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ABSTRACT 
Dense Nonaqueous Phase Liquids [DNAPLs] are prevalent at a large number of sites 

throughout the world. The variable release history and geologic heterogeneity make the spatial 
distribution of DNAPLs in the source zone complex. This causes difficulties in cleanup and can 
contribute to long-term groundwater contamination for decades to centuries. Therefore, the 
spatial distribution, mass, and composition of DNAPLs present in the source zone need to be 
characterized in sufficient detail so that efficient remediation schemes can be designed. Effective 
characterization of DNAPL source zones is also critical for long-term monitoring and 
management decisions that are critical to DoD/DOE/EPA’s environmental mission of efficient 
site cleanup and closure. 

Objectives: The objectives of this project are: 1] to develop algorithms that fuses different 
types of information using a stochastic approach to provide a cost-effective characterization, 
monitoring, and predictive technology for the DNAPL source zone, 2] to conduct laboratory 
experiments to test and verify this proposed technology, and 3] to distribute the results of the 
research through a web-based virtual tomography laboratory to assist scientists, engineers, and 
managers to solve DNAPL contamination problems. 

Technical Approach: We present here the modeling and experimental results of a cost-
effective technology that images DNAPL source zones in 3-D without extensive invasive 
sampling. This new technology based on stochastic methods, assimilates results of hydraulic and 
partitioning tracer tomography surveys to derive the best estimate of the DNAPL distribution and 
its uncertainty.  Specifically, it first analyzes the information derived from hydraulic tomography 
to identify the 3-D heterogeneity in hydraulic conductivity (K) and specific storage (Ss) of the 
aquifer. The knowledge of heterogeneity is then used to design conservative tracer and 
partitioning tracer tomography tests to accurately depict the spatial distribution of DNAPL 
residual saturation (SN

Results: Building on the concept of scan technologies developed in medical sciences and 
geophysics, this effort has developed a subsurface characterization tool comprised of three 
“fused” field methodologies: Hydraulic Tomography (HT), Conservative Tracer Tomography 
(CT), and Partitioning Tracer Tomography (PTT). The results of these methodologies are fused 
via an innovative algorithm that provides an improved, more accurate depiction of subsurface 
heterogeneities – subsequently allowing greater certainty in identifying and treating contaminant 
source zones. Preliminary calculations suggest that the fused tomography technology becomes 
markedly more cost effective over conventional characterization approaches at sites with 
suspected investigation areas larger than 2,500 sq. ft.  The degree of cost savings increases 
dramatically in conjunction with the increasing size of the area being characterized.  While the 
resolution of the heterogeneity patterns are dependent on the density of the monitoring well 
network, the developed algorithm still yields improved estimates of K, S

) in the source zone. 

s, and SN

Benefits: The project will provide a new generation technology that images the three-
dimensional spatial distribution of hydraulic heterogeneity in the subsurface, which allows for 
the improved characterization of DNAPL source zones compared to existing technologies. 
Effective characterization is critical for its efficient remediation and long-term monitoring. The 
proposed technology is superior to traditional characterization techniques as it requires less 
invasive sampling and a far fewer number of boreholes leading to substantial cost savings to 
obtain the same level of accuracy. The cost savings is found to increase in larger and deeper 
DNAPL source zones where drilling becomes very expensive. It is also non-destructive and can 

 in comparison 
to traditional interpretive techniques. A draft deployment protocol is provided. 
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be applied repeatedly [e.g., pre- and post-remediation]. More importantly, it also provides 
uncertainty estimates that can facilitate better decision making. 
 
1. OBJECTIVES: 
 The overall project objectives are: 1] to develop a software/hardware package that fuses 
different types of information using a stochastic approach to provide a cost-effective 
characterization, monitoring, and predictive tool for the DNAPL source zone, 2] to conduct 
laboratory experiments to test and verify this proposed technology, and 3] to distribute the results 
of the research to assist scientists, engineers, and managers to solve DNAPL contamination 
problems. Figure 1.1 is a flow chart that illustrates how the various chapters of this report 
(indicated in numbers in boxes) relate to the various tasks and subtasks. 
 
1.1 TASK 1: ALGORITHM DEVELOPMENT 

The main objective of this task is to develop algorithms for analyzing hydraulic 
tomography [HT] tests, conservative tracer tomography [CTT] tests, partitioning tracer 
tomography [PTT] tests, as well as methods to integrate these different tomography experiments 
to characterize DNAPL source zones. 
 
1.2 TASK 2: LABORATORY EXPERIMENTAL AND NUMERICAL MODELING 
STUDIES 

The main objective of this task is to validate the algorithms developed under task 1 
through experimental studies conducted in synthetic aquifers built within laboratory sandboxes. 

1.3 TASK 3: DEVELOPMENT OF HYDRAULIC AND TRACER TOMOGRAPHY 
ALGORITHMS THAT CONSIDERS THE EFFECTS OF THE UNSATURATED ZONE  
 The current algorithms developed under Task 1 of ER-1365 do not consider the effects of 
the unsaturated zone. The effects of the unsaturated zone could be important in DNAPL source 
zones in shallow unconfined aquifers because of the delayed drainage effect. In this task, we will 
consider the presence of the unsaturated zone in the estimation of the hydraulic parameters and 
DNAPL saturations in the saturated zone, by explicitly building in the unsaturated zone. 
 
1.4 TASK 4: VALIDATION OF ALGORITHMS DEVELOPED IN TASK 3 
 In Task 4, we will validate the algorithms developed in Task 3 by building a new 
sandbox [i.e., UZ/SZ sandbox] with monitoring in both the unsaturated [UZ] and saturated zones 
[SZ] at the University of Waterloo [UW]. To date, hydraulic tomography experiments have been 
completed and a preliminary interpretation of those results is presented in this final report. 
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Figure 1.1: Flow chart showing the tasks, subtasks, and the corresponding sections of this report. 
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2. BACKGROUND: 
Dense Nonaqueous Phase Liquids [DNAPLs] are prevalent at a large number of sites 

throughout the world. The high densities, low interfacial tensions, and low viscosities of 
halogenated solvents can lead to deep DNAPL penetration [Pankow and Cherry, 1996]. In 
porous media, much of the DNAPL mass remains in the groundwater as persistent source zones.  
The variable release history and geologic heterogeneity make the distribution of DNAPL in the 
source zone complex, where DNAPLs exist as residuals, pools of pure phase, or ganglia. Without 
remediation, these source zones can contribute to long-term groundwater contamination for 
decades to centuries. Therefore, the spatial distribution, mass, and composition of DNAPLs 
present in the source zone need to be characterized in great detail so that efficient remediation 
schemes can be designed. 

The technology for characterizing such contamination is still in the early stages of 
development.  Our knowledge of DNAPL dissolution and remediation issues nevertheless has 
matured during the last few years [Khachikian and Harmon, 2000]. Many innovative tracer 
techniques have been introduced for the enhanced characterization of DNAPL source zones [Rao 
et al., 2000].  While these tracer techniques allow for an in situ estimation of volume-averaged 
values of DNAPL saturation, there is an urgent need for the development of a cost-effective 
technology to support field-scale characterization of DNAPL location and strength as a 
dissolving source [Khachikian and Harmon, 2000]. 
 
2.1. DIRECT CHARACTERIZATION TECHNIQUES 

To determine the extent of DNAPLs contamination within groundwater, the most common 
and standard methods are performed with the use of groundwater monitoring wells [Cohen and 
Mercer, 1993; Pankow and Cherry, 1996] and soil sampling [Taylor and Serafini, 1988].  The 
use of fully screened monitoring wells however may only imply the likely presence of DNAPLs 
because ground water contaminant concentrations near regions of DNAPLs are usually less than 
their aqueous solubility.  Furthermore, the usage of fully screened monitoring wells can result in 
errors on orders of magnitude in assessments of groundwater contamination because the 
measurement is integrated over the length of the screened interval.  Multi-level wells may 
eliminate some of the problems. 

Once the presence of high DNAPL concentrations and sediment sorbed contaminants have 
been implicated by monitoring wells, soil contaminant surveys are often performed to determine 
the total level and distribution of contamination. In general, organic contaminants are extracted 
from the soil with organic solvents such as methylene chloride. The concentration of the VOC 
and SVOC present in the soil is then determined with a gas chromatograph. 

With information from the direct sampling, a three-dimensional distribution of 
contaminants can then be determined through geostatistical interpolation techniques, such as 
kriging.  However, applications of the method to real-world problems are limited because the 
requirements for relatively large number of samples [Barcelona and Jaglowski, 1999]. Collection 
of such a large number of invasive samples is often cost-prohibitive and practically impossible. 
 
2.2. INDIRECT CHARACTERIZATION TECHNIQUES  

A variety of techniques including visual inspections of drill cores, soil vapor analysis, 
geophysical surveys, use of radon abundance data, and partitioning tracer tests have been 
developed to characterize the DNAPL source zone. A comprehensive review of DNAPL 
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characterization methods and approaches is provided in Kram et al. [2001] and its cost 
comparisons in Kram et al. [2002]. 

Partitioning tracer tests have been increasingly used as a tool to provide a spatially 
integrated measure of residual DNAPL volume in the flow without causing disturbances to the 
source zone domain [Jin et al., 1995; Nelson and Brusseau, 1996; Annable et al., 1998]. These 
tests are performed through the comparison of the transport behavior of conservative and 
DNAPL partitioning tracers.  Solutions of conservative or non-partitioning tracers such as 
methanol [Annable et al. 1998], bromide [Hayden and Linnemeyer, 1999; Cain et al. 2000], or 
others are injected and flushed through an aquifer to determine the swept volume of an aquifer.  
DNAPL partitioning tracers such as 2,2-dimethyl-3-pentanol or other alcohols are delayed in 
their transport through the aquifer by partitioning into and then out of DNAPL residuals.  If the 
DNAPL partitioning coefficient between the DNAPL and the tracer is known then the saturation 
of DNAPL within the swept region can be determined.  These conventional DNAPL partitioning 
tracer tests are not capable of delineating the three dimensional distribution of DNAPL residuals.  
This can be attributed to the fact that tracer breakthrough curves [BTCs] are collected at a well 
that integrates the arrivals of tracers from all directions.   In addition, the interpretation of BTCs 
assumes homogeneity of the aquifer. Because of these limitations, the conventional partitioning 
tracer tests also are incapable of assessing DNAPL residuals held within less permeable regions 
of aquifers [Nelson et al. 1999]. 

Recently, Rao et al. [2000] and Khachikian and Harmon [2000] provided in-depth 
assessments of current technologies for source characterization and problems. Both have 
concluded that our knowledge of DNAPL dissolution and remediation issues has matured. Many 
innovative tracer techniques have been introduced and demonstrated for the enhanced 
characterization of DNAPL source zones. More importantly, they all emphasized the importance 
of heterogeneity in DNAPL spatial distributions, variability of hydraulic conductivity, moisture 
content, geochemistry, and the relation between hydraulic properties and DNAPL distributions.  
In particular, Khachikian and Harmon [2000] concluded that “inverse modeling efforts aimed at 
exploiting the previous developments should be expanded to support field-scale characterization 
of DNAPL location and strength as a dissolving source.” Therefore, there is an urgent need for 
the development of cost-effective tools that can combine with the inverse algorithm for 
characterizing the hydraulic heterogeneity and spatial distribution of DNAPLs. 
 
2.3. HYDROLOGICAL INVERSION FOR DETECTING HYDRAULIC 
HETEROGENEITY   

Effects of hydraulic heterogeneity on flow and solute transport have been long recognized.  
Traditional approaches for characterizing the heterogeneity rely on the direct measurement of 
hydraulic properties [i.e., saturated hydraulic conductivity, porosity, or specific storage referred 
to as the primary variables or information]. The direct measurement of the properties is a 
difficult, time-consuming and costly task and requires invasive sampling.  Characterization of the 
subsurface in great detail using the direct sampling technology therefore is rarely employed. On 
the other hand, the pressure head, water level, or concentration of tracers [referred to as 
secondary variables or information] is frequently collected from existing wells and this 
information is relatively abundant. Consequently, seeking an inverse method that takes 
advantage of abundant secondary information to estimate hydraulic properties of the aquifer is a 
logical step. 
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Hydrological inversion has been a major focus of groundwater hydrology during the last 
three decades [see Yeh, 1986; Sun, 1994 and McLaughlin and Townley, 1996 for a 
comprehensive review].  In general, the minimum-output-error [MOE] approach or its variation 
with Gauss-Newton's searching algorithm is a popular method. Despite its popularity, MOE is 
limited to identifying only a few zones of heterogeneity, providing images of heterogeneity only 
at a low resolution due to its inherently inefficient computational algorithm [Kitanidis, 1997].  

In recent years, the geostatistics-based inverse technique [cokriging] has received 
increasing attention.  Different from the MOE approach, it produces the first and second 
statistical moments of both primary and secondary variables, representing their most likely 
estimates and their uncertainty, respectively, conditioned on available observations.  Cokriging 
relies on the classical linear predictor theory that considers spatial correlation structures of flow 
processes [such as pressure head and velocity] and the subsurface hydraulic property, and cross-
correlation between the flow processes and the hydraulic property.  In the past few decades, 
many researchers [e.g., Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1984 and 1989; 
Rubin and Dagan, 1987; Gutjahr and Wilson, 1989; Sun and Yeh, 1992; Harvey and Gorelick, 
1995; Yeh et al., 1995 and 1996] have demonstrated its ability to estimate hydraulic 
conductivity, head, velocity, and concentration of pollutants in heterogeneous aquifers. 

The geostatistically-based approach is robust and its success has also been documented 
even for complex unsaturated flow in heterogeneous media.  Yeh and Zhang [1996] developed 
an inverse technique based on cokriging to identify unsaturated hydraulic parameters in 
heterogeneous vadose zones under steady state and non-uniform flow conditions. They showed 
that unsaturated hydraulic parameters in the heterogeneous vadose zone could be identified if 
sufficient information on pressure and water saturation were available. 

Cokriging is useful, but it is a linear predictor.  The relation between primary and 
secondary variables of the subsurface however is highly nonlinear. Therefore, cokriging cannot 
fully exploit available secondary information.  To overcome this limitation, Zhang and Yeh 
[1997] adapted a successive linear estimator technique [SLE] [Yeh et al., 1996] to the vadose 
zone inverse problem. They showed that the new approach could yield more detailed images of 
hydraulic parameters, vital to the prediction of contaminant transport than those produced by 
cokriging. 

Because of the robustness of the SLE approach, Hughson and Yeh [2000] used it to 
develop a three-dimensional, transient flow model with the widely used moisture/pressure and 
unsaturated hydraulic conductivity/pressure relationships described by the van Genuchten-
Mualem formulas.  In addition, an efficient technique was developed to allow soil-water pressure 
and water content data observed at different times to be sequentially included in the inversion. 
This technique eliminates numerical difficulties associated with simultaneous inclusion of a large 
number of data sets. It increases the efficiency of the inverse model such that inverse modeling 
of a three-dimensional, heterogeneous vadose zone with a large number of primary variables 
becomes possible. 
 
2.4. PARTITIONING TRACER INVERSION FOR DETECTING DNAPL 
DISTRIBUTION 

To our knowledge, published work on estimation of DNAPL saturations in groundwater 
applications is limited.  Jin et al. [1995] and Wilson and Mackay [1995] used partitioning tracers 
to estimate the average residual NAPL saturation over the length of the one-dimensional column. 
Sciortino et al. [2000] developed an inverse model to locate DNAPL pools. A recent study by 
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James et al. [1997] developed a stochastic method to estimate spatial distribution of NAPL 
residual content from tracer breakthrough curve moments. 

Extending the work by James et al. [1997], Zhang and Graham [2001] presented a 
distributed-parameter extended Kalman filter for estimating spatially distributed residual 
saturation of NAPL and Darcy flux and for predicting site-specific movement of a partitioning 
tracer plume in a three-dimensional heterogeneous aquifer.  Their results are exciting and the 
algorithm is promising even though the Kalman filter approach has inherent computational 
disadvantages.  As both James et al. [1997] and Zhang and Graham [2001] stated, the Kalman 
filter approach requires significant computational effort and data storage. McLaughlin and 
Townley [1996] further pointed out that “The extended Kalman filter is most useful in 
applications where the number of unknowns is relatively small… Although it has some attractive 
features, we believe that the extended Kalman filter should not be considered a practical inverse 
method until its convergence properties are better understood and it has been tested more 
extensively.”  Despite these issues, using 420 sampling locations [84 multilevel samplers with 5 
samples at five evenly spaced vertical locations] out of a total of 686 elements [98 element in the 
horizontal plane and 7 elements in the vertical] of the simulation domain [see Zhang and 
Graham, 2001] is highly idealized.  The use of such a large number of multilevel samplers is 
practically impossible for most field applications. Furthermore, a direct analysis of core samples 
from such a high-density borehole array might provide an accurate estimate of residual DNAPL 
distribution even without resorting to inverse modeling.  Nevertheless, Zhang and Graham 
[2001] demonstrated that estimation of the residual DNAPL distribution using an inverse 
approach is theoretically feasible and has great potential. 
 
2.5. RESEARCH PLAN 

The above discussion and assessment of current technology for DNAPL source zone 
characterization leads to several facts.  First, partitioning tracers are ideal indicator tracers to 
detect residual DNAPLs [Rao et al, 2000].  Second, the inverse modeling of partitioning tracers 
is possible for delineating residual DNAPL distributions.  However, an inversion that delivers a 
detailed DNAPL distribution requires closely spaced multi-level sampler [MLS] to collect a vast 
amount of secondary information [Sillan et al., 1998].  Such a high-density invasive sampling 
array is cost-prohibitive and practically impossible in a real-world problem.  In addition, the 
inversion of a field-scale problem demands a computationally efficient and effective inversion 
methodology.  Based on these facts, we may therefore conclude that the development of a cost-
effective monitoring technology that does not require high-density invasive samplings and the 
development of effective and efficient inverse algorithms are of great urgency for characterizing 
the DNAPL source zone.  The hydraulic/partitioning tracer tomography [HPTT] and stochastic 
fusion of information proposed here is therefore the approach to meet the need. 
 
2.6 REPORT ORGANIZATION 
 Two main tasks have been proposed in the initial version of the proposal and two 
additional tasks were added later to the project. The report has been organized by grouping the 
studies that have been completed to date under each task. Therefore, chapters 3 – 7 fall under 
Task 1, chapters 8 – 17 under Task 2, chapters 18 and 19 under Task 3, and chapter 20 fall under 
Task 4. Chapter 21 then summarizes the findings and conclusions that we have learned from all 
the studies completed under project ER-1365. 
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3. CHARACTERIZATION OF AQUIFER HETEROGENEITY 
USING TRANSIENT HYDRAULIC TOMOGRAPHY 
 
3.1 INTRODUCTION 
 Detailed spatial distributions of hydraulic parameters are imperative to improve our 
ability to predict water and solute movement in the subsurface [e.g., Yeh, 1992, 1998].  
Traditional aquifer tests like pumping tests and slug tests only yield hydraulic parameters 
integrated over a large volume of geologic media [e.g., Butler and Liu, 1993; Beckie and Harvey, 
2002].  On the other hand, Wu et al. [2005] reported that the classical analysis for aquifer tests 
yields spurious transmissivity estimates and storage coefficient estimates that reflect local 
geology.  For characterizing detailed spatial distributions of hydraulic parameters, a new method, 
hydraulic tomography [Gottlieb and Dietrich, 1995; Renshaw, 1996; Yeh and Liu, 2000; Liu et 
al., 2002; McDermott et al., 2003], which evolved from the CAT [Computerized Axial 
Tomography] scan concept of medical sciences and geophysics, appears to be a viable 
technology.  
 Hydraulic tomography is, in the most simplified terms, a series of cross-well interference 
tests.  In other words, an aquifer is stressed by pumping water from or injecting water into a well, 
and monitoring the aquifer’s response at other wells. A set of stress/response yields an 
independent set of equations. Sequentially switching the pumping or injection location, without 
installing additional wells, results in a large number of aquifer responses caused by stresses at 
different locations and, in turn, a large number of independent sets of equations.  This large 
number of sets of equations makes the inverse problem [i.e., using aquifer stress and response 
relation to estimate the spatial distribution of hydraulic parameters] better posed, and the 
subsequent estimate approaches reality.   

Interpreting data from hydraulic tomography presents a challenge, however.  The 
abundance of data generated during tomography can lead to information overload, and cause 
substantial computational burdens and numerical instabilities [Yeh, 1986, Hughson and Yeh, 
2000].  Moreover, the interpretation can be non-unique.  Yeh and Liu [2000] developed a 
sequential successive linear estimator [SSLE] to overcome these difficulties. The SSLE approach 
eases the computational burdens by sequentially including information obtained from different 
pumping tests; it resolves the non-uniqueness issue by providing the best unbiased conditional 
mean estimate.  That is, it conceptualizes hydraulic parameter fields as spatial stochastic 
processes and seeks their mean distributions conditioned on the information obtained from 
hydraulic tomography, as well as directly measured parameter values [such as from slug tests, or 
core samples].  Using sand box experiments, Liu et al. [2002] demonstrated that the combination 
of hydraulic tomography and SSLE is a propitious, cost-effective technique for delineating 
heterogeneity using a limited number of invasive observations.  The work by Yeh and Liu 
[2000], nonetheless, is limited to steady state flow conditions, which may occur only under 
special field conditions. Because of this restriction, their method ignores transient head data 
before flow reaches steady state conditions.  Transient head data, although influenced by both 
hydraulic conductivity and specific storage, are less likely to be affected by uncertainty in 
boundary conditions.  The development of a new estimation procedure thus becomes essential so 
that all datasets collected during hydraulic tomography surveys can be fully exploited.  

Few researchers have investigated transient hydraulic tomography.  Bohling et al. [2002] 
exploited the steady-shape flow regime of transient flow data to interpret tomographic surveys.  
Under steady-shape conditions at late time of a pumping test before boundary effects take place, 
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the hydraulic gradient changes little with time -- a situation where sensitivity of head to the 
specific storage is small. As a consequence, the steady-shape method is useful for estimating 
hydraulic conductivity but not specific storage.   

Their steady-shape method relies on the classical least-squares optimization method and 
the Levenberg-Marquardt algorithm [Marquardt, 1963] for controlling convergence issues [see 
Nowak and Cirpka, 2004].  This optimization method is known to suffer from non-uniqueness of 
the solutions if the inverse problem is ill posed and regularization [Tikhonov and Arsenin, 1977] 
or prior covariance of parameters [Nowak and Cirpka, 2004] is not used.  The least-squares 
approach is also computationally inefficient if every element in the solution domain [in 
particular, three-dimensional aquifers with multiple, randomly distributed parameters] is to be 
estimated.  This inefficiency augments if the sensitivity matrices required by the optimization are 
not evaluated using an efficient algorithm, such as the adjoint state approach.  

These shortcomings may be the reasons that test cases in Bohling et al. [2002] were 
restricted to unrealistic, perfectly stratified aquifers, where the heterogeneity has no angular 
variations, and specific storage is constant and known a priori.  The assumption of a spatially 
constant and known specific storage value for the entire aquifer makes the inverse problem 
almost the same as the steady hydraulic tomography as explored by Yeh and Liu [2000].  
Perhaps inversion of the transient tomography by Bohling et al. [2002] is less affected by 
unknown in boundary conditions. Nonetheless, for perfectly horizontal layered aquifers, many 
traditional hydraulic test methods, without resorting to hydraulic tomography, can easily estimate 
hydraulic properties of each layer using just one borehole. 

Similar to Vasco et al. [2000], Brauchler et al. [2003] developed a method that uses the 
travel time of a pneumatic pressure pulse to estimate air diffusivity of fractured rocks.  Similar to 
X-ray tomography, their approach relies on the assumption that the pressure pulse travels along a 
straight line or a curve path. Thus, an analytical solution can be derived for the propagation of 
the pressure pulse between a source and a pressure sensor.  Many pairs of sources and sensors 
yield a system of one-dimensional analytical equations. A least-squares based inverse procedure 
developed for seismic tomography can then be applied to the system of equations to estimate the 
diffusivity distribution.   The ray approach avoids complications involved in numerical 
formulation of the three-dimensional forward and inverse problems, but it ignores interaction 
between adjacent ray paths and possible boundary effects.  Consequently, their method requires 
an extensive number of iterations and pairs of source/sensor data to achieve a comparable 
resolution to that achieved from inverting a three-dimensional model.  Vesselinov et al. [2001] 
applied an optimization technique and geostatistics to pneumatic cross-borehole tests in fractured 
rocks.  Because of the baseline of the pneumatic properties is unknown, it is difficult to assess 
the accuracy of their results.  

To our knowledge, few researchers have developed an inverse method for transient 
hydraulic tomography to estimate both hydraulic conductivity and specific storage of aquifers.   
For general groundwater inverse problems other than hydraulic tomography, Sun and Yeh [1992] 
assumed a specific storage field that was homogeneous and known a priori. They then developed 
a stochastic inverse method to estimate the spatial distribution of transmissivity using only 
transient head information.  For transient hydraulic tomography, Vasco et al. [2000] and 
Brauchler et al. [2003] estimated diffusivity, the ratio of hydraulic conductivity to specific 
storage, without any attempt to separate the two parameters.  

In this project, we extended the SSLE developed by Yeh and Liu [2000] to transient 
hydraulic tomography for estimating randomly distributed hydraulic conductivity and specific 
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storage in 3-D aquifers.  This report begins with the derivation of the SSLE for use with transient 
hydraulic heads. We introduce a loop iteration scheme to improve the accuracy of sequential 
usage of head data.  We then verify our new approach by applying it to a synthetic one-
dimensional heterogeneous aquifer.  During this one-dimensional test, temporal variation of 
cross-correlation between transient heads and parameters, as well as temporal correlation of 
transient heads, is investigated. Results of this investigation lead to a better understanding of 
effects of conditioning using head measurements on estimates of hydraulic conductivity and 
specific storage, and an effective sampling strategy, as opposed to developing an entire 
drawdown-time history, for efficient inversion of the transient hydraulic tomography data.  
Finally, the new SSLE is applied to a hypothetical three-dimensional, heterogeneous aquifer to 
demonstrate the robustness of our new approach.  
 
3.2 METHOD 
 
3.2.1 Groundwater Flow in Three-dimensional Saturated Media 
 In the following analysis, we assume that groundwater flow in three-dimensional, 
saturated, heterogeneous, porous media can be described by the following equation: 
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subject to boundary and initial conditions:  
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where in equation [3.1], H is total head [L], x is the spatial coordinate [x = {x1,x2,x3}, [L], and 
x3 represents the vertical coordinate and is positive upward], Q[xp] is the pumping rate [1/T] at 
the location xp, K[x] is the saturated hydraulic conductivity [L/T], and Ss[x]  is the specific 
storage [L-1]. In equation [3.2], H1 is the prescribed total head at Dirichlet  boundary Γ1,  q is the 
specific flux [L/T] at Neumann boundary Γ2, n is a unit vector normal to the union of Γ1 and Γ2, 
and H0

 

 represents the initial total head.   The equations are solved by a 3-D finite element 
approach developed by Srivastava and Yeh [1992] in the following analysis. 

3.2.2 Sequential Successive Linear Estimator [SSLE] 
 The SSLE approach is an extension of the SLE [Successive Linear Estimator] approach 
[Yeh et al., 1996; Yeh and Zhang, 1996; Zhang and Yeh, 1997; Hanna and Yeh, 1998; Vargas-
Guzman and Yeh, 1999, 2002; Hughson and Yeh, 2000].  The SLE approach is essentially 
cokriging [Yeh et al., 1995] -- Bayesian formalism [Kitanidis, 1986] -- that seeks mean 
parameter fields conditioned on available point data as well as geologic and hydrologic 
structures [i.e., spatial covariance functions of parameters and hydraulic heads, and their cross-
covariance functions].  Different from cokriging, SLE uses a linear estimator based on 
differences between observed and simulated hydraulic heads successively to update both 
conditional means and covariances of the estimates such that the nonlinear relation between 
information and parameters is considered.  As a stochastic estimator analogous to the direct 
method of the deterministic approach [Yeh, 1986], SLE is conceptually the same as but 
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methodologically different from the maximum a posterior [McLaughlin and Townley, 1996] and 
the quasi-linear geostatistical inverse approach [Kitanidis, 1995].   
      The SSLE approach relies on the SLE concept to sequentially include data sets and 
update covariances and cross-covariances in the estimation process. The sequential method 
avoids solving huge systems of equations and therefore reduces numerical difficulties. The 
approach has been successfully applied to parameter estimations in variably saturated media 
[e.g., Zhang and Yeh, 1997; Hanna and Yeh, 1998; Hughson and Yeh, 2000], steady hydraulic 
tomography [Yeh and Liu, 2000; Liu et al., 2002], electrical resistivity tomography [Yeh et al., 
2002]; and stochastic information fusion [Yeh and Šimůnek, 2002; Liu and Yeh, 2004].   In this 
study, we extend this inverse approach to incorporate transient hydraulic head data to estimate 
both hydraulic conductivity and specific storage fields.  As the majority of the SSLE method 
used in this study remains similar to that in our previous works, we present only a brief 
summary, but a sensitivity analysis for transient flow, and a new loop iteration scheme are given 
in detail below. 
 To characterize the heterogeneity of geologic formations, the SSLE algorithm treats the 
natural logs of saturated hydraulic conductivity and specific storage as stochastic processes. We 
therefore assume lnK= K  + f and lnSs S= + s, where K and S  are mean values, and f and s 
denote the perturbations. The transient hydraulic head response to a pumping test in transient 
hydraulic tomography is represented by H= H +h, where H  is the mean and h is the 
perturbation. Substituting these stochastic variables into [4.1], taking the conditional expectation, 
and conditioning with some observations of head and parameters generates the mean flow 
equation as 
 

 [ ( ) ] ( ) ( )x x x con
con con p con

HK H Q S
t

∂
∇ ⋅ ∇ + =

∂
  [3.3] 

 
where conK ,  conH , and conS  are conditional effective hydraulic conductivity, hydraulic head and 
specific storage, respectively [Yeh et al., 1996].  Similar to our previous work, we seek the 
conditional effective fields of hydraulic conductivity and specific storage, conditioned on the 
information from transient hydraulic tomography and some direct measurements of K and Ss
 The estimation procedure starts with a weighted linear combination of direct 
measurements of the parameters and transient head data at different locations to obtain the first 
estimate of the parameters.  The weights are calculated based on statistical moments [namely, 
means, and covariances] of parameters, the covariances of heads in space and time, the cross-
covariances between heads and parameters. The first estimate is then used in the mean flow 
equation [3.3] to calculate the heads at observation locations and sampling times [i.e., forward 
simulation].  Differences between the observed and simulated heads are determined 
subsequently.  A weighted linear combination of these differences is then used to improve the 
previous estimates.   Iterations between the forward simulation and estimation continue until the 
improvement in the estimates diminishes to a prescribed value.   

.   

 
a] Sensitivity analysis of transient flow 
 In the above estimation procedure, the head covariance in space and time and its cross-
covariances with parameters are evaluated using a first-order approximation, which involves 
evaluation of sensitivity matrices of the governing flow equation.  The sensitivity matrices are 



12 
 

evaluated as follows.   Transient hydraulic heads are expanded in a Taylor series about the mean 
values of parameters. After neglecting second and higher order terms, the transient hydraulic 
head is: 
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 in equation [3.4] are calculated by the 

adjoint state method [Sykes, et al. 1985; Li and Yeh, 1998]. We briefly describe the method here 
[refer to Li and Yeh [1998, and 1999], Sun and Yeh [1992] for a detailed derivation]. The 
marginal sensitivity of a performance measure P to a parameter χ is defined as  
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where T and Ω  represent time and spatial domain, respectively. The first term of the integral in 
equation [3.5] indicates the direct dependence of P on χ , while the second term indicates the 
implicit dependence of P on χ through the heads [Sykes et al., 1985]. In this case, 
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representing the hydraulic head at location xk and time tl δ, where is Kronecker delta-function 
which equals unity if x equals xk and t equals tl

*φ
 , and equals zero otherwise. We choose an 

arbitrary function  that satisfies 
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with boundary and final conditions: 
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[note that equations [3.7] and [3.8] are called adjoint state equations]; we further assume that the 
initial condition is known a  priori, such that 0 0tφ = = , and hydraulic conductivity and specific 
storage are not correlated to each other.  Thus, the sensitivities of the hydraulic head at location 
xk  and time tl xn to f and s at location  are given by 
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where lnK[ nx ] and lnSs nx [ ] are the lnK and lnSs

*φ

 at element n , respectively, when the study 
domain is discretized.. Note that the adjoint state equations are also transient problems and need 
to be solved backwardly in time. Also, the mean transient hydraulic heads must be derived 
beforehand in order to evaluate the sensitivities. The mean flow equation is given by equation 
[3.3]. After and the mean head are calculated, the sensitivities obtained from equations [3.9] 
and [3.10] can be used to calculate head covariances and its cross-covariances with parameters, 
using a first-order approximation [Hughson and Yeh, 2000].  
 
b] Loop iteration scheme 
                 As indicated by Vargas-Guzman and Yeh [2002] and Yeh and Šimůnek [2002] in 
previous SSLE approaches, the method of adding different data sets sequentially works best for 
linear systems.  The relations between transient head and hydraulic parameters, however, are 
nonlinear; the sequential approach cannot fully exploit the head information. For instance, 
assume two datasets, A and B, are used in an inversion problem. The B dataset is added after the 
A dataset reaches convergence. The SSLE then stops after the B dataset converges.  While the 
final estimates meet the convergence criteria for the B dataset, they may not now meet the 
convergence criteria for the A dataset. In addition, adding datasets in different sequences may 
lead to different results. Therefore, we introduced a new loop iteration scheme. 
 In this loop iteration scheme, the next dataset is added after all the datasets already 
incorporated meet the converge criteria within one loop.  Specifically, a dataset is fed into SSLE 
first, and SSLE then iterates until this dataset meets a converge criterion. A new dataset is added 
afterwards, and SSLE again iterates until the new estimate convergences. Instead of adding the 
next new dataset, the scheme goes back to check the convergence for the first dataset. If the 
converge criterion is not met, the program starts a loop iteration in which the iteration involves 
both the first and second datasets. That is, the first dataset is iterated once, and then the second 
dataset is incorporated and iterated once also; we call this process a loop. The loop iteration 
continues until both datasets meet the converge criterion within one loop. Then, the next new 
dataset is added. The algorithm treats this new dataset similarly to the second dataset, except the 
loop iteration now involves three datasets. Additional datasets are added in a similar way.  As a 
consequence, our inverse approach improves estimates throughout the loops, maximizes the 
usefulness of datasets, and alleviates the problems associated with our previous SSLE approach.  
        During a transient pumping test, one can record a large number of head observations at 
different times. As stated by Sun and Yeh [1992], simultaneous inclusion of transient head data 
at different times improves the estimates and decreases the head misfit because simultaneous 
inclusion considers the temporal correlation of transient heads.  In our approach, we included in 
the estimation some selected observed heads at different times during a pumping activity. The 
head responses from different pumping tests are included sequentially. 
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3.3 NUMERICAL EXAMPLES 
 
3.3.1 One-Dimensional Flow 
 To test our inverse approach, a hypothetical, one-dimensional, horizontal, heterogeneous, 
confined aquifer was used.  The aquifer was 20 meters long and was discretized into twenty 
elements. Each element was one meter long. The left and right sides of the aquifer were set as 
prescribed head conditions with hydraulic heads of 100 m. Each element was assigned a 
hydraulic conductivity value and a specific storage value using a stochastic random field 
generator [Gutjahr, 1989].  The geometric mean of hydraulic conductivity was 0.0026 m/s and 
the geometric mean of specific storage was 0.0001 m-1. The variance of lnK was 0.5 and the 
variance of lnSs was 0.2.   The correlation scales for both parameters are 5 m and lnK and lnSs

 Using this one-dimensional aquifer, a pumping test was simulated at location x = 9.5 m 
with a pumping rate of 0.005 m

 
are assumed to be independent from each other, representing the worst scenario. 

3/s. The flow approached a steady state condition after 19 seconds 
of pumping; about 95% of total drawdown occurred in the first 8 seconds of the pumping test. 
The cross correlation between head and parameters during the pumping test was evaluated using 
a first-order approximation and then examined. Figure 3.1 depicts behaviors of the cross 
correlation between the observed h at x=9.5 m and f’s at different locations in the aquifer at three 
selected times [2, 4, and 6 seconds].  Likewise, Figure 3.2 depicts behaviors of the cross 
correlation between the h and s’s at the three times. The cross correlation between the h and f’s 
generally decreased with the distance away from the head observation location [x=9.5 m] but the 
cross correlation over the entire aquifer increased with time.  And the number of f’s having 
significant cross correlation [say, cross correlation values greater than 0.4] with the head at the 
observation location increased.  Shapes of the cross-correlation functions are different from those 
in uniform flow [Mizell et al., 1980] due to converging flow and boundary conditions.  During a 
uniform flow, a head is negatively correlated with the hydraulic conductivity values down 
gradient and positively correlated with the hydraulic conductivity up gradient. Figure 3.2 shows 
that the cross correlation between the h and the s field decreased with time. At early time, strong 
cross correlations between the h and s’s are confined to the vicinity of the observed head 
location. These cross correlations, nevertheless, dropped drastically at late time. Such results 
suggest that a head measurement in a well at late time can provide good estimates of f’s over a 
large portion of the aquifer.  On the other hand, head measurements in a well can only yield 
information of the s nearby and only early time data are useful for the estimate of s.  This finding 
supports the conclusion by Wu et al. [2005] that the storage coefficient estimate from a 
traditional aquifer test based on the drawdown-time data in an observation well, induced by 
pumping at another well, is dominated by the local geology between the pumping well and the 
observation well.  Furthermore, to obtain good estimates of f and s during hydraulic tomography 
tests, head information, encompassing the entire pumping process -- including early time and late 
time, should be used.   The resolution of the estimated f field will be better than that of the s field 
because of the localized influence of a head measurement on the estimate of s field. 
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Figure 3.1: Cross correlation between h at x=9.5 m and f’s at different locations for three 
selected times during a pumping test. 
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Figure 3.2: Cross correlation between h at x=9.5 m and s’s at different locations for three 
selected times during a pumping test. 
 
 The temporal correlation of transient heads was also evaluated. Figure 3.3 shows the 
contours of the temporal correlation of the head at x= 7.5 m from the beginning of the pumping 
test to 8 seconds. As indicated in the figure, the heads at different times were highly correlated, 
especially at later time. The high correlation suggests that the heads at a given observation 
location at different times provide overlapping information. In particular, inclusion of heads at 
all time steps would be very computational time consuming for our estimator because the adjoint 
equations [3.7] and [3.8] must be solved once for each head observation in time. Because of the 
overlapping head information, choosing heads at several time steps instead of using heads at all 
time steps would significantly reduce the computation burdens and keep the usefulness of head 
information.   
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Figure 3.3: Temporal correlation of transient heads at x =7.5 m during a pumping test. 
  

Based on the cross correlation and temporal correlation analysis, we thereafter tested our 
inverse approach for a well-posed inverse problem [deterministic inverse problems, Yeh et al., 
1996].  The head responses of all elements were collected at 2, 4, and 6 seconds, representing 
early, middle, and late times of the pumping test, respectively. One direct hydraulic conductivity 
measurement and one specific storage measurement were also assumed to be known at element 
#20 [i.e., the boundary fluxes are known].  Therefore, the necessary and sufficient conditions for 
inverse modeling [i.e., the transient head responses of all elements at two time steps, as well as 
boundary conditions] are fully specified [Sun, 1996 and Yeh and Šimůnek, 2002].  The inverse 
problem thus becomes well posed and both parameter fields can be uniquely determined.  
Figures 3.4 and 3.5 compare the true hydraulic conductivity field and specific storage with 
estimates, respectively.  The comparisons indicate that our new algorithm produces accurate 
estimates for both parameter fields for the deterministic case, and the accuracy of our SSLE 
method is thus ensured.   
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Figure 3.4: Comparison of estimated hydraulic conductivity with true hydraulic conductivity in 
a deterministic case. 

 
Figure 3.5: Comparison of estimated specific storage with true specific Storage in a 
deterministic case. 
 
 Next, we applied transient hydraulic tomography to the one-dimensional heterogeneous 
aquifer to demonstrate the benefit of a transient hydraulic tomography test. Four locations in the 
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located at x=3.5 m, 7.5 m, 11.5 m, and 15.5 m. The first pumping activity was initiated at x = 3.5 
m, and the corresponding head responses at all four wells were recorded.  The pumping rate, 
pumping time, and observation times were the same as the pumping test of the previous 
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specific storage with true parameters are shown in Figures 3.6 and 3.7, respectively. The two 
figures show that, with only four head observation locations out of a total of twenty elements of 
the entire aquifer, the hydraulic tomography with our SSLE approach produces close estimates of 
the true spatial patterns for both parameters.  As demonstrated in Figures 3.6a, b, c, and d, and 
Figure 3.7a, b, c, and d, the estimates progressively improved as more head responses from 
tomographic pumping tests were incorporated into our SSLE approach. However, the 
improvement of estimates from the third to the fourth pumping test was small, which indicates 
that excessive pumping tests only offer negligible improvements for the given number of 
observation wells. These findings are similar to those reported by Yeh and Liu [2000]. 

  
Figure 3.6: Estimated hydraulic conductivity from transient hydraulic tomography: [a] estimates 
from the first pumping test; [b] estimates from the additional second pumping test; [c] estimates 
from the additional third pumping test; [d] estimates from the additional fourth pumping test.  
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Figure 3.7: Estimated specific storage from transient hydraulic tomography: [a] estimates from 
the first pumping test; [b] estimates from the additional second pumping test; [c] estimates from 
the additional third pumping test; and [d] estimates from the additional fourth pumping test.  
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3.3.2 Three-Dimensional Heterogeneous Aquifer 
 We subsequently applied our SSLE to transient hydraulic tomography in a synthetic 
three-dimensional heterogeneous confined aquifer. The geometry of this synthetic heterogeneous 
aquifer had dimensions of 15 m × 15 m × 15 m, and was discretized into 3375 elements.  Each 
element had a uniform size of 1 m × 1 m × 1 m.  The bottom and the top boundaries were set as 
no-flow, and the remaining four sides were assumed to be a prescribed hydraulic head of 100 m. 
A three-dimensional Cartesian coordinate system was used for spatial references.  The 
coordinates of the bottom corner at the inner center of the cube [see Figure 3.8] were assigned to 
be [0, 0, 0] and the upper corner opposite to the bottom corner was assigned as [15, 15, 15].  The 
heterogeneous parameter fields again were generated by the spectral method [Gutjahr, 1989]. 
The geometric mean of K was 0.34 m/d and the variance of lnK was 0.5, while the geometric 
mean of Ss was 0.0002 m-1 and the variance of lnSs

 Four fully penetrating, multi-level wells were placed vertically in the aquifer. The 
horizontal coordinates for the four wells were [3.5, 3.5], [11.5, 3.5], [3.5, 11.5], and [11.5, 11.5]. 
Each well had seven head observation ports whose vertical coordinates were 1.5 m, 3.5 m, 5.5 m, 
7.5 m, 9.5 m, 11.5 m, and 13.5 m, respectively. Each well also had two pumping ports whose 
vertical coordinates were 4.5 m and 10.5 m, respectively. One direct hydraulic conductivity 
measurement and one specific storage measurement were assumed to be known at location [3.5, 
3.5, 8.5].  A pumping test was performed at one of the pumping ports with a constant pumping 
rate of 150 m

 was 0.1. The correlation scales in the x, y, 
and z directions were 20 m, 20 m, and 2 m, respectively.  

3

 The SSLE was implemented on a parallel computing platform using the LINUX 
operating system; the interpretation of the hydraulic tomography tests was carried out using a 10-
node PC cluster [Pentium 4 2.8 GHz CPU each]; the total computing time for the interpretation 
was 610 minutes.   

/d. The pumping test was simulated for 0.01 day with a time step of 0.0005 day. 
The head responses at all 28 observation points were monitored at time 0.002 day, 0.006 day, 
and 0.01 day. Seven additional pumping tests were simulated, using the same pumping rate and 
pumping time period, but different pumping ports.  A total of 672 head observations were used in 
our SSLE approach to simultaneously estimate hydraulic conductivity and specific storage.   

         Figures 3.8a, b, c, and d plot the estimated hydraulic conductivity after two, four, six, and 
eight pumping tests, respectively, and the true hydraulic conductivity field is shown in Figure 
3.8e.   The estimated specific storage fields after two, four, six, and eight pumping tests are 
illustrated in Figures 3.9a, b, c, and d with the true field shown in Figure 3.9e.  Both figures 3.8 
and 3.9 show that the general pattern of heterogeneity of the aquifer  was already captured just 
from the first two pumping tests; after eight pumping tests greater details were revealed, but the 
improvement rate diminished as more pumping tests were conducted.   
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Figure 3.8: Comparison between estimated hydraulic conductivity with the true field in a three 
dimensional aquifer. Estimated hydraulic conductivity field after [a] two, [b] four, [c] six, [d] and 
eight pumping tests, and [e] the synthetic true hydraulic conductivity field. 

 
 
Figure 3.9:  Comparison between estimated specific storage with the true field in a three 
dimensional aquifer. Estimated specific storage field after [a] two, [b] four, [c] six, [d] and eight 
pumping tests, and [e] the synthetic true specific storage field. 
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Figure 3.10: Frequency distributions of estimation errors: [a] hydraulic conductivity field and 
[b] specific storage field of a three-dimensional aquifer. 
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Figure 3.11: Comparison of variograms between [a] estimated hydraulic conductivity with true 
field; [b] estimated specific storage with true field in a three-dimensional aquifer. 
  

Figure 3.10a shows a frequency distribution with the mean and variance of the difference 
between the true log hydraulic conductivity field and that estimated [i.e., estimation errors] after 
eight pumping tests and the distribution of the estimation error of log specific storage and their 
mean and variance are illustrated in Figure 3.10b.   The error distributions are approximately 
normal, indicative of unbiasness of our estimator.  The slight bias in the estimates can be 
attributed to the effective nature of the estimated parameters [Yeh et al., 1996; Hanna and Yeh, 
1998].  The horizontal and vertical variograms of estimated and true hydraulic conductivity and 
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variograms of the estimates have similar spatial patterns as those of the true fields, in both 
horizontal and vertical directions. The variances of the estimates are expected to be lower and 
their correlation scales were longer than true ones [see Table 3.1]. This difference is due to the 
conditional expectation approach embedded in the SSLE method and insufficient data.    
 
Table 3.1: Comparison of statistical properties of the 3-D aquifer. 

 true lnK estimated 
lnK true lnS estimated 

lnSs 
s 

mean  -1.079 -0.96 -8.52 -8.47 
variance  0.50 0.30 0.10 0.06 
horizontal correlation 
scale[m] 20 30 20 35 
vertical correlation scale 
[m] 2 4 2 6 

 
        Robust as they are, neither the hydraulic tomography nor our SSLE is a perfect method. The 
more head observations are collected, the higher the resolution of the estimates will be [i.e., there 
is no optimal].  Inaccurate head observations and hydraulic property measurements [i.e., noises] 
during hydraulic tomography unequivocally can lead to an inaccurate estimate or instability of 
the estimate.  While our SSLE can overcome the impacts of noise, the estimates become smooth, 
which means there is a loss of effectiveness of information.    These issues have been discussed 
in Yeh and Liu [2000]. 
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4. ANALYSIS OF HYDRAULIC TOMOGRAPHY USING 
TEMPORAL MOMENTS OF DRAWDOWN-RECOVERY DATA  
 
4.1 INTRODUCTION 

Multi-scale heterogeneity of geologic media is a rule rather than the exception.  The 
knowledge of detailed spatial distributions of hydraulic properties is imperative to predict water 
and solute movement in the subsurface at high resolution [e.g., Yeh, 1992, 1998].  Traditional 
aquifer tests [e.g., pumping and slug tests] have been widely employed for estimating hydraulic 
properties of the subsurface for the last few decades.  Besides their costly installation and 
invasive natures, Beckie and Harvey [2002] reported that slug tests can yield dubious estimates 
of the storage coefficient of aquifers.  Validity of classical analysis for aquifer tests was also 
questioned by Wu et al. [2005].  They reported that the storage coefficient, S, value obtained 
from the traditional Theis analysis primarily represents a weighted average of S values over the 
region between the pumping and observation wells.    In contrast to the S estimate, the 
transmissivity, T, estimate is a weighted average of all T values in the entire domain with 
relatively high weights near the pumping well and the observation well.  In concordance with the 
finding by Oliver [1993], Wu et al. [2005] concluded that the T estimate can be influenced by 
any large-sized or strong anomaly within the cone of depression.  Thus, interpretation of the 
meaning of T estimates can be highly uncertain.  As a result, previous assessments of 
transmissivity distributions of aquifers may be subject to serious doubt.   

Hydraulic tomography [Gottlieb and Dietrich, 1995; Yeh and Liu, 2000; Liu et al., 2002; 
Bohling et al., 2002; Zhu and Yeh, 2005], based on the CAT [Computerized Axial Tomography] 
scan concept of medical sciences, is potentially a viable technology for characterizing detailed 
spatial distributions of the hydraulic properties. Hydraulic tomography, in a simple term, is a 
series of cross-well interference tests.  More precisely, hydraulic tomography involves stressing 
an aquifer by pumping water from or injecting water into a well, and monitoring the aquifer’s 
response at other wells. A set of stress and response data yields an independent set of equations. 
Sequentially switching the pumping or injection location, without installing additional wells, 
results in a large number of aquifer responses induced by the stresses at different locations and 
thus, a large number of independent sets of equations.  This large number of sets of equations 
makes the inverse problem [i.e., using aquifer stress and response relation to estimate the spatial 
distribution of hydraulic parameters] better posed, and the subsequent estimates approach reality.   

Interpretation of hydraulic tomography surveys however is a numerical challenge.  The 
large number of well hydrographs generated during tomography often leads to information 
overload, substantial computational burdens, and numerical instabilities [Hughson and Yeh, 
2000].  To overcome these difficulties, Yeh and Liu [2000] developed a sequential successive 
linear estimator [SSLE] approach.  This approach eases the computational burdens by 
sequentially including information obtained from different pumping tests; it resolves the non-
uniqueness issue by providing an unbiased mean of an abstracted stochastic parameter rather 
than the actual parameter.  That is, it conceptualizes hydraulic parameter fields as spatial 
stochastic processes and seeks their conditional effective parameter distributions.  The 
conditional effective parameters are conditioned on the data obtained from and governing 
physical principles of hydraulic tomography, as well as our prior knowledge of the geologic 
structure, and directly measured parameter values [such as from slug tests, or core samples].  The 
SSLE approach in essence is the Bayesian formalism.  Sand box experiments by Liu et al. [2002] 
and Illman et al. [2005] proved that the combination of hydraulic tomography and SSLE is a 
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viable, cost-effective technique for delineating heterogeneity using a limited number of invasive 
observations.  The work by Yeh and Liu [2000], nonetheless, is limited to steady state flow 
conditions, which may occur only under special field conditions. Because of this restriction, their 
method ignores transient head data before flow reaches steady state conditions.   

Several researchers have investigated THT.  Bohling et al. [2002] exploited the steady-
shape flow regime of transient flow data to interpret tomographic surveys.  Similar to Vasco et 
al. [2000], Brauchler et al. [2003] developed a method that uses the travel time of a pneumatic 
pressure pulse to estimate air diffusivity of fractured rocks.  As in X-ray tomography, their 
approach relies on the assumption that the pressure pulse travels along a straight line or a curved 
path. Thus, an analytical solution can be derived for the propagation of the pressure pulse 
between a source and a pressure sensor.  Many pairs of sources and sensors yield a system of 
one-dimensional analytical equations. A least-squares based inverse procedure developed for 
seismic tomography can then be applied to the system of equations to estimate the diffusivity 
distribution.   The ray approach avoids complications involved in numerical formulation of the 
three-dimensional forward and inverse problems, but it ignores interaction between adjacent ray 
paths and possible boundary effects.  Consequently, their method requires an extensive number 
of iterations and pairs of source/sensor data to achieve a comparable resolution to that achieved 
from inverting a three-dimensional model.  Vesselinov et al. [2001] applied an optimization 
technique and geostatistics to interpret pneumatic cross-borehole tests in fractured rocks.   

Recently, Zhu and Yeh [2005] extended the SSLE approach to THT to estimate both 
spatially varying hydraulic conductivity and specific storage fields in 3-D random media.  They 
demonstrated that it is possible to obtain detailed hydraulic conductivity and specific storage 
fields of aquifers using few wells with THT surveys.  But as the size of the field site to be 
characterized increases and the demands of resolution increases, the computational burden 
increases significantly.  A computationally efficient algorithm therefore must be developed for 
speedy analysis of the THT surveys.  For basin-scale naturally recurrent tomographic surveys 
[such as river-stage tomography, Yeh et al. [2004]], development of such a technology is 
imperative.  

In this study, inspired by the moment generating function approach by Harvey and 
Gorelick [1995], we develop the temporal moment-generation equation for impulse pumping 
tests, similar to the recent work by Li et al. [2005].  While Li et al. [2005] focus on applying 
temporal moments to a single impulse pumping test, we apply the temporal moments to transient 
hydraulic tomography.  Specifically, we incorporate the zeroth and first temporal moments of 
well hydrographs into the SSLE inverse approach [Yeh and Liu, 2000] for THT.  In addition, we 
implement a loop iteration scheme [Zhu and Yeh, 2005] to avoid the effects of sequential 
addition of moment information. By directly comparing the estimation using the temporal 
moments with that using transient heads, we thereafter investigate the temporal moment 
approach in terms of computational efficiency and accuracy of estimation.  Last, limitations of 
the moment approach are discussed. 
 
