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Executive Summary

With millions of acres of DoD ranges being considered for other uses, unexploded ordnance
continues to pose a significant challenge. The Environmental Security Technology
Certification Program (ESTCP) has demonstrated wide area assessment methods and tools
that can be used to identify and delineate target areas where the likelihood of Munitions
and Explosives of Concern (MEC) is greatest. These delineated areas are then
characterized through 100% geophysical surveys and any geophysical anomalies are
identified and dug up. For heavily used target areas, the number of anomalies identified
can be very large. One of the largest costs during the remediation process is the cost
associated with digging every anomaly.

To reduce the cost of remediation, ESTCP embarked on a program to enhance and
demonstrate technologies for discriminating between MEC and non-MEC buried objects.
For this demonstration at a site located in San Luis Obispo, CA, these discrimination
technologies and classification analysis routines generated a metric which reflects the
degree of belief that the anomalies are Targets Of Interest (TOI). TOI's are defined as MEC
anomalies or anomalies which exhibit MEC properties. These metrics are then used to
determine the anomaly digging order. The metrics are unable to exactly classify each
anomaly as TOI/Not-TOI due to measurement error (including machine noise and
environmental nuisance factors). The objective is to use these metrics in an informed way
to allow early termination of anomaly digging, thereby reducing the overall cost of
remediation while minimizing the likelihood of undug MEC to acceptable levels. Therefore,
analysts are required to identify a “conservative” threshold at which, after digging
anomalies with large metrics, they believe the remaining anomalies are Not-TOI.

PNNL has developed a viable statistically-defensible algorithm, Bayesian Dig Stop (BDS),
that can be used to support early dig stopping recommendations. It allows one to state
with X% confidence that there is no more than a Y% chance that MEC remains on the site.
The methods can be used after an initial set of digs or sequentially as digging proceeds. It
also provides a universal metric to compare the performance of various anomaly
classification algorithms. The main objectives of the Bayesian Dig-Stop methodology are as
follows.

1. Provide justification for decision to stop digging anomalies during the remediation
process

2. Quantify the degree of confidence that few or no Targets of Interest (TOI) remain
undug

3. Account for past discriminating performance of the sensor system using training or
historical data

4. Allow updates to the stop digging decision rule and confidence statements as
digging proceeds



In this report, we document the application of BDS to 25 of the 54 dig-lists produced in the
Camp San Luis Obispo (SLO) demonstration. We furthered the analysis capabilities by
constructing preliminary diagnostics which indicate if the assumptions of the BDS
algorithm are met by the data. The results were mixed: some dig lists yielded reasonable
dig stop criteria (95% confidence that the probability of no remaining TOI is either .95 or
.99) while saving a significant number of anomalies digs and recovering all or almost all
TOI, but this was observed with varying degrees of meeting/violating the assumptions of
BDS. For other dig lists larger confidence levels were achieved but only at the expense of
recovering all anomalies (which was the correct decision). The results are summarized in
Table 1.

All columns use the 95% lower confidence bound
Number of anomalies Proportion of anomalies Number of TOI
undug undug remaining
95% 99% 95% 99% 95% 99%
probability | probability [ probability | probability | probability probability
thatno TOI |thatno TOl| that no TOI |that no TOI |that no TOIl |that no TOI
Sensor/Demonstrator remain remain remain remain remain remain
SIG_MetalMapper_PNBC 928 647 0.65 0.46 0 0
SAIC/UXAnalyze_EM61 Array 292 204 0.22 16 1 0
SAIC/UXAnalyze_EM®61 Cart
No slope correction 604 592 0.47 0.46 1 1
SAIC/UXAnalyze_EM61 Cart
Slope correction 605 582 0.47 0.45 1 1
SAIC/UXAnalyze_ MSEMS 455 445 0.35 0.34 1 1
SIG_MetalMapper RVM 1163 1049 0.82 0.74 7 2
SAIC_TEMTADS_2 Criteria 851 823 0.68 0.64 3 3
SAIC_TEMTADS_3 Criteria 650 547 0.51 0.42 3 3
SAIC_MetalMapper_2Criteria 1070 1052 0.76 0.74 4 3
SAIC_MetalMapper_3Criteria 1060 954 0.75 0.68 3 2
Sky_MetalMapper 1054 993 0.75 0.71 2 2
SIG/UBC_MAG_PNBC 350 205 0.30 0.18 7 2
SIG_EM61 Array_RVM <271 NA <0.24 NA 3 NA
SIG_MAG_PNBC NA NA NA 0 0 0
SIG/UBC_EMG61 Cart_PNBC NA NA NA 0 0 0
SIG/UBC_MAG_RVM NA NA NA 0 0 0
SIG/UBC_MSEMS_PNBC NA NA NA 0 0 0
SIG/UBC_TEMTADS_PNBC <131 NA <0.10 NA 1 NA
SIG/UBC_TEMTADS_RVM <426 NA <0.33 NA 2 NA
SIG_EM61 Array_PNBC 42 NA 0.04 NA 0 NA
SIG_MAG_RVM 35 31 0.027 0.025 1 1/1
SIG_MSEMS_PNBC <204 NA <0.16 NA 0 0/0

