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Executive Summary 
Signal Innovations Group, Inc. (SIG) has previously demonstrated the effectiveness of site-
specific statistical learning for smartly selecting labeled training data to maximize target 
discrimination. This report details the application of the SIG statistical learning approach to 
unexploded ordnance (UXO) discrimination for Camp Butner, North Carolina.  This technology 
has been developed and validated under previous SERDP/ESTCP efforts by SIG and Duke 
University.  Specific core technologies were used in this discrimination.  These technologies fall 
broadly into the four analysis categories: the sensor/target model, feature selection, classification, 
and active label selection.  Feature selection was performed using the Bayesian Elastic Net 
which has the benefit of retaining correlated and informative features for classification.  
Classification was performed using two approaches: one a linear semi-supervised Bayesian 
classifier, and a non-linear semi-supervised Bayesian classifier.  
The objectives of the study were to maximize correct classification of UXO and non-UXO, 
specify a no-dig threshold, and minimize the number of anomalies that could not be analyze.  
Most of the UXO items were detected and, generally, a substantial number of non-UXO were 
left unexcavated. Usable features were extracted for 98% of the anomalies.  Feature selection 
significantly improved the performance of the classifiers.  The non-linear classifier outperformed 
the linear classifier.  Both linear and non-linear classifiers would have left more than 75% of the 
clutter in the ground.  The stopping point for both classifiers left UXO in the ground, however.  
Two of these anomalies could have been captured earlier by selecting additional features. The 
goal of the SIG discrimination process is to provide a significant degree of automation for UXO 
discrimination problems.  This study validated the robustness of key SIG technologies for 
target/sensor models, feature selection, classification, and active learning.  These technologies 
are broadly applicable, and scalable to production level UXO remediation. 
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1. Introduction 
1.1. Background 
Signal Innovations Group, Inc. (SIG) has previously demonstrated the effectiveness of site-
specific statistical learning for smartly selecting labeled training data to maximize target 
discrimination. This report details the application of the SIG statistical learning approach to 
UXO discrimination for Camp Butner, North Carolina.  This technology has been developed and 
validated under previous SERDP efforts by SIG and Duke University. 
Many current analysis approaches rely on expert scientists to make educated decisions at 
multiple points in the discrimination analysis process. This situation is not scalable, transferable, 
or cost effective. The SIG approach standardizes the options and creates a documented process 
flow that can be explicitly followed. 
1.2. Objective of the Demonstration 
The main technical objective of the Camp Butner demonstration is to validate and substantially 
automate the SIG learning process using next-generation electromagnetic induction (EMI) sensor 
data for discriminating targets-of-interest.  All elements of human interpretation and intuition are 
being incrementally constrained or removed from the process, resulting in an automated process, 
where all algorithm parameters and thresholds will either be determined by specified site 
parameters (i.e., expected or inferred munitions types) or by data-driven inferences (i.e., cross-
validated operating threshold).  SIG applied and matured each of the three key process phases 
that constitutes the SIG statistical learning approach to UXO discrimination - called the “SIG 
Isolate” process.  The three phases of Isolate include: Phase I - feature extraction, Phase II – site 
learning, and Phase III – excavation.  Each of the phases is described in detail below 
2. Technology 
SIG applied the Isolate discrimination process in the Camp Butner demonstration for the 
TEMTADS sensor.  The SIG Isolate process involves the following key technologies including: 
Bayesian feature selection, semi-supervised classifier training, and non-myopic active selection 
of labeled data. These methods are described briefly in the following subsections. 
2.1. Technology Description 
The SIG Isolate process laid out in [5] can be summarized in the following ‘recipe’ (Figure 1):  

• Data Conditioning - First, raw, unlabeled anomaly data are received.   
• Subspace Denoising - The anomaly data is denoised to ensure robust performance for 

discriminating late time-gate features.   
• Feature Extraction - A robust multi-anomaly dipole model is fitted to the data.  The 

polarizability parameters from this fitting become the set from which features are drawn for 
classifier training.  In addition to the time-domain polarizabilities, a set of 9 ‘rate’ features were 
calculated.  These features were the calculated by fitting the time-domain polarizabilities of each 
axis to an exponential-decay model: 