4.2 DERIVATION OF MOMENT EQUATIONS 

   Groundwater flow induced by pumping in three-dimensional, saturated, heterogeneous 
geologic media is assumed to be described by the following equation: 
 

   [4.1] [ ( ) ] ( , ) ( )x x xp S
HK H Q t S
t

∂
∇ ⋅ ∇ + =

∂
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subject to boundary conditions: 
 
   and ,  
 
and initial condition: 
 
  [4.2] 
 
In Eq. [4.1], H is the total head [L], x is the spatial coordinate [x = {x, y, z}, [L], and z represents 
the vertical coordinate and is positive upward], Q[xp, t] is the pumping rate per unit volume at 
location , K[x] is the saturated hydraulic conductivity [L/T], and Ss[x]  is the specific storage 
[L-1]. In Eq. [4.2], H1 is the prescribed total head at Dirichlet  boundary Γ1,  q is the specific flux 
[L/T] at Neumann boundary Γ2, n is a unit vector normal to the boundary, and H0

 If we define drawdown as s = H-H

[x] represents 
the initial total head distribution under a steady state condition.    

0

 

, then the drawdown form of the three-dimensional 
saturated flow equation is given by 

  [4.3] 

 
with boundary and initial conditions: 
 

, ,  and . [4.4] 
 
In Eq. [4.3],  represents the divergence of the regional flow prior to pumping tests 
and is zero as long as it is steady. Applying a moment generating function approach [Harvey and 
Gorelick, 1995] to the drawdown-time data, the nth

 

 temporal moments of drawdown at location 
 are given by  

  [4.5] 

 
where Mn[x i] is the nth temporal moment of drawdown at location .  Notice that Y=  is 
a characteristic time depicting the arrival time of the center of the area under a drawdown-
recovery curve. Multiplying Eq. [4.3] with tn
 

 and integrating over time from 0 to infinite gives 

   [4.6] 

 
Substituting Eq. [4.5] into Eq. [4.6], assuming that the regional flow is steady [i.e., the second 
term on the left-hand side of Eq. [4.6] is zero], and that the duration of pumping at location  
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with a constant rate of Q is , and using integration by parts for the right-hand term, we obtain 
the moment equation: 
   

  [4.7] 

 
Applying the same procedure to Eq. [4.4], the boundary conditions for Eq. [4.7] become 
 

    and   [4.8] 

 
Letting n=0 in Eq. [4.7] leads to the zeroth moment equation 
 

  [4.9] 

 
The zeroth moment represents the area under the drawdown-recovery curve. The solution to Eq. 
[4.9] requires our knowledge of drawdown at every point in the solution domain at both initial 
and final time.  While drawdown at t=0 is generally zero everywhere, the spatial distribution of 
the drawdown in a real-world aquifer after pumping starts is difficult to know with a limited 
number of wells and current technologies.  The final drawdown throughout the aquifer however 
will be zero after pumping is stopped and enough time is allowed for aquifer to recover.  If this is 
the case, then, Eq. [4.9] becomes 
 
  [4.10] 
 
The associated boundary conditions are 
 

  and   [4.11] 

 
Now, setting n=1 in Eq. [4.7], the governing equation for the first moment is  
 

  [4.12] 

 
The associated boundary conditions are 
 

  and   [4.13] 

 
Eqs. [4.10], [4.11], [4.12], and [4.13] are essentially the governing equations for the zeroth and 
first temporal moments of drawdown anywhere in the aquifer induced by a single pumping 
during a hydraulic tomographic survey.   They are identical to those equations developed by Li et 
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al. [2005] for an aquifer test that involves one pumping location in an aquifer. By using the 
moments of the drawdown, a parabolic equation [i.e., Eq. 4.1] has been transformed to two 
Poisson’s equations [Eq. [4.10] and Eq. [4.12]].  In other words, the governing transient 
groundwater flow equation is replaced by two steady equations which can be solved directly 
without using any time-march scheme.  
 
4.3 SEQUENTIAL INVERSE ALGORITHM 
    Our estimation technique using drawdown moments from hydraulic tomography is based on 
the sequential successive linear estimator [SSLE] developed by Yeh et al. [1996], Zhang and 
Yeh [1997], Li and Yeh [1999], Hughson and Yeh [2000], Vargas and Yeh [1999 and 2002], 
Yeh and Liu [2000], Liu and Yeh [2004], in particular, Zhu and Yeh [2005].  We first assume 
that the natural logs of saturated hydraulic conductivity and specific storage are stochastic 
processes. One advantage of using the natural logarithm is that it avoids negative values of the 
parameters during the estimation. We then assume lnK=  + f and lnSs= + b, where ln denotes 
natural logarithm; and  are mean values; f and b denote the perturbations.  Similarly, the 
zeroth moment of drawdown induced by a pumping test during transient hydraulic tomography 
can be decomposed into two parts: M0

 Expanding the zeroth moment and characteristic time in a Taylor series about the mean 
values of parameters, and neglecting second and higher order terms, the perturbations at location 
i can be expressed as: 

= , where  is the mean and  is the 
perturbation. The characteristic time Y can also be decomposed as , where  is the 
mean and y is the perturbation.  

 

   [4.14] 

 
where a repeated subscript implies summation of its range. In Eq. [4.14], and are 
perturbation of lnK and lnS at location j and j=1, …N, which is the total number of elements in 
the domain,  and they are denoted by matrices f and b. The sensitivity matrices of and Y at 

location i with respect to lnK and lnS perturbation at location j are given by , 

and .   Assuming K and Ss

 

 are independent from each other, the 

covariances of  and y, and the cross-covariance between and f , between y and f, and 
between y and b can be obtained by a first-order analysis and is expressed as 
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   [4.15]  

 
where  and   are covariance matrices of f and b between location  and ,  
respectively. , ,  are cross-covariance matrices between and 
f , y and f, and y and b, respectively.  and are covariance matrices of 
and y, respectively. The superscript T represents the transpose of the matrix.  
 The estimate of f at location , , is then derived using a linear multi-variate 
estimator: 
 
  [4.16] 
 
where , and  are weights. ,  and  are the total number of f, zeroth moment, and 
characteristic time measurements, respectively.  Measurements for hydraulic conductivity, zeroth 
moment, and characteristic time are denoted by , , and , respectively.  Similarly, the 

estimate of b at location , , is given by 
 

 [4.17] 
 
where and  are weights, and  is the total number of ’s, which are specific storage 
measurements. All weights are evaluated based on the covariance and cross covariances [Eq. 
4.15] [see Hughson and Yeh, 2000].  Our inverse algorithm then successively updates parameter 
estimates and residual covariances and sequentially includes data sets from different pumping 
tests. The updating and sequentially inclusion procedures are not presented here. Detailed 
derivations are described by Hughson and Yeh [2000] for inversion of unsaturated flow, Yeh and 
Liu [2000] for hydraulic tomography, and Yeh et al., [2002] for electrical resistivity tomography. 
 
4.4 EVALUATION OF MOMENT SENSITIVITIES  
 The SSLE approach requires evaluation of the sensitivity matrices.  To reduce the 
computational cost, these sensitivities are evaluated by an adjoint state method [Sykes et al. 
1985; Sun and Yeh, 1992]. A detailed derivation of the sensitivities is given at Appendix D. The 
sensitivity of M0
 

 to lnK is given by 

 . [4.18] 
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The sensitivity of M1
 

 to lnK is given by 

 , [4.19] 

 
and the sensitivity of of M1
 

 to lnS is given as 

 , [4.20] 

 
where  and are arbitrary functions which are defined in Appendix D; the superscript k 
denotes the observation at location xk and the subscript  denotes the location of the parameter 
in the domain . To evaluate Eqs. [4.18], the arbitrary functions  must be known a priori. 

 is obtained  by solving the adjoint equation [D16]. On the other hand, to calculate the 
sensitivity of M1 to lnK or lnSs

 Both moment Eq. [4.10] and Eq. [4.12] are Poisson’s equations, which need to be solved 
only once, as opposed to the parabolic equation of the governing equation for transient 
groundwater flow, which must be solved for each time step. As a consequence, significant 
computational costs can be reduced during evaluation of sensitivity matrices. Consider that the 
hydrograph at an observation well has been recorded at a one-second interval for a period of 100 
seconds during an impulse pumping test.  Suppose that this hydrograph is used directly to 
estimate the hydraulic properties and the adjoint state method is employed to evaluate the 
associated sensitivity matrices.  For each drawdown measurement at a given time, an associated 
adjoint equation must be solved once.  The adjoint equation for transient flow is a parabolic 
equation [see Zhu and Yeh, 2005].  For each given time, the solution to the adjoint equation must 
be obtained by a backward time-marching scheme to derive the sensitivity of drawdown with 
respect to a parameter.  If the computational time-step in the evaluation of the sensitivity is 
assumed to be the same as the sampling interval [1 second], the total number of times that the 
adjoint matrix equations need to be solved for the 100 measurements will be 5050 [i.e., a sum of 
the numbers from 1 to 100].  Since drawdowns are highly correlated in time, the number of 
drawdown measurements used in the estimation can be reduced [Zhu and Yeh, 2005].  Say, if 
only three samples at 40s, 60s, and 80s from the 100 measurements of the hydrograph are 
selected for the sensitivity analysis, then the total number of times the system equation for the 
arbitrary function needs to be solved is reduced to 180.   

 [Eqs. [4.19] and [4.20]], the adjoint equations Eqs. [D9] and 
[D10] are solved sequentially.  That is, we derive  first and then use it in Eq. [D10] to obtain 

.    

 Now, suppose that we use the moment approach. Instead of using the 3 transient 
drawdown measurements, only the zeroth and first moments of the hydrograph are needed.  
Subsequently, one only has to solve the adjoint equation for the zeroth moment Eq. [D16] once 
and then the two adjoint equations for first moment equation, Eq. [D9] and Eq. [D10].  That is, 
only three system equations have to be solved for the sensitivity analysis. Here, the example 
considers just one observation well.   As the number of observation wells increases, the 

* *
0 01 1 1

ln x x x x

k MM MK K d
K

φ φ

Ω

 ∂ ∂∂ ∂ ∂
= − − Ω ∂ ∂ ∂ ∂ ∂ 

∫  



*1
1 0ln

k

s
M M S d

S
φ

Ω

∂
= Ω

∂ ∫ 



*
0φ *

1φ


Ω *
0φ

*
0φ

*
1φ

*
0φ



33 
 

difference becomes even more significant.  The temporal moments approach thus is 
computationally efficient, compared to the drawdown-time approach.  
        Notice that the zeroth moment equation [Eq. 4.10] only depends on the hydraulic 
conductivity. As a result, the influence of the specific storage is avoided during estimation of the 
hydraulic conductivity even under transient flow conditions. 
 
4.5 NUMERICAL EXAMPLES 
 We created a 2-D heterogeneous confined aquifer to compare computational cost 
between temporal moments and transient heads approaches for the hydraulic tomography 
analysis.  Since temporal moments are integrated forms of a well hydrograph, they may lose 
some information that reflects effects of heterogeneity at different parts of an aquifer as the cone 
of depression evolves.  This loss of information may be significant, especially since only the first 
two moments are considered. Therefore, we also investigated the impacts of information loss on 
our estimates of hydraulic properties.  
 The aquifer considered is 100 m long and 100 m wide and is discretized into 2500 
elements with a dimension of 2 m by 2 m. The aquifer has spatially varying transmissivity [T] 
and storage coefficient [S] fields.  Both T and S fields are generated by a spectral random field 
generator [Gutjahr 1989]. The geometric mean of the T field is 0.0035m2/s and the variance of 
lnT for the field is 0.6.  Meanwhile, the geometric mean of the S field and its variance in term of 
lnS are 0.00023 and 0.2, respectively. The correlation scales for materials in both the x direction 
and y direction are assumed to be 20 meters.  Figure 4.1 plots the generated T and S fields.  All 
boundaries of the aquifer as well as its initial head distribution are assigned to be a constant head 
of 100 m.  Four cases are simulated. Case 1 involves nine wells uniformly distributed on a grid 
with the distance between two adjacent wells 1.5 times the correlation length of the aquifer 
properties [see Figure 4.2 for well locations]. This case represented a sparse monitoring network.  
Nine pumping tests were sequentially simulated at these wells with a pumping rate of 0.1m3

 The well field of Case 1 was used in Case 2 but zeroth moments and characteristic times 
of the drawdown at the nine wells due to nine sequential pumpings are used to estimate T and S.  
Since determining the time to fully reach recovery is difficult, calculating moments from the 
drawdown-recover curve could introduce some measurement error. Introducing measurement 
errors could obscure the comparison. Consequently, these moments in Case 2 are simulated 
directly from moment Eqs [4.10] and [4.12] for this case.  In practice, estimating moments from 
observed hydrographs would inevitably involve some errors, but they are difficult to quantify in 
a simple manner.  

/s. 
The pumping time for each pumping test lasted 50 seconds and then the pumping stopped to 
allow a full recovery. During each pumping test, head responses were obtained from the nine 
wells, and we thus have 81 hydrographs after the hydraulic tomography survey.  According to 
Zhu and Yeh [2005], a few selected transient heads in a hydrograph are needed to obtain 
accurate estimates of hydraulic properties during hydraulic tomography.  Based on their findings, 
we selected the transient heads collected at 10 s, 30 s, 50 s, 70 s, 100 s, and 200 s to estimate T 
and S simultaneously.  These sampling times were selected to capture the behaviors of the rising 
and falling limbs of the hydrograph.  

  An “optimal” monitoring network based on the results by Yeh and Liu [2000] is 
considered in Case 3.  In this case, 25 observation wells [see figure 4 for well locations] were 
added to the aquifer, which are distributed with a distance [20 m] between two adjacent wells 
[i.e., one correlation length].  The pumping wells are the same as the nine used in Case 2.  As a 
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result, we had 25 well hydrographs for each pumping test and a total of 225 well hydrographs 
after the nine sequential pumping tests.  Similar to Case 1, we selected the transient heads 
collected at 10 s, 30 s, 50 s, 70 s, 100 s, and 200 s for estimating T and S.  The corresponding 
moment approach of Case 3 is presented as Case 4.  Instead of using the head data, 225 pairs of 
the zeroth moments and characteristic times from the 25 wells were simulated for the nine 
sequential pumping.  Then, the moments were used in the estimation.  The four numerical cases 
were executed on a PC-Cluster of 4 processors [2.8GHz, 1G memory each] platform. The 
simulation times for the four cases were 423.8, 64.4, 766.1, and 179.2 minutes, respectively. 
Figure 4.2 compares the estimated transmissivity fields of Case 1 and Case 2.  Comparison of the 
estimated storage coefficient fields for these two cases is shown in Figure 4.3.  Estimated 
transmissivity fields of Case 3 and Case 4 are shown in Figure 4.4, and Figure 4.5 compares 
estimated storage coefficient fields for these two cases. 
 
Table 4.1: Mean and variance of estimation errors. 
 Case 1 Case 2 Case 3 Case 4 

lnT lnS lnT lnS lnT lnS lnT lnS 
Mean 0.1496 0.0756 0.1642 0.1360 0.0264 -0.0211 0.0499 -0.0124 
Variance 0.2435 0.2563 0.1485 0.1575 0.1835 0.1962 0.1410 0.1918 
 

 
Figure 4.1:  True synthetic fields: a] transmissivity ; b] storage coefficient. 
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Figure 4.2:   Estimated transmissivity fields using a sparse well field.  a] Using transient heads 
[Case 1]; b] using temporal moments [Case 2]; c] the scatterplot of estimated versus true lnT 
fields of Case 1; d] the scatterplot of estimated versus true lnT field of Case 2.  
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Figure 4.3:   Estimated storage coefficient fields using a sparse well field.  a] Using transient 
heads [Case 1]; b] using temporal moments [Case 2]; c] the scatterplot of estimated versus true 
lnS fields of Case 1; d] the scatterplot of estimated versus true lnS field of Case 2.  
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Figure 4.4:   Estimated transmissivity fields using a dense well field.  a] Using transient heads 
[Case 3]; b] using temporal moments [Case 4]; c] the scatterplot of estimated versus true lnT 
fields of Case 3; d] the scatterplot of estimated versus true lnT field of Case 4.  
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Figure 4.5: Estimated storage coefficient fields using a dense well field.  a] Using transient 
heads [Case 3]; b] using temporal moments [Case 4]; c] the scatterplot of estimated versus true 
lnS fields of Case 3; d] the scatterplot of estimated versus true lnS field of Case 4.  
 
4.6 RESULTS AND DISCUSSION 

Results of the 2-D synthetic case shows that Case 2 [the moment approach] uses only 
15.2% of the computation time needed for Case 1 [the head approach]; likewise, Case 4 [the 
moment approach] uses only 23.4% of the time needed for Case 3.  These results substantiate our 
speculation about the computational efficiency of the temporal moments approach.  In order to 
quantitatively compare the estimation errors, we plot scatter-plots of estimates versus true fields 
for all four cases in Figure 4.2 through Figure 4.5, along with mean absolute error normal L1 and 
mean square error normal L2, which are defined as 
 

  and        [4.21] 

 
 where  and  represent the true and estimates of the log-transformed parameter [either lnT 
or lnS], respectively, i indicates the element number, and n is the total number of elements. 
According to Figures 4.3 through 4.5, the moment approach based on the first two temporal 
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moments of drawdown can yield similar estimates of transmissivity and storage coefficient fields 
as those based on transient heads. We also test biasness of our estimations by calculating mean 
and variance of estimation error, which are defined as  
 

 and      [4.22] 

 
where  and are mean and variance of difference between true and estimated parameter 
[either lnT or lnS]. The mean and variance of estimation errors are listed in Table 4.1.  They 
show that SSLE yields unbiased estimations in all cases. As expected, a dense monitoring 
network can produce much better results than a sparse network.   It is clear however that the 
results based on the temporal moments are not identical to those based on the transient heads.  
 The use of the dense and sparse monitoring networks in the above synthetic cases is 
aimed at investigating the impact of information loss in the moments approach on the inverse 
results.  Transient well hydrographs intuitively bear signatures of the heterogeneity encountered 
by the drawdown as the cone of depression evolves.  These signatures, however, are likely weak 
because the head recorded at an observation well is highly correlated with different 
heterogeneities within the cone of depression [Wu et al., 2005].   Because of the integrative 
nature of the zeroth and first moments of a hydrograph, these moments likely lose these 
signatures.  We therefore anticipate that the interpretation of a hydraulic tomography survey 
using the temporal moments will yield fewer details about the heterogeneity.  Plots of estimated 
T and S fields and their associated scatter plots in Figures 4.3 and 4.4, and statistics of the 
estimation errors in Table 4.1 seem to support our hypothesis.  The variances of the estimation 
errors are consistently smaller for the estimated fields based on drawdown than those based on 
temporal moments.   On the other hand, in Case 3 and Case 4 where the monitoring networks are 
dense, the differences between the estimated fields based on the two approaches are small.   In 
other words, the information loss in the temporal moments is largely compensated for by the 
dense spatial information.   
 The storage coefficient estimates from both transient head and temporal moment 
approaches in both cases are clearly less satisfactory than transmissivity estimates. This may be 
attributed to the fact that high cross-correlation between head and storage coefficient is limited to 
a narrow region in between pumping and observation wells; the cross-correlation between head 
and transmissivity on the other hand is strong over the entire cone of depression at late time [Wu 
et al., 2005]. 
 Notice that in all cases examined here, the temporal moments at observation wells were 
directly obtained from moment equations [4.10] and [4.12]. Such a direct evaluation has omitted 
possible errors in estimating the moments from well hydrographs. Effects of errors in the 
moments on the estimates of transmissivity and storage coefficient have been studied by Li et al. 
[2005] during a single aquifer test.  According to their study, the effects are not significant.  
Obviously, rigorous analysis of impacts of errors in moments on hydraulic tomography is 
necessary but it is beyond the scope of this report. 
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5. A NEW ESTIMATOR AND A GUIDE FOR HYDRAULIC 
TOMOGRAPHY ANALYSIS 
 
5.1 INTRODUCTION 

Classical aquifer test which involves one pumping well and an observation well has been 
shown to yield ambiguously averaged hydraulic properties of an aquifer, which vary with the 
location of observation and pumping wells, and heterogeneity [Wu et al., 2005, Liu et al., 2007, 
Straface et al., 2007, and Kuhlman et al., 2008].  To avoid obtaining the ambiguously averaged 
estimates and to provide high-resolution aquifer characterization, a new aquifer characterization 
technology, known as hydraulic tomography [HT], has recently been developed [e.g., Tosaka et 
al., 1993; Gottlieb and Dietrich, 1995; Vasco et al., 2000; Yeh and Liu, 2000; Bohling et al., 
2002; Brauchler et al., 2003; Zhu and Yeh 2005, 2006; and others].  Although the ability of HT 
remains to be fully assessed under field conditions, results from sandbox experiments by Liu et 
al. [2002], Illman et al. [2007 and 2008], and Liu et al. [2007] are encouraging.  These studies 
showed that the transient HT can identify not only the pattern of the heterogeneous hydraulic 
conductivity [ K ] field, but also the variation of specific storage [ sS ] in the sandbox.  Moreover, 
these estimated K and Ss

Most of HT analyses in the past have used the sequential successive linear estimator 
[SSLE] of Yeh and Liu [2000] or Zhu and Yeh [2005], which includes data sets from HT surveys 
sequentially.  Illman et al. [2008] reported that the order of test data included in SSLE affected 
the final estimates.  In addition, little efforts in the past have focused on investigation of effects 
of noise in well hydrographs on the analysis of HT and development of methods for removing 
the noise.  In this paper, we thereby develop a geostatistically based method for identifying the 
subsurface heterogeneity pattern using all the data collected from a HT survey simultaneously, 
similar to the approaches by Vesselinov et al. [2001], or Li et al. [2007], Fienen et al. [2008], Li 
et al. [2008], which are built upon the quasi-linear geostastical approach [Kitanidis, 1995].  
Moreover, a criterion for the nonlinear estimator is developed to determine the appropriate level 
of improvement of estimation when hydrographs are infested with noise.  We also propose a 
procedure for preprocessing HT data before application of the estimator.  This estimator and 
procedure were tested in a synthetic aquifer with hierarchical heterogeneity [Barrash and Clemo, 
2002, and Ye et al., 2005], and then applied to a sandbox experiment, which involves unknown 
measurement errors and where our mathematical model may not correctly describe the flow 
process—model errors. 

 fields from the HT sandbox experiments further predicted the 
drawdown evolution caused by a pumping test that was not used in the HT analysis. Likewise, a 
recent application of HT to a well field at Montalto Uffugo Scalo, Italy, produced an estimated 
transmissivity field that is deemed to be consistent with the geology of the site [Straface et al., 
2007].  Bohling et al. [2007] and Li et al. [2007] also showed promising results of HT in their 
field experiments. 

 
5.2 METHODOLOGY 
 
5.2.1 Governing Groundwater Flow Equations 

A strategy for modeling ground water flow in saturated, heterogeneous, porous media 
with incomplete specification of aquifer characteristics is the stochastic conditional mean 
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approach [e.g., Yeh et al., 1996].  That is, the flow process is governed by the following partial 
differential equation involving conditional means: 

    [ ( ) ] ( ) ( )p s
hK h Q S
t

∂
∇ ⋅ ∇ + =

∂
x x x     [5.1] 

subject to boundary and initial conditions:  
   

1 1
h hΓ = ,  

2
[ ( ) ]K h qΓ∇ ⋅ =x n ,  and 0 0th h= =     [5.2] 

where in equation [5.1], h is conditional effective total head [L], x is the spatial coordinate [x = 
{x, y}, [L], and y represents the vertical coordinate and is positive upward] in the two-
dimensional, cross-sectional aquifers examined in this paper, Q[xp] is the pumping rate [1/T] at 
the location xp, K[x] is the conditional effective saturated hydraulic conductivity [L/T], and Ss[x] 
is the conditional effective specific storage [1/L]. In equation [5.2], h1 is the prescribed total 
head at Dirichlet boundary Γ1, q is the specific discharge [L/T] at Neumann boundary Γ2, n is a 
unit vector normal to Γ2, and h0

 

 represents the initial total head.  The definitions of variables in 
the conditional mean equations are identical to those in a deterministic groundwater flow 
equation if all the parameters, boundary and initial conditions are fully specified [Yeh et al., 
1996].  In this chapter, these governing equations are used to simulate the flow field during the 
HT survey and are solved by a 2-D finite element model [VSAFT2] developed by Yeh et al. 
[1993].  

5.2.2 Simultaneous Successive Linear Estimator 
Instead of incorporating data sequentially into the estimation as is done in SSLE, a 

simultaneous successive linear stochastic estimator [SimSLE] is developed to include all 
drawdown data from different pumping tests during a HT survey simultaneously to estimate 
hydraulic properties of aquifers.  Simultaneous inclusion of the data offers some advantages over 
the SSLE approach [see discussion section]. Below is a brief description of the SimSLE.  

With given unconditional mean and spatial covariance functions of the hydraulic 
properties [prior joint probability distribution, implicitly Gaussian], the SimSLE starts with 
cokriging [a stochastic linear estimator] to estimate the conditional expected value of the 
property conditioned on *( )if x  [i.e., perturbations of log hydraulic property, K and/or Ss] 
measured at ith

fN location [i =1,… , where fN  is the total number of f measurements] and the 

observed head at location jx  at time t  during kth *( , , )jh k tx  pumping test, denoted by .  The 
linear estimator is,  

( )
( ) ( , )

(1) * *
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1 1 1 1
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f p h tN N N k N k j

i i k j j e j
i k j
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    [5.3] 

where (1)
0

ˆ ( )f x is the cokriged f value at location 0x ; ( , , )e jh k tx  is the simulated head at the 
observation location and time of the pumping test, based on effective properties of an equivalent 
homogeneous medium; pN is the total number of pumping tests; ( )hN k is the total number of 
observation locations for kth ( , )tN k j pumping test; is the total number of head measurements in 
time at jth observation location during kth

0iλ pumping test.  The cokriging weight [ ] represents 
contribution of measurement *f at ith

0x location to the estimate at location, .  The contribution to 
the estimate from the observed head *( , , )jh k tx  is denoted by 0k jµ  .  These weights are obtained 
by solving the following system of equations: 
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in which 1,... fm N= ; 1,... pp N= , 1,... ( )hr N p= and and 1,... ( , )tq N p r= . Our prior knowledge 
of the spatial structure [the unconditional covariance function] of f is given by ffR .  hhR and hfR  
are the unconditional covariance of h  and the unconditional cross covariance of f and h , 
respectively, which are determined by a first order analysis with the given ffR .  That is, 

 
( ) ( )

1
( , , ), ( , , ), ( , )

1,... ; 1,... ( ); 1,... ( , ); 1,... .

eN

hf i m i j ff j m
j

p h t e

R k t J k t R

k N i N k N k i m N
=

=

= = = =

∑x x x x x x 



     

            [5.5] 
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=

= = =

∑x x x x x x 



     [5.6] 

where ( )( , , ),j mJ k tx x  is the sensitivity of head at jth t location at time  for kth pumping test 

with respect to the change of parameter at mth
eN location; is the number of elements in the study 

domain. The sensitivity matrix is evaluated using an adjoint state approach [see Zhu and Yeh, 
2005 for details].  

After obtaining the new estimate for all the elements using cokriging, the conditional 
covariance of f , (1) ( , )ff m qε x x , is then determined by 

( )
( ) ( , )

(1)

1 1 1 1
( , ) ( , ) ( , ) ( , , ),

f p h tN N N k N k j

ff m q ff m q mk ff k q mkj hf j q
k k j

R R R k t
= = = =

ε = − λ − µ∑ ∑ ∑ ∑x x x x x x x x 


      [5.7] 

where m and q=1, … eN . The conditional covariance reflects the effect of data on the reduction 
of uncertainty in the estimated parameter field.  Subsequently, the estimated log perturbations of 
the property fields are added to the log of the effective properties, F[x], then converted to the 
arithmetic scale, and used to solve equation [5.1] with boundary and initial conditions for the 
conditional effective head fields, (1) ( , , )jh k tx  , of each pumping test.   
  Following cokriging, a linear estimator of the following form, 

( ) ( , )
( 1) ( ) ( ) * ( )

0 0 0
1 1 1

ˆ ˆ( ) ( ) ( , , ) ( , , )
p h tN N k N k j

r r r r
kj j j

k j
f f h k t h k tω+

= = =

 = + − ∑ ∑ ∑x x x x  


   [5.8] 

is used to improve the estimate for iteration r >1, where ( )
0

r
kjω  is the weight term, representing the 

contribution of the difference between the observed and simulated conditional heads [i.e., 
*( , , )jh k tx   and ( ) ( , , )r

jh k tx  , respectively] at iteration r at location jx of the kth

t

 pumping test at 
time to the estimate at location 0x . The weights are determined by solving the following system 
of equations: 
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( ) ( ) ( ) ( )
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1 1 1
( , , ),( , , ) ( , , ),

p h tN N k N k j
r r r r
kj hh m q j kj hf m q

k j
p t k t p tω ε δ ε

= = =

 + Θ = ∑ ∑ ∑ x x x x  


   [5.9]    

where 1,... pp N= , 1,... ( )hm N p= and 1,... ( , )tq N p m= . The terms ( )r
hhε and ( )r

fhε are the conditional 
covariance and the conditional cross covariance at iteration [r], which are evaluated using 
equations [5.5] and [5.6] using the conditional covariance of f [i.e., ( )r

ffε  which is obtained from 
equation [7] for the first iteration].  A dynamic stabilizer, ( )rΘ , is added to the diagonal elements 
of ( )r

hhε  [ kjlδ is a Dirac delta, equal to 1 when k=j=l and zero otherwise] to stabilize the solution to 
equation [5.9].  The dynamic stabilizer at iteration, r, is the maximum value of the diagonal 
elements of ( )r

hhε  at that iteration times a user-specified multiplier [see Yeh et al., 1996].  After 
completion of the estimation using equation [5.8] for all elements in the domain, the conditional 
covariance of f is updated subsequently as given below. 

( )
( ) ( , )

( 1) ( ) ( )

1 1 1
( , ) ( , ) ( , , ),

p h tN N k N k j
r r r
ff m n ff m n mkj hf j n

k j
k t+

= = =

ε = ε − ω ε∑ ∑ ∑x x x x x x 


    [5.10] 

where n and m =1, … eN . 
The iteration steps of SimSLE are the same as those in the SLE algorithm used in Yeh et 

al. [1996]. For noise-free hydrographs, the convergence is achieved if 1] change in variances that 
represent spatial variability of the estimated hydraulic properties between current and last 
iterations is smaller than a specified tolerance [i.e., the spatial variance of the estimates 
stabilizes], implying that the SimSLE cannot improve the estimation any further; 2] change of 
simulated heads between successive iterations is smaller than the tolerance, indicating that the 
estimates will not significantly improve the head field.  If one of the two criteria is met, the 
estimates are considered to be optimal and the iterations are terminated.  

Head observations from laboratory or field experiments often contain noise [i.e., signals 
caused by processes not modeled by the governing flow equation, such as Earth tide and others 
including measurement errors] in addition to effects of hierarchical heterogeneity.  Such 
unresolved noises can lead to divergence of inverse solutions [i.e., unrealistic estimates]. As a 
consequence, an important issue that ought to be addressed is to what degree should the observed 
head be used to improve estimates of the hydraulic properties.  Stablization of mean square error 
of the simulated head during iteration should address the issue.  Consider the mean square error 
of the head:  
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2( ) 2

( ) 2

ˆ ˆ( , , ) ( , , ) ( ( , , ) ) ( , , )
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r r

r

r
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E h k t h k t E h k t h k t

E h k t h k t E

k t τ

τ

τ

σε

   − = + −      
   = − +    

= +

x x x x

x x

x

  [5.11] 

in which the observed head at location x and time t during kth

*( , , )h k tx
 pumping event is denoted by 

; the corresponding simulated head based on the estimated parameters at rth

( )ˆ ( , , )rh k tx

 iteration is 

given by .  Equation [5.11] assumes that the observed head consists of the noise free 
head, ( , , )h k tx , and random noise, τ , with variance 2

τσ .  The term ( ) ( , , )r
hh k tε x  denotes the 

theoretical residual head variance for the noise free case at rth iteration [i.e., the diagonal term in 
equation [5.6]], which should decrease and approach zero with iterations due to improvement of 
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the parameter estimates.  Therefore, the mean square error for cases with noise should 
asymptotically converge to 2

τσ as the number of iterations increases.  More importantly, equation 
[5.11] suggests that once ( ) ( , , )r

hh k tε x becomes smaller than 2
τσ  [i.e., the mean square error 

stabilizes], the iteration should stop to avoid over-usage of imperfect head data [i.e., updating the 
estimate with noise].  Consequently, for cases where the observed head is not noise free, we use 
the stabilization of the L2 norm of the conditional heads to terminate the iteration, i.e., 

     ( )2* ( )

1

1 ˆ2 ( )
N

r
cond i i

i
L r h h

N =

= −∑     [5.12]  

where *
ih and ( )ˆ r

ih are observed and simulated heads, respectively; i is the index denoting the 
observation in a given time and location from a pumping test; N is the total number of head 
observations from all the pumping tests. Hereafter, we will refer equation [5.12] as to the 
conditional L2 norm. 
    
5.2.3 Preprocessing Data for SimSLE 

5.2.3.1 Diagnosis of Bias. The first step in preprocessing HT data for the SimSLE 
analysis is to qualitatively check for any bias or inconsistency in the data. We suggest this be 
accomplished by a simple rule-of-thumb approach: plotting hydrographs [drawdown-time data] 
for each pumping test.  For example, arrival time of a given drawdown should increase with 
distance from the pumping well unless there are physically explainable anomalies [e.g., fracture 
zones or other fast flow paths].  Plots of evolution of contour surface of the drawdown induced 
by each pumping test generally should follow behaviors of drawdown in homogeneous aquifers 
[e.g., Bakr, et al., 1978] although details are different.  Data with significant anomalies should be 
examined for possible operational causes [e.g., mislabeling monitoring ports or wells, leakage 
between packers, malfunctioning of equipment, or other factors].  If the operational causes can 
be identified, the data sets should be corrected or excluded.  Repeating the HT experiment also 
facilitates a viable diagnosis.  Drawdown-log time plots should also reveal possible boundary 
effects and they are useful in assigning the type of boundary conditions of the modeling domain.  

5.2.3.2 Wavelet Denoising. Next, we tackle data noise or signals or perturbations 
caused by factors other than aquifer heterogeneity [i., fluctuations in pressure transducer voltage 
signals, diurnal fluctuations, etc.]. To eliminate the noise, a denoising method based on wavelet 
analysis [e.g., Mallat, 1999; Zhang et al., 2006] was developed. A wavelet analysis is similar to 
Fourier analysis in the sense that it breaks a signal down into its constituent parts for analysis. In 
contrast to the Fourier transform, the wavelet transform allows exceptional localization in both 
the time domain via translations of the mother wavelet, and the scale [frequency] domain via 
dilations, when analyzing signals of a non-stationary nature. Software from 
[http://www.mathworks.com] was used. Different families of wavelets were tested in this study 
and we found that the Daubechies 4 wavelet is effective for our cases. 

The wavelet denoising procedure used in this study comprises of the following steps: 1] 
Applying the wavelet transform to the noisy hydrograph to produce wavelet coefficients; 2] 
Selecting an appropriate threshold limit and a threshold method to remove the noise; 3] Inversing 
the wavelet transform of thresholded wavelet coefficients to generate a denoised hydrograph; 4] 
Calculating the variance of the difference between the denoised hydrographs and those of the 
equivalent homogenous medium. This variance should be approximately equal to the theoretical 
head variance from the first-order analysis.  If this criterion is not met, repeat steps 2] and 3].  
Generally speaking, distinguishing noise from the effects of heterogeneity in a hydrograph can 

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6391&objectType=File�
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be highly subjective unless characteristics of noise or heterogeneity are known a priori.  
 
5.2.4 Signal to Noise Ratio   

Following wavelet denoising, we examined the signal to noise ratio [SNR] of each well 
hydrograph.  The SNR is an electrical engineering concept, which is defined as the ratio of signal 
amplitude to noise amplitude. In our study, it is defined as the ratio between the maximum 
drawdown of the denoised hydrograph and the standard deviation of noise. That is, 

( )max
( ,0) ( , )d d

n

h h tsignalSNR
noise

−
= =

Σ

x x
       [5.13] 

where  denotes the absolute value; dh denotes the head after denoising; nΣ represents the 
standard deviation of noise, which is estimated from the wavelet denoising procedure. In signal 
processing, signals with SNR of 100 or greater are considered to be good signals.  For hydrologic 
processes, we found that hydrographs with an average SNR of 7.13 or greater are effective for 
our synthetic case.  Figure 1a shows an original hydrograph from Illman et al. [2007 and 2008] 
and Liu et al. [2007] and the corresponding denoised hydrograph; the SNR is 17.75.  The 
denoised hydrograph therefore is considered useful and it improves the estimates.  On the other 
hand, a hydrograph with low SNR data [4.41] [Figure 5.1b], especially near the falling and rising 
limbs of the graph [reflecting effects of pumping and recovery, respectively], was discarded since 
it did not improve the estimates. Low SNR data at early time and recovery can lead to erroneous 
estimates of the Ss

 

 field. As a rule of thumb, the SNR should be much greater than 1 such that the 
trend of drawdown induced by pumping is evident after denoising.  However, a more in-depth 
analysis is needed to establish a rigorous criterion.   

 
Figure 5.1: Typical hydrographs and corresponding denoised hydrographs [smooth solid line] in 
the sandbox experiments [Liu et al., 2007] a] SNR: 17.75; b] SNR: 4.41. Notice vertical 
exaggeration. 
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5.2.5 Estimation of Effective Properties, and Variances  
Afterwards, desirable hydrographs from the HT were selected to estimate unconditional 

effective K and Ss

   

 of an equivalent homogeneous medium with the known pumping rates. This 
task was accomplished by minimizing the squared difference between the observed head values 
and those obtained from simulations based on the homogeneity assumption using the VSAFT2: 

( )
2

*

,1 1 1

ˆ min.
p h t

s

n n n

ijk ijk K Si j k
h H

= = =

− =∑∑∑        [5.14] 

In the above equation *
ijkh  denotes observed head at kth time, jth observation location, and ith 

pumping test, and the corresponding simulated head using the unconditional effective K and Ss
ˆ

ijkH
 is 

indicated by .  Minimization of equation [5.14] was performed using a standard nonlinear 
least squares [i.e., Gauss-Newton] approach in conjunction with the Levenberg-Marquardt 
algorithm [Press et. al., 1992]. Sensitivity matrices were evaluated by solving the sensitivity 
equation [i.e., differentiation of equation [5.1] with respect to the parameter].   

Subsequently, square of the difference between the head observed and the head in the 
equivalent homogeneous medium is used to compute the sample variance of the observed head at 
the given location and time.  This sample head variance is in turn used to estimate the variance of 
the hydraulic properties by minimizing the following objective function: 

   ( )
2

2 2

1 1 1

ˆ minimum
p h tn n n

ijk ijk
i j k= = =

σ − σ =∑∑∑       [5.15] 

where 2
ijkσ  is the sample head variance and 2ˆ ijkσ is the theoretical head variance at kth time, jth 

observation location, and ith pumping test.  This theoretical head variance is evaluated using the 
first-order approximation [i.e., equation [5.6]] with given variance of the hydraulic properties. 
The Levenberg-Marquardt algorithm was used to seek the variances of the properties that 
minimize equation [5.15].  Relative change of equation [5.15] between successive iterations is 
used as convergence criterion.  These estimated effective hydraulic properties and variances are 
used as prior information required by SimSLE for estimating the spatially varying K and Ss

 

 
fields.   

5.3  APPLICATIONS TO A SYNTHETIC AQUIFER 
 
5.3.1 Description of the Aquifer and HT Test  

To test our SimSLE and the data preprocessing procedure for the HT analysis, a two-
dimensional, cross-sectional, synthetic aquifer of the same length and height as the sandbox 
experiment conducted by Illman et al. [2007 and 2008] and Liu et al. [2007] was used.  The 
dimensions of the sandbox were 193.0 cm in length, 82.6 cm in height, and 10.2 cm in depth. 
Twenty four locations were selected [solid circles in Figure 5.2a] to serve as pressure monitoring 
ports during four pumping tests at four locations [open circles in Figure 5.2a]. Both sides of the 
aquifer were set to the same constant boundary condition with a total head of 200 cm, while the 
bottom and top boundaries were set to be no-flux boundaries. The initial total head was assigned 
to be 200 cm.  This aquifer was discretized into 741 elements and 800 nodes with element 
dimensions of 4.10 cm × 4.13 cm. 

The synthetic aquifer was created to imitate a geologic formation of hierarchical 
heterogeneity, consisting of four units with a bedding dip angle of 20 degrees.  The lnK and lnSs 
fields within each unit were assumed to be normally distributed random fields with different 
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means and variances [see Table 5.1].  An exponential model was used as the spatial covariance 
functions of the fields with correlation scales of 200 cm in the bedding direction and 12 cm in the 
direction perpendicular to bedding.  Different random seed numbers were used to create the lnK 
and lnSs

Four pumping tests in this aquifer were simulated using a time step of 0.25 seconds for a 
period of 15 seconds at which the drawdown reached a steady state condition due to the small 
size of the aquifer.  Each pumping test had a pumping rate of 0.3 cm

 fields [Figures 5.2a and 5.2e, respectively] so that they are independent of each other. 

3

To investigate the ability of SimSLE to estimate the heterogeneous K and S

/s and drawdown at all 24 
wells were recorded. These simulated drawdown-time data sets were regarded as noise-free 
hydrographs. These noise-free hydrographs were subsequently corrupted by adding normally 
distributed white noise with a standard deviation of 0.07 cm to represent measurement errors and 
these corrupted hydrographs are denoted as noisy hydrographs.  Finally, the wavelet denoising 
procedure was applied to these noisy hydrographs to obtain the so-called denoised hydrographs.  
The SNR values of the 96 corrupted hydrographs were found much greater than 1 and all the 
hydrographs were included in the following HT analysis.    

s fields, 
drawdowns at 5 times [four early times at 0.5s, 1.75s, 2.25s and 3s; and one later time at 15s] 
from the noise-free, noisy, and denoised HT hydrographs were used. Such a choice of sampling 
times stems from the finding by Wu et al. [2005] that the drawdown at early time is highly 
correlated with the Ss field and only weakly and negatively correlated with the K field in the area 
between the pumping and the observation locations.  At large time, the drawdown is correlated at 
various degrees with K values in the area within the cone of depression but not the Ss field.  In 
the estimation, K and Ss

 

 values at the top observation port in the left column in Figure 5.2a were 
assumed to be known and they were used as the hard data for conditioning the estimation in all 
the cases.   

Table 5.1: Means and variances of the generated lnK and lnSs field in each unit of the synthetic 
aquifer and over the entire aquifer. 

  Unit 1 Unit 2 Unit 3 Unit 4 Overall 
lnK Mean 2.03 0.85 2.46 -0.67 1.39 

Variance 1.01 0.17 2.00 0.46 2.18 
lnSs Mean -6.06 -4.82 -6.43 -5.06 -5.61 

Variance 0.05 0.24 0.01 0.08 0.66 
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Figure 5.2:  a] and e] are the true K [cm/s] and Ss [1/cm] fields of the synthetic aquifer. The 
dashed lines are the boundaries between units [1, 2, 3, and 4]; estimated K and Ss

 

 fields using 
noise free data [b and f]; using noisy data [c and g]; using denoised data [d and h]. 

5.3.2 Performance Assessment    
Performance of our estimator for the synthetic aquifer case was evaluated using the 

standard correlation coefficient [1 0r≥ ≥ ] which measures the similarity between the true and 
the estimated fields. A correlation coefficient close to 1 means the two fields are similar in 
pattern, even though the mean value of the two fields may be different. Thereby, in addition to 
the correlation, mean absolute error [L1 norm] and mean square error [L2 norm] of the estimated 
field were used to judge the performance.  

Besides the correlation analysis, L1, and L2 norms, similarity between the true and 
estimated hydraulic property fields was also determined using a fuzzy similarity comparison 
method, which has been applied to the task of comparing spatial patterns [Hagen, 2003]. This 
method allows a user to specify weights for both location and value matching.  Specifically, the 
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method computes similarity between the true property at a given element and the estimated 
property at the corresponding element and neighboring elements.  The similarity is based on a 
locational and an error membership value, which are defined below. 

An exponential function based on the statistical spatial model for the hydraulic properties 
was used to define a locational membership  

22

exp yx
l

x y

llV
    = − +           

λ λ
       [5.16] 

In which xl and yl  are the separation distance between two compared elements in the x and y 
directions; xλ and yλ are the correlation scale of the true property field in the x and y directions, 
respectively.  Equation [5.16] implies that the similarity decreases with an increase of the ratio of 
the separation distance to the correlation scale.    

The standard deviation of the true property [STD] is used as an error limit and to define 
the value of the error membership: 

1.0                                          <1

0                                                   1
v

v v
STD STDV

v
STD


−= 

 ≥

     [5.17] 

where v is the difference between the true property at a given element and the estimated property 
at a selected element.  That is, if the difference of two properties is greater than the standard 
deviation, the two properties are judged to be completely different. Otherwise, a linear decay is 
used to determine the error membership value. 

The true property of an element in the domain is then compared with the estimated 
property of the same element and with the estimated property of neighboring elements [within 
the correlation scales]. Equations [5.16] and [5.17] are employed to determine the locational and 
error membership values. For each pair of the true and the estimated property, a similarity value 
is then computed by multiplying the locational membership with the error membership.  Only the 
maximum value among the similarity values of all pairs is retained for the selected element.  
Next, the maximum similarity between the estimated property at that element with the true 
property at the corresponding element and at neighboring elements is determined. The similarity 
value between the true and the estimated properties of this element is then defined by the average 
of the two maximum similarities. This procedure is applied to all the elements in the synthetic 
domain. Finally, a domain similarity is defined as the average element similarity of all elements 
in the domain.   
 
5.3.3 Results 

Table 5.2 tabulates the estimated effective K and Ss values for an equivalent 
homogeneous and isotropic porous medium of the synthetic aquifer, using the noise-free, noisy, 
and denoised hydrographs.  Estimated variances of lnK and lnSs over the entire aquifer are also 
listed in the table, which were obtained using equation [5.15] with visually estimated correlation 
scales [100 cm and 33 cm, in the direction parallel and perpendicular to bedding, respectively] 
and the known dip angle. The table shows that the estimated effective properties based on the 
noise-free, noisy, and denoised hydrographs are similar.  Estimated effective K values are found 
to be slightly greater than the geometric mean while the effective Ss values are in agreement with 
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the arithmetic mean of the corresponding values of the four units.  Apparently, noise does not 
have significant effects on the estimates of the effective properties since this is an over-
determined inverse problem [i.e., more data than parameters need to be estimated and the 
problem is well-posed, Yeh et al., 2007]. The least squares approach is expected to be sufficient 
and effective.   
 
Table 5.2:  Estimated effective hydraulic properties, and estimated spatial variances of the 
properties in the synthetic aquifer, using noise-free, noisy, and denoised hydrographs.  The 
number of iterations required to reach to the convergence of the solution is listed in the last 
column. 
Cases Effective 

lnK 
[cm/s] 

Variance 
lnK 

Effective 
lnSs

Variance 
 [1/cm] lnS

Iterations 
s  

Synth 
[noise free] 

1.422 0.679 -5.114 0.442 16 

Synth 
Noise 

1.414 0.520 -5.181 0.154 17 

Synth 
Denoised 

1.431 0.571 -5.084 0.329 23 

 
As shown in Table 5.2, estimated variances of lnK and lnSs

To illustrate the effectiveness of wavelet denoising, 480 pairs of observed heads before 
and after denoising at the 24 ports at 5 sampling times during the 4 pumping tests and 
corresponding simulated heads based on effective K and S

 with equation [5.15] are 
smaller than the true ones, likely due to insufficient head data. The nonstationary nature of the 
drawdown [i.e., its variance depends on the spatially and temporally varying mean gradient] 
demands a large number of head data at the same radial distance from the pumping wells to 
obtain a representative sample head variance in equation [5.15].   

s

(0) ( , , )hh k tε x

 are plotted as red circles in Figures 
3a and b. respectively. Plus symbols in the figure correspond to the simulated heads plus and 
minus one standard deviation of the theoretical head perturbation caused by heterogeneity, 

.  A comparison of Figures 5.3a and 5.3b shows that the wavelet denoising removed 
most of perturbations of the total heads between 199.5 cm and 200 cm, which are not 
significantly affected by the pumping test.  Head data after denoising are generally within one 
standard deviation of the theoretical head perturbation caused by heterogeneity, suggesting the 
remaining perturbations are likely effects of aquifer heterogeneity. 

Table 5.3 lists values of unconditional L1 and L2 norms of the hydraulic head, which are 
defined as 

1

1 ˆ1
N

un i i
i

L h h
N =

= −∑  and 
2

1

1 ˆ2
N

un i i
i

L h h
N =

= −∑      [5.18] 

where ĥ  is the simulated head in the equivalent homogeneous aquifer using the effective 
parameter values derived from the noise-free hydrographs; h  is the noise-free, noisy, or denoised 
heads of the heterogeneous aquifer, at the 5 selected times during the four pumping tests [i.e., 
N=480].  These statistics aim to measure effects of the hierarchical heterogeneity [i.e., spatial 
variability or structured noise], measurement noise, and noise residuals in hydrographs after 
wavelet denoising.  As expected, the noise-free hydrograph has the smallest unconditional L1 
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and L2 norms, reflecting the effect of heterogeneity only.  L1 and L2 norms are highest for the 
noisy hydrographs where head perturbations are results of both heterogeneity and the white 
noise.  Values of L1 and L2 norms in the last row of Table 5.3 for the denoised hydrographs are 
between those of noise-free and noisy hydrographs, indicative of only partial removal of noise by 
the wavelet denoising procedure.  Based on the L2 values, 92% of the perturbations in the noisy 
hydrographs are effects of hierarchical heterogeneity and the remaining 8% are random noise. 
The wavelet denoising procedure removed 80% of the random noise. 

 

 
Figure 5.3: Effectiveness of wavelet denoising. A plot of 480 pairs of heads a] before b] after 
denoising and simulated heads [red circles] based on effective K and Ss
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Symbols + denote the simulated heads plus and minus one standard deviation of head variation 
induced by heterogeneity. 
 
Table 5.3: Unconditional L1 and L2 norms of the head based on equation [5.18] for the noise-
free, noisy, and denoised cases of the synthetic aquifer experiments. 

 L1 L2 
Noise-free 0.102 0.0374 
noisy 0.124 0.0405 
denoised 0.109 0.0380 
 

 
Estimating 741 pairs of sK and sS of the synthetic aquifer based on the 480 drawdowns and 

one pair of sK and sS hard data set is an under-determined [i.e., over-parameterized or ill-posed, 
see Yeh et al. 2007] inverse problem.  That is, the number of the parameters to be estimated is 
larger than the number of data sets available.  While SLE aims to seek the estimate of the 
conditional effective parameters [Yeh et al., 1996] for under-determined problems, the noise or 
unresolved noise may lead to anomalously high or low estimates.  To circumvent this problem, 
the criterion based on the stabilization of the conditional L2 norm of the head [i.e., equation 
[5.12]] was employed.  
 The conditional L2 norms for noise free, noisy and denoised cases are shown in Figure 
5.4 as a function of the number of iterations, while corresponding behaviors of the ln K  and 
ln sS estimates in terms of their spatial variances are illustrated in Figures 5.5a and 5.5b, 
respectively.  As expected, in the noise-free case, the L2 decreased from 0.0374 2cm [the 
unconditional L2, representing effects of heterogeneity only, see Table 3] exponentially as 
expected for the theoretical head variance [equation [5.11] with 2

τσ = zero].  Such a decrease 
suggests continuous improvements of the estimates and thus the predicted heads during iteration. 
Improvement of the estimates can also be seen in Figures 5.5a and 5.5b.  According to these two 
figures, the variances, based on noise-free hydrographs, started from zero since the first guesses 
were the effective K and Ss, and then increased as point measurements of K and Ss and head 
information were included via cokriging.  These variances continued to increase after the first 
iteration due to the successive linear estimation, which successively approximates the nonlinear 
relation between the head information and the hydraulic properties.  Subsequently, these 
variances approached some stable values, indicating that usefulness of the observed head 
information was exhausted as the L2 decreased to a very small value.  Notice that the spatial 
variances of the final estimates are smaller than the true variances, suggesting that the estimated 
fields are smoother than the true fields.  This is expected since SimSLE seeks the conditional 
effective properties.  The estimates at the 10th

Figure 5.4 shows that for the case where hydrographs were noisy, the L2 norm decreased 
from 0.0405

 iteration were chosen as our final estimates based 
on change in variances of the estimates. 

2cm  [representing effects of heterogeneity plus noise] and stabilized at the 4th

2cm
 

iteration to the value of 0.0033 , which is close to the noise level we imposed [i.e., 0.0049
2cm ].  The difference between the true noise level and the L2 norm is expected since L2 norm 

represents only a sample variance of the noise.  Likewise, the variance of the estimated lnK 
[Figure 5.5a] fluctuated at the 4th iteration, then increased and exceeded the true variance for the 



53 
 

noise hydrographs. The variance of the estimated lnSs generally increased continuously and 
rapidly, indicative of divergence of the solution [Figure 5.5b] due to inclusion of noise in the 
estimation.  Therefore, the final estimate was obtained at the 4th

 

 iteration where the L2 norm 
stabilized and before the estimates were “over-improved”. 

Figure 5.4:  The conditional L2 norms of the head as a function of iteration for noise-free, noisy, 
and denoised data sets for the synthetic aquifer case.   
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m
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Figure 5.5:  Variances of the estimated a] lnK and b] lnSs

 

 fields vs. the number of iterations for 
different scenarios associated with the synthetic aquifer. 