Table 1: BDS summary of results as applied to the 25 SLO dig lists. Green highlighting indicates dig lists where
BDS produced large 95% LB on Pr(No TOI Remaining | Data), a significant number of anomaly digs were saved,
and where only 0 or 1 TOI were left unrecovered. Yellow highlights indicate dig lists where a large 95% LB was
produced by BDS, where a significant number of anomaly digs were saved, but where 2 or more TOI were left
unrecovered. Red highlighting indicates dig lists where BDS was unable to produce high confidence that all TOI
were recovered, thus all anomalies had to be dug. White highlighting indicates dig lists where BDS measured high
confidence that all TOI could be recovered at some dig threshold, but where the threshold was so low that almost
all anomalies needed to be recovered.

The MetalMapper system using the SIG PNBC classification algorithm seemed to perform
well and the BDS algorithm suggested that one could stop digging after digging only 35% of
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the anomalies to achieve 95% confidence that the probability of no remaining TOI was at
least 0.95. To achieve 95% confidence that the probability of no remaining TOI is at least
0.99, then digging could be stopped after 54% of the anomalies were dug. The performance
of other sensor/algorithm combinations are summarized in Table 1.

We believe that the BDS methodology fills an important gap in the entire process of
anomaly classification and elimination of unnecessary digs. The unique contributions
outlined above can provide an additional level of rigor and confidence in this process.
However, issues outlined in the Conclusions and Recommendations section relative to its
implementation must be resolved before it will be accepted to accurately characterize
confidence. Recommendations for resolving these issues include:
e Evaluation of model fitting diagnostics for the BDS methodology
e Explore the BDS algorithm’s ability to take advantage of all available data and re-
rank the anomalies after each major dig sequence
e Extend the BDS methodology to work with the multivariate feature space data
rather than with the subjective, information-poor scoring metric.
e Adapt methodology to incorporate performance data on previous sites, given the
possibility of no or limited training data on actual site.
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1 Introduction

In 2009 the Environmental Security Technology Certification Program (ESTCP) sponsored
a demonstration of state-of-the-art sensing technologies and analysis routines to
characterize subsurface anomalies on munitions ranges. The objective of this
demonstration was to explore the anomaly classification performance of the technologies
to distinguish unexploded ordnance (UXO) or any items similar to UXO (targets of interest
[TOI]) from other items. This demonstration was held at the former Camp San Luis Obispo
(SLO) in California. The SLO site is the second such demonstration conducted by ESTCP and
was selected for this study due to the challenging terrain which included hillsides
characteristic of historical mortar targets[2].

Seven different sensing platforms were employed and multiple classifications algorithms
were applied to each sensing platform’s data. All classified anomalies on the site were
eventually dug up to determine the accuracy of each of the evaluated sensors/classification
combinations. The main classification goal of the study was to enable a decision as to which
items can be safely left in the ground (i.e. items which are not suspected to be TOI).

The demonstrators were asked to take the information gained from the sensing
technologies and create a ranked dig list - the rankings indicated which anomalies were
suspected to be clutter (Not-TOI) and hence should not be recovered first during
remediation. In many cases these rankings were scores between 0 and 1, where numbers
closer to one represent a belief that the anomaly is likely clutter. The common practice for
the demonstrators was to select a dig stopping threshold based on the ranking scale metric
- and to recommend digging of all anomalies with a ranking metric less than this threshold.
Each demonstrator’s sensor/classification-efficiency was scored via a receiver operating
characteristic (ROC) curve [2].

In total 54 dig lists, which represented combinations of sensor data collections systems,
data analysis processing approaches, and disparate demonstrators, were scored in the SLO
demonstration. The conclusion drawn from the demonstration was that while classification
of subsurface anomalies on the SLO site was more challenging than at the previous
demonstration site (Camp Siebert [3]), significant classification ability was indeed
demonstrated. Specifically, it was observed that the best performers correctly classified all
or nearly all of the targets of interest while achieving reductions of up to 50% in the
number of non-TOI anomalies recovered [2].

The demonstration and success of these technologies is indeed encouraging and inspires
confidence that they may be applied to munitions range remediation. However, there
remains a lack of methods and tools for ongoing monitoring and adjusting as the digging
proceeds. We have developed a Bayesian digstop (BDS) methodology which provides in-
progress monitoring during the remediation and quantification of the confidence that no
TOI remain on site upon completion of the remediation.



