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Abstract

Objectives

The objective of this work was to develop methodologies that will allow the human analyst to
be removed from the processing loop. It has been shown in a number of recent
demonstrations that when the most skilled practitioners process geophysical data, select data
chips for analysis, select features for classification, select one of a suite of classifiers, and
manually tune the classifier boundaries, excellent classification performance can be achieved.
Here, we aim to develop techniques to improve target characterization and reduce classifier
sensitivity to imprecision in the target characterizations, thereby reducing the need for an
expert human analyst.

Technical Approach

The technical approach focuses on two main areas of research: 1) robust automated model
inversion and 2) robust target classification with limited training data. The efficacy of
information-theoretic measures to improve model inversion robustness is investigated.
Specifically, Fisher Information is investigated as a mechanism to select from among multiple
candidate feature sets that all model the measured data similarly well. Multiple instance
learning, a machine learning technique that facilitates learning the features that are indicative
of the class of interest even if those features are not present for every measurement for the
class of interest, is also investigated. With this more sophisticated machine learning approach
to classification, a simpler, and potentially more robust inversion can be implemented.
Classifiers that are robust with limited training data are investigated through sensitivity studies.
Several different classifiers are considered, as well as techniques to modify the training data set
by removing some training data points that may be less informative to the classifier. In
addition, the potential impacts of the cross-validation method are investigated.

Results

The classifier sensitivity studies revealed that the more robust classifiers tended to have
decision surfaces that gradually transition from decision statistics that are strongly indicative of
UXO to decision statistics that are strongly indicative of clutter. These classifiers tended to
produce moderate decision statistics in the vicinity of the UXO clusters, thereby allowing test
UXO that may have features somewhat different from the training UXO to be assigned decision
statistics that are not strongly indicative of clutter. The model inversion investigations revealed
that although information-theoretic approaches do provide some benefit, they are not
necessarily consistent in doing so. Multiple Instance Learning, however, appears to provide a
substantial computational benefit, in that it can attain performance similar to that obtained
with the full model inversion, but with a small fraction of the computation time.



Benefits

Given a performance goal of minimizing Prs at Pp = 1, there are two important aims: 1) ensuring
consistent UXO characterization via features, and 2) ensuring the chosen classifier is insensitive
to UXO target features that may lie somewhat outside the cluster of most UXO features. The
first aim ensures that when UXO are characterized in training, that characterization can be
repeated in testing, even if site conditions vary. The second aim ensures that if, for some
reason, a UXO target’s characterization is not completely consistent with previously observed
UXO, the classifier still produces a decision statistic which allows for the target to be classified
as UXO (i.e., the decision statistic is not strongly indicative of clutter). Both of these aims
reduce risk by improving the quality UXO characterization via features and reducing classifier
sensitivity to the precision of estimated UXO features.



Objective

The objective of the work described here was to develop methodologies that will allow the
human analyst to be removed from the processing loop. It has been shown in a number of
recent demonstrations that when the most skilled practitioners process geophysical data, select
data chips for analysis, select features for classification, select one of a suite of classifiers, and
manually tune the classifier boundaries, excellent classification performance can be achieved.
Generalizing this performance to the entire contractor community will require procedures that
are more automated and standardized, and this is the research direction we pursued in this
effort.

Over the last several years, modern geophysical techniques have been developed that merge
more sophisticated sensors, underlying physical models, statistical signal processing algorithms,
and adaptive training techniques. These new approaches have dramatically reduced false
alarm rates, although for the most part they have been applied to data collected at sites with
relatively benign topology and anomaly densities (e.g.[1, 2, 3]). Current fielded and
demonstrated UXO classification strategies are also constrained by the use of significant human
interaction to hand-select data, computationally inefficient and poorly parameterized model
inversion strategies, and the limited availability of UXO and site-specific clutter data for
supervised training. Additionally, in actual cleanup scenarios there are be a variety of
challenges, driven by physical constraints in the data collection, the presence of native clutter,
and natural UXO placement, all of which will deleteriously impact performance if ignored [4].
Therefore, there are still fundamental research issues that must be addressed under conditions
more representative of actual cleanup scenarios to enable development of automated, field-
ready, and robust UXO classification strategies.

This effort has two basic research thrust areas that are focused on developing a robust data-to-
decision processing architecture that removes the expert human analyst from the loop. The
foci of the research are to: (1) investigate elements necessary for robust model inversion
techniques: alternate objective functions for model inversion and automated information-
theoretic channel selection prior to model inversion; and (2) investigate issues that impact
robustness in classifier design, such as overtraining due to the limited availability of UXO and
clutter data for supervised learning, class membership ambiguity for some training samples,
and techniques to mitigate the potential challenges associated with estimating classifier
performance at the desired performance point of Pp=1. These issues are investigated
primarily using sensor data collected by advanced sensors at the former Camp San Luis Obispo,
CA demonstration, specifically the Geometrics MetalMapper sensor, to determine the benefits
provided by automated, principled, approaches to robust model inversion and classifier design.



Background

There are many areas in the United States and throughout the world that are contaminated or
potentially contaminated with unexploded ordnance. In the United States alone there are 1900
Formerly Used Defense Sites (FUDS) and 130 Base Realignment and Closure (BRAC) installations
that need to be cleared of UXO. Using current technologies, the cost of identifying and
disposing of UXO in the United States is estimated to range up to S500 billion. Site specific
clearance costs vary from $400/acre for surface UXO to $1.4 million/acre for subsurface
UXO [5]. These approaches, however, usually require significant amounts of human analyst
time, and thus those additional costs, which are currently necessary parts of ongoing
demonstrations, are not factored into these numbers. Thus, there is a clear need to effectively
and cost-efficiently remediate UXO contaminated lands using automated procedures, rendering
them safe for their current or intended civilian uses. Development of new UXO detection
technologies with improved data analysis has been identified as a high priority requirement for
over a decade.

Several sensor modalities have been explored for the detection and identification of surface
and buried UXO. These include electromagnetic induction (EMI), magnetometry, radar, and
seismic sensors. These sensors generally experience little difficulty detecting UXO, thus
detection does not create the bottleneck that results in the high cost of remediating sites. The
primary contributor to the costs and time associated with remediating a UXO-contaminated site
is the high false-alarm rate caused by the significant amount of non-UXO clutter and shrapnel
typically found on battlefields and military ranges.