As illustrated in Figure 5.4, the conditional L2 norm for the denoised case diminished 
from the unconditional L2 norm, 0.038 2cm [comprising of the effects from both heterogeneity 
and noise residuals after wavelet denoising].  Then, it stabilized around the 5th

iteration
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of 0.0006 2cm , which is smaller than that for the noisy hydrographs since noise was partially 
removed by the wavelet denoising procedure.  The variances of the estimated fields however still 
increased with iterations similar to those based on noisy hydrographs.  According to the L2 
stopping criterion, the final estimates were those at the 6th

ln K
 iteration. The variance of the 

estimated  for this case is slightly greater than its true variance and that of the estimated 
ln sS  is smaller than its true variance.  

A visual comparison between the true heterogeneous K and Ss fields [Figures 5.2a and 
5.2e, respectively] and the final estimated fields based on the noise-free hydrographs at the 10th 
iteration [Figure 5.2b for K and Figure 5.2f for Ss] suggests that SimSLE depicts hierarchical 
spatial variation of hydraulic parameters [i.e., variation between units as well as that within a 
unit].  The estimated K and Ss fields at the 4th iteration using the noisy head values are shown in 
Figures 5.2c and 5.2g, respectively, while the estimated K and Ss fields based on denoised 
hydrographs at the 6th

Performance metrics for these cases are reported in Table 5.4. According to these metrics, 
the estimated 

 iteration are shown in Figures 5.2d and 5.2f, respectively.   

sS  field can be as good as the estimated K field if the noise-free hydrographs were 
used.  However, it is much worse than the estimated K field if the noisy hydrographs were used.  
This result confirms that estimation of the sS  field is more prone to effects of noise in 
hydrographs [e.g., Li et al., 2007].  In comparison to results of the noise-free case, the estimated 
K and sS  fields using the noisy data and the conditional L2 norm as the stopping criterion are 
smoother but still retain the general pattern of heterogeneity.  The performance metrics also 
indicate that denoised data can improve the estimates, revealing more details of heterogeneity.  
But the estimated fields are still inferior to those obtained from noise-free data, suggesting that 
the wavelet denoising procedure apparently is useful but cannot restore the true hydrograph.  
Difficulties in estimating sS  field can be attributed to the fact that early time drawdown needed 
for estimating the sS  field is often small in magnitude. Its SNR is very small once noise is 
imposed.   
 

Table 5.4:  The performance assessment statistics of results from the synthetic aquifer. 

  L1 L2 Correlation Similarity Iterations 

Noise-free K 0.469 0.405 0. 909 0.889 10 

 S 0.279 s 0.140 0.900 0.859 

noised K 0.643 0.686 0.856 0.833 4 

 S 0.635 s 0.666 0.589 0.757 

denoised K 0.635 0.678 0.857 0.851 6 

S 0.536 s 0.421 0.722 0.762 
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Table 5.4 also shows that for evaluation of the estimates over the entire domain, the 
similarity analysis yields a similar result as other metrics.  Nevertheless, we believe that the 
similarity analysis would have been useful had we targeted the analysis at some specific feature 
in the domain.   

Table 5.5 tabulates means and variances of true and estimated hydraulic properties of 
each zone using noise-free, noisy, and denoised hydrographs.  It further corroborates the early 
conclusion that the hydraulic tomography and the SimSLE can depict the hierarchical 
[nonstationary] heterogeneity satisfactorily. 
 
Table 5.5:  Means and variances of true and estimated hydraulic properties of each zone using 
noise-free, noisy, and denoised hydrographs. 
 Mean 

 Log Hydraulic conductivity Log Specific Storage   

Unit True Noise 

Free 

Noisy Denoised True Noise 

Free 

Noisy Denoised 

1 2.03 1.86 1.95 2.13 -6.06 -5.78 -6.34 -6.59 

2 0.85 1.04 1.43 1.28 -4.82 -4.78 -5.18 -5.08 

3 2.46 2.60 2.64 2.60 -6.43 -6.20 -5.85 -6.07 

4 -0.67 -0.40 -0.40 -0.64 -5.06 -5.05 -5.16 -4.53 

 

 Variance 

 Log Hydraulic conductivity Log Specific Storage   

Unit True Noise 

Free 

Noisy Denoised True Noise 

Free 

Noisy Denoised 

1 1.01 0.82 0.31 0.67 0.05 0.06 1.60 0.44 

2 0.17 0.59 0.50 1.04 0.24 0.38 0.58 0.94 

3 2.00 1.47 1.22 1.55 0.01 0.09 0.27 0.46 

4 0.46 0.73 0.71 0.57 0.08 0.15 1.46 0.39 

 
Finally, we compare snapshots of simulated heads and stream lines in the aquifer with 

true and estimated parameter fields at 1.5 seconds after pumping [i.e., early time at which Ss 
plays an important role] at the center of the aquifer.  These simulated fields using true K and Ss 
parameters are shown in Figure 5.6a; the fields resulting from the effective K and Ss fields are 
plotted in Figure 5.6b; Figure 5.6c illustrates those fields derived from the estimated K and Ss 
fields using noisy data; results based on the parameter fields derived from denoised hydrographs 
are demonstrated in Figure 5.6d.  A visual comparison of these figures and the correlation, L1, 
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and L2 values of the head field listed in the figures further substantiate the usefulness of the HT 
analysis and denoising procedure.  

 
Figure 5.6: Comparison of head, and stream lines at t=1.5 s after pumping in the synthetic 
aquifer with a] true, and b] effective; c] estimated K and Ss

 

 fields based on c] noisy and d] 
denoised hydrographs. The statistical metrics are based on the true head field in a].  

5.4 APPLICATION TO A LABORATORY SANDBOX EXPERIMENT 
 
5.4.1 Preprocessing Data 

The laboratory sandbox experiment [see Figure 5.7] conducted by Liu et al. [2007] and 
Illman et al. [2007 and 2008] involved 8 pumping tests.  Drawdown data from the 47 ports 
excluding the pumping port were collected for each pumping test and they were denoised using 
the wavelet denoising procedure.  Data from two pumping tests [at ports 2 and 5] which have 
small SNRs that yielded anomalous drawdown contours and did not improve the estimates but 
caused their divergence were discarded. Only the remaining 6 pumping test data sets were used 
for the HT analysis. To condition the estimation, one K and Ss

sS

 values from in situ slug test 
measurements at port #1 [Figure 5.7] [Liu et al., 2007] were used as the hard data; effective K 
and  [0.1268 cm/s and 8.73x10-4 1/cm] were derived from minimization of equation [5.14]; the 
variances of lnK and lnSs
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 were estimated using equation [15] to be 2.0 and 0.1, respectively. The 
correlation scales were assessed subjectively based on the heterogeneity pattern of the laboratory 
sandbox [namely, 70 cm and 20 cm in the horizontal and vertical directions, respectively].   
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During the HT experiment, the total head at the two side boundaries of the sandbox 
varied slightly [maximum 0.13cm]. To eliminate the effect of time varying boundary condition, 
the actual drawdown at observation locations minus the observed boundary drawdown was used 
as correction to the observed drawdowns. These observed drawdowns were subtracted from an 
assigned initial total heads [200 cm] to obtain the observed total heads for the HT analysis.   Five 
observed total heads at 0.75s, 1.50s, 2.25s, 3.00s, and 15.00s from each observation port during 
each pumping test were selected for the HT analysis. 

 
 
Figure 5.7:  Schematic setup and discretization of the sandbox used in the experiment in Liu et 
al. [2007] and Illman et al. [2007].  Open circles are pumping ports; both solid and open circles 
are used as observation ports. The solid square denotes the pumping port for the validation 
purpose. The open rectangles shown are the low permeability zones. 
 
5.4.2 Results 

A plot of variances of the estimated lnK and LnSs fields as a function of the iteration 
number is illustrated in Figure 5.8. The variances increased continuously indicating effects of 
unresolved noise.  The final estimates were chosen based on the stabilization of the conditional 
L2 norm of the head during iteration [Figure 5.9], which suggest that the best estimates are at the 
6th

Figure 5.10 shows the distributions of the estimated K and 
 iteration. 

sS  fields, respectively.  In 
these figures, six low K zones in the sandbox [Figure 5.7] are vividly portrayed by the estimated 
K field, but the low K zones close to the bottom are fuzzy.  The low resolution at the bottom is 
due to the no-flux boundary at the bottom where the flow generally follows the boundary, and 
where the pressure excitations were not sampled due to absence of monitoring ports between the 
low K zones and the bottom boundary--consistent with findings by Illman et al. [2007, 2008] and 
Liu et al. [2007].   

The estimated sS  field in Figure 5.10 on the other hand does not reflect the pattern of the 
K field.  Rather, the field reflects an overall trend that the Ss
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are smaller than those on the top. This pattern appears to be physically correct: sands at the 
bottom are compressed more due to greater overlying materials.  The result is also consistent 
with the estimated Ss
 

 field from the analysis of cross-hole aquifer tests by Liu et al. [2007].   

 
Figure 5.8: The variances of estimated lnK and lnSs

 

 as a function of iteration for the sandbox 
experiment. 
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Figure 5.9: The conditional L2 norm of the head as a function of iteration for the sandbox 
experiment.   
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Figure 5.10:  The estimated hydraulic conductivity [cm/s] and specific storage [1/cm] fields for 
the sandbox experiment. 

X(cm)

Y
(c

m
)

0 50 100 1500

20

40

60
5.6x10-04

4.9x10-04

4.1x10-04

3.3x10-04

2.6x10-04

1.8x10-04

1.1x10-04

3.0x10-05

Specific storage
(1/cm)

X(cm)

Y
(c

m
)

0 50 100 1500

20

40

60 0.47
0.40
0.34
0.27
0.21
0.14
0.08
0.01

Hydraulic conductivity
(cm/s)



62 
 

In this sandbox experiment, the true K and Ss fields are unknown and the performance 
metrics therefore cannot be evaluated.  In order to validate these estimates, we followed the 
approach by Liu et al. [2007] which uses the estimated K and Ss fields as input to the forward 
flow model to simulate a pumping test conducted at port #46 that was not used in the HT 
experiment.  If the estimated K and Ss

 

 fields are representative of the true fields in the sandbox, 
the temporal and spatial distributions of the simulated head due to the pumping should closely 
predict the observed ones.  

Figure 5.11:  Validation results: observed vs. estimated heads [cm] at the 47 observation ports at 
4 different times in the sandbox. Two simulated heads were considered: one using estimated 
effective K and Ss fields from the equivalent homogeneous domain and the other using the 
estimated heterogeneous K and Ss

 
 fields derived from the analysis of HT. 

As illustrated in Figure 5.11, the estimated K and Ss
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 fields yielded heads close to the 
observed ones at all of the 47 ports at 3.0s, 6.75s, 13.5s, and 27.0s [early to late time]. The large 
discrepancy at 3.0s may be attributed to the numerical discretization error as well as inaccuracy 
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of the estimated Ss
This comparison suggests that 1] the effective parameters of the sandbox scale obtained 

by simultaneously fitting drawdowns from the pumping tests at 6 different locations failed to 
satisfactorily reproduce drawdowns caused by pumping at another location in the sandbox.  
Perhaps, they can do better for a stress area [e.g., a production well field] that covers an area 
much greater than many correlation scales of the heterogeneity.  2] HT in conjunction with 
SimSLE characterizes the heterogeneity of aquifers sufficiently such that drawdown evolution 
due to a different pumping event is predicted.  We believe these results are significant.  First, not 
only do the results reinforce the validity of HT, SimSLE and our data processing approach, but 
they also demonstrate a need for fine-resolution mapping of K and S

 field, which controls the early time behavior of the drawdown. 

s fields to overcome the 
phenomenological nature associated with the domain-scale effective parameters.  Besides, these 
results confirm that the classical governing ground water flow equation can yield excellent 
predictions of drawdowns in a heterogeneous sandbox when the K and Ss

 

 fields are adequately 
characterized and the initial and boundary conditions as well as source/sink terms are fully 
prescribed.  The result supports a similar conclusion reached by Liu et al. [2007]. 

5.5 DISCUSSION 
Distinguishing noise from effects of heterogeneity in a hydrograph can be highly 

subjective unless characteristics of noise or heterogeneity are known a priori. Complete removal 
of noise from hydrographs is difficult and unresolved noise residuals can impact the estimation.  
The impact is manifested through a continuous increase in the variances of estimated hydraulic 
properties but their spatial pattern remains almost constant.  As a result, the head field changes 
continuously but its L2 norm stabilizes.  Stabilization of the conditional L2 norm of the head 
thus works well as the convergence criterion for our SimSLE when the data are infested with 
noise.   

Finally, although no explicit comparison with SSLE has been presented, we believe that 
SimSLE has several advantages over the SSLE.  1] SimSLE needs to evaluate the adjoint state 
equation only once for a given observation location using newly estimated hydraulic property 
fields from all pumping tests since the adjoint state equation is independent of the pumping rate 
and pumping location. On the other hand, using SSLE, one must solve the adjoint state equation 
for each pumping test because the parameters in the adjoint state equation are modified for each 
pumping test.  2] SimSLE avoids the loop iteration of SSLE, and the computational effort is thus 
reduced.  3] Adding data sets in different sequences in SSLE may lead to a slightly different final 
result, which is more sensitive to the last data set [see Illman et al., 2008].  This problem does 
not exist in SimSLE. 4] SimSLE uses all observations simultaneously, providing more constrains 
for the inverse problem and thus converges faster than SSLE.   

The disadvantages of SimSLE are: 1] since all head data sets are used simultaneously and 
the same convergence criteria are applied to reach the final estimate in SimSLE, one bad data set 
may affect the overall quality of the estimate.  Note that both SimSLE and SSLE result in the 
same estimate if the data sets are free of errors. 2] The memory requirement is greater because 
the sizes of covariance matrix of h  and the cross covariance matrix of f and h  are larger than 
the corresponding matrices in SSLE.   
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6. HYDRAULIC AND PARTITIONING TRACER 
TOMOGRAPHY FOR CHARACTERIZATION OF DENSE 
NONAQUEOUS PHASE LIQUID SOURCE ZONES 
 
6.1 INTRODUCTION 

Non-aqueous phase liquids [NAPL’s] are long-term sources of soil and groundwater 
contamination. Accurate risk assessment and effective remediation of the sites contaminated with 
NAPL’s require detailed characterization of source zone [i.e., the region wherein NAPL 
contamination is present]. The source zone controls the size of shape of the associated aqueous 
phase contamination plume. Source zone characterization often involves characterizing 
hydrogeology [e.g., spatial variation of hydraulic conductivity, specific storage, and porosity] 
and delineating source zone [e.g., contaminant mass location, contaminant strength] [NRC, 
2004]. 
          Charactering source zone hydrology, especially the heterogeneity of hydrologic 
parameters, is critical to accurately depict groundwater flow and contaminant plume movement 
as well as design remediation schemes.  Many approaches have been developed to estimate 
aquifer heterogeneity using both scattered direct measurements and indirect measurements [e.g., 
hydraulic head, solute concentration].  Generally speaking, direct measurement methods [e.g., 
core sampling] are costly and invasive to obtain detailed 3-D heterogeneity for field scale 
problems.  Recently developed hydraulic tomography [Gottlieb and Dietrich, 1995; Renshaw, 
1996; Yeh and Liu, 2000; Liu et al., 2002; McDermott et al., 2003; Zhu and Yeh, 2005], which 
evolved from the CAT scan concept of medical sciences, has been proposed as a cost-effective 
tool to delineate detailed physical heterogeneity of subsurface. Hydraulic tomography is a series 
of cross-well interference tests. Specifically, an aquifer is stressed by pumping or injecting water 
through a well; at the same time, the aquifer’s responses [i.e., hydraulic heads] are monitored in 
other wells. If we sequentially switch the pumping or injecting location, stressing the aquifer and 
monitoring its responses, without installing additional wells, would result in a large number of 
aquifer responses. These responses are then used to estimate spatial variation of hydraulic 
parameters. To efficiently interpret the abundant data obtained from hydraulic tomography, Yeh 
and Liu [200] developed a sequential successive linear estimator [SSLE]. The SSLE approach 
seeks effective parameter fields conditioned on the data obtained from hydraulic tomography. 
The SSLE considers the nonlinear relation between hydraulic heads and parameters through an 
iterative way, and overcomes the difficulties of solving huge system of equations by sequentially 
including data. Their work shows that combination of SSLE and hydraulic tomography is a cost-
effective technique for delineating heterogeneity using a limited number of invasive observations 
[Liu et al., 2002]. While the work by Yeh and Liu [2000] and Liu et al., [2002] is limited to 
interpret steady state head responses from hydraulic tomography, Zhu and Yeh [2005] extended 
the SSLE to interpret transient hydraulic heads for estimating hydraulic conductivity and specific 
storage fields in 3-D aquifers.  
 Besides the head data as major information used for mapping physical heterogeneity, 
solute concentration data have also been used to estimate hydraulic conductivity. For example, 
Harvey and Gorelick [1995] estimated hydraulic conductivity using measurements of hydraulic 
conductivity, heads and solute arrival time. They concluded that solute arrival time and heads 
provide different information about the conductivity field. Li and Yeh [1999] developed a 
cokriging method to estimate hydraulic conductivity field conditioned on pressure head, solute 
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transport, and solute arrival time for variable saturated media. They concluded that steady state 
head measurements are most useful for estimating hydraulic conductivity among three types of 
measurements. But they showed that adding solute concentration data can improve the estimates 
than using head data alone. Cirpka and Kitanidis [2001] used the first two temporal moments of 
solute data to estimate hydraulic conductivity. They indicated that the use of tracer data alone 
may lead to convergence problems, and hereby recommended to combine head and tracer data 
for inversion. Solute concentration data are also used to map chemical parameters. For example, 
Huang et al. [2004] extended a sequential self-calibrating method to estimate both hydraulic 
conductivity and sorption partitioning coefficient fields conditioning on nonreactive and reactive 
tracer data.  
  The tracer concentration data have been used to delineate source zones in the past. Jin et 
al. [1995] developed a partitioning interwell tracer tests [PITT] to detect and characterize 
NAPL’s. During a PITT test, several different tracers are injected into aquifer through one or 
more injection wells. The tracers usually consist of non-reactive tracer, partitioning tracers with 
different partitioning coefficients. NAPL’s in the subsurface generally control differences in 
behaviors of the nonreactive and partitioning tracers breakthroughs. Thus, the breakthroughs can 
be used to estimate possible locations and concentrations of NAPL’s. Using these breakthroughs, 
Jin et al. [1995] estimated the average NAPL residual saturations by using a nonlinear least 
squares regression method. James et al. [1997] developed a conditioning algorithm to derive 
spatial variation of NAPL field from the first two temporal moments of tracer breakthroughs. 
Sciortino et al. [2000] estimated the location and dimensions of a single DNAPL pool using a 
least squares minimization based on analytical solutions. Zhang and Graham [2001] directly used 
tracer concentration measurements to estimate spatial heterogeneity of NAPL saturation by an 
extended Kalman filter technique. However, Inverse methods by James et al. [1997], Sciortino et 
al. [2000], and Zhang and Graham [2001] rely on dense sampling wells to reveal major features 
of NAPL fields, therefore is costly on field problems.  Datta-Gupta et al. [2002] proposed a 
streamline-based inverse method analyzing PITT tests to estimate 3-D spatial variation NAPL 
saturation. This method uses steam-line simulator for both forward simulation and sensitivity 
calculation, therefore, providing significant computation efficiency. However, similar to Vasco 
et al. [2000] and Brauchler et al. [2003], the streamline-based method ignores interaction 
between adjacent ray paths and possible boundary effects. Consequently, their method requires 
an extensive number of iterations and pairs of source/sensor data to achieve a comparable 
resolution to that achieved from inverting a three-dimensional model. Also, the stream-line 
method has difficulties in solving transport problems involving local physical dispersion [Huang  
et al., 2004].   
 Technologies using partitioning tracers to detect NAPL’s have been developed in the 
past.   These technologies generally have focused on detecting the presence of NAPL’s but not 
their spatial distribution in a field.   Depicting high-resolution spatial distributions of NAPL’s in 
a field using current technologies demands a dense multi-level sampler network.  Such a network 
involves costly invasive drilling operations and is practically impossible.  As a result, an 
innovative cost-effective technology remains to be developed.   
   In this study, we developed a new technology to meet the demand.  We extend the 
concept of hydraulic tomography to image the spatial distribution of  NAPL’s in the 
subsurface—partitioning tracer tomography. Moreover, we adopted the stochastic information 
fusion concept by Yeh and Šimůnek [2002] to take advantage of the ability of hydraulic 
tomography to enhance the ability of partitioning tracer tomography.   
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 The concept of tracer tomography is analogous to that of hydraulic tomography. During a 
tracer tomography survey, a forced gradient steady flow condition is established by injecting 
water into aquifer from one well. An impulse solution of tracers is released into the aquifer from 
the injection wells afterward. The tracer concentration data subsequently are sampled from 
observation wells. After complete breakthrough curves for all observation wells are recorded, a 
new test is repeated by changing the injection location. Again, the resulting concentration 
breakthroughs are monitored. By sequentially switching the injection location with a limited 
number of wells, a large number of concentration breakthrough data sets are obtained.  This 
tomography survey approach in essence is a novel experimental design to “create” more 
independent data sets from a limited number of wells than any traditional experiment.  Finally, 
an estimation or inverse modeling technique exploits these breakthrough data and injection 
information to determine the spatial distribution of NAPL’s as well as aquifer hydraulic 
properties.   Hydraulic head responses during the tracer injection tests can also be used to 
estimate spatial distribution of hydraulic properties [i.e., hydraulic tomography].  The head 
information is directly related to the hydraulic conductivity while the breakthrough data are 
controlled by many different hydraulic and transport properties [Li and Yeh, 1999].   Estimation 
of the hydraulic heterogeneity using the information from hydraulic tomography prior to the 
interpretation of the tracer tomography thus can improve the estimate of the distribution of 
NAPL’s.   
 While the hydraulic/tracer tomography is a novel experimental design, efficiently and 
effectively processing the huge amount of data from the experiment is a challenge. We take on 
this challenge by extending the SSLE inverse approach by Yeh and Liu [2000] and Zhu and Yeh 
[2005] to map both physical and chemical heterogeneity of the NAPL source zone.   
 
6.2 DERIVATION OF INVERSE ALGORITHM 
 
6.2.1 Governing Equations  
 During a tracer test, the force gradient flow is assumed to be steady and it can be 
described by 
 
 [ ( ) ] ( ) 0kK H Q∇ ⋅ ∇ + =x x   [6.1] 
 
subject to boundary conditions:  
 
 

11
HH =Γ ,  

2
[ ( ) ]x n hK H qΓ∇ ⋅ = ,  [6.2] 

 
where H is the total head [L], x is the spatial coordinates [x = {x1,x2,x3}, [L], and x3 represents 
the vertical coordinate and is positive upward], Q[xk] is the pumping rate [1/T] per unit volume 
of the aquifer at the location xk, K[x] is the spatially varying saturated hydraulic conductivity 
field [L/T]. In equation [6.1], H1 is the prescribed total head at Dirichlet  boundary Γ1,  qh is the 
specific flux [L/T] at Neumann boundary Γ2
 Transport of the tracer is assumed to be described by the advection-dispersion-retardation 
equation 

, n is a unit vector normal to the boundary.  
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θ θ θ∂
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∂
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Subject to following initial and boundary conditions: 
 
  0 0tc c= =  [6.4] 
 
  

1 1c cΓ =   [6.5] 
 
 

2
sc cθ

Γ
− ∇ =q D q  [6.6] 

 
where c is the solute concentration [M/L3

wθ];  is the volumetric water saturation [water saturated 
porosity, we call it water saturation thereafter in this study for simplicity]; KN

nθ
 is the partitioning 

coefficient and  is the volumetric NAPL saturation [we call it NAPL saturation thereafter in 
this study for simplicity]; q is Darcy velocity vector [L/T] given by 
 

 i
i

Hq K
x

∂
= −

∂
. [6.7] 

 
D is dispersion tensor given by 
 

 *( ) ( )
v
i j

ij L T ij T d

v v
D v Dα α δ α= − + +  [6.8] 

 
where Lα and Tα  are the longitudinal and transverse dispersivity [L], respectively; iv  is the 
seepage velocity [L/T] defined as /iq θ ; v  is the magnitude of the seepage velocity; ijδ  is the 
Kronecker delta function which equals unity if the indices are identical and zero otherwise, and 

*
dD  is the molecular diffusivity [L2/T].  In addition, Q is the injection rate [1/T] per unit volume 

of the porous medium, and cn

( )( )x xk bN t t− −
 is the solute concentration of the injecting solution; 

is a Dirac delta function which equals unity at location xk  at time earlier than tb

0c
 

and zero otherwise.  Moreover,  is the initial solute concentration; 1c  is the prescribed 
concentration at the Dirichlet boundary 1Γ ; sq is solute flux at the Neumann boundary, 2Γ . 
These flow and solute transport equations are solved by a 3-D finite-element and modified 
method of characteristic approach [MMOC3] developed by Srivastava and Yeh [1992]. 
 
6.2.2 SSLE Inverse Method 
 Sequential Successive Linear Estimator [SSLE] [Yeh  et at., 1996; Yeh and Zhang, 1996; 
Zhang and Yeh, 1997; Hanna and Yeh, 1998; Varas-Guzman and Yeh, 1999, 2002; Hughson and 
Yeh, 2000; Yeh and Liu, 2000; Liu et al., 2002; Yeh et al., 2002; Zhu and Yeh, 2005] is a 
stochastic estimator that seeks effective mean parameter fields conditioned on available primary 
information [i.e., point measurements of parameters], secondary information [i.e., measurements 
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of hydraulic heads, water contents, solute concentrations], and  spatial covariance functions of 
parameters [i.e., geologic structures].  The SSLE algorithm is adopted and extended in this study 
to estimate hydraulic conductivity, water saturation, and NAPL saturation fields using data sets 
collected from hydraulic/tracer tomography. The major steps of SSLE method for interpreting 
head and concentration data from hydraulic/tracer tomography are summarized below. Detailed 
description was given by Yeh and Liu [2000] and Hughson and Yeh [2000]. 
         First, a geologic medium under investigation is defined as a system.  The spatial hydraulic 
conductivity, water saturation, or NAPL saturation distributions of the geologic medium are then 
regarded as the parameter fields of the system.  Due to spatial variability of the parameter fields, 
as well as their uncertainty, the natural logarithms of the parameter fields, χ , are often 
represented as stochastic processes.  Notice that the use of the logarithm merely is mathematical 
convenience [e.g., avoiding negative values of parameter estimates].  Each stochastic parameter 
field is expressed as a combination of a mean part χ  and a perturbation part ζ  [i.e., 
ln χ χ ζ= + ].  Accordingly, the responses of the system, φ , due to a tomographic test are 
considered to be stochastic processes. Each of them is expressed in term of a mean φ and a 
perturbation ε , such that φ φ ε= + . The system response referred here are either hydraulic heads 
or tracer concentrations in the geologic medium.   
 Starting with a data set obtained from one hydraulic/tracer tomography test, SSLE first 
calculates mean responses of the geologic medium, given its mean parameter fields χ [or guessed 
parameter fields]. The differences between the simulated mean system responses and observed 
responses are then evaluated at sample locations.  These differences, in conjunction with 
available measurements of the parameters, are subsequently employed in classical cokriging [a 
multivariate linear estimator] to yield linear estimates of conditional mean parameter 
perturbation field.  Evaluation of the conditional [residual] covariances of the parameters then 
follows. The cokriging weights are determined based on the covariances of parameters in space, 
temporal and spatial covariance of responses, as well as the cross covariance between parameters 
and responses.  A first-order analysis is used to derive the covariance of responses and their cross 
covariance with parameters. The first-order analysis involves the use of the sensitivity matrices 
of the responses to parameters, at given mean parameter values and the covariance of the 
parameters. 
 With the linear estimates of the conditional mean parameter fields, the governing flow 
and solute transport equations are then solved for the conditional mean system responses, given 
the observed responses and parameters of the system.  Notice that cokriging is a linear estimator 
but the relation between system parameters and responses is nonlinear.  As a consequence, the 
estimates of the conditional mean system parameters are not optimum or the benefit of data are 
not fully exploited.  In other words, the simulated responses at sample locations do not honor the 
observations. To overcome this problem and to improve the parameter estimates, a new linear 
estimator is employed that uses the linear combination of weighted differences between the 
simulated and observed responses at the sample locations.  The weights of the new estimator are 
determined from the covariances of system responses and their cross-covariances with system 
parameters, similar to cokriging.  Instead of using the unconditional [original] covariances of the 
parameters as in cokriging, the new estimator makes use of the residual [conditional] covariances 
of parameters from the previous estimate and the sensitivity matrices evaluated with the 
previously estimated parameter fields.  Therefore, as differences between the simulated and 
observed responses at the sample locations become small, the improvement diminishes.  The 



69 
 

above linear procedure for improving the estimates is then repeated until the improvement 
diminishes to a prescribed value.  This is the logic behind the successive linear estimator [SLE].  
SLE can include all the measurements collected from a tracer tomography survey 
simultaneously.  However, this approach can lead to numerical problems because of extremely 
large system of equations [Hughson and Yeh, 2000] to be solved. To avoid this numerical 
problem, the system responses collected from hydraulic/tracer tomography is added into the 
inverse process sequentially, such as one tracer test by one tracer test.  This approach therefore is 
called the sequential successive linear estimator [SSLE].   
 
6.2.3 Evaluation of Covariance and Cross Covariance 
        As discussed previously, covariances of system responses and cross covariances between 
responses and parameters are the heart of the SSLE method. They are determined by using a first 
order analysis, which is explained below.   
 Consider that a system domain is discretized into N elements; each element has a uniform 
value for a given parameter but the value varies from element to element. Supposed that the 
response of the system is governed by equations [6.1] and [6.2] and associated boundary and 
initial conditions.  Then, expanding the response at the center of element i in a Taylor series 
about the mean value of parameter fields and neglecting second- and higher-order terms, the 
response perturbation can be expressed as 
 

 
ln

ji
i kj

k

φε ζ
χ

∂
=

∂
 [6.9] 

 
where iε is the response perturbation at location i ; j

kζ is perturbation of ln kχ at location j [j=1, 
2, …, N, where N is the total number of elements in the domain and  k is the parameter index: 
hydraulic conductivity, water saturation, and NAPL saturation].  In equation [4.41], the Einstein 
summation convention applies.  For head responses, k=1 and ln kχ represent log hydraulic 
conductivity field [k=1];  for concentration responses, k=1,2,3 and ln kχ  represent hydraulic 

conductivity [k=1], water saturation [k=2], or NAPL saturation [k=3]; 
ln

i
j

k

φ
χ

∂
∂

 is the sensitivity of  

φ  at location i to ln kχ at location j. Multiplying equation [6.9] by a parameter perturbation at a 
location m, m

kζ , and taking expected values gives the cross covariance between the system 
response, iε ,  and the parameter, m

kζ : 
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k
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χ
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∂
          j=1, 2,…,N [6.10] 

 
where ( , )m j

k kR ζ ζ is the covariance of the parameter kζ between location m and j, which is 
assumed to follow certain covariance functions and known a priori.  Similarly, assuming the 
parameters are un-correlated to each other, the spatial covariance between the system responses 
at locations i and m is iε and mε  given by 
 



70 
 

 ( , ) ( , ) ;
ln ln

p q i m
i m k k p q

k k

R R φ φε ε ζ ζ
ζ ζ

∂ ∂
=

∂ ∂
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6.2.4 Calculation of Sensitivities 
 The evaluation of covariance and cross covariance requires sensitivities of responses to 
parameters. Similar to previous SSLE method, we utilize the adjoint state method to minimize 
computation costs for evaluating sensitivities of responses to parameters.  The adjoint method 
has been described in many literatures in details [Sykes et al., 1985; Sun, 1994; Li and Yeh, 
1998]. The sensitivity of head to hydraulic conductivity is given by Li and Yeh [1998] and Zhu 
and Yeh [2005].  Below a short summary of the derivation of sensitivity of partitioning tracer 
concentration to parameters is presented.  
 Given a set of concentration measurements obtained from one tracer test, the adjoint state 
method first solves for mean heads and concentrations throughout the domain using equation 
[6.1] and equation [6.3] with associated boundary conditions. Next, for each concentration 
measurement, two adjoint states cψ and hψ are obtained through solving the following adjoint 
state equations [Sun, 1994; Li and Yeh, 1998]: 
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subject to the boundary and final time conditions: 
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where the overhead denotes the mean; ( )( )k lR c x x t tδ= − −  represents the concentration at 
location xk and time tl δ, where is Dirac delta function, which equals unity if x equals xk and t 
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equals  tl, zero otherwise.  Then, the sensitivity of tracer concentration at location xk and time tl

xn

 
to parameters at location  are given by: 
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where nΩ is the volume of the element where the observation at xn locates.  Notice that in our 
adjoint methods, we assume the tracer transport induced by a tracer test is convection dominated, 
and therefore we assume the local dispersion coefficient is small and can be neglected.  Adding 
dependence of dispersion on parameter variation in adjoint method is straightforward, which is 
given by Sun and Yeh [1990].  
 
6.3 NUMERICAL EXAMPLES 

To illustrate our method, we created a synthetic three-dimensional heterogeneous aquifer, 
which is contaminated with a single component NAPL.  This 3-D aquifer was 40 m long in 
horizontal direction, 0.5 m in width, and 10 m deep in vertical direction. A fixed head of 100 m 
was specified at left-hand and right-hand boundaries whereas no flow was specified at top and 
bottom boundaries. No tracer was presented in the domain and all the boundaries before each 
partitioning tracer test. The aquifer was discretized into 1600 elements with a uniform element 
size of 0.5 m × 0.5 m × 0.5 m. The log-normal random fields of hydraulic conductivity, water 
saturation, and NAPL saturation fields were generated by a spectral method by Gutjahr [1989]. 
The geometric mean of K was 0.86 m/d with a variance of lnK of 0.8.  The geometric mean of 
the porosity of the aquifer was 0.4 and the variance of natural log of porosity is 0.02. The 
geometric mean of nθ  was 0.1 and the variance of ln nθ  was 0.1. The water saturation, wθ , was 
then obtained by subtracting nθ  from the generated porosity field.  The geometric mean of the 
resultant wθ  was 0.291 and the variance of ln wθ  was 0.057.  These random fields were illustrated 
in Figure 6.1. The correlation scales for the hydraulic conductivity, porosity, and NAPL 
saturation fields was 3.5 m in the horizontal direction and 1.5 m in the vertical direction. Here, 
we assumed the transport process induced by a tracer test is convection dominated, and 
subsequently we neglected the local dispersion. As a result, the longitudinal and transversal 
dispersivities were set to 0.  
 Four fully penetrating, multilevel wells were placed vertically in the aquifer. Each well 
had nine observation ports and two injecting ports [see Figure 6.2]. Notice that the distances 
between wells are 10 m, which is about 2.86 times longer than horizontal correlation scale. Yeh 
and Liu [2000] showed that the “optimum” distance of wells is one correlation scale. We 
assumed these observation ports can measure both hydraulic heads and tracer concentrations. 
One direct measurement for each parameter was assumed known at x = 4.75m, y = 0.25m, z = 
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1.25m.  Eight tracer tests during the hydraulic/tracer tomography were simulated.  Prior to each 
tracer test, water was continuously injected into the aquifer through one of the eight injecting 
ports with a constant injection rate of 20 m3

 From the head and tracer concentration measurements created by the hydraulic/tracer 
tomography survey, we used SSLE approach to estimate the heterogeneity of the aquifer.  First 
the steady state head measurements were used to estimate hydraulic conductivity.  The estimated 
K is showed in Figure 6.3.  

/d. When the flow reached steady state, a partitioning 
tracer was then released through the same port into the aquifer for 1.5 days. The partitioning 
coefficients of the partitioning tracers were assumed to be known a priori with a value of 9.0. 
This value corresponds to TCE-Water partitioning coefficient value of a 4-mehtyl-2-pentanol 
[4M2P] tracer [Dugan et al., 2003] [they reported a value of 10.3 in their study].  The tracer 
concentrations at all the observation ports were recorded at every 0.3 days for 6 days. The steady 
state heads at these observation ports were also recorded. Totally, 288 steady state head 
measurement and 5184 tracer concentration measurements were collected.  

 Among 5184 tracer measurements, many of them had zero tracer concentration, which 
occurred when tracer did not reach or already passed the observation point. The zero-
concentration measurements contained very limited information about the movement of tracer, 
therefore were removed them from the inverse processes to reduce computational burden.  As a 
result, a total of 2350 tracer measurements were included. As being postulated previously, 
estimation of NAPL saturation fields from partitioning tracer tomography can be improved by 
our knowledge of heterogeneity of K and wθ . To test this hypothesis and to illustrate the 
importance of our knowledge of K and wθ  fields on imaging NAPL saturations, four cases were 
considered.   In case 1, we assumed that K and wθ  fields were perfectly known and in case 2 only 
K was known precisely.  Estimated K from heads from hydraulic/tracer tomography was as our 
knowledge of the K field but wθ  was unknown in case 3.  In case 4, both K and wθ  fields were 
assumed unknown. Case 1 represents an idealized scenario where only spatial varying NAPL 
saturation field is unknown.  The objective of the case is to test the validity of our stochastic 
estimation technique for tracer tomography.  Case 2 investigates the effect of variation in wθ  on 

estimation. Case 3 represented a more realistic scenario where hydraulic conductivity and wθ  
were unknown and we used all the data available from hydraulic/tracer tomography to image the 
distribution of NAPL saturation. Case 3 also served as an example to test the improvement of K 
estimates from hydraulic tomography by adding observed tracer concentration data from the 
tracer tomography. Case 4 was served to test the advantage of using hydraulic/tracer tomography 
over using tracer tomography alone.  In addition, to compare our joint inverse method with 
traditional geostatistical method, we assumed that NAPL saturation at the 36 observation points 
were measured and subsequently were used in a traditional kriging method to estimate NAPL 
distribution in the entire aquifer [case 5]. GEOEAS 
[http://www.epa.gov/ada/csmos/models/geoeas.html] was used to perform kriging estimation. 
Based on the parameters used for generating nθ , a exponential variogram model with a sill of  
0.1, horizontal range 3.5 m, vertical range 1.5 m was used.  

nθ

http://www.epa.gov/ada/csmos/models/geoeas.html�
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Figure 6.1: True Synthetic Fields: a] Hydraulic Conductivity [K, m/d]; b] Water Saturation [ wθ ]; 
and c] NAPL Saturation [ nθ ]. 
 
 To evaluate the performance of our approach for all three cases, we plotted the scatter-
plots for each case to illustrate the estimates, along with mean absolute error norm L1 and mean 
square error L2. 
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Figure 6.2: Estimated NAPL Saturation from: a] K and wθ are Known [case 1];  b]  K is Known 
but  wθ   is Unknown [case 2]; c ] Use Estimated K from Heads and wθ   is Unknown [case 3]; d] 
K and wθ are Unknown [case 4]; and e]  Kriging [case 5]. 
 
 Figure 6.2a shows that with perfect knowledge of K and wθ  fields, tracer tomography in 
conjunction of our stochastic estimation technique can identify the locations and NAPL 
distribution very well with only four wells.   With the exact knowledge of K field but wθ field 
[Case 2], the tracer tomography with our stochastic method yields similar results as case 1 [see 
Figure 6.2b].  This result is of no surprise due to the implicit relation between  and nθ .  But 
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and 2, our approach is quite capable of detecting presence of NAPL and its saturation 
distribution between wells.   This ability is beyond the capability of current technology.  
 Instead of knowing the exact K field, we used hydraulic tomography to estimate the K 
field first and then use tracer tomography to estimate nθ  distribution [Case 3].  Figure 6.2c shows 
that under this scenario, our approach still is capable of identifying patterns of major high 
saturation areas, but anomalies start to appear. Without any prior knowledge of K and  [case 
4], figure 6.2d shows that tracer tomography alone images some high NAPL areas correctly but 
creates several anomalies.  The above results clearly suggest that knowing spatial variation of 
hydraulic conductivity is critical to estimation of NAPL distributions.  
 Finally, we illustrate the effectiveness of traditional direction sampling approach.   Using 
direct measurements of NAPL from the four wells and the kriging method, the NAPL 
distribution was estimated and is shown in Figure 6.2e.  In comparison with cases 1, 2, 3, and 4, 
this approach provided the worst estimate; it fails to capture high NAPL saturation areas between 
observation wells. Therefore, hydraulic/tracer tomography can provide more information than 
the traditional approach using the same well facility although additional hydraulic and tracer 
tests are involved.  The scatter plots and L1, L2 norms in Figure 6.4a, b, c, d, and e also verified 
our findings.  
 Lastly, we focus on the effectiveness of hydraulic, tracer, and hydraulic/tracer 
tomography on estimation of hydraulic conductivity field.  Figure 6.3a shows the estimated K 
using hydraulic head only while Figure 6.3b depicts the estimated K after adding tracer 
concentration data. Both figures showed very similar K patterns; the scatter plots and the L1 and 
L2 norms in Figure 6.5 for two cases are also very similar. In fact, the norms even showed that 
adding tracer concentration data slightly increases estimation errors. The results illustrated that 
adding tracer concentration data may not improve K estimation.  The tracer data sets are merely 
redundant in our study cases.   Intuitively, tracers are highly sensitivity to small-scale but high 
permeability paths, which are generally undetectable using hydraulic head data. Addition of 
tracer data should increase the resolution of hydraulic tomography.  This intuition rests upon the 
fact that propagation of hydraulic head is a highly diffusive process while the tracer migration is 
a convection-dispersion process.   The result reported here is likely attributed to the way we 
generated the heterogeneous aquifer: one K value for each finite element.  This issue deserves 
further investigation.   

wθ
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Figure 6.3: Estimated Hydraulic Conductivity from a] Heads; b] Heads and Tracer Data [case 
3]; and c] Tracer Data [case 4]. 
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Figure 6.4: Scatter Plots of True ln NAPL Versus Estimated NAPL from: a] K and wθ are 
Known [case 1];  b]  K is Known but  wθ   is Unknown [case 2]; c ] Use Estimated K from Heads 
and wθ   is Unknown [case 3]; d] K and wθ are Unknown [case 4]; and e]  Kriging [case 5]. 
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Figure 6.5: Scatter Plots of True lnK Versus Estimated lnK from a] Heads; b] Heads and Tracer 
Data [case 3]; and Tracer Data [case 4]. 
 
 Figure 6.3c shows that using tracer data alone can capture general pattern of the true field 
but with much less details than that obtained from head data and head/tracer data. The scatter 
plots and L1, L2 norms in Figures 6.5a, b, and c also demonstrated our findings.  This result 
further supports the conclusions by Li and Yeh [1999] that a concentration breakthrough 
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can provide accurate estimate of K field.  Overall, we believe that head information is better than 
tracer data on mapping hydraulic conductivity field.  In addition, tracer test data can reveal more 
detailed hydraulic heterogeneity at small scales, although this conjecture remains to be proven.    
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7. ANALYSIS OF TRACER TOMOGRAPHY USING 
TEMPORAL MOMENTS OF TRACER BREAKTHROUGH 
CURVES 
 

7.1 INTRODUCTION 
Effective remediation of sites contaminated with Dense Nonaqueous Phase Liquids 

[DNAPLs] relies on adequate characterization of the size, nature, and distribution of DNAPL 
source zones [NRC, 2004]. Because of the various human activities of the contaminated sites and 
complex subsurface environment, characterization of DNAPL source zones is a difficult task. 
Since 1980s, a variety of methods have been developed and applied to the DNAPL source zone 
characterization. Some of the methods yield localized point measurements of DNAPLs [i.e., core 
retrieval and analysis] at a limited number of locations, while others produce average saturation 
over a relatively large volume of geologic medium [ i.e., partitioning tracer tests] [NRC, 2004]. 
Very few techniques have been developed to estimate detailed spatial distribution of DNAPL 
saturation in the subsurface. 

The concept of tomography, originally developed in medical sciences for detailed 
imaging of a human body, has been recently introduced into subsurface hydrology.  
Tomographic surveys allow one to image an object from different angles and perspectives, and 
therefore provide high resolution images of the object.  Utilizing the tomography concept, 
hydrologists have developed the hydraulic tomography [HT] technique to estimate detailed 
spatial variation of hydraulic properties of the subsurface.  Specifically, in hydraulic 
tomography, a series of aquifer tests are sequentially conducted at different locations with head 
responses being collected from other locations during each test.  Head responses from all the 
tests are then used in an inverse method to estimate hydraulic parameters [see Yeh and Liu, 
2000; Zhu and Yeh, 2005; and Zhu and Yeh, 2006]. Although the ability of HT remains to be 
fully assessed under field conditions, results from sandbox experiments by Liu et al. [2002], 
Illman et al. [2007, 2008 ], and Liu et al. [2007] are encouraging.  These studies showed that 
transient HT can identify not only the pattern of the heterogeneous hydraulic conductivity [K] 
field, but also the variation of specific storage [Ss] in the sandbox.  Moreover, these estimated K 
and Ss

Success of HT has led Yeh and Zhu [2007] to the development of a joint hydraulic and 
tracer tomography for characterization of DNAPL source zones in the subsurface.  Yeh and Zhu 
[2007] advocated that migration and distribution of DNAPLs are highly controlled by hydraulic 
heterogeneity of the subsurface.  Thereby, HT is a must prior to a partitioning tracer test for 
detecting DNAPLs.  HT delivers high-resolution imaging of the hydraulic heterogeneity which 
controls tracer migration path and thus the likely locations of DNAPLs.  Conducting partitioning 
tracer tests in a tomographic fashion afterwards can facilitate detailed delineation of the spatial 
distribution of DNAPLs. 

 fields from the HT sandbox experiments accurately predicted the drawdown evolution 
caused by a pumping test that was not used in the HT analysis. Likewise, a recent application of 
HT to a well field at Montalto Uffugo Scalo, Italy, produced an estimated transmissivity field 
that is deemed to be consistent with the geology of the site [Straface et al., 2007].  Bohling et al. 
[2007] and Li et al. [2007] also showed promising results of HT in their field experiments. 

The proposed joint hydraulic/tracer tomography survey consists of a series of steady-state 
water injection and tracer tests in the DNAPL source zones at different locations, and monitoring  
head changes and tracer breakthrough curves [BTCs] at many observation locations.  Using the 



80 
 

sequential successive linear estimator, the head responses are used first to provide detailed 
estimates of hydraulic conductivity spatial variation, and the BTCs from tracer tomography are 
then used to estimate spatial variations of water content and DNAPL content. 

Generally speaking, estimating DNAPL spatial variation using discrete tracer 
concentration data in partitioning tracer tests imposes significant computational cost [e.g., Zhang 
and Graham, 2001, Yeh and Zhu, 2007].  This computational burden arises from the requirement 
of fine spatial and temporal discretizations of the advection-dispersion equation, which is solved 
repeatedly during the estimation procedure.  Instead of using discrete concentration values at 
different times, many researchers have used temporal moments of tracer BTCs to estimate 
hydraulic properties or DNAPL content in the subsurface.   Approaches based on the temporal 
moments solve equations that are functions of spatial coordinates only.  Thus the approaches 
avoid time marching procedures and offer computational advantages over those based on the 
discrete concentration values.  For instance, Jin et. al. [1995] used temporal moments of BTCs to 
estimate the average DNAPL saturation for 1D and 2D problems.  Harvey and Gorelick [1995] 
developed temporal moment generating equations that directly solve temporal moments without 
solving the entire BTCs.  Using the generating equations, James et. al., [1997] calculated the 
covariances of temporal moments and cross-covariances between temporal moments and 
parameters. James et. al. [2000] further used a Gauss-Newton minimization method to estimate 
DNAPL spatial variation from temporal moments.  Cirpka and Kitanidis [2001] combined 
hydraulic heads and the first moments of tracer BTCs to infer hydraulic conductivity spatial 
distribution.  Jawitz et. al., [2003] implemented partitioning tracer higher moments into binary 
models to estimate statistical parameters for NAPL source zones.   In spite of these applications, 
the tracer moment approach has not been applied to tracer tomography. 

In this work, the tracer temporal moment method is applied to the joint hydraulic/tracer 
tomography approach.   The aim of the application is to reduce the computational cost associated 
with the joint approach such that the approach can be appealing for practitioners.  In this study, 
we implement tracer temporal moments in sequential successive linear estimator [SSLE] to 
interpret the joint hydraulic/tracer tomography data for estimating DNAPLs.  We first derive 
temporal moment equations for the transport of a partitioning tracer.  We next apply a streamline 
upwind/Petrov-Galerkin formulation to reduce numerical oscillation due to discretization in 
solving convection dominated moment equations. Then, we incorporate the first temporal 
moment of tracer into the SSLE inverse algorithm, which requires evaluation of sensitivity of 
temporal moments to hydraulic conductivity, water content, and DNAPL content, along with 
calculation of covariance of moments and  cross-covariance  between moments and the above 
three parameters.   Finally, we test the temporal moment method using the same synthetic cases 
in Yeh and Zhu [2007] and compare the computational cost.  The results from temporal moments 
are also compared with those from inversion of discrete concentration data.  The usefulness of 
temporal moments of tracer BTCs collected in a tomographic way in estimating hydraulic 
conductivity is also investigated.   
                                                                                                                                                       
7.2 METHODOLOGY 
 
7.2.1 Temporal moment equations for a partitioning tracer 

As mentioned previously, the joint hydraulic/tracer tomography survey involves a series 
of steady-state water injection and tracer tests in the DNAPL source zones at different locations, 
and monitoring head changes and BTCs at many observation locations.  Interpreting this joint 
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hydraulic/tracer tomography survey requires both forward and inverse modeling efforts.  The 
forward modeling solves steady state flow equation and tracer temporal moment equations, 
which are discussed below. 
 
7.2.1.1  Governing equations 

We assume that the steady state flow field induced by each tracer test in the joint 
hydraulic/tracer tomography is described by  
  [ ( ) ] 0K H Q∇ ⋅ ∇ + =x           [7.1] 
subject to boundary conditions:  
  11

HH =Γ ,  2
[ ( ) ]x n hK H qΓ∇ ⋅ = ,       [7.2] 

where H is the total head [L], x is the spatial coordinates [x = {x1,x2,x3}, [L], and x3 represents 
the vertical coordinate and is positive upward]. The hydraulic conductivity field is denoted by 
K[x] [L/T].  In addition, Q is the source term [1/T].  In equation [16.2], H1 is the prescribed total 
head at the Dirichlet boundary Γ1, qh is the specific flux [L/T] at the Neumann boundary Γ2

The transport of a partitioning tracer in the joint hydraulic/tracer tomography is assumed 
to be governed by the advection-dispersion-retardation equation:  

, and 
n is a unit vector normal to the boundary.   

( ) ( ) ( ) ( )( )w N n w n a bc K c c c Qc N t t
t

θ θ θ∂
+ = −∇ ⋅ + ∇ ⋅ ∇ + − −

∂
q D x x     [7.3] 

subject to following initial and boundary conditions: 
  0 0tc c= = ,    1 1c cΓ = ,  

2
sc cθ

Γ
− ∇ =q D q       [7.4]  

where c is the partitioning tracer concentration [M/L3
wθ]; is the volumetric water content and nθ  

is the volumetric DNAPL content. Notice that porosityθ  is the sum of wθ  and nθ ;  KN

 

 is the 
partitioning coefficient,  q is Darcy velocity vector [L/T], which is assumed to be time invariant 
and is calculated from equations [7.1] and [7.2]; D is dispersion tensor and is given as 

*( ) ( )
v
i j

ij L T ij T d

v v
D v Dα α δ α= − + +        [7.5] 

where Lα and Tα  are the longitudinal and transverse dispersivities [L], respectively; iv  is the 
seepage velocity [L/T] defined as /i wq θ ; v  is the magnitude of the seepage velocity; ijδ  is the 
Kronecker delta function which equals unity if the indices are identical and zero otherwise, and 

*
dD  is the molecular diffusivity [L2/T].  In addition, cn

( )( )a bN t t− −x x
 is the concentration of the injecting tracer 

solution; is a step function which equals unity at location ax  at time earlier than 

tb 0c [the time when the partitioning tracer is released] and zero otherwise.   is the initial tracer 
concentration, which is typically zero for a tracer test; 1c  is the prescribed concentration at the 
Dirichlet boundary 1Γ ; sq is tracer flux at the Neumann boundary 2Γ .  
 
7.2.1.2 Temporal moment equations for a tracer BTC 

The kth

0
( , )

t k
k t

m t c t dt
=∞

=
= ∫ x

 temporal moments of a tracer BTC at location x can be defined as  
          [7.6] 
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where k is  the order of moment. Multiplying equation [7.3] by tk

( )1
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t k
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θ θ θ θ θ−

=∞

=

= ∞
+ − + = −∇ ⋅ + ∇ ⋅ ∇

=

+ − − ∫

q D

x x

, integrating over time, 
assuming q is time invariant, and substituting equation [7.6] into equation [7.3] yield moment-
generating equation 

   [7.7] 

For an impulse input tracer test, the initial concentration is commonly zero and the final 
concentration is also zero after the entire BTC passes. Therefore, the first term on the left hand 
side disappears. Then, equation [7.7] is simplified to [James, et. al., 2000, Cirpka and Kitanidis, 
2001] 

( ) 10
( ) ( )( ) ( )

t k
k w k n a b w N n kt

m m Qc N t t t dt K kmθ θ θ
=∞

−=
∇ ⋅ − ∇ ⋅ ∇ − − − = +∫q D x x    [7.8] 

subject to the boundary conditions:  

 
1 10
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= ∫ ,     

2 0
q D q

t k
k k st

m m t dtθ
=∞
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− ∇ = ∫      [7.9]    

 
Notice that the temporal moment equation [7.8] eliminates time dependence in equation [7.3].  In 
theory, equations [7.8] and [7.9] can be applied to temporal moments of any order.    However, 
our study will focus only on the zeroth moment 0m [mass under the BTC] and first moment 1m . 
Notice that  1 0m m  is mean arrival time of the BTC.  Setting k=0 gives the zeroth moment 
equation, 

( )0 0 0
( ) ( )( ) 0

t

w n a b t
m m Qc N t t dtθ

=∞

=
∇ ⋅ − ∇ ⋅ ∇ − − − =∫q D x x      [7.10] 

Setting k=1 gives the first moment equation, 

( )1 1 00
( ) ( )( ) ( )

t

w n a b w N nt
m m Qc N t t tdt K mθ θ θ

=∞

=
∇ ⋅ − ∇ ⋅ ∇ − − − = +∫q D x x    [7.11] 

In order to obtain the first moment, equation [7.10] must be solved first for the zeroth moment 
and the result is then used in equation [7.11] to solve for the first moment. 
  