We achieve this by building a discrimination methodology around the ranking statistic and
can incorporate all available information as anomalies are recovered during remediation.
The driver for this work was that, in a real remediation situation, all anomalies are not
recovered so an independent measure of remediation progress and resulting confidence
attained is desirable [1].

This report documents the application of the BDS algorithm to 25 of the 54 dig lists that
were garnered from the SLO demonstration.

2 Bayesian Digstop Methodology

The Bayesian Digstop (BDS) methodology is a statistical algorithm which combines expert
judgment, site history and usage data, and data collected from on site undug anomalies to
monitor and assess UXO remediation progress on munitions testing ranges. The intent of
the algorithm is to provide a quantitative measure of confidence that the remaining undug
anomalies are not TOL TOI’s are defined as UXO or anomalies which exhibit UXO
characteristics [1].

The BDS algorithm is initialized with any available opinions, history, or data regarding site
usage and number of TOI that may be among the undug anomalies. After the initialization
step, site remediation commences and after some time BDS can assess remediation
progress - the desired result being either a measure of confidence that indicates that
remediation thus far has recovered all TOI or an indication that we are not yet confident
that all TOI have been recovered. If the latter, this indicates remediation would continue
and BDS may again assess remediation progress given the new information gained from

digging [1].

We present a flow chart that describes site remediation and monitoring by the BDS
algorithm in Figure 1. The major elements of the BDS algorithm are indicated in the grey
box.
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Figure 1: Flow chart depicting the major components of the BDS algorithm as applied to site remediation.

2.1 BDS Objectives and Use

The main objectives of the Bayesian Dig-Stop methodology are as follows.

1. Provide justification for decision to stop digging anomalies during remediation

process

2. Quantify the degree of confidence that few or no Targets of Interest (TOI) remain

undug

3. Account for past discriminating performance of the sensor/data extraction system
using training or historical data
4. Allow updates to the stop digging decision rule and confidence statements as

digging proceeds

We have achieved these objectives through the development of a rigorous statistical model

which takes advantage of the ranking metric produced by each demonstrator. The ranking
statistic represents the degree of belief that the demonstrator has in each anomaly being
(Not) TOI. We model the ranking statistic from both the training and available site data to

measure the probability that no TOI remain on site at any dig stage. The mathematics of the
algorithm can be found in [1]. The algorithm yields two quantities which are used to assess

remediation progress:

1. The probability that no TOI remain on site conditional on the observed data,
denoted Pr(No-TOI Remain | All dug anomaly information) and

2. A95% lower confidence bound (LB) on the quantity in 1.




Specifically, if we observe a sufficiently large 95% LB on
Pr(No-TOI Remain | All dug anomaly information), we infer that all available information

indicates that there is a low probability of leaving TOI in the ground and we would
conclude a successful site remediation.

2.2 BDS Contributions to the State of the Art

We view the distinguishing characteristics and unique contributions of the BDS algorithm
as follows.

1. Objective statistical confidence support for dig stopping rule - Our methods rely
neither on a single estimate of the probability of TOI remaining on a site nor on a
subjective judgment from an analyst on when to stop digging. They recommend
stopping only after sufficient confidence is demonstrated that the likelihood of UXO
remaining is acceptably small. Thus, when the classification ability of the expert-sensor
system is not good (e.g., magnetometer data alone), then to achieve the confidence
required, the BDS requires most if not all of the anomalies to be dug. However, when
the classification ability is good (e.g., MetalMapper, ESTCP Project MM-0603),
confidence can be achieved with fewer digs. The ability to put the dig-stop decision in the
form of a statistical confidence statement is unique and provides a replicable process that
can be used and understood by non-experts without as much subjectivity. Further, it takes
advantage of the uncertainty in the distribution of TOI metrics through the application of
a statistical model to construct the confidence statement

2. Explicitly accounting for the training classification performance - We carry
forward valuable information about the discrimination potential given the uncertainties
in the metrics for the TOI from the training data. The training data represent the sensor
systems performance on a set of anomalies that are assumed to represent the
population of undug anomalies. Thus, if the classification was mediocre on the training
data set, it will take more site digs to overcome that and achieve an acceptable level of
confidence if this is possible. Whereas, if the classification was excellent during training
with no TOIs misclassified, then that increases our confidence up front and we will not
need as many digs to achieve the confidence levels desired for dig stopping. The BDS
methodology quantifies these issues.

3. Accounting for rarity of UXO - We can specify a prior based on the observed
proportion of TOI on the training data set, on an initial round of semi-random digs from
the site, or on expert opinion. As we proceed through digging, this prior can be updated.
We can control how much weighting that parameter has so as not to give too much
credit for the rarity factor. This parameter may also be used to produce conservative
confidence statements.