𝑝𝑖 = 𝑟1𝑖 + 𝑟2𝑖𝑒
−𝑡
𝑟3𝑖 

where 𝑖 ∈ {𝑥, 𝑦, 𝑧} is the current axis, 𝑝 is the polarizability, 𝑡 is time and {𝑟1, 𝑟2, 𝑟3} are the fitted 
rate parameters.  Though 𝑟1𝑖 is unphysical, it is useful for adjusting for noise at late time gates 
and where odd responses would make the optimization difficult. The optimized values of the rate 
parameters were found using non-linear least squares. 

• Basis Selection - A few of the many possible features are selected based on their physical 
interpretation as they relate to the anomaly, and, using these features, the most informative set of 
anomalies are selected via an information metric to begin classifier training.   
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• Feature Set Augmentation - The feature set is then augmented by adding early, mid and late 
time polarizabilities values.   

• Automated Features Selection - For the now larger feature set, the most relevant set of features 
is selected using BENet.  

• Semi-supervised PNBC Training (STL or MTL) - When the PNBC is trained only using data 
from the current site of interest, it is called Single Task Learning (STL).   When the PNBC is 
trained for multiple sites simultaneously it is called MTL. For the Camp Butner demonstration 
only STL was used. 

• Non-myopic Active Learning - Based on the estimates made with the PNBC classifier, a new set 
of anomalies will be selected for labeling using NMAL.  The goal at this step is to maximize the 
information gain from new labels requested from the set of unlabeled anomalies.  The process is 
repeated as the PNBC classifier adequately learns data manifold.   The stopping criterion for the 
learning process is apparent when the remaining unlabeled data points have approximately equal 
information for improving the classifier.  At which point, labeling any one anomaly is no better 
than any other. 

• Excavation Adapted Threshold Selection - At this point, the highest probability UXO are 
selected for excavation and labels.  The classier continues to be retrained when new labels are 
revealed.  This process continues until the highest probability UXO items excavated are all found 
to be clutter at which point digging stops. 
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Figure 1. Flow diagram of the SIG Isolate process. 
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2.2. Technology Development 
Feature Selection with BENet 
Adaptive learning of a classifier in situ benefits 
from refining the appropriate set of extracted 
features for the targets under test.   This occurs 
because of the ‘curse of dimensionality’ where 
the number of data points required to cover the 
breadth of a features space grows exponentially with the number of features considered.  If the 
amount of training data does not sufficiently sample the feature space, then the learned classifier 
will lack statistical support and class estimate uncertainty is large.  At the San Luis Obispo 
(SLO) demonstration site in particular, feature selection played a key role in classifier 
performance (Figure 2). Bayesian classification models perform feature selection by placing a 
sparseness prior on the inferred feature weights. The Bayesian elastic net (BENet) regression 
model used for feature selection employs a sparseness prior equivalent to a convex combination 
of L1-norm and L2-norm penalties in a least squares optimization formulation [3], [2].  The 
sparseness prior of the BENet model jointly infers the essential subset of relevant features, 
including correlated features, for a given classification task. Rather than encouraging the 
selection of a single feature in a set of correlated important features (like similar approaches such 
as RVM), the BENet model encourages the selection of all correlated important features. By 
performing sparse and grouped feature selection, the BENet algorithm provides a more robust 
approach to feature adaptability and the interpretation of important features, requiring fewer 
training data samples to achieve robust statistical support. 
Semi-Supervised Classification 
Semi-supervised learning is applicable to any sensing problem for which all of the labeled and 
unlabeled data are available at the same time, and therefore, particularly for the current 
demonstration study. In most practical applications (including the recent demonstration at Camp 
SLO), semi-supervised learning has been found to yield superior performance relative to widely 

Figure 2:  A comparison between supervised 
and semi-supervised classifiers for a two 
feature dataset. Labeled data from both 
classes (red and green circles) are shown, 
along with unlabeled data (black dots). The 
supervised classifier is trained on only the 
labeled data and the decision boundary is 
shown (dotted line).  The semi-supervised 
classifier is trained on both the labeled and 
unlabeled data and the decision boundary 
(solid line) makes the two classes linearly 
separable. 