7.2.2 Numerical method for moment equations 

The moment generating equation [7.8] is in the form of steady state convection dispersion 
equation. Application of the traditional Galerkin finite element method to the moment equations 
can suffer from oscillations if these equations are convection dominated [ i.e., Peclet number is 
higher than 1]. To reduce the oscillations, we use a Streamline-Upwind Petrov-Garlekin [SUPG] 
method which in principle adds an artificial dispersion [also called stabilization factor], which is 
proportional to the velocity, to the streamline direction proportional to the velocity to reduce the 
oscillations [Brooks and Hughs, 1982]. While the general idea of implementing this method is 
the same, the stabilization factor varies for different applications. Equivalently, the convection 
dispersion equation [7.8] can remain as is, while the weighting function of the finite element 
method is perturbed. More specifically, we use 
    *

i i iW N q Nτ= + ⋅∇       [7.12]  
as the weighting function, where the value of *τ was chosen elementwise as 
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where xL , yL , and zL  denote the element length in x-, y-, and z-directions, respectively. 
Moreover ε  is defined as  
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The value of η  and ς are defined similarly. 
 
For implementation of the convection dispersion solver, we use the Diffpack framework 
[Langtangen, 2003], which is a collection of object-oriented C++ libraries for solving partial 
differential equations. In addition to different stabilization techniques, such as those defined in 
equations [7.12] through [7.14], Diffpack also has an extensive collection of different element 
types and iterative solvers of linear systems. The resulting convection dispersion solver is 
programmed as an efficient and flexible plug-in, which fits into an in-house FORTRAN code for 
hydraulic/tracer tomography.  
 
7.2.3 Inverse Method 
 
7.2.3.1 Implementation of temporal moments of tracer in SSLE inverse method 

The sequential successive linear estimator [SSLE] is a geostatistical inverse approach that 
conceptualizes the parameter fields to be estimated as spatial stochastic processes, and seeks 
effective parameter fields conditioned on available state information [i.e., measurements of 
aquifer responses] and parameter measurements. The estimator utilizes statistical moments of 
parameter fields [i.e., mean and variance] as a priori information and uses partial differential 
equations of physical process to relate state information to parameter fields. The SSLE has been 
extensively discussed and applied to a variety of inverse problems in hydrogeology and 
geophysics.  For example, Yeh and Liu [2000] used SSLE to estimate saturated K using steady 
state head information.  Zhu and Yeh [2005, 2006] applied SSLE to estimate K and Ss

Here, we will only briefly present the SSLE approach.  Similar to Yeh and Zhu [2007], 
the natural logarithms of K,  

 using 
transient head and head moment information.  Most recently, Yeh and Zhu [2007] extended 
SSLE to jointly interpret head and tracer concentration data from hydraulic/tracer tomography 
surveys. Liu and Yeh [2004], Yeh et al. [2002] and Yeh et al. [2006] applied it to analysis of 
electric resistivity tomography.  In this paper, we apply SSLE to interpret tracer tomography by 
using tracer first temporal moment instead of using tracer concentration measurements directly.  

wθ , and Nθ  fields are treated as stochastic processes, lY  [i.e., 

1 lnY K= ; 2 ln wY θ= ; 3 ln NY θ= ], which are represented by a mean lY and perturbation ly
component, such that l l lY Y y= + . Likewise, the first tracer moment is conceptualized as a 
stochastic process with a mean 1m and a perturbation ε, such that ε+= 11 mm .  Note that Cirpka 
and Kitanids [2001] reported that the sensitivities of the zeroth moment to parameters were 
essentially zero, resulting in very limited information about the spatial variability of parameters.  
As a result, we will focus on using the first moment for the DNAPL estimation.  
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The SSLE starts with the classic cokriging method which uses direct measurements of the 
parameter and measurements of the first moment at some sample locations to obtain a linear 
estimate of the parameters in the entire domain, that is 
    * *ˆl ly y= +α βε        [7.15] 
where *

ly  and *ε are yN ×1 and Nε ×1 vectors of measurements of parameters and measurements 
of the first moments, respectively;  yN  is the number of parameter measurements and Nε  is 

number of the first moment measurements obtained from one tracer test. α  and β  are yN ×N and 
Nε ×N weight matrices and N is the total number of finite element cells in the simulation 
domain. The weights represent contributions of each measurement to the estimates. The weights 
are calculated based on unconditional spatial moments [means and covariances] of lY , the spatial 

covariances of 1m , and spatial cross covariances between 1m  and lY .  The statistical moments of 

lY are input parameters. Using the moments of lY , statistical moments of 1m are subsequently 
determined by a first order approximation.   

Cokriging is a linear estimator. Therefore, it cannot fully exploit the usefulness of 1m

because the relation between 1m and lY is not linear.  SSLE uses an iterative approach to include 
the nonlinear relation and to subsequently improve the estimates. That is, the estimates of 
parameter fields at rth ˆ r

ly iteration are used in the forward models [equations [7.10] and [7.11]] to 

approximate the conditional mean of 1m . The differences between observed first moments *ε  
and calculated first moments rε  are subsequently used in conjunction with associated weights 

rω  to improve the estimate 1ˆ r
ly + , 

1 *ˆ ˆ ( )r r r r
l ly y+ = + −ω ε ε      [7.16] 

These weights are obtained by solving a system of equations that involve conditional covariances 
and cross-covariances, which are derived from the previous iteration. After improved estimates 
are obtained, the conditional covariance of lY , 1

l l

r
y y
+R , is updated through the following equation 

    1
l l l l l

r r r r
y y y y yε
+ = −R Rω R .      [7.17] 

where 
l

r
yεR  denotes the conditional cross-covariance between  lY  and the 1m  measurements at 

iteration r. The updated conditional covariance is then used in the next iteration. The 
aforementioned steps continue until the improvement in the estimates diminishes to a prescribed 
value. Specifically, SSLE stops when both the variances of the estimated parameter fields and 
the differences between the observed and calculated first moments stabilize. SSLE can 
simultaneously include all the measurements collected from a tracer tomography survey jointly; 
however, this can lead to numerical and computer memory problems because of an extremely 
large system of equations [Hughson and Yeh, 2000]. To avoid this problem, the 1m
measurements collected from a tracer tomography survey are added into the inverse process 
sequentially, such as one tracer test is followed by another tracer test.  By adding secondary 
information in a sequential way, the procedure of successive improvement as described above is 
used for every tracer test.  
 



85 
 

7.2.3.2 Calculation of Sensitivities 
As indicated above, to use tracer moments in SSLE, one needs to calculate the covariance 

of 1m measurements and cross covariances between 1m measurements and lY . They are evaluated 
by a first order approximation as described in Yeh and Zhu [2007]. The first order approximation 
method requires the sensitivities of 1m  to lY . While the process of calculating covariance and 
cross covariance is essentially the same as that in Yeh and Zhu [2007], evaluation of sensitivities 
is different because the equations describing the relation between the 1m  to lY  are different from 
the equations relating tracer concentrations to lY .  We use the adjoint state method to calculate 
the sensitivity of the first moments to parameters. The purpose of using the adjoint state method 
is to improve the computational efficiency. The adjoint state method is most efficient when the 
number of measurements is far smaller than the number of parameters.  Detailed description of 
adjoint state method can be found in Sykes et al. [1985], Sun [1994], and Cirpka and Katanidis 
[2001].  Here, we briefly describe the adjoint state method for calculating sensitivity of 1m  to 
ln K ,  ln wθ , and ln nθ .  The adjoint state method can be described as three steps.  The first step 
is to solve for mean head H  using equations [16.1] and [16.2] and to solve mean zeroth and first 
tracer moments 0m and 1m  using equations [16.10] and [16.11] with associated boundary 
conditions.  The second step is to solve three adjoint equations for a first moment measurement 

*
1m  at location ex to obtain three adjoint states, 1φ , 0φ , and hφ : 

1 1
1

( )i w ij
Pq D
m

φ θ φ ∂
− ∇ − ∇ ⋅ ∇ = −

∂
     [7.18] 

0 0 1 1
0

( )i w ij w N n
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0 0 1 1( ) ( ) ( )h
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φ φ φ ∂
∇ ⋅ ∇ = −∇ ⋅ ∇ − ∇ ⋅ ∇ −

∂
   [7.20] 

subject to the following boundary conditions 

1
0hφ Γ = ,     1

0kφ Γ = , 
2

( ) 0k k nφ φ Γ+ ∇ ⋅ =q D  

20 0 1 1( ) 0hK K m K m nφ φ φ Γ− ∇ − ∇ − ∇ ⋅ =     [7.21]  

In the above equations 1 ( )eP m δ= −x x represents the first moment measurement at location ex  
and δ  is Kronecker’s delta function, which equals one if e=x x and zero otherwise; k is the 

adjoint state index, equals either 0 or 1.  The third step is then to calculate the sensitivities of *
1m

to parameters at location j by:  
1

0 0 1 1( )
ln j

h
j

m K H m K H m K H d
K

φ φ φ
Ω

∂
= − ∇ ∇ − ∇ ∇ − ∇ ∇ Ω
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where jΩ  is the sub-volume of location j.   In the adjoint state method, equations [7.1], [7.2], 
[7.11], and [7.12] only need to be solved once while equations [7.18] to [7.21] are solved once 
for each 1m  measurement.  
 
7.3 SYNTHETIC CASE STUDY 
 
7.3.1 Comparison with Inversion using tracer concentrations 
To test the computational efficiency of the proposed inverse method for tracer tomography, we 
apply the method to the synthetic quasi-three dimensional confined aquifer that was used by Yeh 
and Zhu [2007].  The synthetic aquifer is 40 m long in horizontal direction, 0.5 m in width, and 
10 m in vertical direction.  The parameter fields of K, wθ , and nθ  in the heterogeneous aquifer 
are assuming to be lognormal and are generated using a spectral method. The K field has a 
geometric mean of 0.86 m/d with variance of 1.68 [0.8 for lnK]; the wθ  field has a geometric 
mean of 0.291 with variance of 0.004 [0.057 for ln wθ ]; and the nθ  field has a geometric mean of 
0.1 with variance of 0.012 [0.1 for ln nθ ].  The longitudinal and transverse dispersivities are 
constant values of 0.05 m and 0.01 m, respectively.  The molecular diffusivity is 10-7 m2

A hydraulic/partitioning tracer survey is applied to the synthetic aquifer.  To conduct 
HPTT, four fully penetrating wells are emplaced in the aquifer. Each well has nine pressure and 
tracer dual-purpose sampling ports and two injection ports [Figure 7.3a].  The distance between 
two adjacent wells is 10 m.  The survey consists of eight tracer injection tests.  Each test starts 
with the simulation of a steady state flow field resulting from a continuous injection of water at a 
rate of 20 m

/d 
everywhere. The partitioning coefficient is equal to 9.0.  The aquifer is discretized in to 1600 
elements with a uniform size of 0.5 m × 0.5 m × 0.5 m.  The discretization resulted in a Peclet 
number about 10.  

3

wθ

/d through one of the eight injection ports. Then the migration of a slug of 
conservative and partitioning tracers is then simulated.  The survey collects 288 steady state head 
measurements, 288 conservative tracer BTCs, and 288 partitioning tracer BTCs from eight tracer 
injection tests.  The first moments can be either calculated from equation [7.6] after entire BTCs 
are calculated from equations [7.3] and [7.4] or directly calculated through solving equations 
[7.10] and [7.11].  In reality, the only way to obtain temporal moments is through BTCs, which 
however are subject to truncation errors [Luo et al., 2007] as well as noise. As the primary goal 
of this work is to demonstrate the computational efficiency of employing temporal moments for 
interpreting BTCs from partitioning tracer tomography, we use equations [7.10] and [7.11] to 
obtain the zeroth and first moments and ignore effects of the potential truncation error on the 
BTC temporal moment estimates.  The process of interpreting hydraulic/partitioning tracer 
tomography proposed by Yeh and Zhu [2007] starts with estimating K using steady state head 
data collected from hydraulic/tracer tomography; then, conservative tracer concentration data are 
used to estimate and to improve the estimation of K.  Finally, the partitioning tracer 
concentration data collected from partitioning tracer tomography are used to estimate nθ  and to 
again improve the estimate of K.  In this work, we follow the same steps of the above 
interpretation process; but during the last step of the interpretation, we use partitioning tracer 
first moments instead of discrete concentration data.  The total CPU time for the inverse 
simulation of partitioning tracer first moment measurements is about 50 minutes on a single PC 
[Pentium 4 2.8GHz], while the CPU time for the inverse modeling of partitioning tracer 
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concentration measurements is about 200 minutes using an eight node PC cluster with  the same 
processors [Pentium 4 2.8GHz] .  The saving of computational cost is dramatic.  More 
importantly, using the moment approach makes the inverse modeling of the joint hydraulic/tracer 
tomography feasible using a single PC and thus more attractive for a rapid analysis of the HPTT 
survey.  

Figure 7.1 compares the estimated nθ  field from discrete concentration data [Figure 7.1b] 
with the true field [Figure 7.1a] and that [Figure 7.1c] using the first moment data.  These figures 
show that, similar to the estimate from discrete concentration data, the estimates from first 
moments reveal the general pattern of the spatial variation of synthetic nθ field but the pattern 
appears to be smoother than the field estimated from the concentration data.  Figure 7.2 presents 
scatterplots of the estimated and true nθ fields from these two approaches. The error norms L1 
and L2 of the estimated nθ field and the correlation  ρ  between the estimated and the true  nθ
fields [listed in Figure 7.2] show that the first moments can produce  estimates of quality 
comparable to those from concentration data.  L1 and L2 norms are defined as: 
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And the correlation ρ  is defined as 
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Where Yµ and Ŷµ are means for true and estimated log parameter fields, respectively. However, 
the estimated field based on the first moment approach has higher values of L1 and L2, and 
smaller correlation comparing with those based on the concentration-time data, indicative of loss 
of some information using the first moment of the BTCs.  
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Figure 7.1: Comparison between true and estimated DNAPL content fields. [a] true field; [b] 
estimated from discrete concentration data; [c]  estimated from tracer first moment data 
 



89 
 

 

Figure 7.2: Scatter plot of   true DNAPL content field  versus estimate fields from: [a] discrete 
concentration data; [b]   tracer first moment data. 

 
7.3.2 Tracer first moments for estimating hydraulic conductivity 

While tracer arrival-time data generally are considered to be less informative than head 
data in estimating the K field [Li and Yeh, 1999; Cirpka and Kitanidis, 2001], this result has not 
been confirmed for tomographic surveys.  Tomography provides significant amount of arrival 
time information originated from different flow scenarios, which can be effective in estimating 
hydraulic conductivity in cases where the high density head data are not available.  Nevertheless, 
Cirpka and Kitanidis [2001] noticed that using arrival time alone may cause numerical instability 
during the estimation of the hydraulic conductivity field.  To test the usefulness of tracer arrival 
time data collected in a tomographic survey for estimating K field, the conservative tracer arrival 
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time data were used to estimate K and wθ simultaneously as the conservative tracer arrival time is 
also affected by wθ . 

Figure 7.3a shows the true hydraulic conductivity field of the synthetic aquifer, which is 
used to compare with the estimated field based on the head information [Figure 16.3b] and that 
based on the tracer first moment [Figure 7.3c].  A visual comparison of these figures seems to 
suggest that the estimated spatial variation of K from head data is a closer approximation of the 
true in comparison with that from arrival time of conservative tracer.  To confirm this finding, 
scatter plots of the true and estimated fields based on the head and that based on the first moment 
are illustrated in Figure 7.4a and 7.4b, respectively, along with the statistical measures [L1, L2, 
and R].  The results substantiate that the estimated lnK field from the head is clearly superior to 
that estimated field based on the tracer alone, in agreement with the conclusions by Li and Yeh 
[1999] and Yeh and Zhu [2007].  Notice that using partitioning tracer arrival time would involve 
additional unknowns [ nθ  ] and thus it is expected that it will not yield better results than the 
conservative tracer arrival times.   
 

 
Figure 7.3: Comparison between true and estimated hydraulic conductivity fields: [a] true field; 
[b] estimated from head data; [c] estimated from tracer first moment data. 
 



91 
 

 
Figure 7.4: Scatter plot of true hydraulic conductivity field  versus estimated field from [a] head 
data; [b]  tracer first moment data. 
 
7.3.3 Cross Correlation of first temporal moment of tracer to parameters 
  To understand how tracer temporal moments can be used to estimate different 
parameters, we calculate the cross correlation of the first temporal moments of partitioning tracer 
BTCs to selected parameters [i.e., K, wθ , and nθ ]. The cross correlation between the first 
moment perturbation ε  at location ix  and a parameter perturbation yl jx at location , ( , )y i jCε x x , 
is calculated through the following equation: 

( , )
( , )

( , ) ( , )
l

l

l l

y i j
y i j

i i y y j j

R
C

R R
ε

ε
εε

=
x x

x x
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   [7.27] 

Where ( , )
ly i jRε x x  is the cross covariance between ε and yl ix at locations and jx ;  ( , )i iRεε x x  

and ( , )
l ly y j jR x x  are variances of ε  at  ix and yl jx at , respectively. ( , )

ly i jRε x x  and ( , )i iRεε x x  
are calculated through a first order approximation similar to that described in Yeh and Zhu 
[2007]:   
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Where ( , )
ly i mJε x x  is the sensitivity of the first moment at location ix with respect to the 

parameters yl mx at locations ; 
l ly yR  is specified a priori at the first iteration and is evaluated 

through equation [7.17] at subsequent iterations.  SSLE is an iterative estimator and  yRε  and 
Rεε  are revaluated at each iteration, so are the cross correlations.  Here we will examine only the 
correlation at the first iteration.  In this analysis, one of the eight tracer tests in the 
hydraulic/tracer tomographic survey in the synthetic aquifer is selected for this analysis. The 
tracer/water injection location is selected at x=14.75 m, z= 7.25 m and an observation port is 
located at x= 24.75 m, z = 4.25 m.  The spatial statistics [i.e., mean, correlation scales] for the 
‘true’ parameter fields are used for the calculation of the cross correlations, except the variances 
where are assumed to be the same for all three parameter fields.  For comparison, the cross 
correlation between a steady state head at the observation port and K is also calculated. 
Figures 7.5a, 7.5b, and 7.5c show the cross correlations between the perturbation of the first 
moment at the observation location and perturbations of lnK, ln wθ , and ln nθ  throughout the 
aquifer, respectively.  In all these figures, the areas with very low correlation values [i.e., the 
absolute value less than 0.1] are blanked and velocity vectors of the steady-state flow induced by 
the injection are plotted.  These figures demonstrate that the correlation between the first 
moment and three parameters exhibit similar pattern. That is, the tracer first moment is only 
correlated to parameters along a narrow stripe between the injection location and the BTC 
measurement location, which follows the water flow line indicated in the figures.  The area with 
absolute correlation value greater than 0.3 between the first moment and K and between the first 
moment and  nθ  is confined to a small region along the stripe.  The highest absolute correlation 
value for K is close to 0.4 and for nθ is close to 0.5. On the other hand, the correlation between 
the first moment and wθ  is small with the maximum absolute value less than 0.15.  Figure 7.5d 
shows the cross correlation between a steady head at the observation location and K during the 
same injection test.  It is apparent that the high correlation value covers much of the downstream 
area of the observation location and most of area left of the injection location. The result is 
consistent with that by Wu et. al. [2005].  A comparison between Figures 7.5a and 7.5d indicates 
that a steady head measurement at a sampling location is correlated to K field over a much larger 
area than a tracer moment measurement at the same location.  Interestingly, Figure 7.5a shows a 
very small region with absolute correlation value greater than 0.4 whereas Figure 7.5d shows no 
region with absolute correlation higher than 0.4.  These results explain the reason why hydraulic 
tomography can yield high resolution mapping of K distribution over a large area and also why 
tracer data can complement the estimate of K from hydraulic tests.  Note that the velocity vectors 
are plotted merely for showing the flow direction and are not scaled to the magnitude of flow 
velocity. These figures also indicate that, during a water/tracer injection test, the first moment is 
negatively related to K and positively related to wθ  and nθ .  That is, the smaller the first moment 
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[earlier arrival time] is, the greater the K value but smaller wθ  and nθ  values are in the stripe.  

 

 
Figure 7.5: Cross correlations between the first moment perturbation and perturbations of: a] 
lnK; b] ln wθ ; and c] ln nθ and d] cross correlation between perturbation of head and perturbation 
of lnK.  Where the filled red circle represents tracer/water injection location and open red circle 
is the tracer observation location, blue arrows denote the velocity field [not scaled to magnitude], 
and the black curves with arrows are the streamlines. 
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8. LABORATORY SANDBOX VALIDATION OF STEADY 
STATE HYDRAULIC TOMOGRAPHY 
 
8.1 INTRODUCTION 

Yeh and Liu [2000] developed a sequential geostatistical inverse method which can be 
applied to hydraulic tomography for the interpretation of cross-hole hydraulic tests under steady 
state conditions. The main advantage of sequentially including pumping tests is its computational 
efficiency. The method is based on the Successive Linear Estimator [SLE] and these authors 
conducted synthetic simulations for 2- and 3- dimensional cases to test their approach. Validation 
of the steady state hydraulic tomography was limited to error-free cases of synthetic simulations. 

Liu et al. [2002] conducted a laboratory sandbox study to evaluate the performance of 
hydraulic tomography in characterizing aquifer heterogeneity. This was the first validation study 
of hydraulic tomography, but the K tomograms were only visually compared to the distribution 
of sand types and to results from synthetic simulations. The K tomograms were not compared to 
small scale estimates of K directly and the authors explicitly state that the true K distributions 
were not available for either one of the sandboxes used in the study. The authors mentioned that 
errors and biases have an effect on their K tomograms, but they did not examine the role of errors 
and biases directly by isolating their causes. 

Other researchers [Gottlieb and Dietrich, 1995; Butler et al., 1999; Bohling et al., 2002; 
Brauchler et al., 2003; McDermott et al., 2003; Zhu and Yeh, 2005, 2006] have developed 
methods for interpreting hydraulic and pneumatic tomography but none of them conducted a 
detailed validation of the K tomograms.   Therefore, the main objective of this task is to examine 
the accuracy of the K tomograms obtained from the steady-state hydraulic tomography algorithm 
developed by Yeh and Liu [2000]. We first obtain a reference K tomogram through the inversion 
of synthetic cross-hole test data generated through numerical simulations. The purpose of 
reference K tomogram generation is to examine the ability of the algorithm to image the 
heterogeneity pattern under optimal conditions without experimental errors and with full control 
of forcing functions [initial and boundary conditions as well as source/sink terms]. Parallel to the 
generation of synthetic data, we conduct hydraulic tests at multiple scales in a laboratory aquifer 
with deterministic heterogeneity to generate data that are used to validate the K tomogram from 
hydraulic tomography. Measurements include multiple K estimates from core, slug, single-hole 
and cross-hole tests as well as several unidirectional, flow-through experiments conducted upon 
the sandbox under steady-state flow conditions. Validation of K tomograms involved a multi-
method and multiscale approach which included: 1] visual comparisons of experimental K 
tomograms [from now on K tomogram] to the true sand distributions and the reference K 
tomogram generated using synthetic pumping test data via numerical simulations [from now on 
reference K tomogram]; 2] testing the ability of the K tomogram to predict the hydraulic head 
distribution of an independent cross-hole test not used in the computation of the K tomogram; 3]  
comparison of the conditional mean and variance of local K from the K tomograms to the sample 
mean and variance of results from other measurements; 4] comparison of local K values from K 
tomograms to those from the reference K tomogram; and 5] comparison of local K values from K 
tomograms to those obtained from cores and single-hole tests. We also examine the influence of 
errors and biases on inversion results using forward and inverse simulations of cross-hole tests. 
Errors and biases arising from the conduct of experiments are usually nonexistent in synthetic 
simulations as implemented by Yeh and Liu [2000] and Zhu and Yeh [2005, 2006], so one cannot 
directly examine their influence. On the other hand, in the field, biases and errors are generally 
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unknown, so their influence on the K tomograms cannot be quantified. Therefore, laboratory 
sandbox studies can be very important in quantifying the role of errors and biases on the K 
tomograms because all the forcing functions [initial/boundary conditions; sources/sink terms] 
can be controlled. 

We discuss the sandbox used in the study, provide descriptions of various hydraulic tests 
conducted in the sandbox for characterization, and discuss methods used to obtain data that will 
be later used to validate the K tomograms. We then discuss the forward and inverse analyses of 
cross-hole tests, including descriptions of data diagnostic tools, inverse modeling results with 
and without experimental bias and a multi-method/multiscale approach in validating the K 
tomograms.  
 
8.2 SANDBOX DESCRIPTION 

The synthetic heterogeneous aquifer constructed in the sandbox was designed to validate 
various fluid flow and solute transport algorithms and in particular, the hydraulic tomography 
algorithm. For this validation study we utilized hydraulic test data collected in sandbox 1-1 [see 
section 10 for details]. Figure 8.1 is a Computer Aided Design [CAD] drawing of the sandbox 
frontal view, showing the 48 port and pressure transducer locations as well as water reservoirs 
for controlling hydraulic head. 

 

 
Figure 8.1: Computer Aided Design [CAD] drawing of sandbox used for the validation of 
hydraulic tomography. Low K blocks are shown as dotted lines and circles around the numbers 
indicate the ports used for pumping. 
 

The flow system for the sandbox is driven by two constant-head reservoirs, one at each 
end of the sandbox. The adjoining reservoirs are capable of supplying water throughout the 
length and thickness of the sandbox quickly and efficiently compared to the situation if we had to 
maintain an external reservoir alone.  The boundary head levels can be easily adjusted to be 
equal or to create a desired hydraulic gradient.  We also utilized an intermediate overflow device 
to maintain equal constant heads on both boundaries in the experiments. The device consisted of 
a reservoir with an overflow pipe and tubing connecting it to the inlets at the bottom of the 
constant head reservoirs. The developed system is also capable of maintaining 3 constant head 
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boundaries simultaneously by ponding water at the top in addition to fixing the hydraulic heads 
in the 2 constant head reservoirs. 
 
8.3 DESCRIPTION OF THE FORWARD AND INVERSE MODELS  
 
8.3.1 Forward Model 

Forward modeling of various hydraulic tests in the sandbox were done using the two-
dimensional water flow and solute transport code MMOC2 as well as its three-dimensional 
version MMOC3 [Yeh et al., 1993]. The forward model is capable of simulating water flow and 
chemical transport through variably saturated porous media. The flow equation is solved using 
the Galerkin finite element technique with either the Picard or Newton-Raphson iteration 
scheme. 
 We also used VSAFT2, a Graphical User Interface [GUI] program based on MMOC2, to 
obtain equivalent estimates of hydraulic parameters through manual calibration from the slug, 
single-hole, and cross-hole tests. 
 
8.3.2 Inverse Model 

Inverse modeling of cross-hole tests in the sandbox were conducted using a sequential 
geostatistical inverse approach developed by Yeh and Liu [2000]. We only provide a brief 
description of the inversion approach here. The inverse model assumes a steady flow field and 
the natural logarithm of K [ln K] is treated as a stationary stochastic process. The model 
additionally assumes that the mean and correlation structure of the K field is known a priori. The 
algorithm essentially is composed of two parts. First, the Successive Linear Estimator [SLE] is 
employed for each cross-hole test. The estimator begins by cokriging the initial K value 
determined and observed h collected in one pumping test during the tomographic sequence to 
create a cokriged, mean removed ln K [f, i.e., perturbation of ln K] map. We select an initial K 
obtained from the traditional analysis of pumping test treating the medium to be homogeneous. 
Cokriging does not take full advantage of the observed h values because it assumes a linear 
relationship [Yeh and Liu, 2000] between h and K, while the true relationship is nonlinear. To 
circumvent this problem, a linear estimator based on the differences between the simulated and 
observed h values is successively employed to improve the estimate. 

The second step of Yeh and Liu [2000]’s approach is to use the h data sets sequentially 
instead of simultaneously including them in the inverse model. In essence, the sequential 
approach uses the estimated K field and covariances, conditioned on previous sets of h 
measurements as prior information for the next estimation based on a new set of pumping data. 
This process continues until all the data sets are fully utilized. Modifications made to the code 
for the present study include its ability to account for variations in the boundary conditions with 
each pumping test as they are sequentially included and implementing the modified loop scheme 
described in Zhu and Yeh [2005]. 
 
8.4 ESTIMATES OF HYDRAULIC CONDUCTIVITY FOR VALIDATION OF K 
TOMOGRAMS 

We first determined the K of the four types of sands from the horizontal cores obtained 
during the completion of wells and port placement. The extracted cores had dimensions of 1.28 
cm in diameter and 10.16 cm in length. These cores were then attached to a custom-made 
constant head permeameter [Klute and Dirksen, 1986] for determination of K. Details to the core 
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extraction method and the design of the constant head permeameter is provided in Craig [2005]. 
The K values from cores are calculated using Darcy’s law.  

We also conducted slug tests at each of the 48 ports. Due to the small size and 
configuration of the ports on the sandbox, an external well was attached to the ports instead of 
boring vertical wells into the sandbox.  A slug was introduced to perturb the water level in the 
horizontal well connected to the port and the corresponding recovery was monitored using a 
pressure transducer. Because existing analytical solutions cannot be used to interpret the slug 
tests with our current setting, we analyzed the data by manually calibrating VSAFT2 [Yeh et al., 
1993], available at www.hwr.arizona.edu/yeh, by treating the model domain to be a two-
dimensional, homogeneous medium [Craig, 2005]. A fine numerical grid [1.64 cm by 1.64 cm] 
was developed for the slug test analysis. The numerical simulations were conducted by raising 
the initial head at the elements corresponding to the slugged port and monitoring the 
corresponding decay in the head profile. VSAFT2 was chosen to analyze the test data for 
consistency because the code contains the forward model used later for hydraulic tomography. 
We report the geometric mean of 40 values that we deem to match the observed data well in 
Table 8.1. Results obtained revealed that the K values are several orders of magnitude smaller 
than the core values. We suspected that the data are affected by skin effects and wellbore storage. 
In fact, we investigated the issue further by conducting additional experiments to examine the 
effects of the number of cuts on the head response to slug tests. In particular, slug tests were 
conducted in a separate flow cell with tubes consisting of different number of cuts [2 – 8]. This 
effort revealed that the head response stabilizes after 6 cuts were made on the well. Therefore, all 
wells in the sandbox discussed in this paper were made by making 6 cuts. Despite these efforts, 
the K values determined using slug tests are very low, thus we question their reliability and do 
not use them for validation purposes. 

We then conducted pumping tests at each of the 46 out of available 48 ports. Ports 36 and 
38 have been damaged so we do not pump from these ports. During the pumping tests, the top 
and two sides of the aquifer served as constant head boundaries, as described earlier, while the 
bottom remained a no-flow boundary. Pumping rates ranged from 150 to 190 mL/min in most 
cases.  For each test, data collection started before the pump was activated to obtain the initial 
hydraulic head in the sandbox and the data were collected from all ports every 0.75 sec set to be 
constant throughout the duration of each experiment.  A data collection interval of 0.75 sec was 
selected to allow for the expected rapid transient change in hydraulic head at the monitoring 
ports. A peristaltic pump was then activated at the pumping port and allowed to run until the 
development of steady state flow conditions. The pump was then shut off to collect recovery data 
until the hydraulic head recovered fully.  During each pumping test, pressure heads were 
collected at all 48 ports. 

The data sets were analyzed in several ways.  First, we analyzed the 48 drawdown-time 
data sets induced by pumping at port 22 and those caused by pumping at port 28 by manually 
calibrating VSAFT 2 and assuming the aquifer is homogeneous.   The numerical setup for the 
manual calibration is identical to the slug test analysis.  For the pumping test at port 28 [located 
in 20/30 sand], all 47 cross-hole intervals were matched and 1 single-hole match was made 
which yielded a total of 48 estimates for that pumping test.  The pumping test at port 22 [located 
in F-75 sand] yielded also 47 cross-hole matches for observed and simulated drawdown.  The 
single-hole match in this case was unattainable due to the very large drawdown, which VSAFT2 
could not simulate.  Analysis of the two pumping tests thus yielded 95 estimates of K and Ss for 
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the equivalent homogeneous medium.  These two tests will be denoted as cross-hole tests 
hereafter. 

Out of the 46 pumping tests, we analyzed the drawdown-time data at selected 9 pumping 
ports [2, 5, 14, 17, 32, 35, 44, 46, and 47] using VSAFT2 to yield local or single-hole estimates 
of K.  These results are denoted as the single-hole results. 

We also conducted 9 flow-through experiments through the entire sandbox to obtain the 
effective hydraulic conductivity [Keff] of the entire sandbox under steady-state unidirectional 
flow conditions. Specifically, each of these nine experiments was conducted by changing the 
height of the reservoirs on the both sides of the sandbox.  After the flow reached a steady state 
condition, we measured discharge from one side of the sandbox. We also measured the 
difference between the heights of the water column in the two constant head reservoirs to 
determine the hydraulic gradient.  The nine pairs of gradient and discharge were computed using 
Darcy’s law to obtain the Keff
 Table 8.1 summarizes the results from all these tests. The mean estimates were obtained 
by computing the arithmetic mean of the natural logarithm transformed data. The variance was 
likewise computed using the natural logarithm transformed data set. We also calculated a 
volume-weighted mean and variance of the core values which are also listed in Table 8.1. The 
purpose of computing the volume-weighted mean and variance of the core K values was so that 
these values are upscaled to the size of the finite element grid used for the inversion so that we 
can compare them later. 

.   

In Table 8.1, we see that, in general, the mean values of the cross-hole and flow-through 
values coincide in this sandbox; however, core, slug, and single-hole test values are noticeably 
smaller suggesting a scale effect.  As mentioned earlier, the slug test values are considerably 
smaller, so we conclude that near well effects and/or borehole storage dominate the response, 
causing K estimates to be less reliable in comparison to other measurements. However, K 
estimates from cross-hole tests in the observation well are very close to the overall K value 
derived from the flow-through experiments suggesting that these estimates are less affected by 
near well effects. Therefore, we conclude that the cross-hole observation well data are reliable 
and we retain them in our analysis.  
 
Table 8.1: Summary of hydraulic properties determined from core, slug, cross-hole pumping test 
data and flow-through experiments. 

Test type N 
LN K−  

LN K−      [K ~ cms-1 2
LN Kσ −]  

Core 48 -2.166 [1.146 × 10-1] 1.498† † 

Slug 40 -10.692 [2.272 × 10-5 0.431 ] 
Single-hole 9 -3.174 [4.182 × 10-2 0.570 ] 
Cross-hole 96 -1.757 [1.726 × 10-1 0.074 ] 
Flow-through 9 -1.757 [1.725 × 10-1 0.002 ] 
† The volume-weighted mean and its corresponding variance are -1.920 [1.467× 10-1

 cms-1

 

] and 
1.560 respectively. 

Examination of Table 8.1 also shows that 2
ln Kσ varies from one type of test to the next 

with variance decreasing with the increasing scale. This is because the support volume of each 
estimate increases from the core, slug, single-hole, cross-hole and flow-through experiments. As 
the sample volume increases, K is averaged over the investigated volume. We note that the 
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calculated K values when the medium is treated to be homogeneous are useful, but provide a 
very limited resolution of the spatial variability in K. In addition, estimation of equivalent 
parameters treating the medium to be homogenous may yield biased values. This is one 
important reason why we conduct hydraulic tomography to determine how the K values vary 
spatially. 

 
8.5 DATA DIAGNOSTICS 
 
8.5.1 Examination of Drawdown Records and their Animations 

Prior to inverse modeling of cross-hole hydraulic tests, we conducted a detailed 
diagnostic study of the data. Such diagnostic tests of data used in forward and inverse models are 
rarely discussed in the literature, but we found that it should be an integral component to all 
phases of numerical forward and inverse modeling of cross-hole tests as the use of data corrupted 
by noise can have a profound effect on model results. 

We first plotted the transient head records in all 48 ports including the 2 pressure 
transducers placed in the constant head reservoirs to examine the propagation of a pressure pulse 
throughout the aquifer. Plotting of h records in this manner also allowed us to examine whether 
the pressure transducers were functioning properly as well as to identify the magnitude of noise 
during a given cross-hole test. The initial diagnosis of the data revealed that pressure transducers 
can be subject to different noise sources including electrical interference, barometric effects, and 
minute uncontrollable variations of the water supply. In general, the noise can be removed 
through signal conditioning and de-trending procedures applied to raw data. 

We also contoured the initial head distribution within the sandbox using Tecplot version 
10 [Amtec Engineering Inc., 2003] to identify whether there was any water flow prior to the 
cross-hole tests. This also allowed us to study the presence of any drift in pressure transducers. 
Because the transient head record at a given monitoring port provides only limited information 
about the evolution of the pressure pulse through the aquifer during a given pumping test, we 
also made animations of head contours using all head records from all 48 ports during a given 
cross-hole test by plotting successive frames of head distributions over the duration of each test. 
This process ensured that each test was conducted correctly and gave a pictorial representation of 
the pressure propagation throughout the sandbox during a given test. 
 
8.5.2 Diagnostic Forward Modeling 

We next conducted forward modeling of cross-hole tests to further diagnose the available 
data. We assumed that the pumping rate [Q] was deterministic and was accurately measured, the 
pressure transducers were properly calibrated and the drift was removed, the boundary 
conditions remained stable throughout the experiments and there was no noise to affect the 
experimental data. The K values used in the forward model are those obtained from taking the 
mean value from the core for each type of sand. With the forward model, we then simulate each 
cross-hole test and compare the results from the synthetic to the real data through a scatter plot. 

The forward modeling of the cross-hole tests showed that the simulated hydraulic head 
[hs] values are in general higher than the measured hydraulic head [hm] values near the top and 
bottom of the sandbox. The head value at the pumped port also differs considerably from the 
simulation results, consistently throughout the sandbox. As we are not aware of the cause[s] of 
these biases, we conducted a detailed study to determine their cause.  A bias can be introduced 
due to the collection of inaccurate data or through the misapplication of the forward model.  
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We first examined all head records carefully. This showed that the initial heads are 
inconsistent indicating the presence of drift in pressure transducers, so we modified the test data 
to reduce this bias. In particular we accounted for pressure transducer drift by calculating the 
drawdown [si

 
] at port i, in the following manner: 

 ,0i i is h h= −  [8.1] 
 
where hi,0 was the initial head at port i  during a given cross-hole test and hi is head at port i at 
time t. We then averaged the starting hi
 

 by taking the arithmetic mean 

 0 ,0
1

1 n

i
i

h h
n =

= ∑  [8.2] 

 
and used this value as the initial head for all ports. We then subtracted the si

We also see that the h

 to this starting head 
to get the modified head for each of the pumping tests. 

s are considerably higher than the hm values at the pumping port. 
The extra head drop can be due to inertial effects due to a high pumping rate and/or the 
development of a low K region at the pumped port [i.e., skin effect]. As discussed earlier, a series 
of diagnostic tests not shown here showed that the number of cuts made in the brass tube can 
affect the K measured at the pumped port and can be responsible for the increased drawdown. 
Therefore, we tried to account for the skin effect by locally changing the K of the element to the 
value determined from the slug tests, which was several orders of magnitude lower than the 
values determined through other methods. Results of the simulations accounting for the skin 
effect at the pumped port showed that the hs values are closer to the hm

To evaluate the goodness-of-fit between the simulated and measured hydraulic head 
responses, we calculate the mean squared error norm [L2]: 

 values at the pumping 
port. We also modified the K of all observation ports to account for this skin effect by artificially 
lowering the K to the value determined from the slug tests. However, the bias could not be 
removed completely so we made a decision not to use the data from the pumping port, but use all 
original data from the observation intervals without the adjustment of local K in the inverse 
model. 

 

 ( )2
2 , ,

1

1 n

s i m i
i

L h h
n =

= −∑  [8.3] 

 
where ,s ih  is the simulated value of hydraulic head at port i and ,m ih  is the measured value of 
hydraulic head at port i. The smaller the L2 norm, the better the estimate is expected to be. Table 
8.2 summarizes the L2 norm for each cross-hole test analyzed showing that forward simulations 
using modified data [modified only for initial head] reveal a large reduction in the L2 norm in 
most of the tests. In summary, diagnostic plots, animations of head contours, and forward 
modeling runs have helped us identify and remove errors/biases in our experiments. 
 
8.6 INPUTS TO THE INVERSE MODEL 

To obtain a K tomogram from multiple cross-hole tests, we solve a 3D inverse problem 
for steady flow conditions. The sandbox was discretized into 741 elements and 1600 nodes with 
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element dimensions of 4.1 cm × 10.2 cm × 4.1 cm. Both sides and the top boundary were set to 
the same constant head boundary condition, while the bottom boundary of the sandbox was a no-
flow boundary. We solve the inverse problem using a consistent grid for both the synthetic and 
real cases. Here, the synthetic case means that we generate a set of pumping test data by running 
a series of steady-state forward simulations using MMOC3 with the grid blocks representing the 
discontinuous blocks of sands in the sandbox. We then use these head and discharge records at 
the pumping point and observation points in the steady-state hydraulic tomography code of Yeh 
and Liu [2000]. For the real case, we mean the inverse modeling of data collected from the actual 
cross-hole tests conducted in the sandbox. 
 
Table 8.2: L1 and L2 norms before and after data modifications. 
Pumping 

port 
number 

 

Original 
data 

After data 
modification 

L2 L2 

2 6.23E-04 1.31E-04 
5 2.94E-04 1.49E-04 
14 5.15E-04 1.47E-03 
17 7.94E-04 6.15E-04 
32 1.26E-02 1.99E-02 
35 2.95E-02 7.87E-03 
44 3.90E-03 8.96E-03 
46 5.49E-02 1.53E-02 
47 7.95E-03 1.10E-02 

 
Inputs to the inverse model include the initial estimate of Keff ( )2

ln Kσ, the variance  and 

the correlation scales of hydraulic conductivity ( ), ,x y zλ λ λ , hi, volumetric discharge [Qn] where 
n is the test number, and available point [small-scale] measurements of hydraulic conductivity 
[Kc, KSH

We obtained the initial estimate of K

]. Here, we do not use the available point scale measurements of K to test the ability of 
the algorithm to delineate the heterogeneity patterns. 

eff separately for the synthetic and real cases. For the 
synthetic case, we simply take the geometric mean of the small scale or local estimates of the 
material from the core experiments at the sampling ports. For the inversion of the real cross-hole 
hydraulic test data, a number of approaches can be used to obtain the initial estimate of Keff for 
the medium. One is to calculate the geometric mean of the available small scale data [i.e., core, 
slug, and single-hole data]. The second approach is to do the same for the Keq estimates obtained 
through the analysis of data from monitoring ports during cross-hole tests by treating the 
heterogeneous medium to be homogeneous. We also have the results from the flow-through 
experiments to obtain the Keff.  We select the Keq

Estimation of 

 obtained through the traditional analysis of 
cross-hole tests by treating the medium to be homogeneous because in practice, this is the most 
logical approach in obtaining a large scale K that should be representative of a large portion of 
the flow and simulation domain. 

2
ln Kσ  always involves uncertainty. A previous numerical study conducted 

by Yeh and Liu [2000], however, has demonstrated that 2
ln Kσ  has negligible effects on the 

estimated K using the inverse model. Therefore, we obtain 2
ln Kσ estimates from the available 
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small scale data and use this as our input 2
ln Kσ  in the inverse model for the real data set. For the 

inversion of the synthetic data set, we calculate the 2
ln Kσ  from the local values input into the 

forward model. 
Correlation scales represent the average size of heterogeneity that is critical for analyzing 

the average behavior of aquifers. Correlation scales of any geological formation are difficult to 
determine. The effects of uncertainty in correlation scales on the estimate based on the 
tomography are negligible because the tomography produces a large number of head 
measurements, reflecting the detailed site-specific heterogeneity [Yeh and Liu, 2000]. Therefore, 
the correlation scales were approximated based only on the average thickness and length of the 
discontinuous sand bodies. Table 8.3 lists values of these statistical parameters [ 2

ln Kσ , , ,x y zλ λ λ ] 
used in our inverse analysis of cross-hole hydraulic tests for the inversion of synthetic and real 
cross-hole tests. 

 
Table 8.3: Input data for inverse modeling of 6 pumping tests in sandbox. 

Test type Keff [cms-1 2
fσ]  xλ [cm] yλ [cm] zλ [cm] Covariance 

model for f Q [cm3s-1] 

Synthetic 0.19 2.0 30 10 10 exponential 2.92 ~ 3.17 
Real 0.17 2.0 30 10 10 exponential 2.92 ~ 3.17 

 
8.7 RESULTS 
 
8.7.1 Inverse Modeling of Synthetic Cross-Hole Tests in Sandbox 

We begin the inversion of cross-hole tests by first generating synthetic hydraulic 
tomography data and inverting them to generate a reference K tomogram of the sandbox so that 
we can compare the results of the inversion of the real data later.  This case illustrates the ability 
of the steady state hydraulic tomography algorithm of Yeh and Liu [2000] to obtain a K 
tomogram under idealized conditions where model and measurement errors are excluded and 
when forcing functions are fully controlled. 

All 48 ports [see Figure 8.1 for locations] were used for steady-state hydraulic 
tomography.  The steady state head data were collected at these wells. Figure 8.2a is the true 
synthetic K field used to generate the cross-hole test data employed for hydraulic tomography. 
Figures 8.2b - i [cases 1 - 8] then shows the results of the estimation of the K tomogram from the 
successive inclusion of test data from pumping tests at ports 47, 44, 35, 32, 17, 14, 5, and 2, 
conducted in that order. These results clearly show that the inversion algorithm is capable of 
capturing the low K blocks, and other details of aquifer heterogeneity such as windows in low K 
strata that could provide continuous pathways for contaminant transport. It is of interest to note 
that the synthetic aquifer has a K distribution that is non-Gaussian and nonstationary. Because 
Yeh and Liu [2000]’s algorithm assumes a Gaussian and a stationary field, one would not expect 
this approach to be applicable to this K distribution. However, the statistical assumptions 
inherent in the algorithm become less important as we include large number of observation well 
data sets in the hydraulic tomography algorithm. This fact is evident from our results. Therefore, 
Yeh and Liu [2000]’s SSLE is not limited to Gaussian and stationary random K fields. 

The results were also quantitatively evaluated using the L2 norm, defined earlier, but in 
this case for the estimated and true parameters for the entire computational domain. Figure 8.2b-i 
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shows that the L2 norm decreases as more pumping tests are added, but the rate of reduction 
diminishes and stabilizes through cases 6 - 8. 

We use the best synthetic result [case 8] as a reference K tomogram in which we later 
compare our tomograms from the inversion of real cross-hole test data. 
 

 

 
Figure 8.2a-i: a] The synthetic true K distribution used to generate synthetic cross-hole test data; 
b] [47 - case 1] c] [47, 44 - case 2]; d] [47, 44, 35 - case 3]; e] [47, 44, 35, 32 - case 4]; f] [47, 44, 
35, 32, 17 - case 5]; g] [47, 44, 35, 32, 17, 14 - case 6]; h] [47, 44, 35, 32, 17, 14, 5 - case 7]; and 
i] 47, 44, 35, 32, 17, 14, 5, 2 - case 8] show the resulting K tomograms by sequentially inverting 
the synthetic cross-hole test data. Numbers in parentheses from b] – i] indicate the port numbers 
used as the pumped well for each cross-hole test. 
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8.7.2 Inverse Modeling of Real Cross-Hole Tests in Sandbox 
We next examine the results from the inversion of real cross-hole test data obtained in 

identical fashion to the synthetic case. In reality we do not know the true K distribution as in the 
synthetic case, so we do not show a true K distribution as in Figure 8.2a. Instead, we examine 
how the computed K tomogram improves after the identified errors and biases are sequentially 
removed. Also, the L2 norm is computed only at the ports in which the estimated K is compared 
to the true K from available cores. Figure 8.3a-d shows the sequential improvement of the 
computed tomograms as we remove the errors and biases as discussed in the previous section. 
Specifically, figure 8.3a is the tomogram of the original data set from pumping taking place at 8 
ports 47, 44, 35, 32, 17, 14, 5, and 2 without removing the errors and biases [case 9]. Clearly, 
these results do not compare favorably with the reference K tomogram [case 8]. 

 
 
 

 
Figure 8.3a-d: Tomogram with: a] original data set without removing bias/errors [case 9]; b] 
after removal of pumped well data affected by skin effect [case 10]; c] hydraulic head 
measurements corrected for variations in the offset [case 11]; d] accounting for varying boundary 
conditions for each pumping test [case 12]. All results shown here are after including 8 pumping 
tests in the inversion as in case 8 described in figure 8.3i. 
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Figure 8.3b shows the tomogram after removal of pumped well data affected by skin 
effect [case 10] and Figure 8.3c shows the tomogram after the h measurements are corrected for 
variations in the drift or offset in the pressure transducers [case 11]. We see a progressive 
improvement in the computed tomograms as the low K blocks begin to emerge. Therefore 
removal of the pumped well data from the inverse model improves the quality of the computed 
tomogram. In contrast, the skin effect at the observation wells does not have a significant impact 
on the results of the steady state hydraulic tomography. The effect of initial head variations due 
to the drift in pressure transducers also does not have a large effect on the inversion results for 
this particular case. 

The largest effect on the inversion results seems to come from the slight variations in the 
boundary condition [~1-2 mm differences in water level in the constant head reservoirs] from 
one pumping test to the next. When we account for the varying boundary condition for each test, 
the results improve dramatically [figure 8.3d – case 12]. This suggests that steady state hydraulic 
tomography is very sensitive to the constant head boundary conditions that are input into the 
model when hydraulic heads are used as input data. If drawdowns are used instead of heads in 
the inverse modeling effort, the effects of the boundary can be minimized. 
 
8.8 MULTI-METHOD AND MULTISCALE VALIDATION OF K TOMOGRAMS 

Model validation in the traditional sense means that the accuracy and predictive 
capability [of a model] can be shown to lie within acceptable limits of error by test data that are 
independent of the calibration data [Konikow, 1978]. In other words, model validation is done 
through the comparison of simulated and measured heads for both forward and inverse modeling 
efforts. The comparison of head/K data alone may not be a robust approach in validating the 
inverse model, so we instead utilize a multi-method and multiscale approach developed herein. 
The multi-method validation approach consists of validation through different, yet 
complementary approaches in validating the resulting K tomogram. One approach is to visually 
examine whether the K tomogram resembles the true K distribution from the sandbox. Another 
validation approach is to simulate an independent cross-hole test not used in the construction of 
the K tomogram. The most direct validation is achieved through the comparison of the local K 
values obtained from the K tomograms to those obtained by independent experimental results 
such as K values from cores and single-hole tests. The cross-hole and flow-through experiments 
provide equivalent [Keq] and effective [Keff

 

] values, which can also be compared by averaging 
the local K values from the tomograms. Because the independent experimental data are collected 
at different spatial scales, we consider the comparison of local and averaged K values from the K 
tomograms to independent data sets to be validation conducted at different spatial scales. We 
consider the K tomogram to be validated when it can be validated by employing all of these 
methods utilizing various data sets collected at multiple spatial scales. 

8.8.1 Multi-Method Validation Approach 1: Visual Comparison 
A visual comparison of the K tomogram [Figure 8.3d] obtained by sequentially including 

8 tests into the inversion algorithm and the photograph of the sand bodies shows that the steady 
state hydraulic tomography is able to delineate the major low and high hydraulic conductivity 
features that comprise the aquifer heterogeneity. This includes the correct delineation of the 
morphology and positions of low K blocks/layers and stratigraphic windows which can allow 
contaminant migration. We also visually compare the K tomogram resulting from the real data 
sets [Figure 8.3d] to the synthetic K tomogram [Figure 8.2i]. This comparison shows that the K 
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near the top of the aquifer for Figure 8.3d is higher than that in Figure 8.2i. This is likely due to 
the lack of sand compaction in the sandbox, artificially inflating the K values in Figure 8.3d. In 
general, it is evident from the comparisons that the approach is able to correctly depict major 
heterogeneity features using the hydraulic tomography technology.  
 
8.8.2 Multi-Method Validation Approach 2: Validation of K Tomogram with Additional 

Cross-Hole Hydraulic Tests not used in the Inversion 
 Another method of validation is to simulate an independent cross-hole test that has not 
been previously used to calculate the K tomogram and examine whether the hydraulic head of 
this independent test can be predicted accurately. For this, we utilize the K tomogram obtained 
from the inversion of 8 cross-hole tests [Figure 8.3d] and simulate a cross-hole test with pumping 
taking place at port 46.  Figure 8.4 shows the results of comparing the hs measurements obtained 
from a synthetic cross-hole test conducted at port 46 and the hm from these tests. Results show 
that the hs is slightly higher than the hm

 

. However, the comparison is very good considering that 
this is an independent cross-hole test not used in the construction of the K tomogram. 