On sites where anomalies are well separated, statistical signal processing algorithms that
exploit recent advances in sensor design and phenomenological modeling have been
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successfully employed and substantial improvements in performance over traditional “mag and
flag” approaches have been demonstrated [1, 2, 6, 7, 8, 9, 10, 11]. Recent results from the
Camp Sibert demonstration clearly demonstrate that good classification can be effected, but to
attain this performance level significant human interaction and a fairly benign demonstration
scenario were required. Results from the JPG-V study indicate performance may not attain
desired goals in actual cleanup scenarios where the controlled conditions of earlier tests (e.g.
JPG-IV) cannot be guaranteed. In the JPG-V study, a decrease in classification performance was
attributed to the unanticipated sensor positional uncertainty and lack of knowledge about the
clutter objects because of limited training data [4]. Such conditions will clearly be present in
many actual cleanup scenarios, although position uncertainty is less of an issue for multi-axis
sensors. Additionally, the classification algorithms need to be effective in highly-cluttered
environments that contain anomalies in close proximity with each other, resulting in
overlapping target and clutter signatures. The statistical signal processing algorithms

developed to date have not been robust under these conditions. Rigorous testing is required
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for validation and algorithms developed to date will most likely require refinement or more
sophisticated approaches to perform well in diverse conditions. Development of a robust UXO
classification system will require a principled approach to optimizing all signal processing
aspects in the system. Classifier design, training methods, and the model inversion process
which produces features for classification and segmentation of the sensor data all need to be
formulated carefully.



Robust Target Classification with Limited Training Data

Classifier Sensitivities Related to the Minimum Pgs at Pp=1 Performance Goal
Commonly, an “average value” performance metric, such as area under the ROC curve (AUC), is
utilized to assess classifier performance. “Average value” performance metrics are often fairly
stable across training/testing data set realizations and typically do not exhibit sensitivity to the
precise location of the transition between Hg (null hypothesis) and H; (alternate hypothesis)
decision regions or the slope of the decision statistic between decision regions. While there is
typically some variation in performance across training/testing data sets, the variability is often
fairly concentrated about a mean performance value. The Py at Pp =1 performance metric,
however, is an “extreme value” performance metric. As such, it may be unstable across
training/testing data set realizations and often may exhibit high sensitivity to the precise
location of the transition between decision regions or the slope of the decision statistic
between decision regions. In addition, performance across training/testing sets may be quite
variable, sometimes spanning nearly the entire range of possible performance values. Clearly,
the choice of operational goal (i.e., maximizing AUC, minimizing Pra at Pp=1, as well as others)
may influence the overall classifier design

Suppose the chosen classifier provides a bounded decision statistic between 0 and 1, with a
decision statistic of 0 indicating strong belief that the object under test belongs to the null
hypothesis (Hp) class and a decision statistic of 1 indicating strong belief that the object under
test belongs to the alternate hypothesis (H;) class. In this application, the null hypothesis
corresponds to the clutter class, and the alternate hypothesis corresponds to the UXO class. A
relevance vector machine (RVM) is one example of a classifier that provides bounded decision
statistics.

Suppose that the classification problem under
i . . . . . Table 1: Parameters defining the Gaussian clusters for
consideration is a binary classification | .. example binary classification problem.

decision using two features, with a known set

H, cluster H; cluster

data consisting of two Gaussian clusters Mean [-2.0 0.0] [00 20]

defined by the parameters in Table 1 is T 1.0 -0.7 10 -0.7
-0.7 1.0 -0.7 1.0

of training data. An example set of training

shown in Figure 1. The blue circles represent

the Hg data and the red squares represent
the H; data. In this example, there is clear separation between the two classes; one can easily
imagine a curve drawn from the upper-left to the lower-right which separates the features
space into Ho and H; regions. In fact, the data shown here are linearly separable, meaning a
straight line can be drawn between the two clusters to separate them.



Binary Classification Problem
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Figure 1: Training data for the example binary decision
classification problem.

Given a set of available training data, such as that shown in Figure 1, the RVM parameters
(optimized for that particular set of training data) can be determined. Figure 2 shows the RVM
decision surface resulting from the example training data displayed in Figure 1. In this image,
the color white represents a decision statistic of 1, the color yellow represents a decision
statistic of 0.5, and the color dark blue represents a decision statistic of 0. There is a dark blue
region corresponding to the Hy cluster (blue circles) and a white region corresponding to the H;
cluster, (red squares) and a thin yellow strip separating the two regions. This decision surface
suggests that the RVM is functioning as desired; it is identifying the locations of the Hy and H;
clusters and provides a nonlinear boundary (the yellow strip) between the two regions.



Binary Classification Problem
RVM Decision Surface for Training Data

X
(Feature 2)

I S R S~ S N S ST -

(Feature 1)

Figure 2: RVM decision surface resulting from the training
data shown in Figure 1 for the example binary decision
classification problem.

The training data is superimposed on the RVM decision surface in Figure 3 to illustrate the
relationship between the data and the decision surface. This figure clearly demonstrates that
the RVM provides perfect separation of the Hyg and H; classes. All the blue (Ho) data points are
located in the blue to green portion of the decision surface and all the red (H;) data points
appear in the orange to white portion of the decision surface. A decision boundary
corresponding to a decision threshold of 3 =0.5 is drawn in Figure 4 (teal line). It follows the
yellow strip separating the blue and red regions in the decision surface and perfectly classifies
the data. The corresponding ROC is displayed in Figure 5, with the operating point for a
decision threshold of 3 = 0.5 denoted by the green asterisk (Pa = 0.0, Pp = 1.0).
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Figure 3: Training data for the example binary decision Figure 4: Decision boundary (B=0.5) perfectly

classification problem superimposed on the resulting separating the training data for the Hy and H, classes.
RVM decision surface.
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Figure 5: ROC for the training data, showing perfect
separation of Hy and H; classes at the threshold 3 = 0.5.

For the desired operational goal of minimizing P at Pp = 1, a slightly lower decision threshold
may be chosen so as to allow for correct detection of H; targets that may fall somewhat outside
the H; decision region inferred from the training data. In this example, the minimum decision
statistic associated with H; targets is approximately 0.55. Choosing a decision threshold of
B =0.45 would allow for a greater margin around Hj, while still perfectly classifying the training



data. The RVM decision surface and decision boundary for a threshold of 3 = 0.45 are shown in
Figure 6. Notice that the decision boundary is moved away from the H; cluster and toward the
Ho cluster, but still closely follows the yellow strip in the decision surface between the Hyp and H;
regions. The ROC and the corresponding operating point for a decision threshold of 3 = 0.45
denoted by a green asterisk (Pra = 0.0, Pp = 1.0) follow in Figure 7. These figures demonstrate
that lowering the decision threshold to 3 = 0.45 moves the decision boundary further away
from the majority of the H; targets, thereby providing a margin of safety for detecting H;
targets, and maintains perfect classification performance for the training data.

Binary Classification Problem Binary Classification Problem
RVM Decision Surface for Training Data ROC for Training Data
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Figure 6: Decision boundary (p =0.45) perfectly Figure 7: ROC for the training data, showing perfect
separating the training data for the Hy and H, classes, and separation of Hy and H; classes at the threshold 3 = 0.45.
providing a greater margin for H,.