Figure 3:  ROC curves for UXO classifier at SLO 
site with features selection using the BENet 
algorithm (red line) and without feature 
selection (blue line). The number of false 
alarms is lower for the classifier where 
feature selection was used. 
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applied supervised algorithms. Figure 3 depicts the advantage of a semi-supervised approach to 
classification over its supervised counterpart. A classifier trained purely on labeled data (depicted 
as red and green circles) is shown as a purple dashed line and generates classification errors. In 
contrast, a semi-supervised classifier trained on both labeled and unlabeled data will generate 
perfect classification (depicted by the blue line). Note that the context provided by the unlabeled 
data was crucial in improving the classification performance in this case, since the labeled data 
were not representative of the two class distributions. As the number of training samples 
increases, the supervised classifier should approximate the semi-supervised classifier.  Semi-
supervised formulation treats the dataset (labeled and unlabeled) as a set of connected nodes, 
where the affinity 𝑤𝑖𝑗 between any two feature vectors (nodes) 𝒇𝒊 and 𝒇𝑗 is defined in terms of a 
radial basis function [4].  Based on the above formulation, one can design a Markov transition 
matrix 𝑨 =  �𝑎𝑖𝑗�𝑁×𝑁

 that represents the probability of transitioning from node 𝒇𝑖 to 𝒇𝒋. 
Assuming ℒ ⊆ {1,2, … ,𝑁𝐿} represents the set of labeled data indices, the likelihood functional 
can be written as 

({𝑦𝑖, 𝑖 ∈ ℒ}|𝒩(𝒇𝑖), 𝜽) = �𝑝(𝑦𝑖|𝒩(𝒇𝑖), 𝜽) = ��𝑎𝑖𝑗𝑝�𝑦𝑖�𝒇𝑗, 𝜽�
𝑁𝑖

𝑗=1𝑖∈ℒ𝑖∈ℒ

 

where 𝒩(𝒇) defines the neighborhood of 𝒇. Estimation of classifier parameters 𝜽 can be 
achieved by maximizing the log-likelihood via an Expectation-Maximization algorithm [5]. To 
enforce sparseness of 𝜽 (enforcing most of the components of the parameter vector 𝜽 to be zero), 
one may impose a zero- mean Gaussian prior on 𝜽. A zero-mean Gaussian prior with appropriate 
variance can strongly bias the algorithm in choosing parameter weights that are most likely very 
small (close to zero).  The algorithm we have used for this semi-supervised learning is termed a 
parameterized neighborhood-based classifier (PNBC). 
Non-myopic Active Learning (NMAL) 
Given that available training data labels at the beginning of a demonstration are not available and 
that excavations must be performed to reveal training data labels, one may ask in which order 
anomalies should be excavated to maximally improve the performance of the classifier 
algorithm.  One useful criterion is to use the confidence on the estimated identity of the 
anomalies that are yet to be excavated. Specifically, one may ask which unlabeled anomaly label 
would be most informative to improve classifier performance if the associated label could be 
made available. It has been shown [6] that this question can be answered in a quantitative 
information-theoretic manner. 
For active label selection, posterior distribution of the classifier is approximated as a Gaussian 
distribution centered on the maximum a posteriori estimate. The uncertainty of the classifier is 
quantified in terms of the posterior precision matrix. The objective of NMAL is to choose a 
feature vector for labeling that maximizes the mutual information (𝐼) between the classifier 𝜽 and 
the new data point to be labeled. The mutual information can be quantified as the expected 
decrease of the entropy of 𝜽 after new sample 𝒇𝑖∗ and its label 𝑦𝑖∗ are observed. 