Figure 8.4: Scatter plot of simulated hydraulic head [hs] versus measured hydraulic head [hm]. 
The hs values were obtained by simulating the cross-hole test conducted at port 46 using the K 
tomogram [Figure 8.3d]. The hm
 

 values are from an actual cross-hole test conducted at port 46. 

8.8.3 Multi-Method Validation Approach 3: Comparison of Statistical Moments  
We next validate the K tomogram by comparing the conditional mean log-transformed 

hydraulic conductivity ln K  and conditional log-transformed hydraulic conductivity variance
( )2

ln Kσ  obtained from the entire K field in the tomogram to the corresponding statistical 

moments obtained from other validation data sets. We first compare the conditional ln 1.73K = −  
obtained from our best K tomogram [figure 8.3d] [Table 8.4] to the ln Keff
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  [-1.76] obtained from 
the flow-through experiment [Table 8.1]. This comparison is excellent showing that the inverse 
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model is able to accurately and uniquely obtain the conditional mean value after including 8 
pumping tests in the inversion. We note that the difference between the conditional mean value 
and the actual mean value decreases quickly from the addition of one cross-hole test to the next 
[Table 8.4]. We find that this result holds even when the initial value of K used in the SLE is 
varied. 

The same cannot be said about the conditional 2
ln Kσ . It takes a larger number of pumping 

tests for a reasonable value to be estimated. To compare the conditional variance obtained from 
the inversion, we use the estimates of sample variance obtained from the available core K data 
[1.50]. The latter may be slightly higher than the actual value for the entire population [1.37] 
because we only use 48 values to compute the sample variance as opposed to the conditional 

2
ln Kσ  from the K tomogram where we use all values in the computational domain. This 

comparison shows that the inverse approach is able to estimate the conditional variance quite 
well after the sequential analysis of 8 cross-hole tests. We consider this comparison to be quite 
good based on the fact that we do not have the variance of the true K field and that the 
conditional variance approaches the sample variance as more cross-hole test data are included 
[see Table 8.4]. Other estimates of variances listed in Table 8.1 are representative of the medium 
at the larger scale, thus do not provide a fair comparison. Therefore, we restrict the comparison 
to the variance estimate from core samples. 
 
Table 8.4: Conditional mean and variance estimates for the inversions of the real data with the 
number of cross-hole tests used in the analysis. 
Number of cross-hole tests included in 
analysis [test number] 

ln K      [K ~ cms-1 2
ln Kσ]  

1 [47] -1.71 [0.18] 0.34 
2 [47+44] -1.81 [0.16] 0.44 
3 [47+44+35] -1.79 [0.17] 0.60 
4 [47+44+35+32] -1.78 [0.17] 0.80 
5 [47+44+35+32+17] -1.76 [0.17] 0.96 
6 [47+44+35+32+17+14] -1.74 [0.18] 1.16 
7 [47+44+35+32+17+14+5] -1.72 [0.18] 1.35 
8 [47+44+35+32+17+14+5+2] -1.73 [0.18] 1.37 
 
8.9.4 Multi-Method Validation Approach 4: Comparison of Local K Values from the Real 

K Tomogram to the Reference K Tomogram 
We next compare the K tomogram to those obtained from the synthetic tests that we 

consider to be the reference K tomogram [case 8 – Figure 8.2i]. As mentioned earlier, the 
reference K tomogram is computed from synthetic cross-hole tests on the computer. The 
reference K tomogram is our best K tomogram that can be obtained from the steady state 
hydraulic tomography approach of Yeh and Liu [2000] under optimal conditions without 
experimental errors and with full control of forcing functions [initial and boundary conditions as 
well as source/sink terms]. Therefore, one approach to validate the real K tomogram is to 
compare it against the reference K tomogram. Figure 8.5 shows a scatter plot of the local K 
estimates from the two cases. We see that the comparison between the two is very good and the 
differences between the two arise from some errors in the experiments as well as the imperfect 
packing of the sandbox. 
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Figure 8.5: Scatter plot of K values from the real [case 12] and the reference [case 8] K 
tomograms. 
 
8.9.5 Multi-Method Validation Approach 5: Comparison of Local K Values from the Real 

K Tomogram to K from Core and Single-Hole Tests 
To examine the performance of the algorithm in greater detail, we next compare local K 

values from the K tomogram to the K estimates from the cores [Figure 8.6] and single-hole tests 
[Figure 8.7]. Both figures show that there is some scatter as well as bias in results, with the latter 
that is especially evident in Figure 8.7. Robust as it is, neither the HT nor the SSLE is a perfect 
method. The more head observations are collected, the higher the resolution of the estimates will 
be [i.e., there is no optimum]. 

Likewise, K estimates from core and single-hole tests are not devoid of errors 
contributing to the scatter in Figures 8.6 and 8.7. In addition, inaccurate head observations and 
hydraulic property measurements [i.e., noise] during HT can unequivocally lead to an inaccurate 
estimate or cause the estimates to become unstable.  The SSLE can overcome the impacts of 
noise through loosening of convergence criteria, but this causes the estimates to become 
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smoother, which effectively results in a loss of information gained from the hydraulic head 
records. 

 
Figure 8.6: Scatter plot of K values from the real [case 12] K tomogram at the observation point 
and core K estimates. 
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Figure 8.7: Scatter plot of K values from the real [case 12] K tomogram at the observation point 
and single-hole K estimates. 
 
8.10 DISCUSSION 

While the validation of hydraulic and pneumatic tomography under field conditions is our 
ultimate goal, the validation of hydraulic tomography and other tomography technologies in the 
laboratory is very important and a necessary step. In the laboratory, we are better able to control 
the forcing functions fully and quantify the errors. We can also pack a heterogeneous structure 
that is almost fully prescribed. However, the true K field remains unknown because of packing 
variations. In addition, there are only a finite number of small scale samples that can be used for 
validation purposes. Therefore, we emphasize that even in the laboratory setting, a direct and 
complete validation of results is generally difficult. 

In this study, we have shown that the K tomogram can be validated using multiple 
methods. The tomograms can also be validated at multiple scales from the smaller scale, when 
the local K values are compared to cores, slug, and single-hole K estimates to the larger-scale K 
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estimates from other cross-hole and flow-through experiments. Such a multi-faceted approach in 
validation adds more confidence on the ability of the algorithm to tackle field scale problems. 

One form of model validation involves the establishment of greater confidence in a given 
model by conducting simulations of data sets that have not been used for calibration purposes. 
For example, one can calibrate a model using one set of pumping test data. If the calibrated 
model from this first pumping test can predict system response accurately in a second pumping 
test [e.g., conducted using another well], one can have greater confidence in the calibrated 
model. On the other hand, if the parameters need to be adjusted to match the response of the 2nd

This is precisely the essence of hydraulic tomography conducted with sequential 
inclusion of data. Therefore, it amounts to a repeated validation of the estimated K field with new 
data sets that are sequentially added. The method is robust, but it is not the panacea technology. 
This is because the computed K tomogram is non-unique as there are an infinite number of 
solutions to the steady state inverse problem for a heterogeneous K field, even when all of the 
forcing functions are fully specified. Only when data are available at all estimated locations will 
the inverse problem be well-posed and ultimately lead to a unique solution [e.g., Yeh et al., 1996; 
Yeh and Liu, 2000; Liu et al., 2002; and Yeh and Simunek, 2002]. This is not the case here. 
However, it is important to recognize that we have obtained a solution to the inverse problem 
that is consistent with the heterogeneity patterns that we can visualize and directly compare 
against the experimentally packed sand distributions [Fig. 10.7]. In addition, we were able to 
validate the resulting K tomogram using multiple methods and at multiple scales so our approach 
provides more confidence in the solution of the inverse problem. 

 
pumping test, the process becomes a second calibration and additional data sets are needed to 
continue with the validation exercise. Model validation is complete when the validation data sets 
are matched against simulated values resulting from the previously calibrated parameter values. 

Earlier, we saw that errors and biases can be very important in the result of the K 
tomogram and the blind addition of new data does not mean that it will automatically generate 
better results. Therefore, more effort should be expended on collecting accurate data and 
additional research should be conducted on improving hydraulic tomography technology both in 
sandbox experiments and in the field. This study also emphasizes the importance of reducing 
experimental errors and biases during validation of traditional groundwater flow and 
contaminant transport models. 
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9. PRACTICAL ISSUES IN IMAGING HYDRAULIC 
CONDUCTIVITY THROUGH HYDRAULIC TOMOGRAPHY 
 
9.1 INTRODUCTION 

In section 8, we examined the accuracy of the K tomograms obtained from the steady-
state hydraulic tomography algorithm developed by Yeh and Liu [2000]. They obtained multiple 
K estimates from core, slug, single-hole and cross-hole tests as well as several uni-directional, 
flow-through experiments conducted upon the sandbox under steady-state conditions. We also 
examined the influence of errors and biases on inversion results using forward and inverse 
simulations of cross-hole tests. They found out that the pressure transducer offsets, skin effect at 
the pumped well, among other sources of errors can have a large impact on the quality of the 
inverse modeling results. Likewise in section 10, we present the results from the laboratory 
validation of the transient hydraulic tomography to estimate both K and Ss

There are several issues that need to be further examined. One important issue in 
applying hydraulic tomography in the field is how much noise a given data set can contain in 
obtaining an accurate K tomogram without having to apply smoothing and/or signal processing 
techniques, which may result in the loss of information on the parameters contained in the data 
set. Another issue is that SSLE incorporates pumping test data sequentially, but no studies have 
been published to date that examines the role of varying the order of pumping test data included 
in the SSLE algorithm. Finally, during site characterization, test data other than cross-hole 
hydraulic test data such as from direct push technologies, core, slug, geophysical, and 
geochemical data may be collected. In some cases, one could utilize some of these data to 
condition the inverse modeling results. However, there are no studies to our knowledge, in which 
the role of conditioning on the estimated K tomogram by means of hydraulic/pneumatic 
tomography was systematically studied. 

 tomograms 
simultaneously, but in both cases, we have not examined practical factors such as the effects of 
signal-to-noise ratio and the role of conditioning on the quality of the inversion results. 

To address these practical yet important issues, in this section we continue our study on 
hydraulic tomography using synthetic data generated through numerical simulations and real 
data collected in the laboratory. The main objectives of this section are: 1] to further study the 
validity of steady state hydraulic tomography through synthetic pumping test data obtained 
through forward numerical simulations and real data obtained using a laboratory sandbox 
aquifer; 2] to investigate the effect of varying the pumping rate, which affects the signal-to-noise 
ratio, and its impact on K tomograms; 3] to investigate the effect of varying the order of test data 
included into the SSLE inversion algorithm; and 4] to investigate the effect of conditioning on K 
tomograms. We assess the validity of the synthetic and real K tomograms by simulating an 
independently conducted pumping test and comparing the head values obtained from the 
simulated and observed cases.   
 We first discuss the numerical simulation approach that underlies hydraulic tomography 
and approaches used to generate synthetic hydraulic test data and corresponding laboratory data 
sets. We then briefly discuss the reference K tomograms from synthetic and real data generated 
through laboratory sandbox experiments by Illman et al. [2007]. These reference K tomograms 
will be used to compare against the new results presented in this paper. In all cases, we first 
compare our results visually to the reference K tomograms obtained as a benchmark result for 
both the synthetic and real cases. Here, a synthetic K tomogram is one that is generated by 
inverting pumping test data generated on the computer. A real K tomogram is obtained by 
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inverting actual pumping test data obtained through laboratory experiments. All K tomograms, 
whether synthetic or real, are generated based on the experimental setup that was described 
previously in section 8. Further details of the laboratory aquifer, its specifications, and its 
capabilities are described in Craig [2005], Illman et al. [2007], and Liu et al. [2007]. 

We emphasize that the synthetic experiments conducted on the computer are necessary to 
test the SSLE algorithm under optimal conditions in which the experimental errors are neglected 
and the forcing functions [boundary condition and source/sink terms] are fully controlled. In 
addition, through numerical simulations, hydraulic tomography and the K tomograms obtained 
can be tested rigorously. The laboratory experiments described below are also required to test the 
SSLE algorithm under controlled conditions which is a necessary step towards its field 
applications. 
 
9.2 NUMERICAL SIMULATION METHODS 
 
9.2.1 Inverse modeling approach 

Inverse modeling of all synthetic and real pumping tests are conducted using a sequential 
geostatistical inverse approach developed by Yeh and Liu [2000], in which all details to the 
algorithm are provided. Details on Yeh and Liu’s [2000] approach are also provided in section 
8.3.2.  
 
9.2.2 Inputs to the inverse model 

To obtain a K tomogram from multiple cross-hole pumping tests, we solve a 3D inverse 
problem for steady flow conditions. The sandbox was discretized into 741 elements and 1600 
nodes with element dimensions of 4.1 cm × 10.2 cm × 4.1 cm. Both sides and the top boundary 
were set to the same constant head boundary condition, while the bottom boundary of the 
sandbox was set to be a no-flow boundary. We solve the inverse problem using a consistent grid 
for both the synthetic and real cases. Here, the synthetic case means that we generate a set of 
pumping test data by running a series of steady-state forward simulations using a finite element 
flow model MMOC3 [Yeh et al., 1993]. We then use these head and discharge records at the 
pumping point and observation points in the steady-state hydraulic tomography code of Yeh and 
Liu [2000]. For the real case, we mean the inverse modeling of data collected from the real 
cross-hole tests conducted in the sandbox. 

Inputs to the inverse model include the initial estimate of effective hydraulic conductivity 
[Keff ( )2

ln Kσ], variance , correlation scales of hydraulic conductivity ( ), ,x y zλ λ λ , volumetric 
discharge [Qn

We obtained the initial estimate of K

] where n is the test number, and available point [small-scale] measurements of K. 
Results which do not use available point scale measurements of K to test the ability of the 
algorithm to delineate the heterogeneity patterns are described in Illman et al. [2007] as well as 
in this paper. Later in this paper, we examine the effect of using available point scale K data [i.e., 
conditioning] on the computation of K tomograms. 

eff by averaging the K data from monitoring ports 
during cross-hole tests by treating the heterogeneous medium to be homogeneous. We also have 
the results from the flow-through experiments [described later] to obtain the Keff.  However, we 
select the Keff

 

 obtained through the traditional analysis of cross-hole tests by treating the medium 
to be homogeneous, because in practice, such values are most readily available through type 
curve, straight-line, or asymptotic analysis [Illman and Tartakovsky, 2006] of pumping test data. 
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9.3 GENERATION OF SYNTHETIC & LABORATORY HYDRAULIC TEST DATA 
 
9.3.1 Synthetic hydraulic test data 

We generated synthetic slug, single-hole, and cross-hole pumping test data on the 
computer using the MMOC3 forward model. There were two purposes to generate these 
synthetic data. One purpose was to generate synthetic cross-hole pumping test data, which are 
later used to generate the reference K tomogram. The reason for generating the slug and single-
hole test data are so that we can interpret them and obtain small-scale K estimates, which we can 
in turn use to condition the K tomograms. 

Figure 9.1 shows the K distribution of 4 sand types in the synthetic sandbox that is used 
to generate synthetic data on the computer. The K values for the 4 sand types are listed in Table 
9.1 and are obtained through the analysis of core samples through a constant head permeameter 
which we describe later. We first conducted slug tests at the 48 port locations by raising the 
initial head and recording the corresponding decay in the head using MMOC3. We then 
conducted synthetic cross-hole tests by running steady-state forward simulations using MMOC3 
at each of the 48 ports by setting a constant pumping rate and recording the hydraulic heads at 
the other ports. The pumping rate was set between 2.92 and 3.17 ml/s depending on the cross-
hole pumping test. Boundary conditions for the simulations were equal constant head conditions 
at the top and the two side boundaries, while the bottom boundary remained a no-flow boundary. 

 

 
Figure 9.1: Synthetic K distribution with port locations for pumping, observation, and 
conditioning. 
 
Table 9.1: Geometric mean values of K [cm/s] determined from core samples taken from the 
sandbox. 

Sand type Manufacturer n K [cm/s] 
20/30 U.S. Silica 32 2.60×10-1 
4030 U.S. Silica 3 6.42×10-2 
F-75 Unimin Corp. 5 1.99×10-2 
F-85 Unimin Corp. 8 1.61×10-2 

X (cm)

Z
(c

m
)

0 50 100 1500

20

40

60

K (cm/s)
0.500
0.375
0.281
0.211
0.158
0.119
0.089
0.067
0.050

F-75

2030

F-854030

F-85 F-75 F-75

F-85

F-85



115 
 

 
9.3.2 Laboratory hydraulic test data 

Parallel to the generation of synthetic hydraulic test data, we conducted different 
hydraulic tests in the sandbox to characterize the real aquifer and to generate conditioning data. 
We first determined the K of the four types of sands from the extracted core using a constant 
head permeameter [Klute and Dirksen, 1986]. We also conducted slug tests at each of the 48 
ports that utilized an external well connected to the port.  

After completing the slug tests, cross-hole pumping tests were conducted at 46 ports. 
Ports 36 and 38 experienced minor well screen damage so we do not pump from these ports. 
Rather, they are only used for head observations. For the cross-hole tests, pumping rates 
remained constant during the test duration. We used a pumping rate that is consistent with the 
synthetic case. Table 9.2 provides the pumping rate and duration for the tests interpreted in this 
paper. Out of the 46 pumping tests, we selected 8 tests [pumping at ports 2, 5, 14, 17, 32, 35, 44, 
and 47] for hydraulic tomography that we describe later. One test conducted by pumping at port 
46 was reserved for validation purposes. We selected the 8 pumping test data for analysis in this 
paper as pumping took place in 2 vertical columns which represent vertical wells, a situation 
which could be readily replicated in the field. 
 
Table 9.2: Summary of pumping rates and duration of cross-hole pumping tests used for 
hydraulic tomography and its validation. Note that tests with pumping taking place at ports 2, 5, 
14, 17, 32, 35, 44, and 47 were used in hydraulic tomography, while the test at port 46 was used 
for validation. 
Pumping Port # Pumping Rate [ml/s] Pumping Duration [s] 

2 3.07 165 
5 3.10 205 

14 3.17 242 
17 3.17 242 
32 2.97 243 
35 2.92 181 
44 3.12 212 
46 3.00 254 
47 3.12 166 

 
We also conducted 9 flow-through experiments through the entire sandbox to obtain the 

effective hydraulic conductivity [Keff

 

] of the entire sandbox under steady-state unidirectional 
flow conditions. Specifically, each of these 9 experiments was conducted by changing the height 
of the reservoirs on the both sides of the sandbox.  After the flow reached steady state, we 
measured volumetric discharge from one side of the sandbox. The difference between the heights 
of the water column in the two constant head reservoirs was measured to determine the hydraulic 
gradient.  Further details of the hydraulic experiments conducted in the sandbox can be found in 
Craig [2005], Illman et al. [2007] and Liu et al. [2007]. 
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9.4 ESTIMATION OF K FROM SYNTHETIC AND LABORATORY EXPERIMENTAL 
DATA SETS 
 
9.4.1Estimation of synthetic K data 

We estimate K from synthetically generated core, slug, and single-hole data for 
conditioning the K tomograms later. The core K estimates were obtained by simply reading off 
the K value assigned to the synthetic K distribution [Figure 9.1] at the locations where the actual 
cores were extracted. This assumes that there is no disturbance to the cores and that core K 
estimates are completely accurate [i.e., no experimental error]. 

We also conducted synthetic slug tests at each of the 48 ports on the computer using 
MMOC3 and analyzed the data by manually calibrating MMOC3 by treating the model domain 
to be a three-dimensional, homogeneous medium. We also considered existing analytical 
solutions to interpret the data but decided against using them for consistency. That is, the 
synthetic slug test data were generated with the forward model MMOC3, so it would be best to 
interpret the data through manual calibration using MMOC3. The numerical grid used for the 
interpretation of synthetic data was identical to the one used for hydraulic tomography. Boundary 
conditions for the simulations involving manual calibrations were identical to the numerical 
simulations for synthetic data generation and to the real experiments. The numerical simulations 
were conducted by raising the initial head at the elements corresponding to the slugged port and 
monitoring the corresponding decay in the head profile.  

We then conducted synthetic pumping tests at each of the 48 ports on the computer using 
MMOC3. For each steady state simulation, hydraulic head data were collected from all ports. We 
analyzed the steady state head records at the pumping ports by manually calibrating MMOC3 
and assuming the aquifer is homogeneous.   The numerical setup for the calibration is identical to 
the slug test analysis.  The K values obtained in this manner using MMOC3 yielded local or 
single-hole estimates of K.  These results are denoted as the single-hole results. 

Table 9.3 summarizes the results from all synthetic data sets. The mean estimates were 
obtained by computing the arithmetic mean of the natural logarithm transformed data. The 
variance was likewise computed using the natural logarithm transformed data set. In Table 9.3, 
we see that, in general, the mean values of the slug and single-hole test values are larger than that 
of the core values, which suggests a scale effect [e.g., Illman and Neuman, 2001; 2003 and 
Illman, 2006]. Examination of Table 9.3 also shows that the variance of ln K [ 2

ln Kσ ] varies from 
one type of test to the next with variance decreasing with the increasing scale. This is because the 
support volume of each estimate increases from the core, slug, and single-hole tests. As the 
sample volume increases, K is averaged over the investigated volume. 
 
Table 9.3: Summary of hydraulic properties determined from core, slug, and single-hole 
pumping test data through synthetic simulations. 

Test type N 
Kln  

Kln  [K ~ cms-1 2
ln Kσ]  

Core 48 -2.166 [1.15× 10-1 1.456 ] 

Slug 48 -1.906 [1.49× 10-1 0.161 ] 
Single-hole 48 -1.953 [1.42× 10-1 0.083 ] 
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9.4.2 Estimation of laboratory K data 
We then determined the K of the four types of sands from the horizontal cores in the 

laboratory. The extracted cores had dimensions of 1.28 cm in diameter and 10.16 cm in length. 
These cores were then attached to a custom-made constant head permeameter for determination 
of K. Details of the core extraction method and the design of the constant head permeameter are 
provided in Craig [2005]. The K values from cores are calculated using Darcy’s law. We report 
the arithmetic mean of 48 natural logarithm transformed K values in Table 9.4. 

We also obtained K estimates from slug tests conducted at each of the 48 ports. Due to 
the small size and configuration of the ports on the sandbox, an external well was attached to the 
ports instead of boring vertical wells into the sandbox.  A slug was introduced to perturb the 
water level in the horizontal well connected to the port and the corresponding recovery was 
monitored using a pressure transducer. Originally, Craig [2005] analyzed the slug test data in an 
identical fashion described for the synthetic slug test data, but the interpretation was done using 
VSAFT2, a GUI version of the MMOC3 code, available for free at 
http://tian.hwr.arizona.edu/yeh/. Results from these simulations are summarized in Table 9.4. 
Results obtained revealed that the K values were several orders of magnitude smaller than the 
core values. We suspected that the data are affected by skin effects and wellbore storage. In fact, 
we investigated the issue further by conducting additional experiments to examine the effects of 
the number of cuts on the head response to slug tests. In particular, slug tests were conducted in a 
separate flow cell with tubes consisting of different number of cuts [2–8]. This effort revealed 
that the head response stabilizes after six cuts were made on the well. Therefore, all wells in the 
sandbox discussed in this paper were made by making six cuts. Despite these efforts, the K 
values determined from slug tests analyzed with VSAFT2 were very low, thus we questioned 
their reliability. 

Due to the very low K values obtained from the analysis of the slug tests with VSAFT2, 
the interpretation technique was re-evaluated.  The slug test data was fitted automatically to the 
Bouwer-Rice [1976] solution using AQTESOLV software [http://www.aqtesolv.com/].  This 
software allows the user to accurately model the screened length and radius of the horizontal 
well and the radius of the external well [casing radius].  This allows the solution to account for 
the volume of water displaced by the slug in the external well.  We report the results from 48 
matches in Table 9.4.  The results obtained show that the K values are on the same order of 
magnitude as those from the other measurement methods, thus we deem them to be reliable and 
use them in this paper. 

We then estimated K from 2 pumping tests. The data sets were analyzed in several ways.  
First, we analyzed the 48 drawdown-time data sets induced by pumping at port 22 and those 
caused by pumping at port 28 by manually calibrating VSAFT2 and assuming the aquifer is 
homogeneous.  The numerical setup for the calibration is identical to the slug test analysis.  For 
the pumping test at port 28 [located in 20/30 sand], all 47 cross-hole intervals were matched and 
1 single-hole match was made which yielded a total of 48 estimates for that pumping test.  The 
pumping test at port 22 [located in F-75 sand] also yielded 47 cross-hole and 1 single-hole match 
for observed and simulated drawdown. Analysis of the two pumping tests thus yielded 96 
estimates of K for the equivalent homogeneous medium.  These two tests will be denoted as 
cross-hole tests hereafter. 

We analyzed the drawdown-time data at all 48 pumping ports using VSAFT2 to yield 
local or single-hole estimates of K.  These results are denoted as the single-hole results. 

http://tian.hwr.arizona.edu/yeh/�
http://www.aqtesolv.com/�


118 
 

The 9 unidirectional flow-through experiments were analyzed by applying Darcy’s law to 
obtain the Keff

We note that pumped port data during cross-hole pumping tests [i.e., single-hole data] 
and slug test data could be subjected to borehole storage, skin, and other nonlinear effects which 
could complicate the analysis. However, we find that the observation port data are not subjected 
to these complications, thus they could be utilized for analysis. This is because the K estimates 
from cross-hole tests in the observation well are very close to the overall K value derived from 
the flow-through experiments suggesting that these estimates are less affected by near well 
effects. Therefore, we conclude that the cross-hole observation well data are reliable and we 
retain them in our analysis. Examination of Table 9.4 also shows that 

.  Table 9.4 summarizes the results from all these tests computed in a similar 
manner to Table 9.3. In Table 9.4, we see that, in general, the mean values of the cross-hole and 
flow-through values coincide in this sandbox. However, core, slug, and single-hole test values 
are noticeably smaller suggesting a scale effect.  As mentioned earlier, the slug test values from 
analysis with VSAFT2 are considerably lower, so we conclude that this analysis method is not 
reliable. 

2
ln Kσ varies from one type 

of test to the next with variance decreasing with the increasing scale. This behavior is similar to 
the results from the synthetic hydraulic test data [Table 9.3] and is attributed again to the 
increase in support volume as the scale of the test increases. 
 
Table 9.4: Summary of hydraulic properties determined from core, slug, single-hole, cross-hole 
pumping test data and flow-through experiments conducted in the laboratory. 

Test type N 
Kln  

Kln  [K ~ cms-1 2
ln Kσ]  

Core 48 -2.166 [1.146 × 10-1 1.498 ] 

Slug [VSAFT2] 40 -10.692 [2.273 × 10-5 0.431 ] 
Slug [AQTESOLV] 46 -1.910 [1.481 × 10-1 0.521 ] 
Single-hole 48 -2.835 [5.872 × 10-2 0.589 ] 
Cross-hole 96 -1.757 [1.726 × 10-1 0.074 ] 
Flow-through 9 -1.757 [1.726 × 10-1 0.002 ] 
 
9.5 GENERATION OF REFERENCE K TOMOGRAMS USING SYNTHETIC AND 
REAL PUMPING TEST DATA 

Here, we briefly describe the reference K tomograms computed using synthetic and real 
data by Illman et al. [2007]. The purpose of constructing a reference K tomogram using synthetic 
data is to examine the ability of the SSLE algorithm to image the heterogeneity pattern under 
optimal conditions without experimental errors and with full control of forcing functions [initial 
and boundary conditions as well as source/sink terms].  The reference K tomogram is then used 
to assess the effects of signal-to-noise ratio and conditioning. We also obtain a reference K 
tomogram using real data so that we can later compare these results to those generated with noisy 
data and those conditioned to available core, slug, and single-hole K estimates. 

The reference K tomogram [Figure 9.2a] using synthetic data was computed through the 
inversion of 8 synthetic cross-hole test data generated via numerical simulations. The 
computation was done sequentially by including pumping tests conducted at ports 47, 44, 35, 32, 
17, 14, 5, and 2, in that order. All 48 ports were used in steady-state hydraulic tomography.  This 
result clearly shows that the SSLE algorithm is capable of capturing the correct position of the 
low K blocks, its morphology, dimensions, and other details of aquifer heterogeneity such as 
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windows in low K strata that could provide continuous pathways for contaminant transport. 
However, the low K blocks and their dimensions at the bottom of the sandbox [Figure 9.2a] are 
not captured as clearly as the other blocks positioned higher in the sandbox when compared to 
Figure 9.1. This could perhaps be due to the fact that there are no observation ports beneath the 
low K blocks. 

The reference K tomogram [Figure 9.2b] using real data was computed through the 
inversion of 8 sets of cross-hole pumping test data collected in the laboratory sandbox aquifer. 
We utilized the pumping tests taking place at the same ports as in the synthetic case and in the 
same order [i.e., 47, 44, 35, 32, 17, 14, 5, 2,]. It is important to note that no conditioning data 
were used to generate this reference K tomogram. Figure 9.2b shows the best K tomogram 
obtained by Illman et al. [2007] after various error and bias reduction schemes were applied to 
the raw data set collected in the sandbox. The main reasons for applying the error and bias 
reduction schemes were to remove outliers and excessively noisy data. Briefly, the error 
reduction scheme consisted of: 1] removal of pumped well data thought to be affected by a skin 
effect at the pumped port; 2] correcting for drift or offset in the pressure transducers; and 3] 
accounting for slight variations in boundary conditions from one pumping test to the next in the 
SSLE algorithm. Figure 9.3b shows that the heterogeneity pattern consisting of low K blocks are 
mostly captured, except for the bottom 2 blocks. There is also a thin and continuous high K zone 
at the top of the image that is not visible on the reference K tomogram [Figure 9.2a]. This is 
likely due to the lack of compaction of sands near the top of the sandbox. 
 
9.6 EFFECTS OF PUMPING RATE, ORDER OF TEST DATA INCLUDED IN SSLE 
AND CONDITIONING ON SYNTHETIC AND REAL K TOMOGRAMS 
 We next describe the effects of: 1] varying the pumping rate, which affects the signal-to-
noise ratio of head data collected during hydraulic tomography; 2] the order of test data included 
in the SSLE algorithm, and 3] conditioning on both synthetic and real K tomograms. The 
reference K tomograms from the synthetic [Figure 9.2a] and real [Figure 9.2b] cases will serve as 
our baseline results for purposes of comparison. 
 
9.6.1 The effect of pumping rate and signal-to-noise ratio 

We first examine the effect of varying the signal-to-noise ratio in the cross-hole pumping 
test data on the resulting K tomograms. A larger signal-to-noise ratio data can be generated by 
increasing the pumping rate and/or decreasing the noise level through signal conditioning 
techniques. Here, we vary the signal-to-noise ratio by conducting pumping tests at 2 different 
rates. The high pumping rate case was already presented by Illman et al. [2007] and shown here 
as Figure 9.2a-b. We present below the low flow rate case. The flow rate used for the synthetic 
simulations was 1.6 ml/s, while for the real case it varied for each test. It is evident from the 
synthetic case [Figure 9.3a] that the pumping rate and hence the signal-to-noise ratio has very 
little effect on the quality of the synthetic K tomogram when compared to the reference K 
tomogram [Figure 9.2a]. However, for the real case [Figure 9.3b], it has a noticeable detrimental 
impact when compared to Figure 9.2b, because of the larger noise level in the hydraulic head 
data associated with a lower pumping rate. We emphasize that the SSLE algorithm can overcome 
the effects of the noise level through loosening of the convergence criteria. However, loosening 
of the convergence criteria results in a smoother result that approaches the effective K value, 
which means that the heterogeneities become less well-defined. 
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a] 
 

 
b] 

 
Figure 9.2: Reference K tomograms generated by sequentially inverting 8: a] synthetic and b] 
real cross-hole pumping tests [modified after Illman et al., 2007]. 
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a] 

 
b] 

 
Figure 9.3: K tomograms obtained from low Q pumping test data with lower signal-to-noise 
ratio for the: a] synthetic and b] real cases. 
 
9.7.2 The effect of order of test data included sequentially in the SSLE algorithm 

We next vary the order of test data included into the SSLE algorithm. For the synthetic 
case [Figure 9.4a], we included the tests with pumping taking place in the order of ports 2, 5, 14, 
17, 32, 35, 44, and 47. Figure 9.4a shows that this has little effect on the computed K tomogram 
when compared to Figure 9.2a. We tried various combinations and found that the order of test 
data included has very little effect on the K tomograms. 

In contrast, the order of test data included has a large impact on the computation of the 
real K tomogram [Figure 9.4b] when compared to Figure 9.2b. This is because some head 
records from each pumping test are noisier than others. We found that the data most devoid of 
noise were found near the bottom of the sandbox, while the noisiest data were usually located 
near the top of the sandbox. This is due to the fact that a higher water column sits on the pressure 
transducers near the bottom of the sandbox, which causes the pressure transducers to be less 
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affected by noise. Also, a stronger signal is generated near the bottom of the sandbox because of 
the no-flow boundary and due to the superposition principle. 
 
a] 

 
b] 

 
Figure 9.4: K tomograms obtained by varying the order of pumping test data included in the 
SSLE algorithm for the: a] synthetic and b] real cases. 
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are included into SSLE. Therefore, including the cleanest data with higher signal-noise ratio in 
the beginning of the inversion process tends to improve the results. 
 
9.6.3 The effect of conditioning using core K data 

Conditioning is generally thought to improve results of conditional stochastic simulations 
and hydraulic tomography [e.g., Yeh and Liu, 2000]. We investigate this observation through the 
use of various conditioning data with the SSLE algorithm. For this investigation, 48 conditioning 
points consisting of various data types [core, slug, and single-hole K estimates] are placed at the 
ports shown on Figure 9.1. 

We first include core K estimates into the computation of the K tomogram. Figure 9.5a 
shows that conditioning of the K tomogram with core K data dramatically improves the quality 
of the synthetic tomogram when compared to Figure 9.2a. In particular, the low K blocks 
throughout the tomogram appear clearer compared to the background aquifer material. We also 
see that the dimensions of the low K blocks approach the true case [Figure 9.1] and more 
importantly, the low K blocks at the bottom of the sandbox become clearer. 

We next condition the real K tomogram with real core K data obtained in the laboratory at 
48 port locations. Figure 9.5b again shows a dramatic improvement of the K tomogram in 
comparison to the reference K tomogram [Figure 9.2b]. In particular, we see the low K block 
appearing clearly at the bottom of the sandbox.  
 
9.6.4 The effect of conditioning using slug K data 

We next condition the K tomogram with available synthetic and real, slug K data. For the 
synthetic case [Figure 9.6a], we see a slight deterioration in the K tomogram. This is because the 
slug K estimates represent a larger support volume than the core K estimate. In fact, results from 
forward simulation of slug tests using VSAFT2 not shown here confirmed this finding. That is, 
the head distribution resulting from the synthetic slug test generated on the computer revealed a 
volume of influence that is larger than the numerical grid used in the computation of the K 
tomogram. Therefore, inclusion of slug K data as conditioning points causes smoothing of the K 
tomogram. 

Conditioning of the real K tomogram [Figure 9.6b] using 48 slug test K data leads to a 
slight deterioration in the tomogram when compared to Figure 9.2b. In particular, we see the 
smoothing of the low K blocks throughout the aquifer as in the synthetic case. 
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a] 

 
 
b] 

 
 
Figure 9.5: K tomograms obtained by conditioning with core K values for the: a] synthetic and 
b] real cases. 
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a]  

 
b] 

 
Figure 9.6: K tomograms obtained by conditioning with slug K values for the: a] synthetic and 
b] real cases. 
 
9.6.5 The effect of conditioning using single-hole K data 

We next condition the K tomogram with available synthetic and real single-hole K data. 
As in the case of conditioning with slug K data, the synthetic result [Figure 9.7a] shows a slight 
deterioration and smoothing of the K tomogram when compared to Figure 9.2a. This is because 
single-hole K represents a much larger support volume. VSAFT2 simulations not shown here 
reveal that the cone of depression essentially reaches all boundaries at steady state. Therefore, 
single-hole K estimates represent a considerably larger area around the pumping port. Therefore, 
inclusion of single-hole K data as conditioning points, causes smoothing of the K tomogram. It is 
of interest to note that the K tomograms from Figures 9.6a and 9.7a look similar. 

Conditioning of the real K tomogram [Figure 9.7b] using single-hole K data leads to a 
slight deterioration in the tomogram when compared to Figure 9.2b. In particular, we see the 
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smoothing of the low K blocks throughout the aquifer. These results are similar to those obtained 
through conditioning with slug K test data [Figure 9.6b].  
 
a] 
 

 
b] 

 
Figure 9.7: K tomograms obtained by conditioning with single-hole K values for the: a] 
synthetic and b] real cases. 
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more rigorous and quantitative approach to validate the computed K tomograms is necessary. 
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pumping test that was not used in the inversion. The forward simulation of this independent test 
will yield heads at the monitoring ports, which are then compared to the actual head data through 
a scatter plot. We adopt this approach to validate the synthetic and real K tomograms. In 
particular, for the synthetic case, we simulate another pumping test using the K tomograms 
[Figure 9.2a, 9.3a, 9.4a, 9.5a, 9.6a, and 9.7a] and the true K distribution [Figure 9.1]. In all 
simulations, pumping takes place at port 46. A comparison of the steady state head values 
through a scatter plot then should validate the K tomograms. 

Figures 9.8a-f shows the results of this comparison for the synthetic case.  It shows that 
the comparison is excellent for all cases for monitoring ports far away from the pumping port, 
where the drawdown is smaller. We notice that simulated head values are larger than the 
observed ones, when the head values are small for all cases. However, the K tomogram obtained 
by conditioning using core K data yields the smallest discrepancy between the simulated and 
observed head values near the pumping port. The comparison of the heads near the pumped port 
is worse for the other cases. This is consistent with the fact that uncertainty in the predicted 
drawdown grows with the mean gradient according to stochastic analysis and confirms the 
earlier finding by Liu et al. [2007]. 

Two criteria, the average absolute error norm [L1] and the mean squared error norm [L2], 
were used to quantitatively evaluate the goodness-of-fit between the simulated and observed 
hydraulic head responses. The smaller the L1 and L2 norms are, the better the estimate is. 
Specifically, when one compares the results [Figures 9.8b-f] to the unconditioned case [Figure 
9.8a]: 1] Figure 9.8b shows that the effect of low pumping rate has a negligible impact on 
results; 2] Figure 9.8c shows that changing the order of pumping tests slightly deteriorates the 
results; and c] Figures 9.8d-f show that conditioning tends to improve the results for the synthetic 
cases. 
 

 
Figure 9.8: Scatter plot of simulated drawdown versus observed drawdown at steady state for 
cross-hole hydraulic tests at port 46. The head values were obtained by simulating cross-hole 
pumping tests on the computer using the synthetic K tomograms [Figures 9.2a, 9.3a, 9.4a, 9.5a, 
9.6a, and 9.7a]. The observed head values from the true K field [Figure 9.1] were also simulated 
on the computer. 

Observed Head (cm)

S
im

ul
at

ed
he

ad
(c

m
)

78 78.5 79 79.5 80 80.578

78.5

79

79.5

80

80.5
L1: 0.0207
L2: 0.0034

a) Unconditioned case

Observed Head (cm)

S
im

ul
at

ed
he

ad
(c

m
)

78 78.5 79 79.5 80 80.578

78.5

79

79.5

80

80.5
L1: 0.0076
L2: 0.0005

d) Conditioning using core K data case

Observed Head (cm)

S
im

ul
at

ed
he

ad
(c

m
)

78 78.5 79 79.5 80 80.578

78.5

79

79.5

80

80.5
L1: 0.0160
L2: 0.0028

e) Conditioning using slug K data case
Observed Head (cm)

S
im

ul
at

ed
he

ad
(c

m
)

78 78.5 79 79.5 80 80.578

78.5

79

79.5

80

80.5
L1: 0.0379
L2: 0.0094

c) Changing the order of pumping tests case

Observed Head (cm)

S
im

ul
at

ed
he

ad
(c

m
)

78 78.5 79 79.5 80 80.578

78.5

79

79.5

80

80.5
L1: 0.0155
L2: 0.0029

f) Conditioning using single-hole K data case
Observed Head (cm)

S
im

ul
at

ed
he

ad
(c

m
)

78 78.5 79 79.5 80 80.578

78.5

79

79.5

80

80.5
L1: 0.0207
L2: 0.0034

b) Low pumping rate case



128 
 

 
We also utilize this validation approach on the real K tomograms. For this, we utilize the 

various real K tomograms [Figures 9.2b, 9.3b, 9.4b, 9.5b, 9.6b, and 9.7b] and simulate an 
independent cross-hole pumping test with pumping taking place at port 46.  Pumping test at port 
46 was chosen for validation purposes because it was not used in the construction of the K 
tomograms and it is also a pumping test with the cleanest data. Figure 9.9a-f shows the results of 
this comparison. According to this figure, the data pairs are scattered along the 45 degree line, 
indicating predicted head distributions generally are statistically unbiased in comparison with the 
observed except for those generated with a low pumping rate [i.e., the results with low signal-to 
noise ratio] [Figure 9.9b].  This plot and the quantitative measures [L1 and L2 norms] show that 
the comparison is consistently very good providing us with further confidence that SSLE can 
provide an unbiased estimation of the head distribution. Note that the simulated heads will not 
necessarily match the observed ones perfectly as they should, due to the fact that the tomograms 
are conditional effective K fields and also due to noise in the observations. 

 

 
Figure 9.9: Scatter plot of simulated drawdown versus observed drawdown at steady state for 
cross-hole hydraulic tests at port 46. In both cases, the simulated values were obtained through 
synthetic simulations of the cross-hole test conducted using the real K tomograms [Figures 9.2b, 
9.3b, 9.4b, 9.5b, 9.6b, and 9.7b]. The observed drawdown values are from an actual cross-hole 
pumping test conducted at port 46. 
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10. LABORATORY SANDBOX VALIDATION OF TRANSIENT 
HYDRAULIC TOMOGRAPHY 
 
10.1 INTRODUCTION 
 Zhu and Yeh [2005] developed an algorithm for transient hydraulic tomography through 
the use of the Sequential Successive Linear Estimator [SSLE].  Their approach combines the 
traditional geostatistical approach and governing flow physical principles to interpolate and 
extrapolate at locations where samples are not available.  As a consequence, the SSLE as 
implemented in hydraulic tomography yields more realistic estimates than kriging and 
deterministic/zone-based inverse modeling approaches that consider principles of flow and use 
one pumping or injection data set only.  They showed that K and Ss distributions can be obtained 
through data sets from numerically simulated pumping tests in synthetic heterogeneous aquifers. 
They suggested that the transient hydraulic tomography is a potentially cost-effective and high-
resolution technique for mapping spatial distributions of the K and Ss
 While various algorithms for hydraulic tomography have been developed and some of 
them have been validated in sand box experiments [Liu et al., 2002; and Illman et al., 2007, 
2008], to date, comprehensive validation of the transient hydraulic tomography has not been 
done either in the laboratory or the field setting. A field validation is the ultimate goal, but prior 
to that, laboratory validations are necessary in which the baseline heterogeneity is largely known, 
and all forcing functions and errors can be controlled as opposed to field applications.  The main 
objectives of this section are: 1] to sequentially invert cross-hole pumping test data obtained in a 
synthetic aquifer with deterministic heterogeneity in sandbox experiments to obtain K and S

 in aquifers.  

s 
tomograms using the transient hydraulic tomography algorithm of Zhu and Yeh [2005] and 2] to 
validate the K and Ss
 

 tomograms using various independent data and methods. 

10.2 METHODS FOR CHARACTERIZATION OF THE SANDBOX 
 Different hydraulic tests were performed to characterize the hydraulic parameters in the 
sandbox, including determination of K using core samples, in-situ slug tests, and in-situ pumping 
tests.  Details to each test were described previously and Table 10.1 summarizes the results from 
all these tests. The mean estimates were obtained by computing the arithmetic mean of the 
natural logarithm transformed data. The variance was likewise computed using the natural 
logarithm transformed data set. We also calculated a volume-weighted mean and variance of the 
core values which are also listed in Table 10.1. The purpose of computing the volume-weighted 
mean and variance of the core K values was so that these values are upscaled to the size of the 
finite element grid used for the inversion so that we can compare them later.  
 
Table 10.1: Summary of hydraulic properties determined from core, slug, single-hole, cross-hole 
pumping test data and flow-through experiments. 

Test type N 
LN K−  sLN S−  

LN K−      [K ~ cms-1 2
LN Kσ −]  

sLN S−      [Ss ~ cms-1 2
sLN Sσ −]  

Core 48 -2.166 [1.146 × 10-1] 1.498† N/A † N/A 
Slug 40 -10.692 [2.272 × 10-5 0.431 ] N/A N/A 
Single-hole 9 -3.174 [4.182 × 10-2 0.570 ] -7.960 [3.492 × 10-4 1.897 ] 
Cross-hole 95 -1.757 [1.726 × 10-1 0.074 ] -8.378 [2.300 × 10-4 0.047 ] 
Flow-through 9 -1.757 [1.725 × 10-1 0.002 ] N/A N/A 
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† The volume-weighted mean and its corresponding variance are -1.920[1.467× 10-1

 

] and 1.560 
respectively. 

10.3 INVERSE MODEL DESCRIPTION 
 Mapping of the spatial distribution of hydraulic properties in the sandbox were carried 
out using a transient hydraulic tomography algorithm developed by Zhu and Yeh [2005] and 
hydraulic head data from the six pumping tests.  A brief description of the algorithm is given 
below.  
 The inverse model assumes a transient flow field and the natural logarithm of K [ln K] 
and Ss [ln Ss] are both treated as multi-Gaussian, second-order stationary, stochastic processes. 
The model additionally assumes that the mean and correlation structure of the K and Ss 

The estimation procedure starts with a weighted linear combination of parameter 
measurements and transient hydraulic head data at different locations to obtain the first estimate 
of the parameters. The weights are calculated using the means and covariances of parameters, the 
covariances of hydraulic heads in space and time, and the cross-covariances between heads and 
parameters. The first estimate is then used in the mean flow equation to calculate the heads at 
observation locations and sampling times through a forward simulation. At the end of this 
forward simulation, the differences between the observed and simulated hydraulic heads are 
calculated and a weighted linear combination of these differences is then used to improve the 
previous estimates. Iterations between the forward simulation and estimation continue until the 
improvement in the estimates diminishes to a prescribed value. 

fields are 
known a priori. 

SSLE can handle measurement error through the specification of two convergence 
criteria in the algorithm. The criteria are the change of variance and pressure heads between two 
consecutive iterations, which are both set to 0.01 in our model. 
 The transient hydraulic tomography algorithm developed by Zhu and Yeh [2005] allows 
for the sequential inclusion of pumping test data. Some modifications were made to the code for 
the present study to account for variations in the constant head boundary conditions from one 
pumping test to the next, as they are sequentially included.  
 
10.4 INVERSE MODEL PARAMETERS 
 To obtain the K and Ss

Inputs to the inverse model include initial guesses for the K and S

 tomograms, the synthetic aquifer was discretized into 741 
elements and 1600 nodes with element dimensions of 4.1 cm × 10.2 cm × 4.1 cm. The numerical 
grid is somewhat smaller [161.3 cm by 75.6 cm by 10.2 cm] than the actual dimensions of the 
sandbox [193.0 cm by 82.6 cm by 10.2 cm] as we only model the portion of the sandbox that 
contains the porous medium. Both sides and the top boundary were set to be constant head 
boundary conditions, while the bottom boundary of the sandbox was considered a no-flow 
boundary.   This grid setup is consistent with that was used in the steady state hydraulic 
tomography by Illman et al. [2007, 2008]. 

s, estimates of variances 
and the correlation scales for both parameters, volumetric discharge [Qn] from each pumping test 
where n is the test number, available point [small-scale] measurements of K and Ss, as well as 
head data at various times selected from the head-time curve.  Although available point [small-
scale] measurements of K and Ss

 

 can be input to the inverse model, we do not use these 
measurements to condition the estimated parameter fields to test the inversion algorithm. 
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10.4.1 Hydraulic Parameters K and S
 A number of methods can be used to obtain the initial guess of K and S

s 
s. One can set an 

arbitrary value that is reasonable for the geologic medium considered or to estimate the average 
or effective hydraulic conductivity [Keff] and specific storage [Sseff] for an equivalent 
homogeneous sandbox. If there are small scale data available, then a geometric mean of the 
available small scale data [i.e., core, slug, and single-hole data] can be calculated. An alternative 
to this is to use the equivalent hydraulic conductivity and storage estimates obtained through the 
analysis of cross-hole test data by treating the medium to be homogeneous. Yet, another 
approach is to use the results from the flow-through experiments to obtain the Keff. We elect to 
utilize the mean value of the K and Ss

 

 obtained from the analysis of cross-hole tests treating the 
medium to be homogeneous as these estimates are commonly and readily available in real field 
situations. 

10.4.2 Variance and Correlation Scales   
The variances and correlation scales of the K and Ss fields are also required inputs to the 

inverse model. However, estimation of variance always involves uncertainty. A previous 
numerical study conducted by Yeh and Liu [2000] has shown that the variance has negligible 
effects on the estimated K using the inverse model. We expect the same for both K and Ss

 Correlation scales represent the average size of heterogeneity, which is difficult to 
determine accurately without a large number of data sets in the field. The effects of uncertainty 
in correlation scales on the estimate based on the tomography are negligible because the 
tomography produces a large number of head measurements, reflecting the detailed site-specific 
heterogeneity [Yeh and Liu, 2000]. Therefore, the correlation scales were approximated based 
only on the average thickness and length of the discontinuous sand bodies. 

 for 
transient hydraulic tomography. Therefore, we obtain variance estimates from the available small 
scale data and use this as our input variance in the inverse model for the real data set. 

 
10.4.3 Transient Hydraulic Head Data 

Transient hydraulic head records are required observation data for transient hydraulic 
tomography. These were obtained from ports that yielded data that were not too noisy. The 
remaining data then were treated with various error reduction schemes discussed in Illman et al. 
[2006]. Briefly, the error reduction schemes consisted of accounting for pressure transducer drift 
and removal of data at the pumping port affected by skin effects, and averaging the drawdown 
data at steady state. We then calculated drawdown for each port during a pumping test. Once the 
drawdown is computed, a 6th–order polynomial curve was fit to each transient drawdown record. 
We then extracted 4 to 5 points that are evenly spaced to capture the transient head record 
thoroughly. Drawdown curves that could not be properly fitted were manually excluded from the 
analysis. The average R2 for the fitted curves picked out for inverse modeling is 0.9963, which 
means the curves were well fitted. In total, we utilized 6 independent cross-hole tests for the 
analysis. There were other cross-hole tests available, but those 6 were considered to be the best 
among the data set. In addition, we selected the pumping tests from these ports as they are evenly 
distributed along two vertical profiles throughout the sandbox. More specifically, we utilized 4 
drawdown data from 19 ports totaling 76 in cross-hole tests #14 and #17, 4 drawdown data from 
30 ports totaling 120 in cross-hole test #32, 4 drawdown data from 26 ports totaling 104 points 
for pumping test #35, 4 drawdown data at 36 ports totaling 144 points for pumping test #44 and 
5 drawdown data at 26 ports totaling 130 points for pumping test #47. In total, we utilized 650 
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drawdown records from 6 different tests in our transient inversions. Illman et al. [2006] made 
use of 2 additional tests for steady state hydraulic tomography. Here we do not use these data as 
the transient drawdown records are noisy. 

 
10.5 RESULTS FROM TRANSIENT HYDRAULIC TOMOGRAPHY  

Figure 10.1a is a drawing of the sandbox showing the synthetic aquifer with each sand 
type marked. Figures 10.1b-f are the K tomograms obtained by inverting head data induced by 
the six pumping tests [14, 17, 32, 35, 44, 47] conducted in that order. Results from using the first 
two pumping tests [Figure 10.1b] reveal detailed heterogeneity patterns near the top of the 
sandbox, where pumping took place. However, little detail to the heterogeneity pattern is 
revealed near the bottom of the sandbox. This is alleviated with the heterogeneity structure for 
the entire aquifer appearing when additional cross-hole tests are included sequentially. Upon 
inclusion of all of the 6 pumping tests in the inversion, a vivid image [Figure 10.1f] of the 
heterogeneity structure appears. However, the 2 low K blocks near the bottom boundary still are 
not well resolved. In addition, a high K zone is apparent near the top of the sandbox. This may be 
attributed to the lack of compaction of sands near the top. 

Despite of the lack of resolution near the bottom, the results collectively show that the 
inversion algorithm is capable of capturing the pattern of the K distribution, which is critical for 
an analysis of contaminant migration. Another interesting observation that one may make 
qualitatively is that the transient hydraulic tomography reaches the same quality of result with 
fewer pumping tests than the steady state approach, which required 8 pumping tests [Illman et 
al., 2007]. We also visually compared the K tomogram resulting from transient hydraulic 
tomography to that obtained from the steady state hydraulic tomography [figure 10.1g]. This 
comparison revealed that the tomograms are very similar.   