4. Standardized method for comparing dig-stopping rules - During past classification
demonstrations, many of the dig stopping rules employed by the performers were
highly subjective and inconsistent across the performers. As it currently stands, the BDS
methodology can be viewed as a “standardization” of the dig stopping decisions made



by disparate demonstrators and sensing systems. The confidence statement can be used
to quantify and compare the different dig stopping rules made by different
demonstrators.

5. Accounts for distribution of all anomalies metrics - instead of using the ranking
statistics and the underlying feature results on an anomaly by anomaly basis, we
examine and model the entire distributions of the anomaly statistics for the TOI and
Not-TOI populations. This enables a comparison of the two populations.

6. Anindependent analysis of the discriminatory ability of the ranking metrics - the
ranking metrics are produced by each demonstrator after physics-based and statistical
analyses of the anomaly data collected by the sensors. The intention of the ranking
metric was to provide field workers with a prioritized ordering of sensor anomalies
which was used as a guide to which anomalies should be recovered first. Since BDS is at
its heart a discrimination approach it also indicates how well the ranking metrics
actually order and prioritize the digging of the anomalies.

3 BDS Application to SLO Data

Of the 54 dig lists that were produced during the SLO demonstration, we have analyzed 25
of them with the BDS algorithm. The sensor system/demonstrators considered in this
report are indicated in Table 2. The names in Table 2 were gleaned from the SLO data base
[2]. In the remainder of this document we will refer to a particular dig list by combining the
names across the rows of Table 2. Since the volume of data for this demonstration was
much greater than the Camp Siebert demonstrations [3], and since this demonstration was
conducted over more difficult terrain, in addition to the BDS analysis we’ve also
implemented simple model diagnostics. The diagnostics produce a quantification of how
well the assumptions upon which BDS is built hold in the data - conclusions made from the
BDS algorithm are considered valid if the modeling assumptions hold. The largest
assumption imposed by the BDS model is that the ranking metrics for both the TOI and
Not-TOI populations can be modeled with a Beta distribution. We will inspect this
assumption through the use of a Beta quantile-quantile (QQ) plot.



Demonstrator/

Feature Extraction Sensor Mode
SIG EM61 Array PNBC
SIG EMG61 Array RVM
SIG MAG PNBC
SIG MAG RVM
SIG MSEMS PNBC
SIG TEMTADS PNBC
SIG/UBC EM61 Array PNBC
SIG/UBC EM61 Array RVM
SIG/UBC EM61 Cart PNBC
SIG/UBC MAG PNBC
SIG/UBC MAG RVM
SIG/UBC MSEMS PNBC
SIG/UBC TEMTADS PNBC
SIG/UBC TEMTADS RVM
SAIC/UXAnalyze EM61 Array
SAIC/UXAnalyze EM61 Cart No Slope Correction
SAIC/UXAnalyze EM61 Cart Slope Correction
SAIC/UXAnalyze MSEMS
SAIC TEMTADS 2 Criteria
SAIC TEMTADS 3 Criteria
SAIC MetalMapper |2 Criteria
SAIC MetalMapper |3 Criteria
Sky Metal Mapper
SIG Metal Mapper [PNBC
SIG MetalMapper [RVM

Table 2: The 25 dig lists considered in this analysis as indicated by Demonstrator, Sensor, and Mode.

As an example of the analysis results, we present a panel of graphics for the
SAIC_MetalMapper_3criteria dig list in Figure 2. We now describe the suite of graphics and
their interpretation. In the top left panel we present a graphic of the BDS performance, as
measured by the Pr(No TOI's Remain | all dug data) (black line) and its 95% lower
confidence bound (red dotted line) as we move the dig threshold through the ranking
statistic (right to left). Thus this graphic indicates that, for the SAIC_MetalMapper_3criteria
dig list, a dig threshold around 0.65 yields large probability that No TOI remain on site with
a large 95% confidence bound. In the top right panel, we present a ROC performance curve
which plots the Proportion of TOI Discovered vs. the Number of Anomalies dug. Indicated
on this plot in the green and red points are the 95% lower bound (0.95 and 0.99
respectively), the dig threshold that achieved these lower bounds (0.68 and 0.60
respectively), and the number of anomalies dug at this threshold. This ROC curve indicates
that 5 and 3 TOI's were not recovered at these dig thresholds respectively. The middle two
plots show the histograms of the ranking metric for all of the TOI and Not-TOI anomalies;
the red curve on each plot indicates the fitted Beta distribution - these plots give an initial
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inspection to how well a Beta distribution can approximate the densities of the ranking
metric. The bottom two plots are the Beta QQ-plots for the TOI and Not-TOI density fits
respectively. These graphics plot the sample quantiles of the ranking metric on the vertical
axis vs. the theoretical quantiles from the fitted Beta distribution on the horizontal axis -
thus enabling an inspection of how well the Beta distribution fits the observed ranking
metrics. If the points fall on the blue dotted line this provides some evidence that the
ranking metric can be approximated by the Beta distribution. The red dotted lines are a
95% confidence interval for the quantiles - if the points fall wholly within these bands then
we can conclude that the Beta fit is adequate. Thus, for the TOI fit, we observe all of the
points on or within the bands - indicated that the Beta fitted to the TOI ranking metrics is
somewhat reasonable. In contrast the points on the Not-TOI QQ-plot deviate from the blue
line and out of the red bands in the middle of the (0,1) range - this calls into question
somewhat the Beta fit, but we note that the deviation is not too severe.