𝐼 =
1
2

log
|𝐻′|
|𝐻| =

1
2

log{1 + 𝑝(𝑦𝑖∗|𝒇𝑖∗, 𝜽) × [1 − 𝑝(𝑦𝑖∗|𝒇𝑖∗, 𝜽)]𝒇𝑖∗𝑇 𝐻−1𝒇𝑖∗} 

It is important to note that the mutual information 𝐼 is large when 𝑝(𝑦𝑖∗|𝒙𝑖∗, 𝜽) ≈ 0.5. Hence, the 
NMAL prefers to acquire labels on those unlabeled samples for which the current classifier is 
most confused or uncertain. In this fashion the classifier learns quickly by not excavating 
anomalies that reveal redundant information.  The process continues as new labels are revealed 
until the expected information gain for the remaining anomalies is approximately uniformly low. 
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At that point the classifier is adequately trained and target inference on the remaining unlabeled 
anomalies can be reliably performed.  By invoking the principle of submodularity in the 
algorithm optimization, the approach has been adapted to allow for the selection of multiple 
simultaneous labels at one time, making the technique operationally practical. 
3. Performance Objectives 
The Performance objectives of the demonstration are summarized in Table 1.  Specific 
descriptions of each objective follow. 
Table 1. Program Office Performance Objectives for Discrimination Analysis 

Performance 
Objective Metric Data Required Success Criteria Results 

Analysis and Classification Objectives 

Maximize correct 
classification of 
targets of interest 

Number of 
targets-of-interest 
retained. 

• Prioritized 
anomaly lists 

• Scoring reports 
from the IDA 

Approach 
correctly 
classifies all 
targets-of-interest 

Retained 
163 and 164 
targets out 
of 170. 

Maximize correct 
classification of 
non-UXO 

Number of false 
alarms eliminated. 

• Prioritized 
anomaly lists 

• Scoring reports 
from IDA 

Reduction of false 
alarms by > 30% 
while retaining all 
targets of interest 

Reduced 
false alarms 
by 75% with 
all targets 
retained  

Specification of 
no-dig threshold 

Probability of 
correct 
classification and 
number of false 
alarms at 
demonstrator 
operating point. 

• Demonstrator -
specified 
threshold 

• Scoring reports 
from IDA 

Threshold 
specified by the 
demonstrator to 
achieve criteria 
above 

Operating 
point: 
approx. 230 
false alarms 
for both 
methods 

Minimize number 
of anomalies that 
cannot be 
analyzed 

Number of 
anomalies that 
must be classified 
as “Unable to 
Analyze.” 

• Demonstrator 
target parameters 

Reliable target 
parameters can be 
estimated for > 
98% of anomalies 
on each sensor’s 
detection list. 

Approx. 55 
(%2) of 
targets 
labeled 
“can’t 
analyze” 