Figure 10.2b - f shows the corresponding Ss tomogram that was estimated 
simultaneously. In contrast to Figure 10.1b - f, the structure consisting of variable size sand 
bodies visible in the K tomogram is not visible for the Ss tomogram. This can be attributed to the 
fact that sands of relatively low compressibility [of various sizes] were used to construct the 
synthetic aquifer. However, a decreasing trend in Ss with depth in the synthetic aquifer is 
apparent. Physically speaking, this makes sense because the sands in the upper portion are less 
compressed, while the deeper sands are more compressed due to the stress exerted by the 
overlying material.  This finding perhaps suggests that the K values are not significantly 
correlated with the Ss values in this sand box. 
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Figure 10.1a-f: a] Sketch of the sandbox with a deterministic heterogeneous aquifer; b] [14, 17 - 
case 1]; c] [14, 17, 32 - case 2]; d] [14, 17, 32, 35 - case 3]; e] [14, 17, 32, 35, 44 - case 4] and f] 
[14, 17, 32, 35, 44, 47 - case 5] show the resulting K tomograms by sequentially inverting the 
experimental cross-hole test data. Numbers in parentheses from b] – f] indicate the port numbers 
used as the pumped well for each cross-hole test. 
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Figure 10.2a-i: a] Sketch of the sandbox with a deterministic heterogeneous aquifer; b] [14, 17 - 
case 1]; c] [14, 17, 32 - case 2]; d] [14, 17, 32, 35 - case 3]; e] [14, 17, 32, 35, 44 - case 4] and f] 
[14, 17, 32, 35, 44, 47 - case 5] show the resulting Ss

 

 tomograms by sequentially inverting the 
real cross-hole test data. Numbers in parentheses from b] – f] indicate the port numbers used as 
the pumped well for each cross-hole test. 

10.6 COMPARISONS OF K AND SS

 

 FIELDS FROM DIFFERENT TESTS AND 
ANALYSES 

10.6.1 Visual Comparisons of Patterns of Heterogeneity of Different Tests and      
 Analyses 

Figure 10.3a shows the contour map of the K values estimated from the 48 core samples.  
The map as expected outlines the distribution of the blocks of low conductivity values, indicating 
the distribution of these core measurements.  Similarly, the contour map of the K values 
estimated from the 40 slug tests also reveals a similar pattern [see Figure 10.3b].  Finally, a map 
of the K estimates based on the 48 hydrographs induced by pumping at port 28 [the cross-hole 
test] is shown in Figure 10.3c.  As suggested by Wu et al. [2005], each estimated K represents 
some kind of average of the hydraulic conductivities over the cone of depression, but it is 
influenced by the hydraulic conductivity values near the pumping well and the observation well.  
As a result, the distribution of these estimates is smooth and does not necessarily show the 
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pattern of the heterogeneity in the sand box.   The distribution of the K estimates based on the 
cross-hole tests with pumping at port 22 shows a very similar pattern.   
 Next, we plot in Figure 10.3d the spatial distribution of the estimated Ss values from the 
cross-hole tests using port 28 as the pumping well.  It is interesting to observe that this spatial 
distribution is in some agreement with that resulting from the transient hydraulic tomography 
[see figure 10.2f].  That is, higher specific storage values are at the upper portion of the sand box.   
This result appears to support the finding by Wu et al. [2005] that the Ss estimates from the 
cross-hole analysis with the assumption of homogeneity reflect the Ss

 According to the above visual comparisons, we may conclude that the measurements 
using core samples and slug tests can satisfactorily map the heterogeneity pattern, but not the 
actual values of K, in the sand box if the number of tests or samples is sufficient.  On the 
contrary, the cross-hole tests that utilize the homogeneous medium assumption produce only 
inconsistent average values of the hydraulic conductivity in the sand box.  However, they 
apparently can be used to estimate the spatial distribution of S

 values between the 
pumping well and the 48 observation wells that spread over the entire sand box.  

s

 

 values in our sand box. 

Figure 10.3: Contour plots of: a] core K values, b] slug K values, c] cross-hole K values with 
pumping taking place at port 28, and d] cross-hole Ss

 

 values with pumping taking place at port 
28. 

10.6.2 Comparison of Statistical Moments 
 After the visual evaluations of spatial patterns of K and Ss

ln K

 estimates from different tests 
and analyses, we quantitatively evaluate the K tomogram by comparing its sample and 
population means of estimated log-transformed hydraulic conductivity [ ] and its sample and 
population variances ( )2

ln Kσ to the corresponding sample statistical moments obtained from other 
tests. The sample mean of the tomogram is computed by taking the geometric mean of the 
hydraulic conductivity estimates at 48 elements corresponding to port locations, while the 
population mean is computed from the hydraulic conductivity estimates at all 741 elements. 

First, we compare the sample mean [-1.860] and the population mean [-1.729] of K 
values obtained from transient hydraulic tomography using 6 pumping tests [Table 10.2] to the ln 
Keff [-1.757] obtained from the flow-through experiment [Table 10.1]. This comparison shows 
that the estimate means of the tomogram approach the mean K value of an effective 
homogeneous medium after including the 6 pumping tests in the inversion for this particular 
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experimental setup. We note the difference between the mean values and the ln Keff

We next compare the sample and population variance [0.768 and 0.906, respectively] of 
the K tomogram to the estimates of variance obtained from the available core K data [1.498]. 
This comparison shows that both the sample variance [0.768] and population variance [0.906] 
are much smaller than of the variance of the K values of core samples.  This difference likely can 
be attributed to several factors: 1] the core value represents an averaged value over a smaller 
volume [V = 13.04 cm

 value 
determined from the flow-through experiment decreases quickly from the addition of one 
pumping test to the next and the values stabilize [Table 10.2].  These mean estimates are also in 
agreement with the mean of the estimates from the two cross-hole analyses.  On the other hand, 
the means of the estimates from core samples, slug tests, and single-hole tests are smaller than 
those from the tomography, flow-through tests, and the cross-hole analysis.  

3] of the sand in comparison with the averaging volume of the element [V 
= 171.46 cm3

Likewise, without any surprises, the variance of the tomograms is greater than those of 
cross-hole analyses and flow-through experiments since each K estimate from the cross-hole 
analyses and flow-through experiments represents a spatially averaged value over the cone of 
depression or the entire sandbox.  In comparison with the variances from slug tests and single-
hole analyses, the variance of the tomograms is slightly higher but is of the same order of 
magnitude of those of the slug tests and single-hole analyses.   

] for the K estimates from the hydraulic tomography--disparity in scale between the 
two types of estimates; 2] each core value is an effective K for a one-dimensional flow situation, 
whereas the K values of the tomograms represents conditional “effective” K values from six 
multi-dimensional flow fields; 3] the core K values also may be subjected to higher variation due 
to the fact that we have disturbed the geometry and/or removed the compressive forces when 
extracting these sediments. Therefore, the results are consistent with our expectation.  

Since no estimates of Ss for the cores were derived, we compare the Ss

ln sS

 tomogram through 
the estimates of statistical moments from available single-hole and cross-hole pumping tests. We 
first compare the sample mean [-8.144] and population mean [-8.047] of log-transformed 
specific storage  of the Ss

 We next compare the sample [0.214] and population [0.190] variance of log-transformed 
specific storage 

 tomogram obtained from the 6 sets of pumping tests [Table 10.3] 
to the mean of the available single-hole estimates [-7.960] as well as the mean of the equivalent 
estimates [-8.378] derived from the two cross-hole tests [Table 10.1].  The results are in some 
agreement, indicative of some usefulness of the cross-hole analysis that assumes homogeneity of 
the sand box—perhaps when the number of observations is sufficiently large. 

ln sS   from the Ss tomogram [Table 10.3] to variance estimates obtained from 
single-hole [1.897] and the 2 cross-hole [0.047] tests [Table 10.1]. Apparently, there is a large 
discrepancy between these variances of the tomogram and the variance of Ss estimates from the 
single-hole tests. We expect that the variance of the estimates from the single-hole test should be 
greater than that from the tomogram but not by a factor of ten.  This may be due to the relatively 
small number of single-hole Ss

The sample and population variance of the estimates from hydraulic tomography, as we 
anticipated, is about a factor of four larger than the variance of the equivalent S

 estimates. 

s

 

 obtained by the 
cross-hole analyses that treat the medium to be homogeneous.  
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Table 10.2: Mean ( )ln K  and variance ( )2
ln Kσ  of the log-transformed K estimates for the real 

inversions with number of cross-hole tests used in the analysis. 
Number of cross-hole tests 
included in analysis [test number] 

Sample Population 

ln K  [K ~ cms-1 2
ln Kσ]  ln K  [K ~ cms-1 2

ln Kσ]  

1 [14] -2.042 [0.130] 0.763 -1.906 [0.149] 0.696 
2 [14+17] -1.642 [0.194] 0.566 -1.490 [0.225] 0.559 
3 [14+17+32] -1.873 [0.154] 0.703 -1.678 [0.187] 0.721 
4 [14+17+32+35] -1.953 [0.142] 0.720 -1.769 [0.171] 0.762 
5 [14+17+32+35+44] -1.909 [0.148] 0.822 -1.727 [0.178] 0.947 
6 [14+17+32+35+44+47] -1.860 [0.156] 0.768 -1.729 [0.177] 0.906 
 
 
Table 10.3: Mean ( )ln sS  and variance ( )2

ln sSσ  of the log-transformed Ss

Number of cross-hole tests 
included in analysis [test number] 

 estimates for the real 

inversions with number of cross-hole tests used in the analysis. 
Sample Population 

ln sS   [Ss ~ cm-1 2
ln sSσ]  ln sS   [Ss ~ cm-1 2

ln sSσ]  

1 [14] -7.978 [3.430E-04] 0.018 -8.032 [3.250E-04] 0.021 
2 [14+17] -7.749 [4.311E-04] 0.027 -7.831 [3.973E-04] 0.038 
3 [14+17+32] -8.010 [3.321E-04] 0.058 -8.061 [3.157E-04] 0.055 
4 [14+17+32+35] -8.071 [3.123E-04] 0.080 -8.111 [3.002E-04] 0.074 
5[14+17+32+35+44] -8.014 [3.309E-04] 0.208 -8.066 [3.141E-04] 0.192 
6 [14+17+32+35+44+47] -7.996 [3.368E-04] 0.214 -8.047 [3.201E-04] 0.190 
 
10.6.3 Comparison of Local Values  

To examine the performance of different tests in greater detail, we next compare local K 
values from the K tomogram to the K estimates at sample locations from the core measurements, 
single-hole tests as well as from cross-hole analyses at each observation port induced by 
pumping at port 22 and port 28 [Figure 10.4].  A correlation coefficient is used to quantify the 
spatial correspondence of log-transformed estimates from tomography, iχ , and the estimates 
from other tests, ˆiχ  , 
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where N is the total number of elements; χµ and χ̂µ are means for the estimates from tomography 
and the estimates from other tests and analyses, respectively.  The R values are also given in 
Figure 10.4. 

This figure shows that there is quite a bit of scatter but the bias is not too large when the 
local K estimates from the tomography are compared to the core values and the correlation value 
of the two types of estimates is 0.57.   On other hand, there is a noticeable bias when the local K 
values from the tomogram are compared to the single-hole test data but they correlation value is 
high [0.85], indicating a similar spatial pattern between the two estimates. This bias [i.e. 
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systemically lower values for the estimates by the single hole tests]  can be explained by near 
well effects, that is, the skin effect discussed by Illman et al. [2006] that can cause local K 
estimates from single-hole tests to be slightly smaller.  Or possibly, it can be attributed to scale 
disparity of these estimates. 

Estimates of K values at the monitoring ports from the cross-hole analyses for the two 
pumping locations [22 and 28] appear as vertical, narrow clusters in Figure 10.4.  The narrow 
clusters suggest the estimates are smooth [averaged values] in comparison with those from 
tomogram at the same locations. 

We next compare local Ss values from the Ss tomogram to the Ss estimates from the 
single-hole tests [Figure 10.5]. Here, numbers associated with each data point indicates the port 
number in which the pumping took place. Overall, we see that the Ss estimates are larger near the 
top of the sandbox and it decreases as we move deeper into the sandbox as noted earlier for the 
Ss tomograms [Figures 10.3a - f].   The correlation between the two estimates is 0.9, indicating a 
very similar spatial pattern of the two estimates.  However, variability of Ss from the single-hole 
tests treating the medium to be homogeneous is much larger than that of the Ss

The plot of the estimates from the cross-hole analyses for pumping ports 22 and 28 in 
Figure 10.5 yields a narrow vertical cluster, indicative of similar mean values but small variation 
in the estimates from the two cross-hole analyses and great variation in the S

 estimates from 
hydraulic tomography.  

s

 

 tomogram. 

Figure 10.4: Scatter plot of K values from the real K tomogram at the observation point and 
core, single-hole, and cross-hole K estimates. 
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Figure 10.5: Scatter plot of Ss values from the real Ss tomogram at the observation point and 
single-hole and cross-hole Ss
 

 estimates. 

10.6.4. Comparison of K Tomogram obtained from Steady State Hydraulic Tomography 
We also compare the K tomogram obtained from the transient hydraulic tomography to 

that obtained from its steady-state counterpart [Figure 10.6]. Here, the K data came from Figure 
4d in Illman et al. [2007]. The results show that the estimated K values using transient head data 
are almost identical to those based on the steady head data with a correlation value of 0.83 [i.e., 
the patterns are very similar].   The difference between the two perhaps reflects the influence of 
Ss

 

 parameters on the estimation of K.  The dashed line in the figure indicates the 95% confidence 
interval.   

 
Figure 10.6: Scatter plot of K values from the transient hydraulic tomography of this paper and 
those from the steady state hydraulic tomography in Illman et al. [2007]. 
 
10.7 VALIDATION OF K AND SS

As shown in previous section, some of the tests and analyses yield similar K and S
 TOMOGRAMS 

s 
statistics and patterns.  It is however difficult to validate each other due to scale disparity, 
different flow conditions, etc.   As a consequently, an appropriate validation approach is to test 
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the predictability of the estimates under different flow scenarios.   In order to do this, we first 
verify the K and Ss tomograms by simulating the last pumping test at port 47 used in the 
construction of the tomogram. We then compare the simulated and measured transient drawdown 
at early [3 sec], intermediate [10 sec] and late time [20 sec] periods [Figure 10.7a] at all ports 
except for the pumped port. The correlation values between the simulated and observed 
drawdowns at the three times as well as the means and variances of their differences are reported 
in the figure.  This plot and the quantitative measures show that the comparison is excellent 
providing us with further confidence that SSLE can provide an unbiased estimation of the 
drawdown distribution. Note that the simulated drawdowns will not necessarily match the 
observed ones perfectly as they should, due to the fact that the tomograms are conditional 
effective K and Ss

A better validation of the K and S

 fields and also due to noise in the observations.  Notice that simulated 
drawdown values are larger than the observed ones when the values are large.  This is consistent 
with the fact that uncertainty in the predicted drawdown grows with the mean gradient according 
to stochastic analysis [to be explained later].  

s tomograms is to simulate an additional pumping test 
that was not used in the inversion and to examine whether the drawdown at various sampling 
ports of this independent test can be predicted accurately at various times. For this, we utilize the 
K and Ss

Figure 10.7b shows the results of this comparison. In this figure, the observed drawdowns 
are plotted against the predicted drawdowns at times 3, 10, and 20 seconds at the 48 observation 
ports.  It also shows the mean and variance of the difference between the observed and predicted 
drawdowns as well as the correlations between the observed and predicted.  According to this 
figure, the data pairs are scattered along the 45 degree line, indicating predicted drawdown 
distributions generally are statistically unbiased in comparison with the observed.  The high 
correlation values for the three different times [0.995] suggest the predicted drawdown 
distribution is almost identical to the observed distribution—at least the drawdowns at the three 
times at the observation ports.   This is an exciting result because it indicates that using the K and 
S

 tomograms obtained from the inversion of the 6 pumping tests [Figures 10.1f and 10.2f] 
and simulate a test with pumping taking place at port 46.  Pumping test at port 46 was chosen for 
validation purposes because it was one of the pumping tests with the cleanest data devoid of 
external factors. We note that the fact that port 46 is close to port 47 does not make it easier to 
simulate the observed behavior. 

s

Figure 10.8a-c presents another way to validate the tomograms.  In the figure, the 
horizontal axis denotes the simulated drawdown values at the sampling ports based on the mean 
[or effective] K and S

 fields derived from hydraulic tomography, one can yield an excellent prediction of the 
drawdown behavior in the sandbox.  Again, the predicted drawdown values using the tomograms 
are slightly greater than the observed values at all the sampling ports at the three times. 

s values from their tomograms. The vertical axis represents the observed 
head values at the same locations as well as those simulated using the K and Ss tomograms from 
figures 10.1f and 10.2f.   In addition, a 45 degree line indicating perfect drawdowns 
corresponding to those resulting from the mean parameters is plotted along with an upper and a 
lower bound of the drawdown that denote the variability in downdowns due to heterogeneity of 
K and Ss ignored by the homogeneous assumption.   The upper and lower bounds were 
constructed by adding and subtracting twice the square root of the predicted drawdown variance 
at each observation location, to and from the simulated drawdown based on the mean K and Ss 
tomograms, respectively.  The drawdown variances were calculated from the SSLE algorithm 
using our initial guess values for the correlation scales of ln K and ln Ss and the mean and 
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variance values of the estimated K and Ss tomograms.   Note that the true correlation scales, 
means, and variances are unknown; the variances of the tomogram should be smaller than the 
true ones; the means are close to the true as illustrated earlier.  Therefore, the upper and lower 
bounds, in effect, are uncertain themselves but the mean behavior is likely reasonable. This 
figure thus suggests that using effective parameters, a flow model assuming homogeneity 
predicts quite different drawdowns than the observed at the 48 ports in the heterogeneous aquifer 
[i.e., the sand box].   That is, the predicted drawdowns are consistently smaller near the pumping 
port and greater away from the pumping location than the observed ones.  On the contrary, using 
the K and Ss

Lastly, we believe that these results manifest the utility of the hydraulic tomographic 
surveys and the robustness of the SSLE algorithm.  More importantly, these results implicitly 
validate the classical governing equations for groundwater flow in heterogeneous porous media 
[at least in our sand box]. 

 fields resulting from hydraulic tomography, a classic governing equation for 
groundwater flow can yield an excellent prediction of the drawdowns at three different times at 
all the 48 observation ports in the heterogeneous sand box. This result is exciting in view of 
inherent non-uniqueness of the estimation and errors in the measurements.  Certainly, more 
independent pumping events would make this validation more significant. 

 
Figure 10.7: Scatter plot of simulated drawdown versus observed drawdown at 3, 10, and 20 
seconds after pumping begins for cross-hole hydraulic tests at a] port 47 and b] port 46. In both 
cases, the simulated values were obtained by through synthetic simulations of the cross-hole test 
conducted using the K and Ss

 

 tomogram [Figures 10.1f and 10.2f]. The observed drawdown 
values are from an actual cross-hole test conducted at each port. 

 
Figure 10.8: Simulated drawdown from homogeneous field versus observed head values at the 
same locations as well as those simulated using the K and Ss tomograms at time equal to: a] 3, b] 
10, and c] 20 seconds after pumping.  The solid line represents a 45 degree line, and the dashed 
lines represent the upper and lower bounds of the drawdown. 
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11. LABORATORY SANDBOX VALIDATION OF HYDRAULIC 
TOMOGRAPHY THAT USES THE TEMPORAL MOMENTS OF 
DRAWDOWN-RECOVERY DATA 
 
11.1. INTRODUCTION 

In section 10 we have shown that THT is an effective technique in imaging K and Ss, but 
is computationally costly. To overcome the computational challenge for THT analysis, Zhu and 
Yeh [2006] developed an approach that utilizes the 0th and 1st

Previously, Zhu and Yeh [2006] postulated that the calculation of the temporal moments, 
which involves integration in time of the drawdown-recovery data, may cause loss of 
information on the parameters that are being estimated by the inverse procedure. They conducted 
numerical experiments using Gaussian and stationary random K and S

 temporal moments of well 
hydrographs, instead of drawdown data itself. The governing equations for the temporal 
moments are Poisson's equations. These equations demand less computational resources as 
opposed to the parabolic equation that governs drawdown evolution. Likewise, the adjoint 
equations for evaluating sensitivities of the moments for parameter estimation also take the same 
forms. Therefore a HT which uses the temporal moments of drawdown-recovery data [HT-m] 
expedites the interpretation of THT surveys. Results of the investigation revealed that the HT-m 
yielded estimates comparable to those using transient heads, but at significantly less 
computational costs. 

s fields to test this 
conjecture. Results revealed that the HT-m yields less accurate K and Ss 

While various algorithms for SSHT and THT have been developed and some of them 
have been tested numerically, several sandbox studies have been conducted to evaluate the 
performance of both SSHT [Liu et al., 2002; Illman et al., 2007a,b] and THT [Liu et al., 2007]. 
To date, the evaluation of the HT-m has not been accomplished either in the laboratory or the 
field setting. A field validation is the ultimate goal, but prior to that, laboratory validations are 
necessary in which the baseline heterogeneity is largely known, and all forcing functions and 
errors can be controlled as opposed to field applications. 

estimates, due to the 
integrated nature of temporal moments, which lose some information about heterogeneity borne 
in the transient hydrograph. However, they found that this loss of information can be overcome 
by adding more observation data at various points. 

In this section, we: 1] investigate the “effectiveness” of the HT-m approach in 
comparison to the THT through synthetic simulations using nonstationary K and Ss fields; 2] 
invert cross-hole pumping test data obtained in a laboratory aquifer with deterministic 
heterogeneity to obtain K and Ss

 

 tomograms using the HT-m algorithm; and 3] to investigate the 
performance of HT-m in comparison to other hydraulic tomography approaches, that is, the 
SSHT [Yeh and Liu, 2000] and THT [Zhu and Yeh, 2005] algorithms. 

11.2. NUMERICAL EXPERIMENTS 
 
11.2.1 Purpose of numerical experiments 

The main purpose of conducting numerical experiments is to rigorously test the THT 
[Zhu and Yeh, 2005] and HT-m [Zhu and Yeh, 2006] algorithms. In these experiments, we 
generate synthetic experimental data through forward simulations of cross-hole pumping tests 
and use those data in the inverse models to generate K and Ss tomograms. The inversion of the 
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synthetic data illustrates the ability of the THT and HT-m algorithms to obtain K and Ss

Zhu and Yeh [2006] conducted a similar synthetic study to evaluate the performance of 
the THT and HT-m algorithms. However, their numerical experiments involved multi-Gaussian 
and stationary K and S

 
tomograms simultaneously under idealized conditions. In this idealized condition, model and 
measurement errors are excluded and forcing functions are fully controlled. That is, synthetic 
measurements are derived from the same physical principles as those used for test data 
interpretation. Our intention is to further establish the credibility of the inverse approach. We can 
then interpret cross-hole pumping test data obtained from laboratory sandbox experiments to 
further test the inverse techniques under controlled environments, where measurements/model 
errors may exist, but can be controlled.  

s fields generated using the spectral algorithm of Gutjahr [1989]. In 
contrast, our synthetic studies are different, yet complementary to theirs’ because ours’ involve 
non-Gaussian and nonstationary K and Ss

 

 fields to test the feasibility of utilizing these codes for 
data collected in the laboratory sandbox that we describe later. 

11.2.2 Inverse model description and computational approach/platform 
The estimation techniques using transient head [Zhu and Yeh, 2005] and temporal 

moments [Zhu and Yeh, 2006] are both based on the sequential successive linear estimator 
[SSLE]. We utilize the algorithms to map the spatial distribution of K and Ss

 For THT, the inverse model assumes a transient flow field and the natural logarithm of K 
[ln K] and S

 in a synthetic and 
real sandbox aquifer.  A brief description of the THT and HT-m algorithms is given below. 

s [ln Ss] are both treated as stochastic processes. One advantage of using natural 
logarithms of K and Ss is that it avoids negative values of parameters during the estimation 
process [Zhu and Yeh, 2006]. The model additionally assumes that the mean and correlation 
structure of the K and Ss fields are known a priori. Similarly, the 0th-moment of drawdown-
recovery data induced by a pumping test during HT-m as well as the characteristic time [ratio of 
1st and 0th

The estimation procedure for THT starts with a weighted linear combination of parameter 
measurements and head at different locations to obtain the first estimate of the parameters. The 
weights are calculated using the means and covariances of parameters, the covariances of head in 
space, and the cross-covariances between the head and parameters. The first estimate is then used 
in the mean flow equation to calculate the head at observation locations and sampling times 
through a forward simulation. At the end of this forward simulation, the differences between the 
observed and simulated heads are calculated and a weighted linear combination of these 
differences is then used to improve the previous estimates. Iterations between the forward 
simulation and estimation continue until the improvement in the estimates diminishes to a 
prescribed value. We note that the HT-m uses temporal moment data instead of heads used in the 
THT algorithm. Details to the computational algorithms for both THT and HT-m are provided in 
Zhu and Yeh [2005, 2006]. We emphasize that the THT algorithm is based on the parabolic 
equation, the governing equation for transient groundwater flow, which must be solved for each 
time step. The HT-m algorithm, on the other hand, is based on the moment equations [eqns. 10 
and 12 of Zhu and Yeh, 2006], which are Poisson’s equations, thus it needs to be solved only 
once. 

-moments] are treated as stochastic processes consisting of the mean and perturbation 
components. 
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All numerical simulations were executed using 8 of 16 processors on a PC-cluster 
consisting of [1 master and 15 slaves each with Pentium IV 3.6 GHz with 1 GB of RAM] located 
at IIHR-Hydroscience & Engineering at the University of Iowa. 
 
11.2.3 Description of numerical experiments and inverse model parameters 

We generated synthetic cross-hole pumping test data on the computer using the MMOC3 
forward model [Yeh et al., 1993] using the same experimental setup for sandbox described in 
previous sections. The synthetic aquifer was discretized into 741 elements and 1600 nodes with 
element dimensions of 4.1 cm × 10.2 cm × 4.1 cm. Both sides and the top boundary were set to 
be constant head boundary conditions, while the bottom boundary of the sandbox was considered 
a no-flow boundary.   This grid setup is consistent with that was utilized for SSHT by Illman et 
al. [2007, 2008] and for THT by Liu et al. [2007] to analyze the laboratory experiments. 

The synthetically generated data are used to conduct inverse modeling with both the THT 
and HT-m codes. Figure 11.1a-b shows the K and Ss distributions in the synthetic sandbox that is 
used to generate synthetic cross-hole pumping test data on the computer. We conducted synthetic 
cross-hole tests by running transient forward simulations using MMOC3 at 8 ports [2, 5, 14, 17, 
32, 35, 44, and 47] individually by setting a constant pumping rate and recorded the hydraulic 
head. The pumping rate for each test varied between 2.92 – 3.17 cm3/s, while the pumping time 
for each test varied between 51 to 56 s. Pumping was then stopped to allow for full recovery of 
the drawdown. During each pumping test, hydraulic head responses were obtained from all 48 
ports yielding 48 × 8 = 384 drawdown-time curves after the HT survey involving multiple cross-
hole tests. The inversion codes for THT and HT-m do not require the entire drawdown-recovery 
curve in the estimation procedure. Therefore, we selected few data to conduct the inversion. 
Here, we selected the transient heads collected at 1, 2, 5, 10, and 20 seconds to estimate K and Ss

We also generated additional synthetic pumping test data at port 28. Pumping test 
conducted by pumping at port 28 represents a cross-hole pumping test with pumping taking place 
in a high K zone. We recorded the entire drawdown and recovery responses. These data are later 
used for evaluating the validity of the computed K and S

 
simultaneously using the THT algorithm. For the interpretation of synthetic data using the HT-m 
algorithm, we obtain the moments directly from the forward algorithm [i.e., the moment 
equations 10 and 12 in Zhu and Yeh, 2006] and use these in the inverse code. This is because 
according to Zhu and Yeh [2006], the time to reach full recovery in drawdown is difficult to 
determine, thus there is a possibility that calculating moments from the drawdown-recovery 
curve could introduce some measurement error. Introduction of this measurement error can 
obscure the comparison of results from THT and HT-m. 

s

Inputs to the inverse model include initial guesses for the K and S

 tomograms using both the THT and 
HT-m algorithms. 

s, estimates of variances 
and the correlation scales for both parameters, volumetric discharge [Qn] from each pumping 
tests, where n is the test number, available point [small-scale] measurements of K and Ss, as well 
as head-time information for the THT algorithm. For the HT-m algorithm, inputs are similar to 
the THT algorithm, but instead of the head-time information, the 0th moment and characteristic 
time [ratio of 1st and 0th moments] computed from the drawdown-recovery curve are included.  
Although available point [small-scale] measurements of K and Ss

 

 can be input to both inversion 
algorithms, we do not use these measurements to condition the estimated parameter fields to test 
the inversion algorithm. 
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a]  

 
b]  
 

 
Figure 11.1: a] K and b] Ss

 

 distributions in the MMOC3 model used to generate synthetic cross-
hole pumping test data used for THT and HT-m analyses [port 28 is shown in yellow]. 
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11.3 RESULTS FROM INVERSE MODELING OF SYNTHETIC CROSS-HOLE 
PUMPING TEST DATA 
 
11.3.1 Results from THT 

We conduct the inversion of 8 synthetic cross-hole pumping tests with pumped ports 
shown on Figure 11.1. All 48 ports [see Figure 11.1 for locations] were used to collect 
drawdown responses for the inverse modeling.  Figures 11.2a - d show the results of the 
estimation of the K tomogram from the successive inclusion of test data from pumping tests at 
ports 47, 44, 35, 32, 17, 14, 5, and 2, conducted in that order. A visual comparison of the K 
tomogram [Figure 11.2d] obtained by sequentially including 8 tests into the inversion algorithm 
and the original K distribution [Figure 11.1a] shows that the THT is able to delineate the major 
low and high K features that comprise the aquifer heterogeneity. This includes the correct 
delineation of the positions and shapes of low K blocks and openings between blocks that could 
allow contaminant migration. 
 

 
Figure 11.2: K tomograms computed using THT from synthetic pumping test data included 
sequentially. a] Ports 47, 44. b] Ports 47, 44, 35, 32. c] Ports 47, 44, 35, 32, 17, 14.  and d] Ports 
47, 44, 35, 32, 17, 14, 5, 2.  Port numbers indicate those used as the pumped well for each cross-
hole test. 
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Figure 11.3: Ss

 

 tomograms computed using THT from synthetic pumping test data included 
sequentially. a] Ports 47, 44. b] Ports 47, 44, 35, 32. c] Ports 47, 44, 35, 32, 17, 14.  and 
d] Ports 47, 44, 35, 32, 17, 14, 5, 2.  Port numbers indicate those used as the pumped well 
for each cross-hole test. 

It is of interest to note that the synthetic aquifer has a K distribution that is non-Gaussian 
and nonstationary. Because Zhu and Yeh [2005]’s algorithm assumes a Gaussian and a stationary 
field, one would not expect this approach to be applicable to this K distribution. However, the 
statistical assumptions inherent in the algorithm become less important as we include a large 
number of observation well data sets in the hydraulic tomography algorithm. This fact is evident 
from our results. Therefore, Zhu and Yeh [2005]’s SSLE is not limited to Gaussian and stationary 
random K fields. 

Figure 11.3a-d shows the corresponding Ss tomogram that was estimated simultaneously. 
In contrast to Figure 11.2a-d, the structure consisting of variable size sand bodies is visible for 
the Ss tomogram near the top and center of the tomogram, but the clarity of Ss heterogeneity 
decreases as the depth increases. In general, we see that the Ss tomogram does not capture the 
blocks as well as the K tomograms near the bottom of the sandbox. Examination of Figures 
11.2a-d and 11.3a-d show that it takes more pumping tests to delineate the heterogeneity pattern 
of Ss

Both Figures 11.2a-d and 11.3a-d also show the mean absolute error norm L
 in comparison to K using the THT algorithm. 

1 and mean 
square error norm L2 defined previously. We note that the L1 and the L2 statistics do not vary 
significantly from one case to the next in Figures 11.2a-d and 11.3-d. However, the statistics are 
in general lower for the K tomograms in comparison to the Ss tomograms, which suggest that the 
estimation of K is more accurate than Ss
 

.  

11.3.2 Results from HT-m 
We also conducted the inversion of the same 8 synthetic cross-hole pumping tests in the 

same order using the HT-m algorithm of Zhu and Yeh [2006] to obtain K and Ss
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 tomograms 
simultaneously. As in the THT case, all 48 ports were used for HT-m. Figure 11.4a-d shows the 
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results of the estimation of the K tomogram from the HT-m analysis. These results are similar in 
quality to those obtained from through THT algorithm showing that the HT-m is capable of 
estimating K fields accurately even if the synthetic aquifer has a K distribution that is non-
Gaussian and nonstationary. Therefore, as in Zhu and Yeh [2005]’s algorithm for THT, the SSLE 
for the HT-m developed by Zhu and Yeh [2006] is not limited to Gaussian and stationary random 
K fields. 

 
Figure 11.4: K tomograms computed using HT-m from synthetic pumping test data included 

sequentially. a] Ports 47, 44. b] Ports 47, 44, 35, 32. c] Ports 47, 44, 35, 32, 17, 14.  and 
d] Ports 47, 44, 35, 32, 17, 14, 5, 2.  Port numbers indicate those used as the pumped well 
for each cross-hole test. 
 

 
Figure 11.5: Ss

 

 tomograms computed using HT-m from synthetic pumping test data included 
sequentially. a] Ports 47, 44. b] Ports 47, 44, 35, 32. c] Ports 47, 44, 35, 32, 17, 14.  and 
d] Ports 47, 44, 35, 32, 17, 14, 5, 2.  Port numbers indicate the ports used as the pumped 
well for each cross-hole test. 
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11.3.3 Comparison of tomograms and simulation times 
Figure 11.5a-d shows the corresponding Ss tomogram that was estimated simultaneously. 

In contrast to Figure 11.4a-d, the structure consisting of variable size sand bodies visible in the K 
tomogram is not as clear for the Ss tomogram. These results collectively suggest that the HT-m 
approach is not as sensitive to estimating the Ss heterogeneity pattern in comparison to the THT 
approach. This suggestion was initially made by Zhu and Yeh [2006], but here we independently 
confirm their findings and find that their conclusion also holds true for non-Gaussian and 
nonstationary K and Ss 

We find that the quality of K tomograms does not vary considerably between the THT 
and HT-m approaches but the quality of the S

fields. 

s tomogram is considerably better for the THT 
approach in comparison to the HT-m approach. This is evident by examining the L1 and the L2

However, better estimation of the S

 
statistics from one case to the next. 

s

 

 tomogram through THT comes with an increase in 
simulation time. We list in Table 11.1 the simulation times for the 2 approaches. Results show 
that the simulation times of the THT is approximately 20 times longer when compared to the 
HT-m approach. 

Table 11.1: Summary of simulation times [min] using the THT and HT-m algorithms and its 
ratio to obtain the K and Ss
Pumping 

test # 

 tomograms [Figures 11.2 – 11.5]. 
THT [min] HT-m [min] THT [min]/HT-m [min] 

2 97.81 4.74 20.64 
4 192.15 9.25 20.77 
6 287.21 14.05 20.44 
8 380.29 19.12 19.89 

 
11.3.4 Quantitative evaluation of synthetic inversion results 

We evaluate the K and Ss tomograms obtained from the THT and HT-m approaches further 
by simulating a cross-hole pumping test not used in the construction of the tomograms. Figures 
11.6a-b show scatter plots of observed drawdown versus simulated drawdown at 3, 10, and 20 
seconds after pumping begins for synthetic cross-hole hydraulic tests at port 28. Table 11.2 
summarizes the corresponding means and variances of the differences between the 2 results and 
the correlation coefficients. Port 28 is located within a high K zone. In both cases, the simulated 
values were obtained via synthetic forward simulations of cross-hole tests using MMOC3 with K 
and Ss tomograms computed from the THT [Figures 10.2d and 10.3d] and HT-m algorithms 
[Figure 11.4d and 11.5d]. The observed drawdown values are from the synthetic cross-hole test 
conducted using MMOC3 with pumping taking place at port 28 with the “true” K and Ss 
distributions from Figure 11.1a-b. These results show that the THT algorithm is able to delineate 
the K and Ss fields very accurately allowing for the prediction of drawdowns from an 
independently conducted pumping test from early to late times. Likewise, the HT-m approach 
yields K and Ss tomograms that allow for pretty good predictions of drawdowns from an 
independent pumping test. However, the accuracy of the drawdown prediction is not as good at 
early times, but improves with time. This is because the Ss estimate obtained from HT-m is not 
as good as that obtained from THT. These results collectively suggest that both approaches could 
be applied successfully in a nonstationary and non-Gaussian K and Ss fields, but the THT is more 
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robust than HT-m. We next describe the inversion of cross-hole pumping tests conducted in the 
laboratory using the HT-m approach. 
 

 
b] 

 
Figure 11.6: Scatter plot of simulated versus observed drawdown at 3, 10, and 20 seconds after 
pumping begins for synthetic cross-hole hydraulic tests at port 28 for a] THT and b] HT-m 
algorithms. In both cases, the simulated values were obtained through synthetic simulations of 
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the cross-hole tests conducted using the K and Ss tomograms [Figures 10.2d and 10.3d for THT; 
Figures 11.4d and 11.5d for HT-m]. The observed drawdown values are from the synthetic cross-
hole test conducted using MMOC3 with pumping taking place at port 28 with K and Ss

 

 
distributions from Figure 11.1a-b. 

Table 11.2: Summary of the mean and variance of the estimation errors from the comparison of 
observed to simulated drawdowns. The K and Ss

 

 fields are from the THT and HT-m algorithms. 
The correlation coefficients shown in this table are for the scatter plots shown in Figures 11.7a-b. 

THT algorithm HT-m algorithm 
Time [s] Mean Variance Correlation Mean Variance Correlation 

3 0.107 0.027 0.995 0.283 0.067 0.927 
10 0.226 0.052 0.996 0.308 0.074 0.984 
20 0.282 0.067 0.996 0.308 0.074 0.997 

 
11.4 LABORATORY SANDBOX DATA AND ITS INVERSE MODELING 
 
11.4.1 Description of laboratory sandbox and instrumentation used to conduct real cross-
hole pumping tests 

The previous sections described the effectiveness of HT-m in relation to the more 
computationally intensive THT using experimental error-free synthetic cases. We next test the 
HT-m approach using cross-hole pumping tests conducted in a synthetic heterogeneous aquifer 
built in the laboratory. 

The synthetic heterogeneous aquifer constructed in the sandbox was designed to test 
various HT algorithms under a controlled setting and a CAD drawing of this sandbox was 
previously shown. Details to the sandbox and data acquisition system can be found in Craig 
[2005], Illman et al. [2007], and Liu et al. [2007], but here, we include information that we 
considered to be most salient for the description of the inverse analysis. 

The sandbox was packed with 4 different commercially sieved sands [20/30 and 40/30, 
U.S. Silica; F-75 and F-85, Unimin Corporation] by Craig [2005]. In particular, we packed 8 
rectangular sand bodies consisting of lower K material [40/30, F-75, and F-85] within high K 
sand [20/30]. Each rectangular sand body consists of the material of different Ks and the 
locations are indicated using dashed rectangles on Figure 8.1. 

The flow system for the cell is provided by two constant-head reservoirs, one at each end 
of the sandbox. Three constant head boundaries can be developed by ponding water over the top 
of the sand, effectively connecting the two reservoirs. We chose this boundary condition 
configuration for all cross-hole tests used in hydraulic tomography as they were the most stable 
during each cross-hole pumping test. 
 
11.4.2 Description of real cross-hole pumping tests used for hydraulic tomography in the 
sandbox 

To generate data for hydraulic tomography, we conducted cross-hole pumping tests at 9 
separate pumping ports. During the pumping tests, the top and two sides of the aquifer served as 
constant head boundaries, while the bottom remained a no-flow boundary. Pumping rates ranged 
from 2.50 - 3.17 cm3/sec in those tests.  For each test, data collection started before the pump 
was activated to obtain the initial hydraulic head in the sandbox. A peristaltic pump was then 
activated at the pumping port and allowed to run until the development of steady state flow 
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conditions. The pump was then shut off to collect recovery data until the hydraulic head 
recovered fully.  During each pumping test, hydraulic head data were collected at all 48 ports and 
in the two boundary reservoirs using pressure transducers. 

We selected 8 out the 9 pumping tests and the drawdown-time observations at the rest of 
47 ports during each test as the data sets for the hydraulic tomographic survey.  The eight 
pumping/drawdown data sets are then used for HT-m analysis.  The remaining one test was 
reserved for validation purposes. 
 
11.4.3 Pre-processing of drawdown-recovery data 

Illman et al. [2008] found from the analysis of HT data obtained in a laboratory sandbox 
aquifer that the single-to-noise ratio can be critical in inverse modeling of cross-hole pumping 
test data. To overcome this issue of signal-to-noise ratio on the quality of hydraulic tomography 
surveys, Xiang et al. [2008] developed a wavelet transform approach based on the work by 
Zhang et al. [2006] to remove noise from experimental data prior to implementing the data in 
their inverse code. We utilized the wavelet transform tool implemented in VSAFT2 by Xiang et 
al. [2008] to de-noise all drawdown-recovery curves prior to calculating the temporal moments. 
 
11.4.4 Inverse model and parameters 

Inputs to the inverse model for analyzing the experimental data are the same as those 
described earlier for the synthetic case, except for the volumetric discharge from each pumping 
test and the temporal moment data. The temporal moments of the drawdown are calculated using 
the moment generation function. The nth temporal moments [Mn[xi]] of drawdown at location xi

 

 
are given by 

 
0

( ) ( , )n
n i iM x t s x t dt

∞
= ∫  [11.1] 

 
where t is time, ( , )is x t is drawdown defined as 0( , ) ( , )i is x t H h x t= − , 0H is the initial hydraulic 
head treated to be constant everywhere in the domain, and ( , )ih x t  is hydraulic head. One can 
compute the 0th

 
 temporal moment using the moment generating function by setting n = 0: 

 0 0
( ) ( , )i iM x s x t dt

∞
= ∫  [11.2] 

 
The 0th moment represents the area under the drawdown-recovery curve. Here, we calculate the 
0th

 
 moment of the laboratory pumping test data using the following approximation: 

 0 1 1 0 2 2 1 3 3 2 1
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The 1st

 
 moment can be computed by setting n = 1 in eqn. 11.1: 

 1 0
( ) ( , )i iM x ts x t dt

∞
= ∫  [11.4] 

 



153 
 

Likewise, the 1st

  

 moment of the laboratory pumping test data is computed using the following 
approximation: 

 1 1 1 1 0 2 2 2 1 3 3 3 2 1
1

( ) ( ) ( ) .... ( )
k

i i i k k k k
i

M t s t t s t t t s t t t s t t t s t t −
=

= ∆ = − + − + − + + −∑  [11.5] 

 
The 1st

 

 moment represents the arrival time of the center of mass for the drawdown-recovery 
curve. The characteristic time is then given by 

 1 0( ) ( ) / ( )i i iY x M x M x=  [11.6] 
 
Physically, the characteristic time corresponds to the arrival time of the center of the mass under 
the drawdown-recovery curve normalized by the area. 

The HT-m code can also incorporate available small scale measurements of K and Ss

Illman et al. [2007] found that the variations in constant head boundary conditions from 
one test to the next can be critical in conducting a SSHT survey. However, for THT and HT-m 
surveys, this is not critical because the analysis is done using drawdowns and moments of 
drawdown-recovery curves instead of actual head values.  

, but 
we do not use these measurements to condition the estimated parameter fields to test the 
inversion algorithm. 

 
11.5 RESULTS FROM INVERSE MODELING OF CROSS-HOLE PUMPING TESTS 
CONDUCTED IN A LABORATORY SANDBOX 
 
11.5.1 K and Ss 

Figures 11.7a-d are the K tomograms obtained by inverting moment data induced by the 
eight pumping tests [44, 47, 35, 32, 17, 14, 5, 2] conducted in that order. The result [Figure 
11.7a] using the first two pumping tests reveals little detail to the heterogeneity pattern 
throughout the sandbox. This is alleviated with the heterogeneity structure for the entire aquifer 
appearing when additional cross-hole tests are included sequentially [Figures 11.7b through 
11.7d], although the results look smoothed in comparison to those obtained previously using 
SSHT by Illman et al. [2007] and THT by Liu et al. [2007]. The K tomogram appears smoothed 
because the calculation of the temporal moments used in the algorithm involves the integration 
of the drawdown-recovery data. This, in effect, results in the smoothing of the drawdown-
recovery data set. 

tomograms from the inversion of laboratory sandbox data 

Despite the lack of resolution, the results show that the HT-m algorithm is capable of 
capturing the pattern of the K distribution. We also visually compared the K tomogram resulting 
from HT-m to that obtained from THT [figure 10.2g] by Liu et al. [2007]. This comparison 
revealed that the tomograms are similar. 

Figure 11.8a-d shows the corresponding Ss tomogram that was estimated simultaneously. 
In contrast to Figure 11.7a - d, the structure consisting of variable size sand bodies visible in the 
K tomogram is not visible for the Ss tomogram. This can be attributed to the fact that sands of 
relatively low compressibility [of various sizes] were used to construct the synthetic aquifer. 
However, a decreasing trend in Ss with depth is apparent. Physically speaking, this makes sense 
because the sands in the upper portion are less compressed, while the deeper sands are more 
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compressed due to the stress exerted by the overlying material.  This finding perhaps suggests 
that the K values are not significantly correlated with the Ss

 

 values in this sandbox. 

Figure 11.7: K tomograms computed using HT-m from real cross-hole pumping test data 
included sequentially. a] Ports 44, 47. b] Ports 44, 47, 35, 32. c] Ports 44, 47, 35, 32, 17, 14. d] 
Ports 44, 47, 35, 32, 17, 14, 5, 2. Port numbers [see Figure 6.1] indicate those used as the 
pumped well for each cross-hole test. 

 
Figure 11.8: Ss

 

 tomograms computed using HT-m from real cross-hole pumping test data 
included sequentially. a] Ports 44, 47. b] Ports 44, 47, 35, 32. c] Ports 44, 47, 35, 32, 17, 
14. d] Ports 44, 47, 35, 32, 17, 14, 5, 2. Port numbers [see Figure 6.1] indicate those used 
as the pumped well for each cross-hole test. 
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11.5.2 Visual evaluation of computed tomograms 
A visual comparison of the K tomogram [Figure 11.7d] obtained by sequentially 

including 8 tests into the inversion algorithm and CAD drawing showing the location of low K 
sand bodies [Figure 11.1] shows that the HT-m is in general, able to delineate the major low and 
high K features that comprise the aquifer heterogeneity. We also visually compare the K 
tomogram resulting from the real data sets [Figure 11.7d] to the synthetic K tomogram obtained 
via the HT-m algorithm [Figure 11.4d]. This comparison shows that the tomogram from the real 
data shows some semblance to the results from the synthetic data, but the real results [Figure 
11.7d] appear considerably smoother than the synthetic results [Figure 11.4d]. 

We do not make a direct visual comparison of the Ss tomogram computed using the HT-
m algorithm to the blocks shown on the CAD drawing, as the Ss values do not vary considerably 
from one sand type to the next. We also note that a visual comparison cannot be made with the 
synthetic tomograms [Figures 11.3d and 11.5d] because the latter are synthetic. The Ss

 

 
tomogram which we can compare Figure 11.8d is to that obtained by Liu et al. [2007] and this is 
done later through a scatter plot. 

11.5.3 Joint validation of K and Ss
As shown in previous sections, a visual comparison of the tomograms to the CAD 

drawing and results from synthetic simulations is one approach to validate the quality of the 
computed tomograms. However, a more robust approach to validate is to test the predictability of 
the estimates under different flow scenarios. 

 tomograms 

In order to do this, we validate the K and Ss tomograms by simulating an additional 
pumping test that was not used in the inversion and to examine whether the drawdown at various 
sampling ports of this independent test can be predicted accurately at various times. For this, we 
utilize the K and Ss

Figure 11.9b was obtained in a similar fashion, but the K and S

 tomograms obtained from the inversion of the 8 pumping tests [Figures 11.7d 
and 11.8d] and simulate a test with pumping taking place at port 46.  Pumping test at port 46 was 
chosen for validation purposes because it was one of the pumping tests with the cleanest data 
devoid of external factors. We then compare the simulated and measured transient drawdown at 
early [3 sec], intermediate [50 sec] and late time [150 sec] periods at all ports except for the 
pumped port. 

s fields are homogeneous 
and these equivalent values [K = 1.73 × 10-1 cms-1 & Ss = 2.30 × 10-4 cm-1

Figure 11.9a shows that the comparison using early time data are heavily biased. 
However, the comparison improves with time considering the results from the later times 50 secs 
and 150 secs. The late time results show that the bias becomes negligible [i.e., data become 
evenly scattered along the 45 degree line], indicating that predicted drawdown distributions 
generally are statistically unbiased in comparison with the observed. 

] were obtained 
previously by Liu et al. [2007]. The correlation values between the simulated and observed 
drawdowns at the three times as well as the means and variances of their differences are reported 
in Table 11.3. 

The means and variances of the differences between the simulated and observed 
drawdown values shown in Table 11.3 also indicate that the results improve over time. In 
addition, the relatively high correlation values of 0.857 for 50 secs and 0.854 for 150 secs 
suggest the predicted drawdown distribution is almost identical to the observed distribution—at 
least the drawdowns at late times at the observation ports. This is an encouraging result because 
it indicates that using the K and Ss fields derived from HT-m approach, one can obtain a very 
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good prediction of the drawdown behavior in the sand box.  However, we note that these results 
are not as robust as those obtained for the THT approach presented in Liu et al. [2007], in which 
those authors obtained correlation coefficients of 0.995 over the time periods of 3, 10, and 20 
secs using the same cross-hole pumping test data. 

The results from simulating pumping test with pumping taking place at port 46 using the 
homogeneous K and Ss

 

 fields [Figure 11.9b] shows that there is a slight bias in results at all 
times. It is also evident from Table 11.3 that the means and variances of the difference between 
the simulated and observed drawdowns increase with time, while the correlation coefficient does 
not vary significantly.    

Table 11.3: Summary of the mean and variance of the estimation errors from the comparison of 
observed to simulated drawdowns. The K and Ss fields for the heterogeneous case are from the 
inversion of the laboratory sandbox data using the HT-m algorithm, while the homogeneous case 
represents equivalent K and Ss

 

 obtained from Liu et al. [2007]. The correlation coefficients 
shown in this table are for the scatter plots shown in Figures 11.9a-b. 

Heterogeneous fields Homogeneous fields 
Time [sec] Mean Variance Correlation Mean Variance Correlation 

3 0.187 0.029 0.716 0.108 0.021 0.739 
50 0.125 0.026 0.857 0.161 0.052 0.782 
150 0.127 0.024 0.854 0.166 0.054 0.775 

 
a] 
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b] 

 
Figure 11.9: Scatter plot of simulated drawdown versus observed drawdown at 3, 50, and 150 
seconds after pumping begins for cross-hole hydraulic tests at port 46. In this figure, the 
simulated values were obtained through synthetic simulations of the cross-hole test conducted 
using:  a] the K and Ss tomograms [Figures 11.8d and 11.9d] and b] equivalent K and Ss

 

 values 
from Liu et al. [2007]. The observed drawdown values are from an actual cross-hole test 
conducted at port 46. 

11.6. DISCUSSION 
 
11.6.1 Comparison of K tomogram from HT-m to SSHT 

We next compare the local values of K obtained from the K tomogram computed using 
the HT-m algorithm to those from the SSHT algorithm in Figure 11.10. Here, the K values from 
the SSHT were obtained by Illman et al. [2007] using the same 8 pumping tests. The result 
shows that the estimated K values using the temporal moments of the drawdown-recovery curve 
are similar to those based on the steady head data but the scatter is very large which is reflected 
in a low correlation value of 0.104. The difference between the two perhaps reflects the influence 
of Ss
 

 parameters on the estimation of K. 
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Figure 11.10: Scatter plot of K values from the HT-m of this paper and those from the SSHT in 
Illman et al. [2007]. 
 