To summarize the story told by this suite of graphics, we observe that, for the SAIC
MetalMapper dig list, BDS would provide high confidence that no TOI remain on site early
in the remediation process (dig threshold of 0.60 on the ranking statistic) saving a
significant number of anomaly digs, however, 3 TOI would be left in the ground. These
results show an interesting phenomenon with the SAIC process. Their techniques do quite
well at discriminating between TOI and scrap. In fact, their method is one of the better
performers in terms of items left in the ground. The three items left in the ground may be
more of a data processing problem instead of an algorithmic problem.
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As another example we present the performance and diagnostic graphics for the SIG-UBC
TEMTADS (RVM) sensor/demonstrator in Figure 3. The BDS Performance curve indicates
that a dig threshold of 0, which translates into digging almost all anomalies, is required to
achieve reasonable confidence that no TOI remain on site. Similar conclusions are also
indicated in the ROC curve. Inspection of the histograms of the TOI and Not-TOI ranking
metric and fitted densities gives an initial impression that the Beta fits are not reasonable.
We do note, however, that Not-TOI ranking statistic is dominated by values close to 0 - an
artifact that is difficult to incorporate into a Beta model. The QQ-plot for the TOI density
indicates reasonable fit of the Beta to the ranking metric distribution. The QQ-plot for the
Not-TOI density indicates some deviation of fit in the early quantiles (due to the majority of
metric values being 0) but the overall fit of the Beta distribution seems to capture the
properties of the ranking metric for the Not-TOI's. The overall story told by the plot is that
application of the BDS model is reasonable for these data. The BDS calculation for this
technology/classification combination requires recovery of all anomalies to produce an
appropriate lower confidence limit on the probability that no TOI remain which indicates
that the site is clean. This conclusion seems to be the correct conclusion given that there
are indeed TOI's whose metric are near 0, thus requiring a low dig threshold to recover
them.

We present the performance and diagnostic graphics for the remaining
sensor/demonstrators in the appendix without discussion.
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3.1 Results Summary

Table 3 presents a summary of the application of BDS to the 25 SLO dig lists; we report
1. A 95% lower confidence bound on the probability that no TOI remain; that would
likely lead to conclusion of digging
2. The number of anomalies dug under the conclusion
3. The number of TOI that remain unrecovered
4. An indication of whether the Beta fits to the TOI and Not-TOI ranking statistics were
reasonable.

The rows highlighted in green indicate sensor/demonstrator’s dig lists where BDS
indicated high confidence that no TOI remain, where a significant number of anomalies
were not recovered, and among those anomalies not recovered either 0 or 1 TOI remained.
Among these the SAIC/UXAnalyze_EM61_Array,
SAIC/UXAnalyze_EM61_Cart_noslopecorrection,
SAIC/UXAnalyze_EM61_Cart_slopecorrection, and SAIC/UXAnalyze_MSEMS
sensor/demonstrators exhibited a dig-stop conclusion which saved a significant number of
anomaly digs with high confidence that no TOI remain. The distributions of the TOI and
Not-TOI ranking metrics were reasonably well characterized by the fitted Beta
distributions, and only 1 TOI was not recovered. We note that the distributions of the
ranking metric for the TOI and Not-TOI anomalies were reasonably well separated- this
enables good discrimination ability. We also note that the single unrecovered TOI for these
sensor/demonstrators did not fit the overall pattern of the ranking metric distribution for
the TOI's; they had a ranking metric near 0 and would have required digging all anomalies
in order to recover them. The SIG_MetalMapper_PNBC and SIG_MetalMapper_RVM sensor
demonstrators resulted in a dig stop conclusion which saved a significant number of digs,
yielded high confidence that no TOI remain, and indeed recovered all TOI anomalies.
However, the diagnostics indicate that the distribution of the TOI and Not-TOI metrics were
not well characterized by the Beta distribution - the reason being that some of the
distribution were bimodal, a characteristic that is not within the ability of the Beta
distribution to model. In practice, this would call into question our “confidence” in the
claims made by the BDS algorithm. We note that the observed “good performance” of BDS
on these two sensor/demonstrators is largely due to the fact that the modes of the TOI and
Not-TOI ranking metric distributions are far from each other.