3.1. Maximize correct classification of targets of interest 
A non-linear and a linear classifier were trained based on training labels requested from the 
program office.  The objective was to predict all remaining UXO using the trained classifiers. 
This is measured by comparing the number of UXO captured from the dig list against the total 
number of UXO in the dataset.  The necessary data are the dig lists and the scoring reports from 
the IDA.  Some UXO were missed, and so the performance objective was evaluated in the 
context of how many additional digs would have been necessary to actually capture all the UXO. 
3.2. Maximize correct classification of non-UXO 
For both classifiers, a secondary objective is to capture all the UXO while keeping much of the 
clutter in the ground.  Success was measured by keeping at least 70% of the clutter in the ground.  
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Since, some UXO were left in the ground given the no-dig threshold, the number of false alarms 
was smaller than it should have been.  This objective was re-evaluated in terms of how many 
false alarms would have been necessary were the digging thresholds set to capture all the UXO. 
3.3. Specification of no-dig threshold 
The objective was to give a reasoned operating point for splitting the dataset into anomalies that 
should be dug and those that should not be dug.  The decision for this objective influenced the 
performance of the values in the first two objectives.  The decision to stop digging was based on 
the separation between the posteriors predicted probabilities of the anomalies not used for 
training.  The selected operating point based on this criterion left UXO in the ground. 
3.4. Minimize the number of anomalies that cannot be analyzed 
The objective was to have a minimal number of anomalies where the dipole inversion model 
gave poor results.  This is a function of the data quality, something that was not controlled in this 
study, and a function of the efficacy of the inversion model.  The decision to place anomalies in 
the ‘can’t analyze’ category was based on the residual error of the least-squares model used for 
the dipole inversion.  Anomalies with high residual error were removed.  Success in this 
objective was defined as a creating effective 
parameterizations for >98% of the anomalies.  This 
objective was achieved. 
4. Site Description 
All raw sensor data were provided to SIG directly.  So 
there were no in-field components to the SIG 
discrimination. 
5. Test Design 
All raw sensor data were provided to SIG directly.  So 
there were no in-field components to the SIG 
discrimination. 
6. Data Analysis and Products 
6.1. Parameter Estimates 
SIG performed feature extraction and discrimination for 
the Time-domain Electromagnetic Multi-sensor Tower 
Array Detection System (TEMTADS) sensor at Camp 
Butner.   There were 2291 total flags that required a 
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Figure 5. Histograms of fit errors for one (left), two (middle) and three (right) dipole inversion 
results for the Camp Butner TEMTADS sensor. 
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dig/no-dig decision.   The goal of feature extraction is to invert the responses at the receivers and 
estimate the polarizabilities of the measured anomaly along its three axes.  A non-linear least 
square approach was used to find the solutions to this dipole inversion.  The fit-error of the non-
linear least square model gives information about the degree to which the dipole model is 
appropriate for the anomaly (Figure 4).  Generally speaking, the single anomaly model is 
appropriate when fit errors are less than 0.05.  If the one anomaly model fit errors were large, 
then a two-anomaly model was created.  Each anomaly is a triaxial dipole.  Fit errors for the two-
anomaly model are always less than the one anomaly model because the number of parameters is 
larger.  Of the 2291 observations, SIG created a two-dipole inversion for 1464.  If the fit errors 
for the two-anomaly model were also large, then a three-anomaly model was created.  SIG 
created three-anomaly dipole inversions for 320 of the observations. 
6.2. Feature Selection 
Polarizabilities were estimated for 5 time gates along each of the three object axes for a total of 
15 features.  An initial subset of these features was chosen based on prior knowledge obtained 
from the SLO and Sibert demonstrations.  This set included polarizabilties from early and late 
time gates for axis 1 and 3.  This set of features was changed after the initial labels were 
received.  This second round of feature selection was performed using BENet.  The selected 
features were similar to those shown in Figure 5.  This figure highlights the fact that large 
responses along the smallest axis were indicative of UXO, as was the late time response of the 
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features are the log polarizability of the primary secondary axes at the first time-gate.     Test pit 
UXO are also shown. M1 is the primary axis.  M2 is the secondary axis. T1 is the first time gate. 
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primary axis.  Having selected this subset of features, additional discrimination and active 
learning were performed. 
6.3. Training and Classification 
The initial set of 20 requested observations were selected to cover the breadth of feature 
responses in the training dataset ( ).  After initial basis selection, a series of additional Figure 6
training data points were acquired via NMAL.  A total of 65 additional training labels were 
acquired (Figure 7).  Among those 16 were UXO (6 – 37mm, 5 – 105mm, 5 – M48). 
After active learning was complete, two different classifiers were trained.  The first was a linear 
PNBC classifier where the input features were the original features selected by BENet.  The 
second was a nonlinear PNBC classifier.  For this classifier a radial basis kernel function was 
applied to the original features.  The input features to the classifier was, then, a 𝑁1 × 𝑁2 matrix 
where 𝑁1 was all of the data and 𝑁2 were the labeled training points.  The values in each row of 
the kernel were weights to all the labeled training points.  So, for a given observation, a high 
weight would be given to a labeled training point that was close (in feature space) to the focal 
point, and a low weight would be given to a labeled point that was far.  The nonlinear PNBC 
classifier identified two clusters of high probability UXO (Figure 8).  The first was associated 
with the 105mm munitions; the second was associated with the smaller projectiles (M48-Fuzes 
and 37mm projectiles).  37mm projectiles were the most difficult to discriminate and there were 
4, in particular, that proved particularly difficult. 
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6.4. Excavation 