In practice, a classifier is developed (designed and trained) using training data, and then put to
practice on separate testing data sets. The data that the classifier operates on in practice,
termed testing data, is not the same data that was used to determine its parameters (the
training data), so the performance in practice may differ from the performance found with the
training data.

A second set of data, representing testing data, was generated according to the parameters in
Table 1. Thus, the training and testing data were generated by exactly the same process. These
testing data are shown in Figure 8 superimposed on the RVM decision surface previously
determined using the training data. Also shown is the decision boundary corresponding to a
decision threshold of 3 =0.45, the decision boundary previously determined to provide a
margin of safety for H; target detection. Even though the training data were generated by
exactly the same process as the testing data, classification performance on the testing data is
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not perfect (Pra=0.02, Pp=0.985); there are 2 Hy data points that fall in the H; decision region
(causing false alarms) and 3 H; data points that fall within the Hy decision region (causing
missed detections). More importantly, detection performance at this decision threshold
(B =0.45) is less than 1. The ROC curve for the testing data is shown in Figure 9, along with the
operating point corresponding to a decision threshold of  =0.45. Although the ROC is still
quite good as measured by the AUC metric, performance is significantly degraded as measured
by the Pra at Pp=1 performance metric; Pra at Pp =1 has increased from Pgy=0.00 for the
testing data to Pgs = 0.585 for the training data.

Binary Classification Problem Binary Classification Problem
RWM Decision Surface for Testing Data ROC for Training Data
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Figure 8: Decision boundary (B=0.45) imperfectly Figure 9: ROC for the training data, showing imperfect
separating testing data for the Hy and H, classes. separation of Hy and H; classes (Pgs = 0.02, P, = 0.985) at
the threshold = 0.45.

The decision boundary corresponding to the decision threshold required to achieve Pp=1,
B =1e-12, is shown in Figure 10. Clearly, this decision threshold leaves many Hy targets outside
the Hp decision region (the interiors of the two circular boundaries drawn on the dark blue
portion of the decision surface), thus producing numerous false alarms. This is reflected in the
operating point on the ROC, shown in Figure 11, where the minimum Pg, for Pp = 1 is 0.585.
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Figure 10: Decision boundary (B =1e-12) required to
correctly find all of the H, targets.
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Figure 11: ROC for the training data, showing
performance (Pgy=0.585,P,=1.0) at the threshold
required to correctly find all of the H, targets (p = 1e-12).

This example illustrates a potential downfall of relying on a small data set to fully characterize

the feature distributions for the Hy and H; classes.

In this example, the training data set

resulted in a classifier and decision boundary that perfectly separated the HO and H1 classes,

but when the same classifier and decision boundary were applied to a testing data set

generated by the same stochastic process, less than perfect performance was achieved. This

example illustrates that to minimize the Py at Pp = 1 performance metric, it will be preferable

to design classifiers such that any UXO targets that are reasonably close to the UXO target

clusters are not assigned very low decision statistics that are highly indicative of clutter.
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Classifiers for Small Training Sets

As demonstrated in the preceding example, classifier performance depends in part on the
similarity of the statistical characterizations of the training and testing data sets. Due to the
limited amount of data available in small training data sets, they may not provide a statistical
characterization of the data that is optimal for a given testing data set or robust across all
possible testing sets. This motivates investigating classifiers which are robust to the
uncertainties inherently associated with characterizing the data using small training data sets.

The data utilized in this study to assess the characteristics of classifiers which make them robust
to small training data sets are MetalMapper features from the San Luis Obispo, California
demonstration study (SLO) provided by Snyder Geophysics. The specific features utilized are
the transverse polarizability [Por = (Poy,*+Po.)/2] and the polarizability ratio [Pog = Pox/Por]. The
feature set was limited to two features to facilitate visualizing the decision surfaces and better
understanding the relationship between the classifier decision surface characteristics and
classifier robustness. A scatter plot of the selected features is shown in Figure 12. The features
for the UXO targets cluster fairly well, though there are a few UXO targets that lie somewhat
outside the main clusters. For example, the UXO target with features (Por,Por) of about (0,-0.7)
is outside the main clusters of UXO features. Due to its distance from the UXO clusters, this
target is an example of a target which is likely to be among the last UXO targets detected,
thereby potentially contributing to a larger number of false alarms before reaching P, =1. The
classifier decision surface determines how many false alarms occur before reaching the final
UXO target. As will be shown in the following sections, a decision surface that quickly
transitions from a high decision statistic in the vicinity of the UXO feature clusters to a low
decision statistic outside those clusters is more likely to result in a high Pra at Pp =1 than a
decision surface that more gradually transitions to a low decision statistic outside the UXO
clusters. The reason for this is a sharper transition to a low decision statistic outside the UXO
clusters results in it being more likely that a UXO target somewhat outside the UXO clusters will
have a very low decision statistic (i.e., a clutter-like decision statistic). In contrast, a more
gradual transition to a low decision statistic outside the UXO feature clusters results in it being
likely that a UXO target near, but outside, the UXO clusters will have a more moderate decision
statistic (i.e., a moderate-value decision statistic not strongly associated with either UXO or
clutter).
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MetalMapper Features from SLO Demonstration
(Features courtesy of Snyder Geophysics)
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Figure 12: Scatter plot of the MetalMapper features from the San Luis Obispo
demonstration study (provided by Snyder Geophysics) utilized in the studies of
classifier robustness. Pqr is the transverse polarizability [Por = (Po,+Po,)/2] and Py
is the polarizability ratio [Pgg = Pg./Potl.

The classifiers considered in this study are the distance likelihood ratio test (DLRT) [12], the
generalized likelihood ratio test with Gaussian mixture models for the distributions (GMM-
GLRT), and the relevance vector machine (RVM) [13, 14].

The DLRT is an approximation to the likelihood ratio test with the required probability density
functions estimated via K-nearest neighbors (KNN) density estimation, and is given by [12]

i(x): log !

nH0 +D[|09(AK<0>)_|°9(AK® )} (1)
Hl
where n, Iis the number of training data points associated with hypothesis H;, D is the

dimensionality of the feature space, and Ao is the distance to the k' neighbor from

(i)
hypothesis H,. Here, the distance A is measured using Euclidean distance. In practice, a

monotonic function of the DLRT,
A'(x)=log (A )-log(Aq ), (2)

is used to calculate the decision statistic for this classifier.
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The GMM-GLRT is an approximation to the likelihood ratio test where the required probability
density functions are represented by Gaussian mixture models. It is given by

N

1 -
Z:/Dn>< 172 exp(_z(x_”n)T an(x_un)j

=T )"z

A(x) =5 i exp(—;(x_ﬂm)T z;l(x—um)j

, (3)
D P X

1
k/2
m=1 (272') |Zm|
where each Gaussian in the mixture model is parameterized by a mean p and a covariance X.