The rows highlighted in yellow indicate sensor/demonstrator’s dig lists where BDS
indicated high confidence that no TOI remain, where a significant number of anomalies
were not recovered, but where there were 2 or more TOI which remained unrecovered.
Most of the distributions of TOI and Not-TOI ranking metrics were fairly well characterized
by the Beta fit for these demonstrators. As a general observation, many of these dig lists
contained TOIs whose ranking metric was low and well within the high density region of
the Not-TOI distribution - BDS could not detect these TOIs. The results for the
SAIC_MetalMapper_3crit are worth commenting on. The distributions of the TOI and Not-
TOI metrics were well separated, in fact, so much so that the BDS algorithm basically
determined it was finished before removing the last few TOI.
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All columns use the 95% lower confidence bound
Number of anomalies Proportion of anomalies Number of TOI
undug undug remaining
95% 99% 95% 99% 95% 99%
probability | probability | probability | probability | probability |probability
that no TOl |that no TOIl| that no TOI |that no TOI |that no TOI [that no TOI
Sensor/Demonstrator remain remain remain remain remain remain
SIG_MetalMapper_PNBC 928 647 0.65 0.46 (0] 0
SAIC/UXAnalyze_ EMG61 Array 292 204 0.22 16 1 0
SAIC/UXAnalyze_EMG61 Cart
No slope correction 604 592 0.47 0.46 1 1
SAIC/UXAnalyze_EMG61 Cart
Slope correction 605 582 0.47 0.45 1 1
SAIC/UXAnalyze_MSEMS 455 445 0.35 0.34 1 1
SIG_MetalMapper_RVM 1163 1049 0.82 0.74 7 2
SAIC_TEMTADS_2 Criteria 851 823 0.68 0.64 3 3
SAIC_TEMTADS_3 Criteria 650 547 0.51 0.42 3 3
SAIC_MetalMapper_2Criteria 1070 1052 0.76 0.74 4 3
SAIC_MetalMapper_3Criteria 1060 954 0.75 0.68 3 2
Sky_MetalMapper 1054 993 0.75 0.71 2 2
SIG/UBC_MAG_PNBC 350 205 0.30 0.18 7 2
SIG_EM61 Array_RVM <271 NA <0.24 NA 3 NA
SIG_MAG_PNBC NA NA NA 0 0 0
SIG/UBC_EM®61 Cart_PNBC NA NA NA 0 0 0
SIG/UBC_MAG_RVM NA NA NA 0 0 0
SIG/UBC_MSEMS_PNBC NA NA NA 0 0 0
SIG/UBC_TEMTADS_PNBC <131 NA <0.10 NA 1 NA
SIG/UBC_TEMTADS_RVM <426 NA <0.33 NA 2 NA
SIG_EMG61 Array_PNBC 42 NA 0.04 NA 0 NA
SIG_MAG_RVM 35 31 0.027 0.025 1 1/1
SIG_MSEMS_PNBC <204 NA <0.16 NA 0 0/0

Table 3: BDS summary of results as applied to the 25 SLO dig lists. Green highlighting indicates dig lists where
BDS produced large 95% LB on Pr(No TOI Remaining | Data), a significant number of anomaly digs were saved,
and where only 0 or 1 TOI were left unrecovered. Yellow highlights indicate dig lists where a large 95% LB was
produced by BDS, where a significant number of anomaly digs were saved, but where 2 or more TOI were left
unrecovered. Red highlighting indicates dig lists where BDS was unable to produce high confidence that all TOI
were recovered. White highlighting indicates dig lists where BDS measured high confidence that all TOI could be
recovered at some dig threshold, but where the threshold was so low that almost all anomalies needed to be
recovered.

The rows highlighted in white indicate sensor/demonstrator’s dig lists where BDS required
digging almost all anomalies to achieve a high confidence that no TOI remain - all of these
resulted in 0 or 1 remaining TOI in the unrecovered anomalies. These results can be
summarized as follows: first, most of the Beta fits were reasonable for these dig lists,
second, the BDS dig stop decision was correct, meaning that we would have to dig almost
all anomalies based on the ranking statistic to get all TOI's, last, this is due to either poor
separation of the TOI and Not-TOI ranking statistics distributions or very broad TOI
distributions with TOI anomaly scores near 0.
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Last, the rows highlighted in red indicate sensor/demonstrator’s dig lists where BDS was
not able to achieve any confidence that no TOI remain on site - this is with recovering all
anomalies. Generally, these conclusions are the result of the TOI and Not-TOI metric
distributions being almost identical (no discriminatory ability) for these demonstrators -
the conclusion is correct.