Figure 7. Labeled data at the end of training.  UXO (red) and clutter (blue) training labels are shown 
along with the last round of actively learned labels (pink squares).  Obvious clusters of munitions 
are highlighted. 
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Two dig lists were submitted to the program office, one corresponding to the linear classifier and 
one corresponding to the non-linear classifier.  Both used the same training data, and both 
included approximately 30 anomalies whose features were too difficult to extract.  These were 
labeled, ‘can’t analyze’, and were marked for digging.  Initial dig lists were submitted and the 
program office returned partial receiver operating characteristic (ROC) curves for the linear and 
non-linear classifiers.  Both methods revealed approximately 130 UXO with less than 10 
unnecessary digs, and another 30 UXO with approximately 60 extra digs.  We then retrained the 
models with the additional labels of the dug anomalies from the first list.  Then, a second set of 
lists were submitted that requested a few more digs for each model.  The final ROC curves for 
these classifiers can be seen in Figure 9 and Figure 10.  

Figure 8.  Non-linear PNBC classification boundary along with test and training data.  Contour 
intervals are 0.1 posterior predictioned probability of being UXO. 
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Figure 9. ROC curve for the linear classification of the Camp Butner TEMTADS data 

Figure 10. ROC curve for the non-linear classification of the Camp Butner TEMTADS 
data 
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7. Performance Assessment 
Based on the stopping point (blue dots in Figure 9 and Figure 10), the number of UXO revealed by 
the linear and non-linear approaches were roughly the same: 163 for the linear approach and 164 
for the non-linear approach.  Also, the number of unnecessary digs was roughly the same, 230.  
Both the linear and non-linear approaches left UXO in the ground.  The non-linear model left 
fewer UXO than the linear model.  The bulk of the missed anomalies were 37mm mortars.  This 
is not surprising given the clustering of 37mm mortars with clutter in feature space (Figure 8).  If 
digging continued until the final UXO was dug, then the non-linear classifier would have 
outperformed the linear classifier.  The non-linear classifier would have had 560 clutter, while 
the linear classifier would have dug 625. 
Three of the missed anomalies were shared between the linear and non-linear classifier: IDs 543, 
720, and 1894.  Their polarizabilities are plotted in Figure 11.  All three anomalies share a 
distinguishing characteristic.  Their overall response is lower than a typically UXO.  The 
maximum polarizabilities for most munitions are on the order 10-100 in our inversion model. 
These anomalies all have maximum responses slightly higher than 1.  Anomaly 543 would be 
difficult to discriminate no matter what features or model was used because it does not exhibit a 
standard UXO response, namely, it has low overall magnitude and the transverse axes are not 
symmetric.  Anomalies 720 and 1894 could be discriminated on the basis of symmetry.  The 
symmetry feature was not included in our set of discriminating features. 
7.1. Maximize correct classification of targets of interest 
The linear and non-linear classifications retained 163 and 164 UXO, respectively.  This was the 
only performance object that was missed.  It was missed due to a poorly chosen no-dig threshold.  
Were the stopping point moved to 625 false alarms, both methods would have met all of the 
performance objectives. 
7.2. Maximize correct classification of non-UXO 
If the dig-threshold were chosen correctly, then the reduction of false alarms would have been 
75% for the linear classification and 85% for the non-linear classification.  The no-dig threshold 
set too early, however. So, both classifications reduced the number of false alarms by 90%, but 
left UXO in the ground. 
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Figure 11. Polarizabilities for anomalies that were difficult to discriminate for both the linear and non-
linear models. IDs for each anomaly are shown in the title of the plots. 
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7.3. Specification of no-dig threshold 
The operating point for the no-dig threshold was set at approximately 230 false alarms for both 
the linear and non-linear classifiers.  The decision to stop digging was based on the separation 
between the posteriors predicted probabilities of the anomalies not used for training. 
7.4. Minimize the number of anomalies that cannot be analyzed 
98% of the anomalies had target parameters extracted effectively.  2% had large fit errors for the 
non-linear least squares model used for dipole inversion, were labeled “can’t analyze”, and 
marked for digging. 
8. Cost Assessment 
This section should provide sufficient cost information such that a professional involved in the 
field could reasonably estimate costs for implementation at a given site. In addition, this section 
should provide a discussion of the cost benefit of the technology. The following subsections with 
detailed discussions and examples should be provided. 
8.1. Cost Model 
The cost model is summarized in Table 2. The total cost per anomaly is $21.0.  Each cost 
element is described in subsections below. 