N M
The Gaussians are mixed according to the weights p, where Z p, =1 and me =1. The sets
n=1 =1

of model parameters for each hypothesis, p, X, and p, are estimated from the training data

via expectation-maximization (EM).

The RVM is a kernel-based classifier that provides a non-linear decision boundary [13, 14]. It
selects a (typically small) number of training data points, termed relevant vectors, to be the

locations where the kernels are centered. Each kernel ¢, (x) has an associated weight w,, and

the weighted sum of the kernels produces the decision surface. Given a set of kernels, located
at the relevant vectors (kernel centers), the RVM decision surface is given by

Mg:gmgg) (4)

The techniques considered to improve classifier robustness with small training data sets are
evaluated through simulations based on the aforementioned MetalMapper features from SLO.
The simulations consist of repeated 2-folds cross-validation. This approach results in 536 data
points in each fold (443 clutter targets and 93 UXO targets). The cross-validation approach is
presented pictorially in Figure 13. The 1072 data points are randomly divided into 2 groups (or
folds), ensuring that the clutter and UXO classes are represented proportionally in each group.
One fold is used for training, while the other is used for testing, and vise versa. This process
results in two estimates of performance. The entire process is repeated N times, and the 2N
performance estimates are then used to generate distributions of the performance metrics.
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Figure 13: Pictorial representation of 2-folds cross-validation. The data is randomly divided into 2 groups (or folds). One
fold is used for training, while the other is used for testing, and vise versa. This process results in two estimates of
performance. The entire process is repeated N times to generate distributions of the performance metrics.

Performance is evaluated using the mean Prs at Pp =1, the maximum Py at Pp=1, and the
kernel smoothing density (KSD) estimate of the probability density function (pdf) of Pra at
Po=1. An example classifier performance evaluation is shown in Figure 14. The KSD pdf
estimate of Pra at Pp = 1 is shown in the grey line, with the vertical axis directed to the left. The
maximum Pgs at Pp = 1 is denoted by the blue square, and the mean Prs at Pp =1 is denoted by
the green circle. The goal is to minimize Pga at Pp =1, so lower values of Pry at Pp=1 are
preferred. The maximum Pra at Pp=1 provides a measure of the worst-case scenario; it is
estimated to be the worst (highest) minimum Pgy at Pp=1. The KSD pdf estimate serves to
display the range and distribution of Pgs at Pp =1 values obtained through the cross-validation
procedure. With this, the consistency of classifier performance can also be assessed visually.
For example, notice in the example performance evaluation shown in Figure 14 the distribution
of Pra at Pp =1 is bimodal, with the majority of samples around 0.25 and 1. In this example,
considering only the mean value of P, even concurrently with the standard deviation, would
not reveal the fairly large number of samples of Pgs near 1 at Pp =1, and one could come to
erroneous conclusions regarding the Pgp at Pp =1 performance of this classifier across testing
data sets.
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Figure 14: Example classifier performance evaluation. The KSD pdf estimate of Pg,
at P, = 1 is shown in the grey line (vertical axis directed to the left), the maximum
Pa at Pp = 1 is denoted by the blue square, and the mean P, at P, = 1 is denoted
by the green circle.

Bootstrap Aggregation of Classifiers (Bagging)

Bootstrap aggregation of classifiers (Bagging) is a technique in which a number of classifiers are
developed, each using a bootstrap sample with replacement of the data, and the final classifier
decision statistic is the average of the decision statistics from each of the individual
bootstrapped classifiers. Bagged classifiers tend to bring about consistency in situations where
classifier performance can be highly variable, such as when employing an “extreme value”
performance measure like Pgs at Pp = 1. Thus, bagged classifiers have the potential to improve
consistency of performance when the operational goal is to minimize Pra at Pp = 1.

The development of an example bagged classifier, using the RVM classifier, is shown in Figure
15 and Figure 16. Figure 15 shows four example classifier decision surfaces for different
bootstrap samples of the training data. Notice the variations in the UXO and clutter decision
regions depending on the bootstrap samples selected for training. These example decision
surfaces demonstrate the potential sensitivity of a classifier to the specific data points that are
available for training. All four of these classifiers are then averaged to produce the bagged
classifier decision surface shown in the right panel in Figure 16.
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Figure 15: Example classifier decision surfaces for 4 example bags with an RVM classifier. Notice the variations in the
UXO and clutter decision regions depending on the bootstrap samples selected for training.

The bagged RVM classifier decision surface is compared to the conventional RVM classifier
decision surface in Figure 16. Even with only four bootstrapped classifiers contributing to the
bagged classifier, the softening of the decision boundary (the white strip between the blue and
red regions) is already evident. The conventional RVM decision surface (left) shows a fairly
sharp transition between the clutter and UXO decision regions. In contrast, the bagged RVM
decision surface (right) shows a more gradual transition between the two regions in some
areas, as evidence by the light pink and light blue colors that appear adjacent to the boundary
between the blue (clutter) and red (UXO) regions. With a larger number of bootstrap samples
in the bagged classifier, the transition in the decision statistic between the two decision regions
becomes more gradual in areas where there is some overlap between the features for the two
classes, but remains a sharp transition in the regions where there is good separation between
the two classes.
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Figure 16: Example classifier decision surfaces for an RVM classifier without (left) and with (right) classifier bagging. The
bagged classifier was generated using 4 bags.

For each of the three classifier types considered in this study (DLRT3, GMM-GLRT, and RVM),
bagging the classifier improved performance by reducing the maximum Pgs at Pp = 1 obtained
over all folds. Classifier performance is shown in Figure 17. The GMM-GLRT classifier generally
provides the best performance, and also exhibits the most significant performance
improvement with bagging; the maximum Py at Pp =1 improved from about 0.85 to about
0.48, which is significantly better than the maximum Pgs at Pp =1 of about 0.9 achieved with
the DLRT; and the RVM. Overall, there are not significant differences in the distributions of the
Pea at Pp = 1 performance measure between the unbagged and bagged classifiers, other than a
slight downward shift in the distributions.