To summarize at a high level, regardless of the appropriateness of the Beta fits as indicated
by the diagnostics, the dig lists highlighted in green demonstrate ranking statistics whose
distributions for the TOI and Not-TOI populations were reasonably well behaved and
separated - this indicates that the sensing and classification system which produced these
dig lists may produce reliable conclusions in the future. The dig lists highlighted in yellow
were often plagued by TOI's who were assigned a ranking statistic near 0 - outliers that did
not fall within the distribution of most TOI’s. The dig lists highlighted in red were plagued
by poor discrimination - the TOI and Not-TOI distributions of the ranking statistics were
either identical or the TOI distribution was nested well within the Not-TOI distribution.
Any automated algorithm would find it difficult to discriminate in this setting. Last, the dig
lists highlighted in white can be generally characterized as some discrimination in the
ranking statistic among the TOI and Not-TOI populations, but the TOI distribution often
had large density near 0 which implicated that near all anomalies needed to be recovered.

4 Conclusions and Recommendations

In this body of work we laid the initial foundation to producing on line diagnostics for a
‘real life’ TOI remediation scenario. The initial look into diagnostics as applied to the SLO
dig lists indicate that some of the ranking statistics distribution were not well
characterized by fitted Beta distributions - an observation related to the fact that the SLO
demonstration incorporated much more challenging geography than the previous Siebert
demonstration.

Since the BDS algorithm currently employs the anomaly ranking statistics, the result of
application of the BDS algorithm to the dig lists will, in part, describe how well the ranking
statistics are actually able to discriminate between the TOI and Not-TOI anomalies. Thus,
we were able to ‘rank’ the dig lists in regard to their ability to remediate near all TOI and
save a number of anomaly digs. Table 1 indicates this ranking (by color category). The
quantification of the dig lists ability lies in the 95% LB on Pr(No TOI remain | Data) - this
enables cross comparison of the dig lists.

We note that without the ability to evaluate the dig list performance via a ROC curve, the
BDS performance plot may be produced from data on available dug anomalies. The intent
of the statistical diagnostics is to provide an added level of confidence that BDS is
appropriate for the observed data.

Several issues have been identified and need to be resolved before this BDS methodology is
deemed defensible in general practice and application. It should be noted that these issues
are not peculiar to just the BDS methodology. Any dig-stop decision support approach must
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also deal with these issues. Additional research and evaluation is required to address these
issues. The key issues are listed below followed by proposed research paths to address
them.

Issue 1: Using actual classification results from demonstrators that used site data (Sibert
and SLO), BDS dig stopping rules based on conditional confidence statements have often
resulted in a few TOI that are not dug. Thus, it appears that claims about the stated
confidence of no TOI remaining based on the BDS methodology are not as strong as the data
support. This is in large part due to the fact that the training data sets did not include TOI
that were similar to those that were missed and partly because the feature characterization
may have resulted in a scoring metric that obscured TOI features related to the anomaly.

Recommended Resolution: A major component of the BDS methodology is the initialization
of the algorithm using the training data. It was frequently observed that while the training
data did represent the bulk of the distribution of the TOI anomalies in the ranking statistics,
it often failed to account for a very few TOlIs in the lower tail of the dig set of anomalies. In
real application, there is no available information that such anomalies exist on site. Thus, if
training data will be used in application, adequate care must be taken to elucidate the
character of the entire distribution of the TOI anomalies (this is not a PNNL task).

We have also developed a set of diagnostic tools that elucidate how well the BDS model fit
the data. Inferences (claims and decisions) made under any statistical model are only as
valid and trustable as the model adequately represents the observed data. While it is not
possible to create a general methodology that can be generally applied and models all
possible data scenarios, it is possible to construct and apply a general methodology which
takes advantage of the common characteristics which give rise to the data. If the model fits
the given data well, the confidence statements should be accurate and valid. If the model
does not fit the data well then we should “trust” less the confidence statements. This
goodness of fit information has been presented in Table 2.

Issue 2. The BDS algorithm employs the ranking statistic (likelihood of being TOI) generated
by all classifiers. However, this coarse metric integrates many considerations from the feature
space and significant loss of information may result. This loss of information is one
hypothesized cause of the poorly performing confidence statements as the uncertainty in
fitting features may not be completely represented in the scoring metric. Moreover, there is
little consistency in the development of this scoring metric so significant subjectivity may be
involved.

Recommended Resolution: A path to investigate the loss of resolution hypothesis and
mitigate the subjectivity introduced by the experts is to move the BDS algorithm closer to
the data. It would be good to directly model the anomaly feature data collected by the
sensors. This data characterizes the subsurface anomalies through a number of
electromagnetic measurements. These measurements produce a fingerprint for each
anomaly and the resulting characteristics inform whether each anomaly may be TOI or not.
These are the data that are sometimes subjectively, sometimes rigorously interpreted by
the expert to produce the ranking statistic.
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Since the BDS method may be considered quite general, it is straightforward to
conceptualize how the BDS method can be extended to work in this multivariate feature
space. The working hypothesis is that the multivariate data may provide features which are
useful in discriminating TOIs from Not-TOIs and that these features are currently
“marginalized out” in the BDS method through the use of the ranking statistics.