 
Features Inversion 
Feature inversion includes any denoising and data preprocessing.   The input data product here 
are the raw sensor data.  The output are the polarizabilities from the dipole model.  Additional 
quality checks are performed at this stage.  Costs would scale less than linearly with number of 
anomalies, because the time required for quality control is roughly the same regardless of the 
number of anomalies. 
Classifier Training/Testing 
Classifier training and testing encompasses all the data analysis required to move from anomaly 
polarizabilities to a final dig list.  This includes requesting training data from the program office, 
feature selection, active learning, and quality assurance.  Costs scale less than linearly with 
number of anomalies, because the percentage of training data required should decrease as the 
total number of anomalies increases. 

Table 2. Cost Model for the SIG Discrimination at Camp Butner 

Cost Element Data Tracked During Demonstration Estimated Costs  
Feature Inversion Unit: $ per anomaly 

• Time required 
• Personnel required 
• Number of sensors 
• Number of classifier techniques 

11.8 

Classifier 
Training/Testing 

Unit: $ per anomaly 
• Time required 
• Personnel required 
• Number of sensors 
• Number of classifier techniques 

5.5 

Reporting Unit: $ per anomaly 
• Time required 
• Personnel required 
• Number of sensors 
• Number of classifier techniques  

3.7 
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Reporting 
This in includes documentation of all feature inversion, classifier training/testing, and classifier 
performances.  The cost should scale linearly with the sensors and classification techniques used. 
8.2. Cost Drivers 
The purpose of the SIG Isolate discrimination process is to decrease the cost per anomaly and to 
do so in a manner that scales well with production level discrimination.  As the requirement for 
expert intervention and interpretation decreases, the scaling of the cost per anomaly should 
improve. 
8.3. Cost Benefit 
While the SIG Isolate process is not completely automated at this point, increasing automation 
drives the cost per anomaly toward becoming simply a function of computing time required and 
quality assurance checks.  Since analyst time is the greatest cost in the discrimination process, 
automation provides excellent cost benefit for discrimination. 
9. Implementation Issues 
The software for the current SIG Isolate technology is based on MATLAB® and is not freely 
available.  While the software is currently used by the experts who wrote the system, 
transitioning to minimally trained users is a goal of the software development.  Future 
demonstrations will be used to mature this software. 
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11. Appendices 
11.1. Appendix A: Points of Contact 

POINT OF 
CONTACT 

Name 

ORGANIZATION 
Name 

Address 

Phone 
Fax 

E-mail 

Role in 
Project 

Lawrence Carin Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919 660-5270 
919-323-4811 

lcarin@ece.duke.edu 

Principal 
Investigator 

Levi Kennedy Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-3456 
919-287-2578 

lkennedy@siginnovations.com 

Project 
Management 
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Todd Jobe Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-4811 
919-287-2578 

tjobe@siginnovations.com 

Engineer 

Xianyang Zhu Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-4811 
919-287-2578 

xianyang@siginnovations.com 

Engineer 
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