It is believed that the bagged GMM-GLRT provides much better performance than other
classifiers because it is approximating an optimal Bayesian solution, under the assumption that
the data for both classes is properly modeled by a Gaussian mixture model. Given that the
GMM is a flexible model capable of modeling a wide-variety of data distributions, the
assumption that it is a good model for the data is likely not a poor assumption. If the likelihood
ratio were formulated with the number of Gaussian mixture components along with their
means and covariances as uncertain parameters, the optimal likelihood ratio (under the
assumption that the Gaussian mixture model is the proper model for the data) would integrate
over the uncertainty in the GMM parameters under each hypothesis (number of mixture
components, and each component’s mean and covariance). This integration can be well-
approximated using Monte Carlo integration, which is a technique in which the integral is well-
approximated by a sum of random samples of the integrand. Often, prior distributions for the
uncertain parameters are assumed, and the integrand is sampled according to the assumed
priors. However, the distributions over the uncertain parameters may also be estimated
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empirically from the data. In this case, each bootstrap sample from the data provides an
empirical estimate of the uncertain random parameters. Developing a classifier based on the
empirical estimates from a single bootstrap sample constitutes randomly sampling the
integrand. Averaging all the classifiers developed from all the bootstrap samples of the data
(which lead to random samples of the integrand) is equivalent to numerically integrating over
the uncertain parameters via Monte Carlo integration with empirical estimates of the priors on
the uncertain parameters. Thus, the bagged GMM-GLRT classifier provides a numerical
estimate of an optimal Bayesian solution under the assumption that a GMM is a proper model
for the data.
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Figure 17: Classifier performance without and with classifier bagging for the DLRT; (top-left), GMM-GLRT (top-right) and
RVM (bottom-center). In each panel, performance without bagging is shown on the left and performance with bagging is
shown on the right.

RVM Bagged RVM

Adaptive Kernel RVM
The RVM classifier typically uses a pre-defined kernel, or set of kernels. The radial basis
function is a common choice of kernel, and has a parameter specifying the kernel width. If the
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feature clusters are larger than the kernel width, then multiple kernels can be used to represent
the kernel. On the other hand, if the feature clusters are smaller than the kernel width, then
even just a single kernel may not represent tightly clustered features very well. This motivates
investigating the utility of an adaptive kernel RVM, where the kernel width is inversely
proportional to the local density of the data. With this approach, a region in which the local
density of the data is low will be represented by a kernel with a large width, and a region in
which the local density of the data is high will be represented by a kernel with a small width.
Adaptive kernel width may allow the RVM to better represent the tightly clustered data
associated with the UXO targets.

Example decision surfaces are shown in Figure 18 for the RVM classifier with a fixed kernel
width (left) and an adaptive kernel width (right). These example decision surfaces show the
RVM with the adaptive kernel width does, in fact, place smaller kernels at the UXO clusters. In
addition, the boundary between the clutter and UXO classes is more clearly defined with the
adaptive kernel RVM than the fixed kernel RVM.

RVM with All Data

Adaptive Kemel RVM with All Data

®  Clutter ®  Clutter

POg

Figure 18: Example RVM classifier decision surfaces with a fixed kernel width (left) and adaptive kernel width (right).

Performance for the fixed kernel and adaptive kernel RVM are shown in Figure 19. The choice
of a fixed or adaptive kernel width does not impact classifier performance. Neither the
maximum nor the mean Pg, at Pp = 1 is affected by the choice of kernel width. In addition, the
KSD pdf estimates of the distributions are also largely unaffected by the choice of kernel width.
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Figure 19: RVM classifier performance a fixed kernel width (left) and adaptive
kernel width (right).
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Techniques to Modify the Training Set

A second line of inquiry into techniques to improve the robustness of classifier trained with
small training data sets is to investigate methods to modify the training set to remove overly
influential or potentially unreliable training data points.

Remove Overly Influential Data Points

In general, influence is the degree to which a data point affects a regression result. In the case
of classifiers, influence is the degree to which a data point affects the resulting classifier
decision surface. Leverage is the potential for the data point to influence the regression result.
Generally, a data point has high leverage if it is in a region where there are no, or few,
additional data points. The concepts of influence and leverage are illustrated in Figure 20 for
the example of linear regression. The true underlying line is shown in the dotted red line. The
noisy data are represented by the open blue circles. The linear regression to the noisy data is
shown in the solid red line. The top-left panel illustrates a data point with high leverage, but
low influence. It is the only data point in the vicinity of x=15 giving it high leverage, but it does
not significantly affect the regression result, meaning it has low influence. The top-right panel
illustrates a data point with high leverage and high influence. In this case, this single data point
significantly alters the regression result, meaning it has high influence. This type of data point is
often referred to as an outlier. The bottom-center panel illustrates a data point with low
leverage and high influence. Here, the highlighted data point is in the vicinity of many other
data points, giving it little leverage. However, it is different enough from the other data points
near x=0 that it alters the regression result in a meaningful way, so it has high influence. This
type of data point is often referred to as an inlier. These examples illustrate the potential for a
single data point with high influence to significantly alter the regression result. Similarly, a
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small number of unreliable data points the training set may have the potential to significantly
affect the resulting classifier decision surface.
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Figure 20: lllustration of the concepts of influence and leverage. Top-left: A data point with high leverage and low

influence. Top-right: A data point with high leverage and high influence. Bottom-center: A data point with low leverage
and high influence.

Example decision surfaces resulting from training an RVM with overly influential training data
points removed are shown in Figure 21. The top-left panel shows the RVM decision surface
with all training data included, as a reference. The top-right panel shows the RVM decision
surface with both influential clutter and UXO training points removed. Removing influential
clutter and UXO data points tends to make the decision surface more decisive — the decision
statistics tend to be either strongly indicative of clutter or strongly indicative of UXO. There are
no moderate decision statistics where the UXO and clutter classes overlap. The bottom-center
panel shows the RVM decision surface when only influential clutter training points are
removed. The approach results in a smooth decision boundary between the two classes, with
the UXO decision region encompassing most of the UXO targets.
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Figure 21: Example RVM decision surfaces with overly influential training data points removed.

ROCs corresponding to the decision surfaces shown in Figure 21 are presented in Figure 22,
along with asterisks at the P where Pp reaches 1. The ROC when all data is utilized is shown in
blue; the ROC when highly influential clutter and UXO are removed is shown in green; and the
ROC when only highly influential clutter is removed in shown in red. Removing both influential
clutter and UXO results in Pra = 1 at Pp =1, which is much higher than the Pgs at Pp =1 when all
the data is retained (about 0.32). Removing only influential clutter data also increases Pga at
Pp =1, to about 0.41, which is worse than retaining all the data, but much better than removing
both influential clutter and influential UXO data points. The ROC curve, however, has generally
lower performance than either retaining all the data or removing both influential clutter and
influential UXO. This occurs because removing the data points that are not near the majority of
the data points in the clusters has the effect of sharpening the decision boundary between the
clutter and UXO classes. This effect is contrary to what has been observed to improve
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performance — softening the transition in the decision surface between the two decision
regions so that targets that are within the regions where the classes overlap are not assigned
decision statistics that are strongly indicative of either class.
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Figure 22: ROCs corresponding to the decision surfaces presented in Figure 21.

Modify Prior Assumptions Regarding Target Class Distributions

The DLRT and GMM-GLRT classifiers both attempt to characterize the distributions of the data
for both the UXO and clutter classes, and the quality of the characterizations impacts the
classifier performance. |If either of those distributions is difficult to characterize, classifier
performance may be adversely impacted. An alternate approach is to develop a classifier based
only on the UXO data, in which the decision statistic is related to proximity to the UXO training
data, or a classifier based only on the clutter data, in which the decision statistic is related to
the distance from the clutter training data. Both of these approaches are considered for the
DLRT and GMM-GLRT classifiers.