Issue 3. It is unclear whether seeded training sets that cover the range of possible TOI
configurations will be included for each site investigated. Although the BDS methods can start
with an uninformed prior and update or train the Bayesian priors as digging proceeds, one
should explore how performance data on previous sites can be incorporated.

Recommended Resolution: This is related to issue 1. If it is believed that past data on a
sensing system represents the system performance in a new application, then it may be
rational to compile the past data in the hope of getting a more accurate characterization of
the distribution of TOI rankings on site. If this is a valid approach, then the initialization of
the BDS methodology on a new application will better reflect what is expected to be
encountered on site. By using data from past sensor/algorithm training and site
applications, a more representative set of data would be available to ensure good coverage
of the possible TOI feature space. A library of past sensor/algorithm training and
observational data could be developed and evaluated for consistency across site conditions,
munitions used, and test configurations. The BDS methodology could then be adapted to
incorporate various consistent subsets of data from these historical training and
demonstration exercises to train the Bayesian priors based on the actual site information.
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Figure A 1: SIG EM61 Array (PNBC) BDS fit and diagnostics.

16




BDS Performance

1.0 7
0.8
0.6
0.4
0.2

0.0 - rreree

00 02 04 06 08 10
Dig Threshold (T)

— Estimate
= = 95% Lowver Bound

|

]-rr

Pr(Mo TOl's Remain | all ;)

TOI Fit

3.0
24
20
1.5
1.0

Density

0.3
0.0

1.0

0.g

0.6

0.4

0.z

Sample Quantiles

Ideal Fit
95% Confidence Bands

0o

0.z 0.6 0.3

Theoretical Quantiles

0.4

Density Froportion of TO| Discovered

Sample Quantiles

1.0
0.8
0.6
0.4

0.2
0.0

k3 s th @

0.3

0.6

0.4

0.2

0.0

Performance by Number of Digs

95% LB =1, T =0, Mdug = 1262
T T

T T
256 513 7E9 1028
Mumber of Anomalies Dug

Not-TOI Fit

Ideal Fit
95% Confidence Bands

T
1282

! I ! ! I
0.0 0.2 0.4 0.6 0.3

Theoretical Quantiles

Figure A 2: SIG EM61 Array (RVM) BDS fit and diagnostics.
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Figure A 5: SIG MSEMS (PNBC) BDS fit and diagnostics.
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Figure A 6: SIG TEMTADS (PNBC) BDS fit and diagnostics.
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Figure A 7: SIG-UBC EM61 Array (PNBC) BDS fit and diagnostics.
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Figure A 8: SIG-UBC EM61 Array (RVM) BDS fit and diagnostics.
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Figure A 9: SIG-UBC EM61 Cart (PNBC) BDS fit and diagnostics.
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Figure A 10: SIG-UBC MAG (PNBC) BDS fit and diagnostics.
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Figure A 11: SIG-UBC MAG (RVM) BDS fit and diagnostics.
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Figure A 12: SIG-UBC MSEMS (PNBC) BDS fit and diagnostics.
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Figure A 13: SIG-UBC TEMTADS (PNBC) BDS fit and diagnostics.
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Figure A 14: SAIC UXAnalyze EM61 Array BDS fit and diagnostics.
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Figure A 15: SAIC EM61 Cart (no slope correction) BDS fit and diagnostics.
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Figure A 16: SAIC EM61 Cart (slope corrected) BDS fit and diagnostics.
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Figure A 17: SAIC UXANALYZE MSEMS BDS fit and diagnostics.
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Figure A 18: SAIC EM61 TEMTADS (2 criteria) BDS fit and diagnostics.
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Figure A 19: SAIC EM61 TEMTADS (3 criteria) BDS fit and diagnostics.
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Figure A 20: SAIC Metal Mapper (2 criteria) BDS fit and diagnostics.
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Figure A 21: SKY Metal Mapper BDS fit and diagnostics.
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Figure A 22: SIG Metal Mapper (PNBC) BDS fit and diagnostics.
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Figure A 23: SIG Metal Mapper (RVM) BDS fit and diagnostics.
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PNNL has developed a viable statistically-defensible algorithm, Bayesian Dig Stop (BDS), that could be used to support early dig stopping recommendations.  It allows one to state with X% confidence that there is no more than a Y% chance that MEC remains on the site.  In this report, we document the application of BDS to 25 of the 54 dig-lists produced in the Camp San Luis Obispo (SLO) demonstration.
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