mm mortar. 

Figure 13 shows an example of the eigenvalues through time for a single anomaly.  Most 
eigenvalues are very small (less than 2) and there are 3 larger eigenvalues. Based on the dipole 
model, one anomaly is represented by 3 principal axes. Therefore, the 3 eigenvalues in this case 
are associated with one anomaly.   All the other non-significant eigenvalues are due to noises. 
One-anomaly model should be used in this case. 
Two examples are shown in Figures 14 and 15.  They each have two anomalies, and they are 
apparent in the eigenvalues. There are six eigenvalues that are separated from the noise and have 
large magnitudes.  These 6 eigenvalues correspond to 2 anomalies, 3 axes for each. Note that this 
technique is on applicable for sensors with an equal number of transmitters and receivers, 
because an equal number is required to generate the full matrix from which principle components 
are derived. 
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Figure 14 Eigenvalues as a function of time for two-anomaly data (one is 105mm mortar) 

 
Figure 15 Eigenvalues as a function of time for two-anomaly data (one is 37mm mortar) 

Performance evaluation of SIG developed MetalMapper sensor model for SLO discrimination 
SIG has developed a MetalMapper model for discrimination. The unknowns are grouped into 
two parts:  positions of the anomalies and the dipole parameters, which are nonlinear and linear, 
respectively. An efficient, iterative approach is employed to obtain all the parameters. The 
extracted polarizability parameters were compared with Skip Snyder’s results. Some example 
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                                      (a)                                                                                          (b) 
Figure 16 Comparison of extracted parameters for anomaly 847. (a) Skip's result; (b) SIG's result. 

 
                                         (a)                                                                                         (b) 
Figure 17 Comparison of extracted parameters for anomaly 956. (a) Skip's result; (b) SIG's result. 

 
                                        (a)                                                                                     (b) 
Figure 18 Comparison of extracted parameters for anomaly 895. (a) Skip's result; (b) SIG's result. 
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Conclusions and Implications for Future Research/Implementation 
The conclusions drawn from the follow-on analysis are summarized with respect to the 
objectives of the study 
Performance Analysis and Technical Approach Validation 
While PNBC had fewer unnecessary digs to capture the last UXO in select situations, the rate at 
which UXO were captured relative to the number of unnecessary digs was similar between SBC 
and PNBC.  This suggests that in select cases, where a difficult UXO is connected to other UXO 
by neighboring observations (in feature space), PNBC will outperform SBC.  Both PNBC and 
SBC are robust to changes in their user-defined parameters.  Finally, active learning can capture 
UXO that are difficult to discriminate in cases where their responses are different from clutter, 
even if the response is not similar to the UXO training data. 
Active Learning Follow-on Analysis 
In general, NMAL should be very efficient at capturing outlier UXO compared to random 
sampling. For the specific difficult anomalies at SLO, however, active learning did not decrease 
the total number of unnecessary digs to acquire the last UXO.  Including a multi-anomaly dipole 
model in the classification would increase separation between the UXO and clutter responses.  
The type of NMAL used for outlier detection is dependent upon whether training the classifier is 
a simultaneous objective or not.  NMAL without the classifier could be performed after all the 
expected UXO are dug as a means of quantifying for stakeholders the degree to which the feature 
space has been covered by the sampling. 
Training Data Adequacy 
The type and quality of the training points is more important for feature selection than quantity 
of training points.  Using NMAL to acquire training points increases their adequacy for feature 
selection. 
Sensor/Target Model Enhancements 
The features extracted using SIGs inversion model are not significantly different from Skip 
Snyder’s features. 
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