Example decision surfaces for the GMM-GLRT are shown in Figure 23 when both clutter and
UXO training data is used (top-left), when only UXO training data is used (top-right), and when
only clutter training data is used (bottom-center). These surfaces illustrate that when all the
data is used, both proximity to UXO and distance from clutter are utilized to form the decision
surface. However, when only UXO data is utilized, the decision surface demonstrates the
decision statistics are related to the proximity to the UXO data. In contrast, when only clutter
data is utilized, it is distance from the clutter data that is related to the decision statistics.
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Figure 23: Example GMM-GLRT decision surfaces using both clutter and UXO training data (top-left), using only UXO
training data (top-right), and using only clutter training data (bottom-center).

Performance for the Pgs at Pp =1 performance measure is shown in Figure 24 for the DLRT;
(left) and the GMM-GLRT (right). The DLRT; shows a dramatic decrease in the maximum Pg, at
Pp =1 when only UXO training data are utilized. In addition, the KSD pdf estimate of Py, at
Pp = 1 shows variation with the data that is utilized for training. The GMM-GLRT, however, has
a fairly consistent maximum Pa at Pp = 1 despite the data that is utilized for training, though
the KSD pdf estimates vary significantly with the choice of training data. These results suggest
that the choice of classifier may influence the choice of training data. Conversely, the
availability of reliable training data may influence the choice of classifier.

26



DLRT, GMM-GLRT

. 4 _!F ~; i
; \ 7 03 SR S
\ J/ l/ F
\ /S /S yd
~ \N// pd
W/ S
n: KSD pdr o
—-—[v!ax

Figure 24: Classifier performance as a function of the training data utilized (UXO and clutter, UXO only, or clutter only)
for the DLRT; classifier (left) and the GMM-GLRT classifier (right).

Performance results for the corresponding bagged classifiers are shown in Figure 25. While
performance for the bagged DLRT; follows similar trends as for the DLRT3 classifier,
performance for the bagged GMM-GLRT classifier is quite different from performance for the
GMM-GLRT classifier. The bagged GMM-GLRT classifier utilizing both UXO and clutter data has
significantly lower Pga at Pp = 1 than the classifier that utilizes only UXO or only clutter data for
training.
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Figure 25: Classifier performance as a function of the training data utilized (UXO and clutter, UXO only, or clutter only)
for the bagged DLRT; classifier (left) and the bagged GMM-GLRT classifier (right).
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Improving Performance Prediction at Pp=1

Cross-validation is a technique commonly employed to obtain non-incestuous performance
estimates from training data. The performance estimates may be affected by the specific cross-
validation approach that is employed. Once again, an “extreme value” performance measure
such as Prs at Pp=1 may exhibit more sensitivity to the cross-validation method than an
“average value” performance measure such as AUC. The difference between considering the
folds individually and in aggregate is depicted in Figure 26. The K folds (K=2 in this illustration)
may be considered individually, in which case K-folds cross-validation yields K performance
estimates, or all the folds may be considered in aggregate which yields a single performance
estimate. The example ROCs shown in Figure 26 illustrate that the ROC is generally fairly
consistent across individual folds as well as when the folds are considered in aggregate. The Pga
at Pp =1 performance measure, denoted by the red asterisk on each of the ROC curves, can
vary significantly across folds.
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Figure 26: Pictorial representation of 2-folds cross-validation. The data is randomly divided into 2 groups (or folds). One
fold is used for training, while the other is used for testing, and vise versa. This process results in two estimates of
performance. The decisions statistics may also be aggregated across folds to generate a single performance estimate.

Cross-validated performance for the Pra at Pp = 1 performance metric are shown in Figure 27
for the bagged DLRT; (top-left), bagged GMM-GLRT (top-right), and the bagged RVM (bottom-
center). Across all three classifiers, the aggregated folds result in a higher estimate of
maximum Pgs at Pp=1. This suggests that considering the folds individually may result in a
somewhat optimistic performance estimate of Pgs at Pp =1, and aggregating the folds may
provide a more realistic estimate of Pra at Pp = 1. This also highlights the potential challenges
associated with predicting performance using the Py at Pp=1 metric, because this
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performance measure is highly influenced by a single data point. When the folds are
considered individually, the most challenging UXO target will be present in only a single fold,
and only that fold will expose the impact of that UXO target on Pga at Pp = 1. When the folds
are considered in aggregate, however, the most challenging UXO target will be present in that
set of decision statistics from which Pga at Pp = 1 is estimated, and its impact will be included in
the performance estimate. It should be noted, however, that the maximum Pgy at Pp=1
estimated across all individual folds is not equal to maximum Pga at Pp =1 estimated in the
aggregate folds.
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Figure 27: Classifier performance comparing individual cross-validation folds and aggregate cross-validation folds for the
bagged DLRT; (top-left), bagged GMM-GLRT (top-right), and bagged RVM (bottom-center).
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Efficient and Robust Model Inversion

Sensor Response Model

A generalized model for the EMI sensor response was developed to support the model
inversion studies of the MetalMapper data collected as part of the SLO demonstration. The
model is modular, in that the sensor’s geometry (sensor coil locations and shapes) and the
target model (i.e., dipole, dipole with BoR assumption) are individual components that are
defined independently. A block diagram of the sensor response model is shown in Figure 28.
First, the primary field at the transmitter is calculated. The primary field is then propagated to
the target. The interaction of the primary field with the target is calculated to determine the
secondary field due to the target. The secondary field is then propagated back to the receiver,
and the receiver response to the secondary field is then calculated.

The transmitter and receiver coils may be modeled using either the Biot-Savart Law or Huygens’
Principle. The Biot-Savart Law represents each coil using piecewise linear segments, and
models the current in the coil as the line integral over currents in the individual segments with
which it is modeled. Huygens’ Principle models the coil as a grid of very small dipoles. When all
the dipoles are considered in aggregate, the currents in the interior cancel, leaving only the
currents around the exterior of the grid to model the current in the coil. The target may be
modeled either as a sum of three magnetic dipoles, or as a sum of two magnetic dipoles (the
BoR assumption). The models for the transmit coil, target, and receive coil are defined
independently, thus facilitating the implementation of models for new sensors. In all cases, the
propagation between the transmitter and target, and target and receiver, is modeled using a
far-field assumption.
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Figure 28: Sensor response model block diagram. The sensor’s transmitter and receiver geometry are defined
independently of the target response model. 1) The primary field at the transmitter is calculated. 2) The primary field is
propagated from the transmitter to the target. 3) The interaction of the incident primary field on the target with the
target is calculated. 4) The resultant secondary field after interaction with the target is propagated back to the receiver.
5) The receiver response to the secondary field is calculated.
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Model Inversion

Target parameters are estimated from the measured data via two approaches: 1) a simple
model in which the sensor geometry is not taken into consideration, and 2) a rigorous model in
which the sensor geometry is taken into consideration.