11.6.2 Comparison of K and Ss

We next compare the local values of K and S
 tomograms from HT-m to THT 

s obtained from the K and Ss tomograms 
computed using the HT-m algorithm to those from the THT algorithm in Figures 11.11a-b. Here, 
the local K and Ss

Examination of Figure 11.11b shows that the estimation of S

 data from the THT algorithm are from Figures 2f and 3f in Liu et al. [2007]. 
The results [Figure 11.11a] show that the estimated K values using the HT-m approach are 
similar to those based on the transient head data with a moderately high correlation value of 
0.587. The difference between the two perhaps reflects the effect of smoothing rendered by the 
computation of the temporal moments on the estimation of K. 

s from the HT-m approach 
appears to be less reliable. This could be due to three possibilities. One possibility is that the HT-
m approach relies on the computation of the temporal moments of the drawdown-recovery data, 
which involves integration. Data integration causes smoothing and perhaps loss of information 
on aquifer heterogeneity. In particular, the computation of moments and integration could cause 
significant loss of information on Ss 
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which is contained in the early-time data. Previous research 
by Zhu and Yeh [2006] and others suggest that this may be the case. 
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Another possible explanation is that the use of the temporal moments, which requires the 
use of entire drawdown-recovery curves, may result in a loss of sensitivity to the inversion of Ss. 
We also found that the characteristic time was considerably noisier than the 0th moments 
contributing to the ineffectiveness in estimating Ss. Therefore, the estimation of Ss

 

 spatial 
variability using the HT-m approach was found to be more challenging than the THT approach. 

a] 

 
 
b] 

 
Figure 11.11: Scatter plot of a] K and b] Ss

 

 values from the HT-m approach of this paper and 
those from the THT approach described in Liu et al. [2007]. 
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12. COMPARISON OF AQUIFER CHARACTERIZATION 
APPROACHES THROUGH STEADY-STATE GROUNDWATER 
MODEL VALIDATION: A CONTROLLED LABORATORY 
SANDBOX STUDY 
 
12.1 INTRODUCTION 
 The characterization of subsurface heterogeneity of hydraulic parameters is of paramount 
importance to water supply assessment or protection, and the remediation of groundwater 
throughout the world. Many communities rely on groundwater and in the case of Kitchener-
Waterloo region of southern Ontario in Canada, over 80% of the water supply comes from 
groundwater. Unfortunately in Walkerton, Ontario, Canada, over 2,300 people have fallen ill and 
7 of them have passed due to the bacterial contamination of municipal wells [Walkerton Inquiry, 
2002]. Since this tragedy, a large effort has gone into delineating groundwater protection areas 
for water supply wells in Canada. The accurate delineation of such areas relies on detailed and 
reliable information on subsurface heterogeneities of hydraulic parameters such as hydraulic 
conductivity [K] and specific storage [Ss
 A number of aquifer characterization approaches to delineate the heterogeneity in 
hydraulic parameters have been developed and tested over the last several decades [e.g., Sudicky, 
1986, Boggs et al., 1990; Wolf et al., 1992; Hess et al., 1992; Sudicky et al., 2009]. The classical 
approach in delineating K heterogeneity is to collect a large number of core samples from 
multiple boreholes and to conduct grain size or permeameter analyses. Other approaches include 
the slug testing of large numbers of piezometers and/or monitoring wells [e.g., Rehfeldt et al., 
1992], flow meter [e.g., Hufschmied, 1986; Molz et al., 1989; Boman et al., 1997], steady-state 
dipole flow [e.g., Kabala, 1993; Zlotnik et al., 2001] or single-hole pumping or injection tests 
conducted at successive intervals in multiple boreholes to obtain a large number of point scale K 
estimates, that are subsequently analyzed using geostatistical methods. More recently, 
geophysical methods [e.g., Hyndman and Gorelick, 1996; Hubbard and Rubin, 2000] and 
hydraulic tomography [e.g., Neuman, 1987; Gottlieb and Dietrich, 1995; Yeh and Liu, 2000; 
Bohling et al., 2002; Zhu and Yeh, 2005, 2006] have been used to characterize subsurface 
heterogeneity. In particular, Sudicky [1986] obtained over 1,279 K estimates from cores taken at 
the Borden site in Canada through a falling head permeameter and conducted geostatistical 
analysis to estimate the macrodispersion observed during a long-term tracer test at the site. He 
found good agreement between the macrodispersion coefficient determined from the long-term 
tracer test and those computed independently from stochastic theory using the statistical 
properties of K. This study was the first to validate the stochastic theory of Gelhar and Axness 
[1983] through the independent collection of K heterogeneity data and its application to predict 
macrodispersion of tracers at the Borden site. 

]. 

 Several researchers have compared the validity of various characterization approaches in 
the field [e.g., Lee et al., 1985; Zlotnik and Zurbuchen, 2003; Butler, 2005]. For example, Butler 
[2005] compared the K results from permeameter analysis of core samples, traditional slug tests, 
dipole flow tests, multilevel slug tests, borehole flowmeter tests, direct-push slug tests, pumping 
tests and, hydraulic tomography at the Geohydrologic Experimental and Monitoring Site 
[GEMS] in Kansas. He found that different characterization approaches yield reliable estimates 
of K estimates along the boreholes at the site. However, he found that most of the techniques 
examined cannot provide information on subsurface heterogeneity between wells. 



161 
 

 Recently, hydraulic tomography has been developed to obtain information on subsurface 
heterogeneity of K and Ss through sequential pumping tests. Hydraulic tomography is similar in 
concept to the Computerized Axial Tomography [CAT] scan technology, but the energy source 
is a change [decrease or increase] in hydraulic head achieved through water pumping or 
injection, and the sensors [pressure transducers] measure the propagation of head change at 
multiple locations throughout the aquifer. These hydraulic head data are then used to interpret 
the spatial distribution of K, Ss

 Various inverse methods have been developed for hydraulic tomography, which utilize 
pumping test data simultaneously or sequentially [e.g., Gottlieb and Dietrich, 1995; Yeh and Liu, 
2000; Bohling et al., 2002; Brauchler et al., 2003; McDermott et al., 2003; Zhu and Yeh, 2005, 
2006; Li et al., 2005; Fienen et al., 2008; Castagna and Bellin, 2009; Xiang et al., 2009].  
Pneumatic tomography is similar in concept to hydraulic tomography, but the cross-hole tests are 
conducted with air in the unsaturated zone [Illman and Neuman, 2001, 2003] and interpreted 
using a stochastic inverse model [Vesselinov et al., 2001a-b] which interprets multiple tests 
simultaneously or sequentially. 

, connectivity of highly permeable zones, and to quantify 
uncertainties associated with the interpretations.  The result is a highly resolved three-
dimensional depiction of hydraulic parameters and their uncertainties. 

 In the quest of quantitatively evaluating the performance of hydraulic tomography, 
various researchers [e.g., Liu et al., 2002; Illman et al., 2007, 2008; Liu et al., 2007; and Yin and 
Illman, 2009] have conducted laboratory scale studies in which the heterogeneity patterns can be 
prescribed and forcing functions controlled. In particular, Illman et al. [2007, 2008] showed that 
steady state hydraulic tomography [Yeh and Liu, 2000] is a promising technique in imaging 
subsurface heterogeneity patterns of K [from now on K tomograms] through laboratory sandbox 
studies. Liu et al. [2007] did the same, but used transient hydraulic tomography [Zhu and Yeh, 
2005] to image K and Ss heterogeneity patterns [from now on K and Ss tomograms]. Most 
recently, Yin and Illman [2009] showed that the hydraulic tomography based on the temporal 
moments of drawdown-recovery data [Zhu and Yeh, 2006] yield a satisfactory K tomogram, but 
an unreliable Ss tomogram. In these previous studies, different methods and data collected at 
different scales were utilized to evaluate the tomograms. Among the various methods for 
tomogram evaluation, both Illman et al. [2007, 2008] and Liu et al. [2007] found that the best 
method was to simulate an independent cross-hole pumping test not used in the construction of 
the tomograms. In particular, Illman et al. [2007, 2008] were successful in predicting the steady 
state head response from a single cross-hole pumping test using the K tomogram from steady 
state hydraulic tomography. Likewise, Liu et al. [2007] were successful in predicting the 
transient head response of a single, independent cross-hole pumping test using the K and Ss

 In the field, transient hydraulic tomography has also been applied in unconsolidated 
media [Straface et al., 2007], while the hydraulic tomography based on the steady shape analysis 
[Bohling et al., 2002] was reported for unconsolidated materials by Bohling et al. [2007]. More 
recently, Li et al. [2008] utilized their hydraulic tomography approach to image floodplain 
deposits. Likewise, Cardiff et al. [2009] conducted a 2D depth-averaged hydraulic tomography 
analysis under steady state conditions in an unconfined aquifer. Most recently, Illman et al. 

 
tomograms from transient hydraulic tomography. These results were encouraging in that an 
independently conducted test can be predicted accurately if the heterogeneity pattern and forcing 
functions are all known. However, the experimental finding could have been construed to be 
weak and fortuitous because there was only one independent test from the experiments 
conducted by these authors previously. 
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[2009] used transient hydraulic tomography to image heterogeneity patterns of K and Ss

 There is a critical need to assess the capabilities of various characterization approaches in 
a controlled environment. There are a number of methods to assess these approaches, but we feel 
that this is accomplished best through the prediction of independently conducted drawdown 
inducing stresses induced by pumping tests or through the careful measurement of flow rates 
through the aquifer volume under question. The field assessment of various characterization 
techniques is of course most desirable, but field experiments can be affected by various external 
forcings, uncontrollable noise and can be costly. In contrast, laboratory experiments can be 
efficient in assessing hydraulic tomography and other characterization approaches because both 
forcing functions and experimental errors can be controlled. The main objective of this paper is 
to assess K estimates obtained by various approaches by predicting independent cross-hole 
pumping tests and total flow rates from flow-through tests in a synthetic heterogeneous aquifer. 
Specifically, we: 1] characterize the synthetic heterogeneous aquifer built in the sandbox through 
various techniques [permeameter analyses of core samples, single-hole pumping tests, cross-hole 
pumping tests, and flow-through tests], 2] obtain the mean K fields through traditional analysis 
of test data by treating the medium to be homogeneous, 3] obtain heterogeneous K fields through 
kriging and steady state hydraulic tomography, and 4] conduct forward simulations of 16 cross-
hole pumping tests and 6 flow-though tests using these homogeneous and heterogeneous K fields 
and comparing them to actual drawdown and flow rate data  from the laboratory experiments. 
The direct comparison of simulated and measured drawdowns as well as its statistical analysis 
yields a quantitative performance measure for each of these K fields. Moreover, the direct 
comparison of simulated and measured flow rates from the flow-through experiments allow for 
an additional test to quantify the performance of the various K fields. The comparison also 
amounts to the validation of various steady state groundwater models with different K fields 
obtained by various aquifer characterization methods. 

 in 
fractured granite at the kilometre scale, which appear to resemble connective fault zones and low 
K barriers. The numerical study by Hao et al. [2008] supports the notion that hydraulic 
tomography can be effective in imaging the connectivity of fractured rocks. 

 
12.2 SANDBOX AND SYNTHETIC HETEROGENEOUS AQUIFER CONSTRUCTION 
 
12.2.1 Sandbox construction 
 A synthetic heterogeneous aquifer was constructed in a sandbox to validate various fluid 
flow and solute transport algorithms. The sandbox is 193.0 cm in length, 82.6 cm in height, and 
has a depth of 10.2 cm. All materials used inside the sandbox are made of 316 stainless steel, 
brass, or Viton®. Forty eight ports, 1.3 cm in diameter, have been cut out of the stainless steel 
wall to allow coring of the aquifer as well as installation of horizontal wells. Each well was 
constructed by making 6 cuts spaced 1.46 cm apart in sections of brass tubing.  The cuts were 
then covered with a stainless steel mesh that was bonded to the tubing with corrosion resistant 
epoxy.  Extreme care was taken to avoid the epoxy filling the mesh which could impede water 
flow. The wells fully penetrate the thickness of the synthetic aquifer. This allowed each location 
to be monitored by a pressure transducer, used as a pumping or an injection port and as a water 
sampling port. Figure 12.1 is a schematic drawing of the frontal view of the synthetic aquifer, 
showing the 48 port and pressure transducer locations. 
 The flow system for the sandbox is driven by two constant-head reservoirs, one at each 
end of the sandbox. The adjoining reservoirs are capable of supplying water throughout the 
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length and thickness of the sandbox quickly and efficiently.  In this sandbox, a series of 4-inch 
perforated plate/mesh combination was installed at each end of the sandbox to serve as a porous 
media/water interface and provide hydraulic control. The boundary head levels can be easily 
adjusted to be equal or to create a desired hydraulic gradient.  The developed system is capable 
of maintaining 3 constant head boundaries simultaneously by ponding water at the top in 
addition to fixing the hydraulic heads in the 2 constant head reservoirs. 

  
Figure 12.1: Schematic diagram of synthetic heterogeneous aquifer used for validation of steady 
state groundwater flow models. Numbers next to solid squares indicate port numbers, open 
squares around numbers indicate the 8 ports [2, 5, 14, 17, 32, 35, 44, 47] used for hydraulic 
tomography, open ovals around numbers indicate the 2 ports [17 and 21] pumped and data 
analyzed using VSAFT2 by treating the medium to be homogeneous [i.e., traditional pumping 
test analysis], and the dashed open squares around the 16 other ports [8, 11, 13, 15, 16, 18, 20, 
23, 26, 29, 37, 38, 39, 40, 41, and 42] indicate the pumping locations for the independent cross-
hole pumping tests used for validation purposes. 
 

The data acquisition system used for the laboratory experiments consisted of three major 
components.  Pressure measurements were made with 50 Setra model 209 gage pressure 
transducers with a range of 0 to 1 psi, 48 of which measured hydraulic head in the aquifer and 
one in each constant head reservoir. These pressure transducers were installed at each of the 48 
data acquisition ports in the stainless steel wall of the sandbox. The second component was a 64-
channel data acquisition board from National Instruments. A hub that separates excitation and 
output currents for the transducers was also assembled.  The third component was a dedicated PC 
with National Instruments LabVIEW software for automated data acquisition. Further details of 
the sandbox construction can be found in Craig [2005]. 
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12.2.2 Synthetic aquifer construction through cyclic flux of sediment laden water 
 Sandbox experiments have been conducted for a variety of purposes using different 
methods for aquifer construction. Early studies utilized uniform packing of sands to create a 
homogeneous medium and uniformly heterogeneous packing [e.g., Silliman and Simpson, 1987; 
Schincariol and Schwartz 1990, Illangasekare et al., 1995]. More recently, complex 
heterogeneity patterns have been packed by various researchers [e.g., Welty and Elsner, 1997; 
Silliman et al., 1998; Chao et al., 2000; Barth et al., 2001; Silliman, 2001; Danquigny et al., 
2004; Fernàndez-Garcia et al., 2005] in two and three-dimensional small and intermediate scale 
sand tanks to mimic the more complex heterogeneity patterns with statistical properties including 
correlation lengths that are representative to those found in natural geologic media. The process 
involves generating a correlated K field using a random field simulator and carefully packing the 
resulting K distribution with different size sand blocks. Jose et al. [2004] created more natural 
deposits consisting of lenses rather than blocks through a settling procedure in standing water. 
This approach produced small scale heterogeneities such as laminations, cross lamination and 
rippled like structures that are similar to those found in natural fluvial deposits. 

In this study, the synthetic heterogeneous aquifer was created through the cyclic 
deposition of sediments under varying water flow and feed rates of sediments. Previous sandbox 
aquifer studies by our group [Illman et al., 2007; 2008; Liu et al., 2007; Yin and Illman, 2009] 
involved careful packing of heterogeneity patterns in a prescribed fashion. Packing of sand 
bodies by hand is a laborious procedure and complex heterogeneity patterns are hard to create. 
Our goal in relying on sediment transport was to create a more realistic heterogeneity pattern 
with various scales of heterogeneity in an efficient manner. The one drawback of this approach is 
that the heterogeneity pattern in the sandbox cannot be controlled precisely as in the case of 
packing a sandbox aquifer by hand. 
 
Table 12.1: Characteristics of porous media used to create a synthetic heterogeneous aquifer. 
 Sand type d50 K [cm/s] Shepherd [mm] K [cm/s] Darcy 
16/30 0.872 1.32 × 10 3.84 × 10-1 -1 
20/30 0.750 1.03 × 10 3.12 × 10-1 -1 
20/40 0.578 6.68 × 10 2.05 × 10-2 -1 
#12 0.525 5.70 × 10 2.05 × 10-2 -1 
F32 0.504 5.33 × 10 1.45 × 10-2 -1 
#14 0.457 4.53 × 10 1.21 × 10-2 -1 
4030 0.355 2.99 × 10 5.79 × 10-2 -2 
F55 0.242 1.59 × 10 2.80 × 10-2 -2 
F65 0.204 1.20 × 10 1.83 × 10-2 -2 
F75 0.174 9.22 × 10 1.73 × 10-3 -2 
F85 0.151 7.29 × 10 1.35 × 10-3 -2 
 
 Various commercially available sands of variable grain sizes [Table 12.1] [Unimin 
Corporation and U.S. Silica] were used to create the synthetic aquifer. Examination of the grain 
size distribution [not shown here, but available in Craig, 2005] shows that the sands are well 
sorted and the d50, which is the particle diameter for which 50% of the weight is finer, ranges 
between 0.151 mm to 0.872 mm. Based on Shepherd [1989]’s empirical power-law relationship 
relating the d50 to the K, the estimated K for each class of sands ranges from 7.29 × 10-3 to 1.32 × 
10-1 cm/s from the smallest to the largest d50. We also estimated K for each sand type using a 
constant head permeameter yielding a range of 1.35 × 10-2 to 3.84 × 10-1 cm/s from the smallest 
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to the largest d50

The sediment layers were deposited using a sediment suspension tank that lies in series 
with the sandbox and a 1/3 horsepower pump [Figure 12.2].  The pump was operational in one 
direction only.  Therefore, the plumbing was designed to accommodate flow in either direction 
through the sandbox. The design of how the different sands of varying grain sizes were deposited 
heavily relied on flow rates into the sandbox from the suspension tank. The flow rates were 
determined for each sand type empirically by determining the mean velocities for under which a 
particular sediment type is transported, deposited, and scoured within the sandbox [Craig, 2005]. 
For each layer, a specific sediment type was chosen and introduced into the suspension tank 
[Figure 12.2]. To introduce heterogeneity among the layers, care was taken to introduce 
sediments with variable d

 showing that the K estimates are in general consistent, but differences do arise 
from the two approaches. 

50

 

 from one layer to the next. Deposition of each layer was 
accomplished by adjusting the flow rate of the sediment-laden water into the sandbox. Under 
uniform flow conditions, the coarser particles appeared to drop off first and progressively finer 
particles deposited on top of the coarser ones creating small scale heterogeneity within each 
deposited layer. To create heterogeneity at the larger scale and inter-fingering of different 
sediment layers, the flow of water into the tank was alternated after the deposition of each layer. 
In total, 17 layers were deposited to mimic an inter-fingering fluvial deposit with the lowest 
deposit in the sandbox designated as layer 1 with additional deposits overlying labelled in an 
ascending numerical order. Table 12.2 summarizes the layers deposited, its sand type, and the 
volume of sand deposited for a particular layer. Because the deposition of the final layer was not 
possible as the height of the synthetic aquifer exceeded the top most orifice in the sandbox used 
for sediment transport, 20/30 sand was placed over layer 17 to fill the tank to the top. Figure 12.3 
is a photograph of the sandbox showing each of the deposited layers. Further details to the 
creation of the synthetic heterogeneous aquifer are summarized in Craig [2005]. 

 
Figure 12.2: Schematic diagram of the sediment transport system for the creation of the 
synthetic heterogeneous aquifer. 
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Table 12.2: The sand type and deposited volume for each layer in the sandbox aquifer. 
Layer Sand type Volume [m3] 
1 20/30 0.0051 
2 4030 0.0034 
3 F85 0.0031 
4 20/40 0.0051 
5 Mix 0.0034 
6 Mix 0.0034 
7 #12 0.0043 
8 F32 0.0034 
9 20/40 0.0031 
10 F65 0.0043 
11 #12 0.0019 
12 16/30 0.0024 
13 20/30 0.0051 
14 F-75 0.0043 
15 20/40 0.0043 
16 Mix 0.0043 
17 F-85 0.0043 
18 20/30 0.0051 
Note: The layers labelled “mix” consisted of equal volumes of #14, F75, and 16/30 sands. 
 

Figure 12.3: Photograph of synthetic heterogeneous aquifer created via cyclic flux of sediment-
laden water. 
 
12.3 CHARACTERIZATION OF THE SYNTHETIC HETEROGENEOUS AQUIFER 
TREATING THE MEDIUM TO BE HOMOGENEOUS 
 The characterization of the synthetic heterogeneous aquifer was accomplished by various 
established aquifer characterization methods and with hydraulic tomography. Our main goal was 
to test the ability of these approaches to characterize the aquifer at different scales. Below, we 
describe the various characterization approaches and report the geometric mean of K values [KG] 
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determined from each test type as well as corresponding variance [ 2
ln Kσ ] estimates in Table 12.3. 

The KG
2
ln Kσ and  were computed using: 
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where n is the sample size, i is the index number, ln K is the natural logarithm of K, and ln K is 
the arithmetic mean of ln K values. 
 
Table 12.3: Summary of K estimates from various approaches. 
Test type n Min K [cm/s] Max K [cm/s] KG 2

ln Kσ [cm/s]  
Core 48 0.0111 0.298 0.077 0.868 
Single-hole 48 0.014 0.320 0.059 0.384 
Cross-hole [Port 17] 48 0.021 0.315 0.076 0.301 
Cross-hole [Port 21] 48 0.054 0.420 0.111 0.224 
Flow-through 6 0.131 0.141 0.136 0.001 
 
12.3.1 Constant head permeameter analysis of core samples 
 Core samples from the synthetic aquifer were obtained by inserting a horizontal core tube 
through the 48 wells. The extracted cores had dimensions of 1.28 cm in diameter and 10.16 cm 
in length. After the collection of the core, a cotton cloth with permeability much higher than the 
core samples was placed on each end and prepared for their analysis in a constant head 
permeameter [Klute and Dirksen, 1986]. Because the extracted core was very small, a special 
permeameter was built for testing purposes. Inspection of cored sands revealed that sands are 
quite uniform, thus we do not expect significant anisotropy in K measurements. Details to the 
core extraction method and the design of the constant head permeameter are provided in Craig 
[2005]. 
 
12.3.2 Single-hole pumping tests 
 We then conducted single-hole pumping tests at each of the 48 ports. The tests were 
conducted by pumping water at each port and monitoring the transient head change within the 
pumped well. A constant pumping rate [Q = 1.25 cm3

 

/sec] was set for each single-hole pumping 
test.  For each test, data collection started without the pump running in order to obtain the initial 
hydraulic head in the sandbox at all measurement ports.  A peristaltic pump was then activated at 
the pumping port and allowed to run at a constant rate until the development of steady state flow 
conditions. The pump was then shut off to collect recovery data. The steady state head data were 
analyzed using VSAFT2 [Yeh et al., 1993] through manual calibration by treating the aquifer to 
be homogeneous. Details to the numerical modeling and calibration effort are provided in Craig 
[2005]. 

12.3.3 Cross-hole pumping tests 
 We then conducted cross-hole pumping tests at each port along columns 2 [ports 2, 8, 14, 
20, 26, 32, 38, and 44] and 5 [ports 5, 11, 17, 23, 29, 35, 41, and 47] and 9 additional pumping 
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tests at various ports outside of these two columns [ports 13, 15, 16, 18, 21, 37, 39, 40, and 42] 
[see Figure 12.1]. The cross-hole tests were conducted by pumping at rates ranging from 2.50 - 
3.17 cm3

 An estimate of K obtained between the pumped and observation intervals when the 
medium is treated to be homogeneous is considered to be an equivalent hydraulic conductivity 
[K

/sec at 25 separate ports indicated by open and dashed squares on Figure 12.1. Prior to 
each cross-hole pumping test, all pressure transducers were calibrated to ensure accurate data 
collection. We next collected hydraulic head data for several minutes in all pressure transducers 
to establish a static, initial condition. After establishment of static conditions, we pumped from 
each port using a peristaltic pump, while taking head measurements in all 48 ports and a pressure 
transducer in each of the constant head boundaries. For each test, pumping continued until the 
development of steady state conditions, which was determined by observing the stabilization of 
all head measurements within the aquifer. The pump was then shut off to collect recovery head 
data until its full recovery. We note that we only utilized steady-state head data for subsequent 
analyses to estimate K by treating the medium to be homogeneous and through steady state 
hydraulic tomography to estimate a K tomogram. 

eq] [Renard and de Marsily, 1997; Neuman, 2005]. To obtain an estimate of Keq at each of the 
observation ports, we selected 2 cross-hole pumping tests among the 25 tests. One pumping test 
took place in port 17 and the other in port 21. Both ports were completed in layer 13. The core 
samples from ports 17 and 21 yielded K values of 1.64 ×10-2 and 2.46 ×10-1

 The observation head data from the two tests were analyzed by manually calibrating 
VSAFT 2 and assuming the aquifer is homogeneous. The numerical setup for the calibration was 
identical to the single-hole test analysis. Analysis of the two pumping tests yielded 96 estimates 
of K for the equivalent homogeneous medium [K

 cm/s, respectively. 

eq]. Values of Keq from each cross-hole 
pumping test were then averaged using eqn. [12.1] to estimate the KG

 

 for the entire synthetic 
aquifer. 

12.3.4 Bidirectional flow-through tests 
 We also conducted 6 bidirectional flow-through tests through the entire synthetic aquifer 
to obtain a large scale K estimate under steady-state flow conditions. Specifically, each of these 6 
tests was conducted by changing the height of the constant head reservoirs on both sides of the 
sandbox.  After the flow reached a steady state condition, we measured discharge from one side 
of the sandbox. We also measured the difference between the heights of the water column in the 
two constant head reservoirs to determine the hydraulic gradient.  We then applied Darcy’s law 
to obtain the effective hydraulic conductivity [Keff] of the synthetic aquifer. This estimate is 
considered to be the Keff value of the synthetic aquifer as flow takes place throughout the entire 
synthetic heterogeneous aquifer, the medium is treated to be homogeneous, and is independent of 
boundary conditions [Renard and de Marsily, 1997]. An average of the six different Keff 
estimates was  taken by applying eqn. [12.1] to obtain the KG
 The 6 flow-through tests were conducted by alternating the flow direction yielding three 
tests with flow taking place from the left to right and three additional tests with flow taking place 
from the right to left through the synthetic heterogeneous aquifer. In previous efforts [Illman et 
al., 2007, 2008; Liu et al., 2007] flow-through tests were conducted in only one direction using a 
different sandbox aquifer with a prescribed heterogeneity pattern. 

. 

  
12.3.5 Statistical analysis of test data 
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 Table 12.3 provides a summary of key statistics from the various data collected in this 
sandbox. Results show that the KG

2
ln Kσ

 from various characterization approaches ranges from 0.059 – 
0.136 cm/s, while the  ranges from 0.001 to 0.868. Each test type yields a different KG

2
ln Kσ

 and 
 indicating the uncertain nature of estimating these parameters in a heterogeneous aquifer. It 

is of interest to note that the KG

 

 from the 2 cross-hole tests depends on the pumping location in 
this sandbox. A similar observation was noted by Wu et al. [2005] who used numerical 
simulations to study the behaviour of effective hydraulic parameters during pumping tests, while 
Illman and Neuman [2001, 2003], Vesselinov et al. [2001a], and Illman [2006] observed a 
similar behaviour, in which large scale permeability estimates varied spatially at a field site 
consisting of unsaturated fractured tuffaceous rocks. 

12.4 GEOSTATISTICAL ANALYSIS OF SMALL SCALE K ESTIMATES 
 Geostatistical analysis of core and single-hole K data were conducted using the Surfer 8 
software developed by Golden Software, Inc [www.goldensoftware.com].  All 48 data were used 
for the kriging of core and single-hole data. We developed a grid that is compatible with the 
steady state hydraulic tomography analysis described later so that the estimated K fields from 
both approaches could be compared.  The exponential variogram model was used to fit the 
experimental variograms in both horizontal and vertical directions, resulting in an anisotropic 
variogram model which can be readily incorporated into the Kriging function in Surfer 8 for 
interpolation. 
 Table 12.4 lists the variogram parameters fit to the experimental variograms. Figures 
12.4a and 12.4b show the kriged K fields derived from the core and single-hole K data, 
respectively. The results, in general, reveal smoother K fields in comparison to the interfingering 
layers shown in Figure 12.3 which is expected considering that there are only 48 data points used 
for kriging. 
 
Table 12.4: Geostatistical model parameters for kriging core and single-hole ln K data. 
Data Model Nugget Range [cm] Sill Anisotropy ratio 
Core Exponential 0 17 0.90 2.2 
Single-hole Exponential 0 16 0.45 2.0 
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Figure 12.4: K distributions obtained via kriging of: a] core K estimates and b] single-hole K 
estimates. 
 
12.5. STEADY STATE HYDRAULIC TOMOGRAPHY ANALYSIS OF SELECTED 
CROSS-HOLE PUMPING TESTS 
 
12.5.1 Inverse model description 
 The steady state hydraulic tomography analysis of cross-hole pumping tests in the 
sandbox was conducted using a sequential geostatistical inverse approach developed by Yeh and 
Liu [2000]. We only provide a brief description of the inversion approach here. The inverse 
model assumes a steady flow field and the natural logarithm of K [ln K] is treated as a stationary 
stochastic process. The model additionally assumes that the mean and correlation structure of the 
K field is known a priori. The algorithm essentially is composed of two parts. First, the 
Successive Linear Estimator [SLE] is employed for each cross-hole test. The estimator begins by 
cokriging the initial estimate of Keff

 Cokriging does not take full advantage of the observed head values because it assumes a 
linear relationship [Yeh and Liu, 2000] between head and K, while the true relationship is 

 and observed heads collected in one pumping test during the 
tomographic sequence to create a cokriged, mean removed ln K [f, i.e., perturbation of ln K] map. 
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nonlinear. To circumvent this problem, a linear estimator based on the differences between the 
simulated and observed head values is successively employed to improve the estimate. 
 The second step of Yeh and Liu [2000]’s approach is to use the hydraulic head data sets 
sequentially instead of including them simultaneously in the inverse model thus the term, 
“sequential successive linear estimator” [SSLE] is used to describe the inverse algorithm hereon. 
In essence, the sequential approach uses the estimated K field and covariances, conditioned on 
previous sets of head measurements as prior information for the next estimation based on a new 
set of pumping data. This process continues until all the data sets are fully utilized. Modifications 
made to the code for this study include its ability to account for variations in the boundary 
conditions with each pumping test as they are sequentially included and implementing the 
modified loop scheme described in Zhu and Yeh [2005]. 
 To obtain a K tomogram from the available cross-hole pumping tests, we solve an inverse 
problem for steady-state flow conditions. The synthetic aquifer was discretized into 741 elements 
and 1600 nodes with element dimensions of 4.1 cm × 10.2 cm × 4.1 cm. A similar grid was also 
used previously for steady state hydraulic tomography analysis of a different sandbox aquifer by 
Illman et al. [2007, 2008], transient hydraulic tomography by Liu et al. [2007], and hydraulic 
tomography based on the temporal moments of drawdown-recovery data by Yin and Illman 
[2009]. 
 Illman et al. [2007] found that the variations in constant head boundary conditions from 
one test to the next can be critical in conducting a steady state hydraulic tomography survey. 
Therefore, we vary the boundary head values from one test to the next as they are included into 
the inverse model. 
 
12.5.2 Input parameters and cross-hole tests used 
 Input data to the inverse model include initial guesses for the Keff

2
ln Kσ,  and the 

correlation scales [λx, λy, and λz

 We obtained the initial estimate of K

], discharge rate [Q] from each pumping test, and steady-state 
heads at constant boundaries, as well as available point [small-scale, i.e., core, slug, and single-
hole tests] measurements of K. In all previous studies of laboratory sandbox evaluations of 
hydraulic tomography using a different sandbox aquifer [Illman et al., 2007, 2008; Liu et al., 
2007; Yin and Illman, 2009], we excluded small scale data for the inverse modeling effort to test 
the algorithms without conditioning. For this study, we also exclude core and single-hole K 
estimates and conduct the steady state hydraulic tomography analysis without conditioning. 

eff by taking the geometric mean of all Keq estimates 
obtained through the analysis of data from observation ports during the cross-hole pumping tests 
by treating the heterogeneous medium to be homogeneous. This is a reasonable estimate of Keff 
considering that in practice, a value of Keff is not readily available as a large number of small 
scale K estimate needs to be collected and a suitable stochastic theory applied to compute the 
Keff. The traditional analysis of cross-hole pumping tests by treating the medium to be 
homogeneous [if they are all averaged] should yield a representative value of K for a large 
portion of the flow and simulation domain. However, our results from Table 12.3 show that 
cross-hole pumping tests conducted at different sections of the aquifer by pumping at a different 
port could yield different mean K estimates rendering the estimation of Keff by relying solely on 
averaging Keq values to be unreliable. Therefore, care must be taken in estimating the Keff

 Estimation of 
. 

2
ln Kσ  always involves uncertainty. A previous numerical study conducted 

by Yeh and Liu [2000], however, has demonstrated that 2
ln Kσ  has negligible effects on the 
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estimated K using the inverse model. Therefore, we use an initial value of 3.0, which is larger 
than that obtained from the available small scale data [0.87] and set this as our input 2

ln Kσ  in the 
inverse model. 
 Correlation scales represent the average size of heterogeneity that is critical for analyzing 
the average behaviour of aquifers. Correlation scales of any geological formation are difficult to 
determine. The effects of uncertainty in correlation scales on the estimate based on the 
tomography are negligible because the tomography produces a large number of head 
measurements, reflecting the detailed site-specific heterogeneity [Yeh and Liu, 2000]. Therefore, 
the correlation scales were approximated based only on the average thickness and length of the 
discontinuous sand bodies, which are set as λx = 50 cm, λy = 10.2 cm, and λz
 For the steady state hydraulic tomography analysis, we selected 8 pumping tests at ports 
2, 5, 14, 17, 32, 35, 44, and 47 and the corresponding steady-state head observations at the rest of 
47 ports during each test as data sets. We elected to not use the head data from the pumped port 
from each test because the pumped port could be affected by skin effects [Illman et al., 2007]. 
The remaining 16 tests with pumping taking place at ports [8, 11, 13, 15, 16, 18, 20, 23, 26, 29, 
37, 38, 39, 40, 41, and 42] were reserved for the validation of the K tomogram. 

 = 10.0 cm. 

 Prior to the computation of the K tomogram with the SSLE algorithm, we pre-processed 
the hydraulic head data. This is because Illman et al. [2008] found from the analysis of cross-
hole pumping test data obtained in a laboratory sandbox aquifer that the signal-to-noise ratio can 
be critical in inverse modeling of cross-hole pumping test data. Despite calibrating the pressure 
transducer prior to the start of each pumping test, there is a minute level of drift always present 
in each of the pressure transducers. Therefore, we removed this drift by shifting the head value to 
a common one for all transducers in the sandbox prior to each test. The collected data were 
additionally processed by taking the average of the steady state head values collected over a 
period of time in a given monitoring port. 
 Illman et al. [2008] previously found that the order in which the pumping test data is 
included into the SSLE algorithm is critical to the final result. This is because each cross-hole 
pumping test data set contains different levels of noise. Our experiments in the laboratory were 
conducted as uniformly as possible, but there are noises that we could not control from one test 
to the next. Our findings include the importance of examining test data carefully and using the 
cleanest data [with the highest signal-to-noise ratio] first and progressively including noisier data 
[with lower signal-to-noise ratio] into the SSLE algorithm. This is because the SSLE algorithm 
in its current form [Yeh and Liu, 2000; Zhu and Yeh, 2005, 2006] is more sensitive to noise 
during the beginning stages of K tomogram computation. This sensitivity is due to the uniform 
convergence criteria used for sequentially inverting all pumping test data. Careful examination of 
head data showed that the data most devoid of noise were found near the bottom of the sandbox, 
while the noisiest data were usually located near the top of the sandbox. This is due to the fact 
that a higher water column sits on the pressure transducers near the bottom of the sandbox, 
which causes the pressure transducers to be less affected by noise. Also, the signal is magnified 
near the bottom no-flow boundary due to the superposition principle. Therefore, we included the 
steady-state head data from cross-hole tests with pumping taking place in the order of ports 47, 
44, 35, 32, 17, 14, 5 and 2 into the SSLE algorithm. 
 
12.5.3 Computation of K tomograms and its visual assessment 
 All computations for steady state hydraulic tomography analyses were executed using 8 
of 16 processors on a PC-cluster consisting [of 1 master and 15 slaves each with Pentium IV 3.2 
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GHz with 1 GB of RAM] at the University of Arizona.  The total computational time was about 
one minute indicating the efficiency of the SSLE algorithm. Figure 12.5a-d are the K tomograms 
obtained by inverting the steady state head data from 2, 4, 6, and 8 pumping test, respectively. 
Figure 12.5a shows that with only 2 pumping tests, a coarse picture of the heterogeneity pattern 
emerges and as more tests are included into the SSLE algorithm, more detail to the heterogeneity 
structure emerges. The final K tomogram obtained [Figure 12.5d] using 8 pumping tests revealed 
considerable detail to the heterogeneity structure. 
 

 
Figure 12.5: K tomograms computed using: a] 2 pumping tests [ports 47 and 44]; b] 4 pumping 
tests [ports 47, 44, 35, and 32]; c] 6 pumping tests [ports 47, 44, 35, 32, 17, and 14]; and d] 8 
pumping tests [ports 47, 44, 35, 32, 17, 14, 5 and 2]. 
 

Table 12.5 summarizes the KG
2
ln Kσ, , and correlation lengths of the resulting K 

tomograms. The estimated KG of the K tomogram after including data from 8 tests was 1.0 × 10-1

2
ln Kσ

 
cm/s while the estimated  was 1.12. The KG

2
ln Kσ

 was in the midrange of the values from other 
characterization approaches, while was highest among all approaches [Table 12.3]. It is of 
interest to note that there is little change in the KG

2
ln Kσ

 and the correlation lengths of the K 
distribution as more tests were included. On the other hand, the  increased as more tests was 
included into the SSLE algorithm. These results imply that with as few as 2 pumping tests, one 
could reliably estimate the KG

2
ln Kσ

 and the correlation lengths of the K distribution in the synthetic 
aquifer, however the accurate estimation of  requires more cross-hole pumping tests. 
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Table 12.5: Statistical properties of the estimated K tomograms. 
Case KG 2

ln Kσ [cm/s]   λx λ [cm] z [cm] 

Hydraulic tomography [Sequential – 2 tests] 0.090 0.542 16 7 
Hydraulic tomography [Sequential – 4 tests] 0.101 0.890 18 9 
Hydraulic tomography [Sequential – 6 tests] 0.099 1.036 14 6 
Hydraulic tomography [Sequential – 8 tests] 0.100 1.121 18 7 
 

To compare the K tomogram [Figure 12.5d] to the location of the sand deposits or 
lithofacies [Figure 12.3] we overlay Figure 12.5d over Figure 12.3 using Adobe Photoshop. 
Examination of Figure 12.6 shows a good correspondence between the high K zones of K 
tomogram to layer 1 [20/30], 7 [#12], 9 [20/40], 11 [#12], 15 [20/40], and 18 [20/30]. Despite the 
good correspondence of the general locations of these features, it is also apparent from Figure 
12.6 that the boundaries of the lithofacies from the deposits to the boundaries of high K features 
from the tomogram are not in close agreement. We also note that layers 4 [20/40], 12 [16/30], 
and 13 [20/30], all expected to be high K features are not shown on the K tomogram. 
 We also compare the K tomogram [Figure 12.5d] to the kriged K estimates of small scale 
data [Figure 12.4a and 12.4b]. A visual comparison of the estimated K tomogram to the kriged K 
fields from the small scale estimates of K reveals a weak correspondence implying that steady 
state hydraulic tomography yields results that are significantly different from the standard 
geostatistical analysis of small scale K data. 
 

 
Figure 12.6: Overlay of K tomogram computed using 8 pumping tests over the picture of the 
heterogeneous sandbox aquifer using Adobe Photoshop.  
 
12.6. FORWARD SIMULATIONS OF INDEPENDENTLY CONDUCTED CROSS-HOLE 
PUMPING AND FLOW-THROUGH TESTS 
 A number of approaches have been proposed in the literature to validate forward and 
inverse groundwater flow models. For example, Foglia et al. [2007] tested alternative forward 
groundwater models using the corrected Akaike information criterion, Bayesian information 
criterion, and generalized cross-validation. Poeter and Anderson [2005] utilized a Kullback-
Leibler information criterion that selects parsimonious groundwater models that provided a more 
realistic measure of precision than evaluation of any one model or evaluation based on other 
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commonly referenced model selection criteria. In terms of the validation of inverse modeling 
results, Painter et al. [2007] compared three separate transmissivity estimation approaches and 
compared the resulting heads from forward simulation and actual head data from the Edwards 
aquifer in Texas. Illman et al. [2007] and Liu et al. [2007] used various data [core, slug, and 
single-hole test results] and statistical moments of these small scale data, as well as independent 
cross-hole pumping test data to validate their K and Ss tomograms. In both studies, Illman et al. 
[2007] and Liu et al. [2007] both concluded that the best approach to validate a K or Ss

 Another method to test the performance of the various K fields is to simulate the flow-
through experiments using the various homogeneous and heterogeneous K fields. If the estimated 
K field is accurate, it should, in principle, yield accurate estimates of total flow rate on the 
outflow end of the sandbox resulting from the flow-through tests. 

 
tomogram was to simulate an independently conducted test not used in the construction of the 
tomograms. We consider the cross-hole tests to be the most appropriate testing approach for 
validation purposes because the tests can be conducted at different locations within the aquifer 
with a large number of observation points as implemented in our sandbox study. Pumping at 
different locations will induce flow throughout the aquifer yielding drawdowns along the layers 
as well as across them. Other methods could potentially involve the discrete collection of aquifer 
samples, small scale hydraulic tests, and flux measurements all of which yield localized 
information that may not be entirely suitable for large scale validation of groundwater flow 
models. 

Here, to quantitatively assess the validity of the various homogeneous and heterogeneous K 
estimates, we simulate 16 additional cross-hole pumping and 6 bidirectional flow-though tests 
using the forward groundwater model MMOC3 developed by Yeh et al. [1993]. For the 
validation using cross-hole tests, the simulated and measured drawdown values for each case are 
plotted on separate scatter plots and a linear model is fitted to each case without forcing the 
intercept to zero. The linear model fit and the coefficient of determination [R2] provide 
indications of scatter and bias. The R2 is a statistic that provides a quantitative measure of 
similarity between the simulated and measured drawdown values. A high R2 value means that the 
simulated and measured drawdown values are linearly correlated, even though the mean values 
could be different. Other measures of correspondence between the simulated and observed 
drawdown values are the mean absolute error [L1] and the mean square error [L2] norms. The L1 
and L2

 

 norms are computed as: 
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where n is the total number of drawdown data, i indicates the data number, and iχ  and ˆiχ  
represent the estimates from the simulated and measured drawdowns, respectively.   

 The slope and intercept of the linear model fit, the R2 values, and the L1 and L2 norms are 
summarized in Table 12.6. These statistics collectively provide quantitative measures of the 
performance of each steady-state forward groundwater model with different K fields in 
simulating the 16 cross-hole pumping tests. The use of more than one cross-hole pumping test 
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conducted at different parts of the synthetic heterogeneous aquifer ensures a more credible 
validation of each of these models. 

 For the validation of the various K fields using the flow-through tests, we simply 
compare the total flow rates obtained through the forward simulation of the flow-through tests 
using MMOC3 to those obtained from the actual experimental data. 

Table 12.6: Slope and intercept of fitted linear model, coefficient of determination [R2] and 
standard errors [L1 and L2
Case 

 statistics] of various homogeneous and heterogeneous cases. 
slope intercept R L2 L1 2 

Homogeneous K field 
KG 1.02 [core] 0.20 0.83 0.33 0.22 
KG 1.32  [single-hole] 0.26 0.83 0.60 0.70 
KG 1.03  [cross-hole – port 17] 0.21 0.83 0.34 0.23 
KG 0.71  [cross-hole – port 21] 0.15 0.83 0.31 0.17 
KG 0.58  [flow through] 0.13 0.83 0.39 0.28 

Heterogeneous K field 
Kriged core K 1.10 0.14 0.89 0.30 0.18 
Kriged single-hole K 1.45 0.13 0.89 0.58 0.67 
Hydraulic tomography [Sequential – 2 tests] 1.07 -0.02 0.93 0.18 0.07 
Hydraulic tomography [Sequential – 4 tests] 1.05 0.00 0.96 0.13 0.04 
Hydraulic tomography [Sequential – 6 tests] 1.08 0.05 0.97 0.15 0.05 
Hydraulic tomography [Sequential – 8 tests] 1.07 0.02 0.97 0.13 0.04 
 
 
12.6.1 Use of independent cross-hole tests to validate homogeneous and heterogeneous K 
fields 

Figure 12.7 shows a series of scatter plots that compare the simulated drawdown values 
from various KG fields from Table 3 against the measured values from 16 separate cross-hole 
pumping tests. The figure includes a 45 degree line which indicates a perfect correlation. In 
particular, Figure 12.7a shows that the KG from the permeameter analysis of cores yields 
reasonable predictions of 16 separate cross-hole tests over a large range of drawdown values. 
Our assessment is based on the near unit slope [1.02] of the linear model fit to the data. 
However, the intercept of the linear model is 0.20 suggests that the predictions are biased and a 
R2 value of 0.83 reveals that there is some scatter. Figure 12.7b shows that the geometric mean of 
the KG from single-hole tests yields biased predictions of 16 separate cross-hole tests. The 
simulated drawdowns are in general higher than the measured ones, which is a consequence of 
the lower KG

The K
 estimated using the single-hole tests conducted in this aquifer. 
G values from the 2 cross-hole tests yielded mixed results. For the KG value 

estimated from the cross-hole pumping test with pumping taking place at port 17, the prediction 
of the 16 cross-hole pumping tests are reasonable [Figure 12.7c] and is in similar quality as the 
core case [Figure 12.7a]. However, the prediction based on the KG from cross-hole pumping test 
with pumping taking place at port 21 is biased [Figure 12.7d]. For this case, the measured 
drawdowns are in general higher than the simulated ones, which is a consequence of the higher 
KG estimated through cross-hole pumping tests. The flow-through test estimate of KG, likewise 
yielded biased predictions [Figures 12.7e], similar to cross-hole pumping test case where 
pumping took place at port 21. This suggests that KG estimated by flow-through tests is higher 
than the true mean K of this sandbox aquifer. The latter makes sense considering that flow during 
the flow-through tests takes place horizontally primarily through the high K layers. This should 
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result in a mean K value that should be closer to the arithmetic mean K, which is higher than the 
geometric mean. 

Figure 12.8 shows a series of scatter plots which compare the simulated drawdown values 
from various heterogeneous K fields against the measured values from 16 separate cross-hole 
pumping tests. Figure 12.8a shows that the kriged K field based on permeameter tests on cores 
yields slightly improved predictions of 16 separate cross-hole pumping tests over a large range of 
drawdown values in comparison to the KG case. This is supported by the slight improvement of 
the R2 value as well as the decrease in the L1 and L2 norms [Table 12.6] when the kriged case is 
compared to the KG case.  Likewise, Figure 12.8b illustrates that the kriged K field from single-
hole pumping test data shows little improvement from its homogeneous counterpart based on the 
linear model fit, the R2 value as well as the lower L1 and L2

 

 norms. 

Figure 12.7: Arithmetic plots of drawdown predictions of 16 separate cross-hole pumping tests 
using the a]: core KG estimates; b] single-hole KG estimates; c] geometric mean of cross-hole test 
Keq estimates [port 17]; d] geometric mean of cross-hole test Keq estimates [port 21] and e] Keff 
from flow-through tests. 
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Figure 12.8: Arithmetic plots of drawdown predictions of 16 separate cross-hole pumping tests 
using: a]: kriged core K estimates; b] kriged single-hole K estimates; c] K tomogram from SSHT 
[2 tests - ports 47 and 44]; d] K tomogram from SSHT [4 tests - ports 47, 44, 35 and 32]; e] K 
tomogram from SSHT [6 tests - ports 47, 44, 35, 32, 17 and 14]; and f] K tomogram from SSHT 
[8 tests - ports 47, 44, 35, 32, 17, 14, 5 and 2]. 
 

In contrast, the use of the K tomograms from hydraulic tomography yields a drastically 
improved prediction of measured drawdowns using 16 independent cross-hole pumping tests not 
used in the construction of the tomogram. Figure 12.8c – 12.8f show these comparisons for K 
tomograms constructed using 2, 4, 6, and 8 cross-hole pumping tests, respectively. It is evident 
from these figures that the predictability of independently conducted cross-hole pumping tests 
improves with a larger number of tests included into the SSLE algorithm. 
 
12.6.2 Use of bidirectional flow-through tests to validate various homogeneous and 
heterogeneous K fields 

 The various homogeneous and heterogeneous K fields were additionally validated by 
simulating the actual flow-through tests using MMOC3. This was done by prescribing hydraulic 
head values at the left and right boundaries of the sandbox aquifer and conducting forward 
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simulations. The flow rates from the outflow boundary were computed by first calculating flow 
for every element along the outflow column and second summing the flows from these elements 
to obtain the total flow rate.  In the first step, the flow rate for each outflow element was 
calculated using Darcy’s law. The computed total flow rate, is then compared against the 
measured total flow rate from the actual flow-through tests. 

Table 12.7 summarizes the relative error of the simulated flow rate with respect to the 
measured flow rates from 6 separate, bidirectional flow-through tests. In general, we see that the 
homogeneous K fields from the core, single-hole and cross-hole tests underestimate the flow 
rates of the various flow-through tests resulting in large relative errors [i.e., -15.8 ~ -58.6%]. 
This implies that the total outflow through the synthetic heterogeneous aquifer cannot be 
accurately predicted using the various homogeneous K fields. However, this is not the case when 
we use the KG determined through the flow-through experiments. This is an expected result 
because the simulation of the flow-through tests was done with KG

 

 determined from the flow-
through tests. We speculate that the slight difference in flow rates results from experimental 
errors and the differences in how total flow is measured for the simulation and the actual 
experiments. 

Table 12.7: Relative error computed for the simulated flow rates with respect to the measured 
values. 
Test Relative error [%] 

Homogeneous K fields Heterogeneous K fields 
FT Core SH CH [17] CH [21] Kriged 

[core] 
Kriged 
[SH] 

K tomogram 

LR1 3.2 -41.6 -55.2 -42.3 -15.8 -37.9 -52.6 11.1 
LR2 1.6 -42.5 -55.9 -43.2 -17.1 -38.9 -53.4 9.3 
LR3 0.1 -43.3 -56.6 -44.1 -18.3 -39.8 -54.1 7.7 
RL4 -4.7 -46.0 -58.6 -46.7 -22.2 -42.7 -56.2 2.6 
RL5 -2.0 -44.5 -57.5 -45.2 -20.0 -41.0 -55.0 5.5 
RL6 -2.3 -44.7 -57.6 -45.4 -20.3 -41.2 -55.1 5.2 
Note: LR1 stands for flow-through test number one with flow from left to right. FT = flow-through test; SH = single-hole tests, and CH [17] = 
cross-hole test with pumping at port 17. 
 

The simulated flow rates from the kriged K fields from cores and single-hole tests also 
yielded inaccurate estimates of total flow as shown by the high relative error [-37.9 ~ -56.2%]. 
The relative error was slightly less for kriged core and single-hole K fields in comparison to their 
homogeneous counterpart, which suggests that accounting for the heterogeneous nature of the 
strata can lead to improved estimates of flow. 

In contrast, the relatively error is significantly reduced when we use the K tomogram from 
steady-state hydraulic tomography to predict total outflow. In particular, the relative error ranges 
from 2.6 to 11.1 %, which is significantly less than the previous cases examined. The main 
reason for the slight inaccuracy is due to the uncertain nature of K values away from the 
observation ports. Figure 12.9 is a contour map of ln K variance for the case in which 8 cross-
hole tests are included into the SSLE algorithm [Figure 12.8d]. This figure shows that the 
variance is highest outside the interior of the synthetic heterogeneous aquifer, where observation 
ports are sparse. Given the uncertain nature of the K estimates in these regions, it is not 
surprising to us that there is a slight discrepancy in the simulated and measured outflow rates. 
The prediction of total outflow rate will likely improve with additional pressure transducers 
placed in the high ln K variance areas. Based on these results, it leads us to believe that the SSLE 
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algorithm yields the most accurate K field among all the characterization approaches validated 
here. 

 
Figure 12.9: Contour plot of ln K variance with 8 cross-hole tests included into SSLE algorithm. 
 
12.7 DISCUSSION 
 
12.7.1 On model validation 

The validation of groundwater models has become an important issue [e.g., Hassanizadeh 
and Carrera, 1992; Konikow and Bredehoeft, 1992; Oreskes et al., 1994; Refsgaard and 
Knudsen, 1996; Refsgaard, 1997; Refsgaard and Henriksen, 2004] over the last several decades. 
Model validation involves the establishment of greater confidence in the model by conducting 
simulations of the system under conditions in which the data has not been used for calibration 
purposes. For example, one can calibrate a groundwater flow model using one set of pumping 
test data. If the calibrated model from this first pumping test can predict system response 
accurately in a second pumping test [e.g., conducted using another well], one can have greater 
confidence in the calibrated model. On the other hand, if the parameters need to be adjusted to 
match the response of the 2nd pumping test, the process becomes a second calibration and 
additional datasets are needed to continue with the validation exercise. 

We emphasize that successful model validation implied in this paper involves the 
establishment of greater confidence in the model by conducting simulations of the system under 
conditions in which the data has not been used for calibration purposes and obtaining excellent 
predictions of not only one, but multiple independent tests. It does not mean that the model, per 
se, is invincible and predicts the truth at all occasions. It is also important to recognize that 
“absolute” validation of a model is likely never possible. In this sense, we agree with Refsgaard 
and Henriksen [2004]’s definition of model validation: it is the “substantiation that a model 
within its domain of applicability possesses a satisfactory range of accuracy consistent with the 
intended application of the model.” 
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12.7.2 On the accuracy of K estimates and its impact on model validation 
 The laboratory experimental results clearly showed that the KG estimates from various 

established characterization methods yielded biased predictions of independently conducted 
cross-hole pumping tests. This, in turn resulted in erroneous predictions of total outflow through 
our synthetic heterogeneous aquifer. Therefore, steady state groundwater models constructed 
using the KG estimates obtained via traditional characterization approaches are considered to be 
invalid based on the definition of model validation given in the previous section. In fact, our 
results illustrate that small differences in the KG

A surprising finding from this study is that heterogeneous K fields from kriging did not 
cure this problem and yielded biased predictions. However, the K tomogram from steady-state 
hydraulic tomography was able to predict drawdowns of all independently conducted cross-hole 
hydraulic tests with considerable accuracy in comparison to the steady state groundwater model 
based on other K estimates. The K tomogram was also able to provide better predictions of flow 
rates in comparison to other approaches. These results lead us to conclude that the steady-state 
groundwater flow models based on the K tomogram can be considered to be validated 
sufficiently based on the definition of model validation given before. 

 values among various characterization methods 
result in large differences in steady state drawdown and flow rate predictions of independent 
tests. Inaccurate predictions of drawdowns and flow rates will undoubtedly and negatively 
impact contaminant transport predictions. 