In the first approach, is it assumed that the response for each channel (Tx-Rx pair) may be
modeled as a weighted sum of decaying exponentials. This model is based on the physics, as
the kernel of the full physics-based dipole model is also a weighted sum of decaying
exponentials, but is less constrained than the full physics-based model as the weights on each
of the decaying exponentials are not explicitly modeled by the target-sensor geometry. The full
physical model, in contrast, also models the weights associated with each of the decaying
exponential terms, with each of these weights being a function of the target-sensor geometry.
These models trade-off greater computational complexity for the potential for greater fidelity
in the target parameters; the simple model may not offer as high fidelity on the target
parameters, but the computational complexity may be several orders of magnitude lower.

In both cases, a numerical optimization (Levenburg-Marquardt) procedure is employed to find
the model parameters that minimize the residual (sum of squared errors) between the modeled
data and the measured data. Many times, the parameter estimation process is sensitive to the
initial conditions selected for the numerical optimization. That is, different initial conditions
often lead to different solutions. The residual at these solutions can be used to select a single,
global, solution. It is not uncommon, however, for multiple solutions to have similarly low
residuals.

To mitigate some of the sensitivity to the initial conditions, the parameters for the simple
model are estimated via a sequential process, in which the estimates found for the model of
order p are used to guide the initial conditions when estimating the parameters for the model
of order p+ 1. The parameters found for the simple model are then used to guide the initial
conditions for inverting the full physical model. The full physical model is inverted under the
assumption that the target may be modeled as a BoR, as well as with that assumption removed.

Classification results after inverting the simple model are shown in Figure 29 and results after
inverting the full model follow in Figure 30. For both models, classification performance is
found with an RVM (blue line) and a bagged GMM-GLRT (green line) classifier using 10-folds
cross-validation, and there are four cases considered. In the top-left, the result of model
inversion with the BoR assumption is shown. The result of model inversion with the BoR
assumption and using goodness-of-fit (GoF) as a feature in addition to the model parameters is
shown in the top-right. The bottom-left and bottom-right show performance when the BoR
assumption is dropped, without (left) and with (right) the GoF as an additional feature.
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Performance with the simple model is comparable to performance with the full model, with a
fraction of the computation complexity (approximately 1/30™ the time to invert the simple
modele compared to the full model). Performance with the simple model tends to be slightly
stronger when the BoR assumption is removed. However, including the GoF as an additional
feature does not offer much benefit, either with or without the BoR assumption in the
inversion.

Decays from Simple Model Inversion
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Figure 29: Classification performance for RVM (blue line) and bagged GMM-GLRT (green line) classifiers with features
(decay rates) derived from inverting the simple model. Top-left: Model inversion assuming the target is a BoR. Top-
right: Model inversion assuming the target is a BoR, and including the GoF parameter as a feature. Bottom-left: Model
inversion without assuming the target is a BoR. Bottom-right: Model inversion without assuming the target is a BoR and
including the GoF parameter as a feature.
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Performance with the full model shows some trends similar to performance with the simple
model. Specifically, the RVM and bagged GMM-GLRT classifiers perform similarly, and including
GoF as an additional feature does not offer much benefit whether the BoR assumption is
employed, or not. In contrast to the simple model, increasing the model order by removing the
BoR assumption does not appear improve performance, and in some cases may degrade it
slightly. Thus, the additional model complexity, and associated increase in computational
complexity, is not providing a commensurate improvement in classification performance.

Resonant Frequencies from Full Model Inversion Resonant Frequencies from Full Model Inversion
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Figure 30: Classification performance for RVM (blue line) and bagged GMM-GLRT (green line) classifiers with features
(resonant frequencies) derived from inverting the full model. Top-left: Model inversion assuming the target is a BoR.
Top-right: Model inversion assuming the target is a BoR, and including the GoF parameter as a feature. Bottom-left:
Model inversion without assuming the target is a BoR. Bottom-right: Model inversion without assuming the target is a
BoR and including the GoF parameter as a feature.
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Information-Theoretic Inversion Augmentation

Fisher Information (Fl) is a measure of the information conveyed about the model by the model
parameters; high Fl indicates the model parameters are highly informative with respect to the
model. In this application, Fl is used to augment the model inversions by guiding the selection
of model parameters from among multiple candidate sets of model parameters with similarly
small residuals.

Fisher Information is a function of the model parameters (including the spatial and temporal
sampling parameters); it does not depend on the measured data. Thus, Fl offers an assessment
of the model parameters that is independent of the measured data. Effectively, Fl acts as a
regularizer that provides a mechanism for consistent selection of model parameter estimates
from among multiple candidates that have similarly low residuals.

For a given set of K independent and identically distributed measurements from an assumed

model m(O) corrupted by Gaussian noise with variance anz, Fl is given by

FIM(6) =% S FIM, (6), (5)

O, k=1

where

00 00

FIMk(e):[am(e)Mam(e)T

To describe Fisher Information, consider the problem of estimating the parameters of a
~(x-b)’

Gaussian pulse, GP(x;b,c)=exp >
C

, when only two measured data points are
available, illustrated in Figure 31. The least squares objective function surface is shown in the
top-left, and demonstrates there are two candidate solutions with similarly low error. The
Gaussian pulses corresponding to those two parameter sets are shown in the bottom-center in
the green and orange curves. (The green curve more closely approximates the true curve from
which the two measured data points were generated.) Clearly, both of these curves fit the
measured data very well. Fisher Information as a function of the mean (b) and variance (c)
parameters is shown in the top-right. (The speckle in the image is due to the numerical
artifacts of calculating the determinant of the matrix.) Here, it can be seen that the parameters
for the first candidate solution (the green curve) have higher Fl, and so those parameters are
more informative. If only the least square error were considered, the second (incorrect)
candidate solution (orange curve) would be selected. When Fisher Information is used to
augment the least squares solution, the first (correct) candidate solution (green curve) is
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selected. This example illustrates that when least squares alone results in multiple candidate
solutions, Fl has the potential to help guide selecting a single solution.
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Figure 31: Example application of Fisher Information to augment least squares model inversion to estimate the
parameters of a Gaussian pulse. Example least square objective function surface (top-left), in which preferred solutions
have smaller sum of errors. Example Fisher Information surface (top-right), in which preferred solutions have higher FI.
Model fits (bottom-center). The green curve more closely approximates the true parameters used to generate the
measured data. Least squares alone selected the orange curve. Least squares augmented with Fl selects the purple
curve.

The full physical model was inverted from multiple initial conditions, and FI was calculated for
the solution returned for each initial condition. The solutions were ranked with respect to their
residual (low to high residual) and their associated FI (high to low FI). The solution with the
lowest sum of ranks was then selected as the single solution. If multiple solutions had identical
sum of ranks, the tie was broken using the lowest residual.

Although Fisher Information has been shown in some instances to have the potential to guide
selection of stable model parameters, in this case it does not consistently show performance
benefits.  Interestingly, including GoF as an additional feature noticeably degraded
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performance. This can be attributed to Fl guiding the selection of solutions that did not
produce the lowest residual. Thus, the residual loses its significance as a measure of how well
the target response resembles UXO. When the residual is the sole determinant of model
parameters, the residual tends to be smaller for UXO than for clutter because UXO are often
generally ellipsoidally shaped, while clutter are not, so the dipole model with three terms tends
to be a better approximation to a UXO response than a clutter response.
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Figure 32: Classification performance for RVM (blue line) and bagged GMM-GLRT (green line) classifiers with features
(resonant frequencies) derived from inverting the full model and applying Fisher Information to guide model parameter
selection. Top-left: Model inversion assuming the target is a BoR. Top-right: Model inversion assuming the target is a
BoR, and including the GoF parameter as a feature. Bottom-left: Model inversion without assuming the target is a BoR.
Bottom-right: Model inversion without assuming the target is a BoR and including the GoF parameter as a feature.
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Multiple Instance Learning

Multiple Instance Learning (MIL) is a machine learning technique that enables automated
learning of the features that are indicative of the H; class from multiple measurements for a
given target, even if the informative features are not present for every measurement for a
target from the H; class. The data organization for MIL is depicted in Figure 33. All the
measurements for a given target, termed “instances” are placed in a “bag.” Each instance
consists of a N-dimensional feature vector. A bag is deemed to belong to the H; class if at least
one instance has features that are indicative of the H; class. The MIL algorithm utilized here is
the adaptive p-posterior mixture model (ppmm) kernel MIL [15].
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Figure 33: Graphical depiction of multiple instance learning. All measurements, termed “instances” for a given target
are placed in a “bag.” Each instance consists of an N-dimensional feature vector.

For the simple model in which parameter estimates are derived from each channel individually,
it is not certain which channels produce parameters that reliably distinguish between UXO and
clutter. Multiple instance learning provides a framework in which data of this type can be
analyzed. As long as at least one channel (instance) produces features that are indicative of
UXO, the data fits within the MIL paradigm. Prior to applying ppmm MIL, the intances were
culled so that only channels that produced valid decay rates (between the lower and upper
bounds of 50 and 40000, respectively) were retained. This process resulted in a varying
number of instances across targets, but at least several instances remained for each target.

Classification performance results for the ppmm MIL algorithm applied to decay rates that are
estimated from each channel individually are shown in Figure 34. Performance with the decay
rates alone is shown on the left, and performance with GoF as an additional features is shown
on the right. For comparison, a baseline energy detector is also shown (black line). The
number of clusters is a parameter that must be chosen. Performance was evaluated for a wide
range of values for the number of clusters (2 to 30), and the one or two values that
simultaneously provided the lowest Pra at Pp = 1 and high AUC are presented. The performance

37



of these classifiers is on par with performance shown for the simple model and full model
inversions. The benefit of this approach is the large reduction in computational complexity.
The total computation time required to obtain these results is about 2% of the time required
for the full model inversion, with the overwhelming majority of the difference in the time
required for model parameter estimation.

Simple Decay Rate Estimation from Individual Channels Simple Decay Rate Estimation from Individual Channels with GoF fe
(ppmm MIL: kMeans clustering, SVM classifier) (ppmm MIL; kMeans clustering, SVYM classifier)
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Figure 34: Classification performance for ppmm MIL with kMeans clustering and an SVM classifier using features (decay
rates) derived from inverting the simple model. Left: Model inversion without assuming the target is a BoR. Right:
Model inversion without assuming the target is a BoR, and including the GoF parameter as a feature.
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Results and Discussion

The two major thrusts of this work, investigating classifier sensitivity with respect to the
minimum Pga at Pp = 1 performance goal and investigating efficient and robust model inversion
have yielded interesting results. The classifier sensitivity studies revealed that some classifiers
are more sensitive at the Pry at Pp =1 operating point than others. Those classifiers that
exhibited the most robust performance tended to be less decisive at the boundary; the decision
surface more gradually transitioned from a high decision statistic strongly indicative of UXO to a
low decision statistic strongly indicative of clutter. The classifiers that showed the most
sensitivity tended to be very decisive at the boundary, with a very sharp transition from a high
(UXO) decision statistic to a low (clutter) decision statistic. The robust classifiers, with the more
gradual boundary, allowed for a greater margin of error in the UXO features for the targets
under test. This manifested itself in lower Pgs at Pp =1 across a large number of simulated non-
incestuous test data sets. The classifier sensitivity studies showed that the choice of classifier
can have a significant impact on Pgs at Pp =1 performance, and considering this sensitivity to
select a classifier that minimizes the maximum Pg, at Pp =1 (i.e., the best, worst-case scenario)
can improve classification performance at Pgs at Pp = 1.

The model inversion investigations suggested that it may be possible to achieve efficient and
robust model inversion. With a machine learning algorithm that is well-suited for the problem
at hand, such as ppmm MIL, it may be possible to overcome lower fidelity in the model
parameter estimates from a simpler model inversion process to achieve strong performance,
and to do so in a much more computationally efficient manner. Improved computational
efficiency may allow, in the future, real-time decisions in the field as cued target interrogations
take place. This immediate feedback could improve the efficiency of site clearance operations
by enabling real-time evaluation of the data quality, thereby reducing the number of targets
denoted as “Can’t Analyze.”

Conclusions and Implications for Future Research
The research has demonstrated the need for and benefits of classifiers which are robust at the
Pea at Pp = 1 performance goal, as well as the potential for efficient and robust model inversion
methods. More importantly, the interplay between the two (classifiers and inversion) has been
demonstrated by showing that a sophisticated machine learning algorithm coupled with a
simpler inversion procedure can produce strong classification results, with a small fraction of
the computation time.

Follow-on research to improve model inversion would be to consider all the objects at a site in
aggregate when inverting the parameters for each anomaly, termed full-site model inversion.
This approach would enable learning from the objects at the site, without necessarily knowing
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the labels (UXO or clutter class) for those objects, via joint inversion and clustering in the
feature space directly from the data, and guided by a priori knowledge gained from any
available training data at this site or inferred from previous sites. We will be requesting a
meeting with Dr. Herbert Nelson to present and discuss preliminary results related to full-site
model inversion. Machine learning techniques, such as multiple instance learning, in which a
more sophisticated learning algorithm and classifier are coupled with a simpler inversion
process are also an interesting avenue for further inquiry. Results obtained at SLO show
promise for this type of approach, and evaluating it in other scenarios could be valuable.
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