 
12.7.3 Why does hydraulic tomography yield improved K fields over traditional methods? 

One reason why hydraulic tomography yields improved K fields in comparison to other 
traditional methods is because the sequential or simultaneous inclusion of multiple pumping test 
data into the SSLE algorithm amounts to a repeated calibration and validation of the estimated K 
field with multiple datasets that are analyzed by the inverse algorithm. Another reason is that 
hydraulic tomography relies on multiple pumping tests conducted at different locations in the 
tested medium. The signals generated through multiple pumping events at different points in the 
aquifer are captured with pressure transducers placed in neighboring boreholes and synthesized 
using a suitable inverse approach. The large amount of data generated using hydraulic 
tomography surveys leads to improved estimates of K in the aquifer. Of course, the accuracy of 
the K tomogram computed will depend on the inverse modeling strategy used and the number of 
pumping tests included into the inverse algorithm and the pumped locations as well as the 
number of observation points available for the inverse analysis. 

Potential reasons why established approaches may not perform as well as hydraulic 
tomography include: 1] experimental errors arising from packing of core samples and anisotropy 
in K resulting from the 1D nature of permeameter measurements; 2] small sampling volume; 3] 
near well effects that could affect single-hole or other small scale tests that involve injection or 
withdrawal of fluids; and 4] lack of adequate sampling between boreholes that could affect the 
estimation of connectivity of K heterogeneity. Furthermore, it appears that the homogeneous K 
value obtained by averaging of small scale K data or taking the geometric mean of the Keq from 
cross-hole tests is simply not adequate enough to predict drawdowns of independent cross-hole 
pumping tests in a heterogeneous aquifer because the computed mean represents a volume 
smaller than the representative elementary volume [REV] [e.g., Jankovic et al., 2003]. However, 
as pointed out by Neuman [1987] and Tartakvosky and Neuman [1998], there is generally no 
guarantee that a REV can be defined for a given geologic medium. Even if such an REV can be 
defined, it will be so large that estimation of K using available experimental method becomes 
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impractical. In the real world, estimates of K or their distributions are often obtained at a scale 
smaller than the REV or what we refer to as the sub-REV scale. This is partially due to the lack 
of guidelines in estimating the size of a REV suitable for a given site leading to greater 
uncertainty in K estimation using traditional characterization approaches. This is another reason 
why we consider hydraulic tomography to be a robust approach in delineating the subsurface K 
heterogeneity as it does not rely on any REV assumptions for accurate estimation of the K field. 

Our laboratory experiments have shown the powerful capability of steady state hydraulic 
tomography to obtain an accurate K tomogram. However, as robust as hydraulic tomography 
may be, we acknowledge that it is by no means a panacea technology. This is because the 
computed K tomogram is non-unique as there are an infinite number of solutions to the steady-
state inverse problem for a heterogeneous K field, even when all of the forcing functions are 
fully specified. Only when data are available at all estimated locations will the inverse problem 
be well-posed and ultimately lead to a unique solution [e.g., Yeh et al., 1996; Yeh and Liu, 2000; 
and Yeh and Simunek, 2002]. This, obviously, is not the case here. For example, we noted earlier 
that some of the layers in the synthetic heterogeneous aquifer were not identified by steady state 
hydraulic tomography. We suspect that some of these features were not identified because of the 
limited number of pressure transducers installed along each column of wells [Figure 1]. A larger 
number of pressure transducers or conditioning the K tomogram with higher resolution 
measurements of K along the columns would likely improve the resolution of the K tomogram. 
In any case, it is important to note that the misidentification of some of these layers could have 
large impacts on predicting solute transport, thus further improvement in hydraulic tomography 
technology is desirable. This improvement will require technological advancements that will 
lower the cost of downhole pressure measurements. If monitoring costs can be substantially 
lowered, a denser pressure measurement network becomes more feasible increasing the ability of 
hydraulic tomography to capture finer scale details of geologic heterogeneity. 

Despite some shortcomings, it is important to recognize that we have obtained a solution to 
the inverse problem [i.e., the K tomogram] that is consistent with the heterogeneity patterns that 
yield accurate predictions of steady state drawdowns from multiple, independent cross-hole 
pumping tests not used in the construction of the K tomogram. The robustness of our results is 
further supported by the accurate prediction of flow rates through the synthetic heterogeneous 
aquifer. Results presented here show that accurate steady-state groundwater models can be 
developed, and that the degree of its validation will in general improve when there is more 
accurate information on subsurface heterogeneity and forcing functions. Therefore, we contend 
that more emphasis should be placed on accurate site characterization to delineate subsurface 
heterogeneity patterns and their connectivity, developing improved methods for defining 
source/sinks [other than the pumping/injection rates which are typically known], and developing 
improved methods for increasing the accuracy in specifying boundary conditions. If this is done 
adequately, we predict that steady state groundwater model will become more accurate and its 
predictability of future scenarios will improve. Of course, this prediction is based on the caveat 
that no fundamental changes occur to the aquifer [e.g., deformation] after the calibration process 
has been completed. 
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13. CAPTURING HETEROGENEITY IN GROUNDWATER 
FLOW PARAMETERS: COMPARISON OF APPROACHES 
THROUGH CONTROLLED SANDBOX EXPERIMENTS  
 
13.1. INTRODUCTION 
  
13.1.1 Characterization methods of subsurface heterogeneity 

Subsurface characterization for groundwater investigations relies on the determination of 
the distribution of hydraulic parameters such as hydraulic conductivity [K] and specific storage 
[Ss]. These values are then used to build groundwater models of various complexities to obtain 
quantitative estimates of hydraulic heads, groundwater fluxes, and the distribution and 
concentration of contaminants. Commonly, hydraulic parameters are estimated by collecting 
cores and subjecting them to permeameter tests and grain size analysis in a lab, or conducting 
slug, single-hole and/or pumping tests in situ. These in situ methods rely on analytical solutions 
that treat the geological medium to be homogeneous. These simplified solutions and the resulting 
estimated parameters have been utilized in a variety of real world applications and academic 
studies, despite the fact that the subsurface is heterogeneous at multiple scales. In particular, the 
knowledge of detailed three-dimensional distributions of K is critical for the prediction of 
contaminant transport, delineation of well catchment zones, and quantification of groundwater 
fluxes including surface-water/groundwater exchange. Even though many studies treat Ss to not 
vary significantly, in some formations, where the aquifer compressibilities vary significantly 
from one material type to the next [e.g., sands versus clays], Ss

Characterizing the heterogeneity in S

 could vary several orders of 
magnitude. The characterization of subsurface heterogeneity is fraught with difficulties as 
numerous samples are required to delineate the variability of hydraulic parameters as well as 
their spatial correlations and connectivity. Using soil cores to accurately characterize the K 
heterogeneity of a site requires a large number of samples to be tested in the laboratory using a 
constant or a falling head permeameter [e.g., Sudicky, 1986; Sudicky et al., 2010]. Alternatively, 
these samples are sieved to obtain grain size distributions, which can then be analyzed using 
various empirical relations to estimate K. 

s

 

 is seldom done as the parameter is considered to be 
less variable than K [e.g., Gelhar, 1993 and others]. In fact, data in the literature suggests this to 
be the case in both porous and fractured geologic media [e.g., Meier et al., 1998; Sanchez-Vila et 
al., 1999; Illman and Neuman, 2001; Vesselinov et al. 2001; Martinez-Landa and Carrera, 2005; 
Illman and Tartakovsky, 2007; Liu et al., 2007; Willmann et al., 2007; Illman et al. 2009], 
although the estimated variance is known to be dependent on the estimation method. In 
particular, Sanchez-Vila et al. [1999] showed that when one uses the Jacob’s method to infer 
transmissivity [T] and storage coefficient [S], one obtains some “apparent” T which is constant 
and an “apparent” S which is highly variable in an aquifer, but in reality, T is variable and S is 
constant.  In a different study, Wu et al. [2005] using numerical experiments and a first-order 
correlation analysis showed that the effective T and S for an equivalent homogeneous aquifer of 
Gaussian random T and S fields vary with time as well as the principal directions of the effective 
T. These studies suggest that the traditional interpretation of pumping tests by treating the 
medium to be homogeneous could potentially lead to biased estimates of hydraulic parameters 
and new methods for capturing subsurface heterogeneity are therefore necessary. 
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13.1.2 Methods for capturing spatial heterogeneity 
Common approaches when mapping K [and less so Ss

Other approaches used to model subsurface heterogeneity include the Transition 
Probability Markov Chain method [Carle and Fogg, 1997; Carle, 1999; Weissmann et al., 1999] 
and the indicator kriging approach [Journel, 1983; Journel and Isaaks, 1984; Journel and 
Alabert, 1990; and Journel and Gomez-Hernandez, 1993]. Both of these approaches allow one to 
construct discontinuous facies models. However, the Markov model is better able to account for 
spatial cross-correlation, such as juxtapositional relationships, including the fining-upward 
tendencies of different facies, than the indicator approach [De Marsily et al., 2005]. 

] heterogeneity are to utilize 
geostatistical or stochastic estimation techniques or more sophisticated interpolation methods. In 
particular, these approaches are considered to be the de facto standards which assume that a user-
specified covariance function is valid and hydrogeologic parameters are log-normal and 
stationary. These assumptions are difficult to satisfy in many geologic settings. Because of these 
assumptions, and when data are not abundant, stochastic estimation techniques may provide a 
smooth image of the spatial heterogeneity and may not represent the true distribution accurately. 
Although a variety of stochastic simulation techniques [e.g., Deutsch and Journel, 1998] exist 
that can overcome this issue of smoothing, it still does not address the preservation of many 
geological features. This is due to the fact that traditional geostatistical methods are based on 
variograms computed using two-point statistics. To overcome this shortcoming,  multiple point 
geostatistics [e.g., Guardiano and Srivastava, 1993; Caers, 2001; Strebelle, 2002; de Vries et al., 
2009] have been developed through the use of more complex point configurations, whose 
statistics are retrieved from training images that represent the geological facies distributions 
obtained from outcrop mappings and/or geophysical imaging. 

More recently, geostatistical and stochastic inversion methods have received increasing 
attention.  The approach produces the first and second statistical moments of hydrogeologic 
variables, representing their most likely estimates and their uncertainty, respectively, conditioned 
on available observations. Cokriging relies on the classical linear predictor theory that considers 
spatial correlation structures of flow processes [such as hydraulic head and velocity] and the 
subsurface hydraulic property, and cross-correlation between the flow processes and the 
hydraulic property.  In the past few decades, many researchers [e.g., Kitanidis and Vomvoris, 
1983; Hoeksema and Kitanidis, 1984 and 1989; Rubin and Dagan, 1987; Gutjahr and Wilson, 
1989; Sun and Yeh, 1992; Harvey and Gorelick, 1995; Yeh et al., 1995 and 1996] have 
demonstrated its ability to estimate K, head, velocity, as well as solute concentrations in 
heterogeneous aquifers. 

Recently, hydraulic tomography has been developed to obtain information on subsurface 
heterogeneity of K and Ss through sequential pumping tests. To our knowledge, Neuman [1987] 
was the first to suggest the approach using geophysical tomography as an analogy. Since then, 
various inverse methods have been developed for hydraulic tomography, which utilize pumping 
test data simultaneously or sequentially [e.g., Gottlieb and Dietrich, 1995; Yeh and Liu, 2000; 
Bohling et al., 2002; Brauchler et al., 2003; McDermott et al., 2003; Zhu and Yeh, 2005, 2006; 
Li et al., 2005; Fienen et al., 2008; Castagna and Bellin, 2009; Xiang et al., 2009; Liu and 
Kitanidis, 2011].  Numerous laboratory [e.g., Liu et al., 2002; Illman et al., 2007, 2008; Liu et 
al., 2007; Yin and Illman, 2009; Illman et al., 2010] and field experiments [e.g., Bohling et al., 
2007; Straface et al., 2007; Illman et al., 2009; Cardiff et al., 2009] have been conducted to 
show the utility of hydraulic tomography, but a rigorous study which compares the results to 
other more traditional characterization methods is generally lacking. 
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In the laboratory, Illman et al. [2010] recently assessed the performance of various 
methods for characterizing K estimates by predicting the hydraulic response observed in cross-
hole pumping tests in a synthetic heterogeneous aquifer, and total flow rates obtained via flow-
through tests. Specifically, they characterized a synthetic heterogeneous sandbox aquifer using 
various techniques [permeameter analyses of core samples, single-hole, cross-hole, and flow-
through testing].  They then obtained mean K estimates through traditional analysis of test data 
by treating the medium to be homogeneous. Heterogeneous K fields were obtained through 
kriging and steady state hydraulic tomography. To assess the performance of the each 
characterization approach, Illman et al. [2010] conducted forward simulations of 16 independent 
pumping tests and 6 steady-state, flow-through tests using these homogeneous and 
heterogeneous K fields. The results of these simulations were then compared to the observed 
data. Results showed that the mean K and heterogeneous K fields estimated through kriging of 
small scale K data [core and single-hole tests] produced biased predictions of drawdowns and 
flow rates under steady-state conditions. In contrast, the heterogeneous K distribution or “K 
tomogram” estimated via steady state hydraulic tomography yielded excellent predictions of 
drawdowns of pumping tests not used in the construction of the tomogram and very good 
estimates of total flow rates from the flow-through tests. Based on these results, Illman et al. 
[2010] suggested that steady-state groundwater model validation is possible, if the heterogeneous 
K distribution and forcing functions [boundary conditions and source/sink terms] are 
characterized sufficiently. 
 
13.1.3 Goal of this study  

 This study extends the work of Illman et al. [2010] who examined only various K 
characterization approaches and their performance in predicting independent test data under 
steady state conditions. In particular, the main goal of this study is to extend the work of Illman 
et al. [2010] to the transient case. Using the same sandbox aquifer as Illman et al. [2010], we 
jointly assess the performance of various characterization and modeling techniques that treat the 
aquifer to be either homogeneous or heterogeneous through the prediction of independent, 
transient cross-hole pumping tests not used in the characterization effort. Specifically, we 
characterize the 2D heterogeneous aquifer using both single-hole and cross-hole pumping tests. 
These data are then used to construct various forward groundwater models with homogeneous 
and heterogeneous K and Ss estimates. Two homogeneous or effective parameter models are 
constructed: 1] by averaging local scale K and Ss estimates from single-hole pumping tests and 
treating the medium to be homogeneous; and 2] using MMOC3 [Yeh et al., 1993] coupled with 
PEST [Doherty, 1994] to estimate K and Ss by simultaneously matching the transient drawdown 
data from all ports during a cross-hole pumping test. Three heterogeneous models are 
constructed and consist of spatially variable K and Ss fields obtained via: 1] kriging single-hole K 
and Ss data; 2] accurately capturing the layering and calibrating the K and Ss values for these 
layers using a parameter estimation program [i.e., a calibrated geological model]; and 3] 
conducting transient hydraulic tomography. The performance of these homogeneous and 
heterogeneous K and Ss

 

 fields are then quantitatively assessed by simulating 16 independent 
cross-hole pumping tests and comparing the simulated drawdowns to the observed drawdowns.  
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13.2 EXPERIMENTAL METHODS 
 
13.2.1 Sandbox and synthetic heterogeneous aquifer description 

A two-dimensional synthetic heterogeneous aquifer was constructed in a sandbox 
measuring 193.0 cm in length, 82.6 cm in height, and 10.2 cm deep. Forty eight ports, 1.3 cm in 
diameter, were cut out of the stainless steel wall to allow coring of the aquifer as well as 
installation of fully penetrating horizontal wells [Figure 13.1]. Each port is instrumented with a 0 
to 1 psig Setra model 209 pressure transducer. 

The synthetic heterogeneous aquifer was created through the cyclic deposition of 
sediments under varying water flow and sediment feed rates. Our goal in relying on sediment 
transport was to create a more realistic heterogeneity pattern with various scales of heterogeneity 
in an efficient manner. Table 13.1 summarizes the grain size characteristics, K estimates, and Ss

The aquifer system was bounded by three connected constant head boundaries [one 
situated at the top of the tank, and one and each end]. The remaining boundaries [front, back, and 
bottom] were all no flow boundaries.  

 
estimates of the sands used to create the heterogeneous aquifer, and the layers in which these 
sands occur. Figure 13.2 is a photograph of the synthetic heterogeneous aquifer showing the 
interfingering nature of the deposits and layer numbers. Further details to this synthetic 
heterogeneous aquifer and its construction approach are provided in Illman et al. [2010]. 

 

 
 
Figure 13.1: Schematic diagram of synthetic heterogeneous aquifer used for validation of 
transient groundwater flow models. Numbers next to solid squares indicate port numbers, open 
squares around numbers indicate the 8 ports [2, 5, 14, 17, 32, 35, 44, 47] used for hydraulic 
tomography, the open oval indicates the port [21] at which pumping test data was analyzed using 
VSAFT2 by treating the medium to be homogeneous [i.e., traditional pumping test analysis], and 
the dashed open squares around the 16 other ports [8, 11, 13, 15, 16, 18, 20, 23, 26, 29, 37, 38, 
39, 40, 41, and 42] indicate the pumping locations for the independent cross-hole pumping tests 
used for validation purposes [after Illman et al., 2010].  
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Table 13.1: Characteristics of each layer used to create a synthetic heterogeneous aquifer [after 
Illman et al., 2010].  
 

Layer Sand d50
K [cm/s] 

Shepherd  [mm] Core Permeameter K 
[cm/s]* 

Single-hole K 
[cm/s]* 

Single-hole Ss 
[cm/s]* 

1 20/30 0.75 1.03 × 10 3.20 × 10-1 5.32 × 10-2 2.12 × 10-2 -4 

2 4030 0.35 2.99 × 10 5.29 × 10-2 5.67 × 10-2 2.60 × 10-2 

3 

-4 
F-85 0.15 7.29 × 10 7.14 × 10-3 5.70 × 10-2 5.00 × 10-2 

4 

-4 
20/40 0.58 6.68 × 10 5.68 × 10-2 5.10 × 10-2 2.22 × 10-2 

5 

-4 
mix 0.46 N/A N/A N/A N/A 

6 mix 0.46 N/A 8.16 × 10 5.00 × 10-2 4.00 × 10-2 

7 

-4 
#12 0.52 5.70 × 10 1.27 × 10-2 7.35 × 10-1 4.20 × 10-2 

8 

-4 
F32 0.5 5.33 × 10 1.34 × 10-2 4.50 × 10-1 1.75 × 10-2 

9 

-4 
20/40 0.58 6.68 × 10 8.69 × 10-2 4.60 × 10-2 2.15 × 10-2 

10 

-4 
F-65 0.2 1.20 × 10 1.13 × 10-2 8.25 × 10-1 1.14 × 10-2 

11 

-3 
#12 0.52 5.70 × 10 1.37 × 10-2 2.05 × 10-1 2.15 × 10-1 

12 

-4 
16/30 0.87 1.32 × 10 3.40 × 10-1 4.95 × 10-2 6.32 × 10-2 

13 

-4 
20/30 0.75 1.03 × 10 2.60 × 10-1 1.05 × 10-1 9.80 × 10-1 

14 

-4 
F-75 0.17 9.22 × 10 9.79 × 10-3 5.70 × 10-2 9.80 × 10-2 

15 

-4 
20/40 0.58 6.68 × 10 8.58 × 10-2 7.50 × 10-2 2.00 × 10-2 

16 

-3 
mix 0.46 N/A 4.16 × 10 2.69 × 10-2 7.11 × 10-2 

17 

-4 
F-85 0.15 7.29 × 10 4.51 × 10-3 4.47 × 10-2 1.14 × 10-2 

18 

-3 
20/30 0.75 1.03 × 10 1.45 × 10-1 1.16 × 10-1 3.38 × 10-1 -3 

* If multiple ports are in the same layer then the geometric mean is presented  
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Figure 13.2: Photograph of synthetic heterogeneous aquifer created via cyclic flux of sediment-
laden water [after Illman et al., 2010]. 
 
13.2.2 Characterization of synthetic heterogeneous aquifer [single-hole pumping tests] 

 The synthetic heterogeneous aquifer was characterized using single-hole pumping tests to 
obtain K and Ss estimates at each of the 48 ports. Since the support scale of parameters estimated 
via single-hole tests is unknown, we assume the length of the well screen open to the aquifer is 
representative [e.g., Guzman et al., 1996, Illman and Neuman, 2000; Illman, 2005] of the support 
scale. The tests were conducted by pumping water at each port at a constant rate and monitoring 
the transient head change within the pumped well using a pressure transducer. A constant 
pumping rate [Q = 1.25 cm3

2
ln Kσ

/sec] was set for each single-hole pumping test.  For each test, data 
collection started without the pump running in order to obtain the initial hydraulic head in the 
sandbox at all measurement ports.  A peristaltic pump was then activated at the pumping port 
and allowed to run at a constant rate until the development of steady state flow conditions. The 
entire transient head data response was matched using VSAFT2 [Yeh et al., 1993] through 
manual calibration by treating the aquifer to be homogeneous. VSAFT2 was chosen for the 
analysis as opposed to traditional type curve models because the numerical model is able to more 
accurately describe the sandbox geometry and boundary conditions. Details to the numerical 
modeling and calibration effort are provided in Craig [2005]. The single-hole K estimates ranged 
from 0.01 cm/s to 0.32 cm/s with a geometric mean of 0.06 cm/s and a variance [ ] of 0.38, 
and single-hole Ss estimates ranged from 1.0 x 10-4 cm-1 to 5.5 x 10-3 cm-1 with a geometric mean 
of 6.1 x 10-4 cm-1 2

ln sSσ and a variance [ ] of 0.97. Here, we consider the geometric mean of the 48 
local K and Ss estimates from the single-hole pumping tests to represent an effective K and Ss for 
the entire aquifer. We also considered the use of arithmetic and harmonic means as alternatives 
to the geometric mean. However, the arithmetic mean is representative of flow along 
stratification and the harmonic mean is representative of flow across layers. Since these single-
hole tests induce flow along and across the layers we feel the geometric mean provides the most 
reasonable estimate of effective parameters for K and Ss
 

.  

 

18 
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13.2.3 Characterization of the synthetic heterogeneous aquifer [cross-hole pumping tests] 
Twenty five cross-hole tests were also performed in the sandbox for the purposes of 

effective parameter characterization, calibration of a geological model [presented in section 
13.4], transient hydraulic tomography [presented in section 13.5] and model validation 
[presented in section 13.6]. The tests were conducted at each port along columns 2 [ports 2, 8, 
14, 20, 26, 32, 38, and 44] and 5 [ports 5, 11, 17, 23, 29, 35, 41, and 47] and 9 additional 
pumping tests at various ports outside of these two columns [ports 13, 15, 16, 18, 21, 37, 39, 40, 
and 42] [see Figure 13.1]. The cross-hole tests were conducted by pumping at rates ranging from 
2.50 - 3.17 cm3

The cross-hole test at Port 21 was used to estimate effective homogeneous values of K and 
S

/sec at 25 separate ports indicated by open and dashed squares on Figure 13.1. 
During each test, head measurements in all 48 ports [and the constant head reservoirs] were 
recorded. Pumping continued until the development of steady state conditions, which was 
determined by observing the stabilization of all head measurements within the aquifer. 

s. Analogous to the analysis of single-hole data, the observation head data from this test were 
analyzed by manually calibrating each observation port data by VSAFT 2 and treating the 
aquifer to be homogeneous. Estimates of K and Ss obtained between the pumping and 
observation intervals, when the medium is treated to be homogeneous, are considered to be an 
equivalent hydraulic conductivity [Keq] or specific storage [Sseq] [Renard and de Marsily, 1997; 
Neuman, 2005]. Analysis of the cross-hole test yielded 48 estimates of K and Ss for the 
equivalent homogeneous medium. The Keq

2
ln Kσ

 estimates ranged from 0.054 cm/s to 0.42 cm/s with a 
geometric mean of 0.11 cm/s and a variance [ ] of 0.22. The corresponding Sseq estimates 
ranged from 8.5 x 10-5 cm-1 to 7.5 x 10-3 cm-1 with a geometric mean of 3.3 x 10-4 cm-1

2
ln sSσ

 and a 
variance [ ] of 1.03. 

The cross-hole pumping test at Port 20 is used to estimate effective homogeneous values of 
K and Ss. The parameter estimation program PEST [Doherty, 1994] was coupled with the 
groundwater flow model MMOC3 [Yeh et al., 1993] to simultaneously match the transient data 
recorded at all ports. The synthetic aquifer used for the parameter estimation was discretized into 
741 elements and 1600 nodes with element dimensions of 4.1 cm × 10.2 cm × 4.1 cm. Both sides 
and top boundaries were set to the same constant head, while the bottom, front, and back 
boundaries of the sandbox were considered no-flow boundaries.  Estimated K and Ss values are 
6.76 x 10-3 cm/s and 6.80 10-4 cm-1

 
 respectively. 

13.3 GEOSTATISTICAL ANALYSIS OF SINGLE-HOLE PUMPING TEST DATA 
Kriging and other simplified interpolation methods are commonly used to characterize 

subsurface heterogeneity [e.g., Sudicky, 1986; Adams and Gelhar, 1992; Chen et al., 2000; and 
Sudicky et al., 2010]. As such, we used kriging of single-hole K and Ss data to generate 
heterogeneous distributions that could be used for forward modeling of cross-hole pumping tests. 
The exponential variogram model was fit to the experimental variograms in both horizontal and 
vertical directions, resulting in an anisotropic variogram model. Examination of the experimental 
variogram of the ln-Ss data revealed an increasing variogram with lag distance. We attributed 
this to a trend of ln-Ss values declining from high to low values from the top to the bottom of the 
sandbox. Such a trend was also observed in the Ss values from a separate sandbox packed in an 
entirely different way [Liu et al., 2007]. We detrended the data [e.g., Chen et al., 2000] by fitting 
an anisotropic exponential model to the residuals of the original experimental variograms for ln-
Ss data. 
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Table 13.2 lists the variogram parameters fit to the experimental variograms. For both 
model fits, the anisotropy ratio was determined to be 3 with the horizontal correlation length 
larger than the vertical correlation length due the layered nature of the deposits. The results [not 
shown here], in general, reveal smoother K and Ss

 

 fields in comparison to the interfingering 
layers shown in Figure 13.2, which is expected considering that there are only 48 data points 
used for kriging. 

Table 13.2: Geostatistical model parameters for kriging single-hole ln-K and ln-Ss
Data 

 data. 
Model Nugget Range [cm] Sill Anisotropy ratio 

Single-hole ln-K Exponential 0 30 0.40 3 
Single-hole ln-S Exponential s 0 30 0.45 3 
 
13.4. CONSTRUCTION OF A GEOLOGICAL MODEL 

 Groundwater flow and transport models are commonly built using various hydrogeologic 
data and often deterministically incorporate the knowledge of site geology. To compare the 
performance of groundwater flow models based on the knowledge of geology to other models, 
we constructed a numerical model by using Figure 13.2 as a reference to construct a parameter 
field that closely resembles the stratigraphy of the synthetic heterogeneous aquifer.  

To construct the geological model, we assumed that the stratification is known for the 
entire simulation domain. In practice, a perfect knowledge of stratigraphy is not available, thus 
we consider this to be a best case scenario in terms of having information on stratigraphy. We 
further assumed that the stratification shown on the glass [Figure 13.2] was uniform throughout 
the thickness of the sandbox. 

The parameter estimation program PEST [Doherty, 1994] coupled with the groundwater 
flow model MMOC3 [Yeh et al., 1993] was used to estimate K and Ss values for each layer using 
the data collected during the cross-hole test at Port 20. In total 38 parameters were estimated [K 
and Ss for 19 layers]. Only 18 layers are identified in Figure 13.2, however, layer 5 which is 
discontinuous because of erosion that occurred during the deposition of layer 8 is treated as two 
separate layers in the PEST estimation. The model domain used for this estimation is identical to 
that described in section 2.3. Figure 13.3 shows the ln K and ln Ss

 

 [Figures 13.3a and 13.3b 
respectively] distribution for the calibrated  geological model.  

a] 
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b] 

 
Figure 13.3: Distribution of a] ln-K and b] ln-Ss
 

 values for the calibrated geological model.  

13.5 CROSS-HOLE PUMPING TESTS AND TRANSIENT HYDRAULIC 
TOMOGRAPHY ANALYSIS 

The transient hydraulic tomography analysis of cross-hole pumping tests in the sandbox 
was conducted using the Sequential Successive Linear Estimator [SSLE] code developed by Zhu 
and Yeh [2005]. The inverse model assumes a transient flow field and the natural logarithm of K 
[ln-K] and Ss [ln-Ss] are both treated as multi-Gaussian, second-order stationary, stochastic 
processes. The model additionally assumes that the mean and correlation structure of the K and 
Ss 

 

fields are known a priori. Further details to the SSLE code can be found in Zhu and Yeh 
[2005]. 

13.5.1 Input parameters and cross-hole tests used 
The model domain used to obtain K and Ss

Inputs to the inverse model include initial guesses for the K and S

 tomograms with transient hydraulic 
tomography is identical to that described in section 13.2.3 for the calibration of the geological 
mode. 

s, estimates of variances 
and the correlation scales for both parameters, volumetric discharge [Qn] from each pumping test 
where n is the test number, available point [small-scale] measurements of K and Ss, as well as 
head data at various times selected from the head-time curve.  Although available point [small-
scale] measurements of K and Ss

 For this THT analysis, the initial parameter fields are homogeneous and represented by 
the mean value of the K and S

 can be input to the inverse model, we do not use these 
measurements to condition the estimated parameter fields. 

s obtained from the analysis described in section 13.2.3 of a cross-
hole test at port 21 which treats the medium to be homogeneous. Estimates of variance for K and 
Ss 

Prior to the incorporation into the inverse model the transient head records were treated 
with various error reduction schemes discussed in Illman et al. [2007], while data from pumped 
ports were not included into the inverse model because of excessive noise resulting from the use 
of a peristaltic pump.  Each drawdown curve was then fit with a 5

which have been shown to have negligible effects on the resulting tomogram [Yeh and Liu, 
2000] were based on estimates from the available small scale data and used as our input variance 
in the inverse model. Correlation scales represent the average size of heterogeneity, which is 
difficult to determine accurately without a large number of data sets in the field. The effects of 
uncertainty in correlation scales on the estimate based on the tomography are negligible because 
the tomography produces a large number of head measurements, reflecting the detailed site-
specific heterogeneity [Yeh and Liu, 2000]. Therefore, the correlation scales were approximated 
based only on the average thickness and length of the discontinuous sand bodies. 

th or 6th–order polynomial 
curve following Liu et al. [2007]. A 5th or 6th-order polynomial was found to best capture the 
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overall drawdown behaviour for the majority of the data. We then manually extracted 5 points 
representative of the entire transient record. We found that selection of 5 points from the 
drawdown curve generally captured the salient features of the overall drawdown behavior. We 
can, of course, increase the number of drawdown data, however, this will increase computational 
effort for the inverse modeling. 

Data curves that could not be properly fit due to excessive noise were manually excluded 
from the analysis. In total, we utilized 8 independent cross-hole tests with pumping taking place 
at ports 47, 44, 35, 32, 17, 14, 5 and 2 for the analysis. More specifically, we utilized 5 data 
points from 47 ports totalling 235 data in all tests, except for the pumping test in port 2. At port 
2, 5 data points were obtained from 43 ports totalling 215 data. Some of the data points were 
excluded from this particular test as the data were excessively noisy. In total, we utilized 1860 
data points from 8 different tests in our transient inversions. 
 
13.5.2 Computation of ln-K and ln-Ss

All computations for transient hydraulic tomography analyses were executed using 44 of 
48 processors on a PC-cluster consisting [of 1 master and 12 slaves each with Intel Q6600 Quad 
Core CPU running at 2.4 GHz with 16 GB of RAM per slave] at the University of Waterloo.  
The operating system managing the cluster was CentOS 5.3 based on a 64-bit system. The total 
computational time for inverting data from 8 pumping tests was about 14 minutes. Figure 13.4a-
d are the ln-K tomograms obtained by inverting the transient head data from 2, 4, 6, and 8 
pumping test, respectively. Figure 13.4a shows that with only 2 pumping tests, a coarse picture 
of the heterogeneity pattern emerges, although the distribution is still pretty smooth and many 
details of the heterogeneity and in particular, details to the stratification are missing. As more 
tests are included into the SSLE algorithm, we see that more detail of the heterogeneity structure 
emerges. In particular, the final ln-K tomogram obtained [Figure 13.4d] using 8 pumping tests 
reveals considerable detail to the heterogeneity structure including the connectivity of various 
high and low K layers. Figure 13.4e is a ln-K tomogram computed using the steady state 
hydraulic tomography algorithm of Yeh and Liu [2000] by Illman et al. [2010] and is included 
for comparison purposes. 

 tomograms  

Figures 13.5a through 13.5d show the corresponding ln-Ss tomograms that were estimated 
simultaneously. In contrast to Figures 13.4a–4d, the layering structure visible in the ln-K 
tomogram is not visible for the ln-Ss tomogram. However, a decreasing trend in ln-Ss with depth 
in the synthetic aquifer is apparent. Physically speaking, this makes sense because the sands in 
the upper portion are less compressed, while the deeper sands are more compressed due to the 
stress exerted by the overlying material. This finding suggests that ln-K values are not 
significantly correlated with the ln-Ss values in this sandbox and is in agreement with those 
found by Liu et al. [2007] for a different sandbox packed with a considerably different 
heterogeneity pattern. The only data available for comparison are the single-hole estimates 
presented in Table 13.1 and shown as a kriged distribution. While not identical, the pattern is 
similar, and the values are in a similar range, suggesting the Ss
 

-tomogram is physically based.  
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a] 

 
b]  

 
c] 

 
d] 

 
e] 

 
Figure 13.4: ln-K tomograms computed using: a] 2 pumping tests [ports 47 and 44]; b] 4 
pumping tests [ports 47, 44, 35, and 32]; c] 6 pumping tests [ports 47, 44, 35, 32, 17, and 14]; d] 
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8 pumping tests [ports 47, 44, 35, 32, 17, 14, 5 and 2] and e] 8 pumping tests [ports 47, 44, 35, 
32, 17, 14, 5 and 2] but interpreted with the steady state hydraulic tomography algorithm [after 
Illman et al., 2010]. 
a] 

 
b]  

 
c] 

 
d] 

 
Figure 13.5: ln-Ss

 

 tomograms computed using: a] 2 pumping tests [ports 47 and 44]; b] 4 
pumping tests [ports 47, 44, 35, and 32]; c] 6 pumping tests [ports 47, 44, 35, 32, 17, and 14]; 
and d] 8 pumping tests [ports 47, 44, 35, 32, 17, 14, 5 and 2]. 

13.5.3 Statistical summary of results 
 Table 13.3 summarizes the mean, variance, and correlation lengths of the resulting ln-K 

tomogram. The estimated geometric mean [KG] of the ln-K tomogram after including data from 8 
cross-hole tests was 1.0 × 10-1 2

ln Kσ cm/s, while the estimated variance [ ] was 1.32. We note that 
the value of KG

2
ln Kσ

 is identical to that estimated using steady state hydraulic tomography by Illman 
et al. [2010], but the  is slightly higher compared to a value of 1.12. The estimated KG from 
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transient hydraulic tomography is somewhat higher than the estimate of KG

2
ln Kσ

 obtained by taking 
the geometric mean [0.06 cm/s] of the 48 local K values from single-hole tests. In contrast, the 
estimate of  from transient hydraulic tomography [ 2

ln 1.32Kσ = ] is considerably higher than 
that estimated from the 48 single-hole K data [ 2

ln 0.38Kσ = ]. 
 

Table 13.3: Statistical properties of the estimated ln-K tomograms. 
Case ln K  [K ~ cms-1 2

ln Kσ]   λx λ [cm] z [cm] 

Hydraulic tomography [ 2 tests] -2.42 [0.09] 0.62 25 10 
Hydraulic tomography [ 4 tests] -2.28 [0.10] 0.95 20 10 
Hydraulic tomography [ 6 tests] -2.28 [0.10] 1.17 24 12 
Hydraulic tomography [ 8 tests] -2.30 [0.10] 1.32 24 12 
 
 

It is of interest to note that there is little change in the KG
2
ln Kσ

 and the correlation lengths of the 
ln-K tomograms as more tests are included in the inverse analysis. On the other hand,  
increases as more cross-hole tests are included into the inverse model. These results imply that 
with as few as 2 pumping tests, one could reliably estimate the KG

2
ln Kσ

 and the correlation lengths of 
the K distribution in the synthetic aquifer, however the accurate estimation of  requires more 
cross-hole. A similar trend in the improvement of estimates of geostatistical parameters was 
observed in their hydraulic tomography analysis of steady state head data by Illman et al. [2010].  

Table 13.4 summarizes the mean, variance, and correlation lengths of the ln-Ss tomogram. 
The estimated geometric mean [SsG] of the ln-Ss tomogram after including data from 8 tests was 
9.08 × 10-5 cm-1 2

ln sSσ, while the estimated variance [ ] was 0.76. The estimate of SsG obtained by 
taking the geometric mean of 48 single-hole Ss estimates yields 6.1 x 10-4 cm-1

2
ln sSσ

 which is 
somewhat higher than the estimate obtained through transient hydraulic tomography. The 

estimate obtained from the single-hole data [ 2
ln 0.97

sSσ = ] is close to that estimated through 
transient hydraulic tomography. The estimated correlation lengths in the horizontal [λx] and 
vertical directions [λz
 

] appear to stabilize as additional tests are included in the analysis. 

Table 13.4: Statistical properties of the estimated ln-Ss
Case 

 tomograms. 
ln sS  [Ss ~cm-1 2

ln sSσ]   λx λ [cm] z [cm] 

Hydraulic tomography [ 2 tests] -9.49 [7.55E-05] 0.15 15 15 
Hydraulic tomography [ 4 tests] -9.57 [6.98E-05] 0.19 40 20 
Hydraulic tomography [ 6 tests] -9.53 [7.30E-05] 0.27 34 17 
Hydraulic tomography [ 8 tests] -9.31 [9.08E-05] 0.76 38 19 
 
13.5.4 Visual comparison of ln-K tomogram to the deposits 

A visual comparison of the ln-K tomogram [Figure 13.4e] to the deposits [Figure 13.2] 
shows that many of the features are captured, although due to the intralayer variability in K, we 
do not expect a 1:1 correlation of the ln-K tomogram and the stratification seen in Figure 13.2. 
The comparison of the ln-K tomogram from transient hydraulic tomography to the kriged K 
distribution [available online as supplementary Figure S1a] shows a marked difference in the K 
distribution. We notice that many of the features captured by the ln-K tomogram are captured by 
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the kriged map, but the latter is distinctively smoother. In addition, the connectivity of the layers 
captured in the ln-K tomogram are not visible in the kriged ln-K field.  Finally, we point out that 
the kriged ln-K distribution covers the midrange values of the ln-K tomogram revealing the 
kriged ln-K field produces a reasonable ln-K field in an average sense, but lacks the details in the 
heterogeneity pattern that the ln-K tomogram reveals. 
 
13.5.5 Comparison of ln-K tomograms: transient vs. steady state hydraulic tomography 

We next compare the ln-K tomogram obtained using transient hydraulic tomography 
[Figure 13.4d] to the one obtained using steady state hydraulic tomography [Figure 13.4e] 
computed previously by Illman et al. [2010]. In both cases, 8 cross-hole tests are used for the 
inverse analysis. Comparison of the two figures shows that overall ln-K distributions from the 
two approaches are similar, however, more details are visible in the ln-K tomogram from 
transient hydraulic tomography. To facilitate a pixel-by-pixel comparison, we include a 
scatterplot [Figure 13.6] of ln-K values from Figure 13.4d and 13.4e. The dashed line indicates a 
perfect 1:1 correlation; the solid line is a linear model fit to the data; and, R2

 

 is the coefficient of 
determination. Results show that the data cluster around the 1:1 line indicating agreement 
between the two cases, however, we acknowledge that there is some scatter and bias in the 
estimates.  

Figure 13.6: Scatterplot of ln-K from transient hydraulic tomography [this paper] to ln-K 
obtained using steady state hydraulic tomography [Illman et al., 2010]. The dashed line is a 1:1 
line indicating a perfect match. The solid line is a best fit line, and the parameters describing this 
line are only each plot. 
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13.6 PERFORMANCE ASSESSMENT OF RESULTS 
 
13.6.1 Performance assessment by simulating individual tests  

The various effective and heterogeneous K and Ss fields are assessed by simulating 16  
independent cross-hole pumping tests. These cross-holes tests are considered independent as they 
were not used by the various  methods described earlier to characterize the aquifer [the exception 
is the cross-hole test performed at Port 20 which was used to calibrate the geological model]. If a 
given characterization technique can capture the salient features of the true heterogeneity of the 
aquifer, then the resulting prediction of the independent pumping tests should be accurate. That 
is, the discrepancy between observed and simulated drawdown values should be small. In 
contrast, if the predicted drawdown values are inaccurate, then we consider the approach used to 
idealize the heterogeneity to be poor. In particular, we construct forward numerical models 
using: a] the effective K and Ss estimates from single-hole tests; b] the PEST estimated effective 
parameters of K and Ss calibrated to the cross-hole test at port 20;  c] the kriged K and Ss fields 
from single-hole tests; d] the PEST calibrated geological model; and e] the K and Ss

Figure 13.7 shows scatterplots of observed versus simulated drawdowns from independent 
cross-hole tests 18, 23, 40, and 42. The simulated drawdown values were obtained through 
numerical simulations using the calibrated geological model. Figure 13.7 includes a dashed line 
indicating a perfect 1:1 correlation, a solid line which is the linear model fit to the data, and the 
coefficient of determination [R

 tomograms 
from transient hydraulic tomography. For comparison purposes only the results from the best 
performing cases [d and e] are illustrated with figures in the manuscript. Tables 13.5 to 13.8 
summarizing various performance metrics are provided to allow for a direct comparison of all 
five cases. 

2]. Data plotted on the Figure 13.7 are drawdown values from 0.5, 
2, 5, and 10 seconds since the pumping test began.  We see that for most cases the points cluster 
around the 1:1 line with some positive or negative bias as indicated by the slope of the linear 
model fit. This same pattern is seen for most of the other tests except for those performed near 
the top of the aquifer, where the simulated drawdown tends to be smaller than the observed 
suggesting that the estimated K of the upper layer [layer 18] is too high. The R2

In contrast, Figure 13.8 shows a significant improvement in the predictions of drawdowns 
for the 4 selected independent cross-hole pumping tests. The K and S

 values for the 16 
cases range from 0.002 to 0.86 with an arithmetic mean value of 0.65. The slope and the 
intercept of the linear model fit also provide an indication of bias. The improvement of 
groundwater flow model prediction accuracy seen through the incorporation of lithofacies in 
conjunction with model calibration is in agreement with the findings of Sakaki et al. [2009]. 

s distributions for all the 
forward models presented in this figure were obtained by transient hydraulic tomography. The R2

The results of this comparison clearly show that transient hydraulic tomography yields 
considerably better parameter estimates and thus is better able to predict the drawdown for 16 
independent cross-hole pumping tests. 

 
values for the 16 cases range from 0.82 to 0.99 with an arithmetic mean of 0.94 indicating a 
marked improvement over the other modeling approaches. In addition, the comparison of the 
scatterplots in Figure 13.8 to those from Figure 13.7 clearly shows that transient hydraulic 
tomography is able to better predict independent cross-hole tests. 
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Table 13.5 summarizes the minimum, maximum, and the mean values of the slope and 
intercept of the linear model fit as well as the R2 for all 16 tests for cases a] to e]. This table 
shows that the slope of the linear model fit is quite variable ranging from 0.01 to 3.27 for all 
characterization approaches and the mean values range from 0.75 to 1.00.  Likewise, the 
intercept of the linear model fit ranges from -0.76 to 0.27 with a mean ranging between -0.44 to 
0.02. Finally, the R2 values range from 0.002 to 0.99 with a mean ranging from 0.25 to 0.94. 
Examination of the slope, intercept, as well as the R2 values across all the characterization 
methods shows that in an average sense over 16 independent cross-hole pumping tests, the K and 
Ss

 

 tomograms computed by transient hydraulic tomography yields the best predictions of 
drawdown data with least bias and scatter. 

 

 
Figure 13.7: Scatterplots of observed vs simulated drawdowns from independent cross-hole tests 
18, 23, 40, and 42 at t = 0.5, 2, 5, and 10 secs. Simulated drawdown values were obtained 
through numerical simulations with a calibrated geological model of  K and Ss. The dashed line 
is a 1:1 line indicating a perfect match. The solid line is a best fit line, and the parameters 
describing this line are on each plot. 



199 
 

 
 
 
Figure 13.8: Scatterplots of observed vs simulated drawdowns from independent cross-hole tests 
8, 11, 13, 15, 16, 18, 20, 23, 26, 29, 37, 38, 39, 40, 41, and 42 at t = 0.5, 2, 5, and 10 secs. 
Simulated drawdown values were obtained through numerical simulations with K and Ss

 

 
tomograms from transient hydraulic tomography. The dashed line is a 1:1 line indicating a 
perfect match. The solid line is a best fit line, and the parameters describing this line are on each 
plot. 

 
Table 13.5: Statistics of the linear model fit and correlation of determination [R2

Case 

].  
Slope     Intercept     R   2   

  min max mean min max mean min max mean 

Geometric 
mean K/Ss

0.51  
[single hole] 

1.50 0.79 -0.25 0.09 -0.01 0.14 0.66 0.53 

PEST 
Effective 

K/S
0.72 

s 
3.27 1.28 -0.76 -0.24 -0.44 0.08 0.38 0.25 

Kriged  
K & S 0.62 

s 
1.50 0.87 -0.27 0.09 -0.13 0.17 0.73 0.58 

Calibrated 
Geological 

Model 
0.01 1.44 0.96 -0.25 0.27 0.02 0.002 0.86 0.65 

Transient 
Hydraulic 

Tomography 
0.87 1.21 1.00 -0.04 0.09 0.02 0.82 0.99 0.94 
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To further quantitatively assess the correspondence between the simulated and observed 

drawdown values, we compute the mean absolute error [L1] and the mean square error [L2] 
norms of all cases examined. The L1 and L2

 

 norms are computed as: 

1
1

1 ˆ
n

i i
i

L
n

χ χ
=

= −∑  [13.1] 

 ( )2
2

1

1 ˆ
n

i i
i

L
n

χ χ
=

= −∑  [13.2] 

where n is the total number of drawdown data, i indicates the data number, and iχ  and ˆiχ  
represent the estimates from the simulated and measured drawdowns, respectively. The L1 and 
L2 norms were calculated for each case by evaluating the observed and simulated drawdowns at 
4 times [0.5, 2, 5, and 10 seconds] at each port, except for the port that was pumped due to 
excessive noise. Thus, each L1 and L2
 

 norm represents 188 observations. 

Table 13.6 summarizes the L1 norm, while Table 13.7 summarizes the L2 norm calculated 
for all the cases. The cells of each entry in the table are color-coded. The minimum value in the 
table is assigned a color of dark green, the maximum value a color of dark red, and the median 
value a color of yellow. Values intermediate to these anchor points are assigned appropriate 
intermediate colors. Both Tables 13.6 and 13.7 show that forward simulations using K and Ss 
tomograms from transient hydraulic tomography, consistently yields the lowest L1 and L2

The scatterplots for cases a] to e] were also analyzed in an ensemble sense to see if the 
homogeneous cases were able to estimate the average behaviour of all of the 16 cross-hole tests. 
This comparison is presented for Table 13.8 and includes; L

 norms 
for all 16 independent cross-hole pumping tests, suggesting that the approach yields the best 
predictions. 

1 norm, L2 norm, slope, intercept, 
and R2

 

 for all cases when the data from all 16 cross-hole tests are analyzed collectively. The 
trends seen in the individual scatterplots are also seen in these ensemble scatterplots. The results 
for transient hydraulic tomography after 2, 4, 6, and 8 tests are also presented in Table 13.8. 
While not changing significantly with the inclusions of additional cross-hole tests, the matches 
do improve slightly. 
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Table 13.6: L1 norms of observed versus simulated drawdowns from cross-hole tests 8, 11, 13, 
15, 16, 18, 20, 23, 26, 29, 37, 38, 39, 40, 41, and 42.  

 

Port 
8 

Port 
11 

Port 
13 

Port 
15 

Port 
16 

Port 
18 

Port 
20 

Port 
23 

Port 
26 

Port 
29 

Port 
37 

Port 
38 

Port 
39 

Port 
40 

Port 
41 

Port 
42 

Geometric 
mean K/Ss 

[single hole] 
0.20 0.31 0.23 0.35 0.40 0.30 0.61 0.39 0.62 0.57 0.51 0.66 0.58 0.76 0.65 0.42 

PEST 
Effective 

K/Ss 
0.39 0.62 0.48 0.65 0.78 0.57 0.91 0.72 0.91 0.89 0.81 0.99 0.93 1.18 0.97 0.67 

Kriged  
K & Ss 

0.19 0.33 0.23 0.34 0.38 0.30 0.56 0.37 0.55 0.50 0.48 0.57 0.48 0.65 0.53 0.36 

Calibrated 
Geological 

Model 
0.17 0.22 0.38 0.31 0.35 0.22 0.27 0.32 0.48 0.36 0.44 0.39 0.39 0.44 0.39 0.30 

Transient 
Hydraulic 

Tomography 

0.06 0.11 0.12 0.11 0.11 0.07 0.13 0.17 0.17 0.16 0.07 0.13 0.15 0.10 0.10 0.19 

Max 1.18                
Min 0.06                

 
 
Table 13.7: L2 norms of observed versus simulated drawdowns from cross-hole tests 8, 11, 13, 
15, 16, 18, 20, 23, 26, 29, 37, 38, 39, 40, 41, and 42.  

 

Port 
8 

Port 
11 

Port 
13 

Port 
15 

Port 
16 

Port 
18 

Port 
20 

Port 
23 

Port 
26 

Port 
29 

Port 
37 

Port 
38 

Port 
39 

Port 
40 

Port 
41 

Port 
42 

Geometric 
mean K/Ss 

[single hole] 
0.14 0.18 0.13 0.26 0.25 0.16 0.58 0.25 0.61 0.57 0.50 0.81 0.61 1.00 0.78 0.37 

PEST 
Effective 

K/Ss 
1.97 2.06 1.92 2.26 1.99 1.89 2.25 1.97 2.09 2.24 2.08 2.50 2.28 2.82 2.25 1.71 

Kriged  
K & Ss 

0.12 0.18 0.14 0.24 0.24 0.16 0.49 0.24 0.49 0.45 0.43 0.61 0.43 0.75 0.53 0.27 

Calibrated 
Geological 

Model 
0.09 0.19 0.83 0.15 0.23 0.31 0.37 0.17 0.39 0.25 0.47 0.32 0.34 0.35 0.38 0.31 

Transient 
Hydraulic 

Tomography 

0.01 0.02 0.04 0.03 0.04 0.02 0.03 0.06 0.05 0.05 0.01 0.03 0.06 0.02 0.02 0.10 

Max 2.82                
Min 0.01                
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Table 13.8: Statistics of the linear model fit, correlation of determination [R2], and L1 and L2

Case 

 
norms for the ensemble analysis of all cases [including transient hydraulic tomography after the 
inclusion of 2, 4, 6, and 8 tests] 

Slope Intercept R L2 L1 2 

Homogeneous K Field 

Geometric mean K/Ss 0.61  [single hole] -0.02 0.44 0.48 0.53 

PEST Effective K/S 0.86 s -0.25 0.20 0.78 2.14 
Heterogeneous K Field 

Kriged K & S 0.73 s -0.06 0.52 0.43 0.45 
Calibrated Geological Model  0.99 0.18 0.67 0.34 0.32 
Transient hydraulic tomography 1.06 0.01 0.92 0.17 0.07 
        [Sequential - 2 tests] 

     Transient hydraulic tomography 1.03 0.04 0.95 0.13 0.04 
        [Sequential - 4 tests] 

     Transient hydraulic tomography 1.05 0.06 0.96 0.14 0.04 
        [Sequential - 6 tests] 

     Transient hydraulic tomography 1.01 0.02 0.95 0.12 0.04 
        [Sequential - 8 tests]           
 

 
 
13.6.2 Predictability of transient drawdown curves 

Finally, to further illustrate the robustness of transient hydraulic tomography, we also plot 
simulated and observed drawdown curves for a cross-hole test performed at port 40. Again only 
the cases d] and e] are included in the manuscript. In particular, Figures 13.9 and 13.10 show 
double logarithmic plots of observed [small dots] and simulated [curves] drawdown records at 16 
selected ports. In Figure 13.9, the simulated drawdown values are obtained through numerical 
simulations using the calibrated geological model, while in Figure 13.10, simulated drawdown 
values are obtained through numerical simulations with the K- and Ss

Figure 13.9 shows that the calibrated geological model does reasonable job of predicting 
drawdown at most of the ports, however, drawdown is significantly under estimated in the upper 
ports. This again suggests that the upper layer [layer 18] is not accurately characterized.  In 
contrast, Figure 13.10 shows a drastically improved result when the simulated values are 
obtained from the forward simulation of the pumping test using the K and S

-tomograms.  

s

 

 tomograms from 
transient hydraulic tomography. Examination of Figure 13.10 shows that the match is not perfect, 
but overall, the drawdown curves are captured very well throughout the duration of the pumping 
test, which the other approaches failed to accomplish. 



203 
 

 
Figure 13.9: Observed [small dots] and simulated [curves] records of drawdown versus time 
[seconds] during cross-hole pumping test with pumping at port 40. Simulated values are obtained 
from the forward simulation of the pumping test using the calibrated geological model. 
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Figure 13.10: Observed [small dots] and simulated [curves] records of drawdown versus time 
[seconds] during cross-hole pumping test with pumping at port 40. Simulated values are obtained 
from the forward simulation of the pumping test using the K and Ss

 

 tomograms from transient 
hydraulic tomography.  
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14. TEMPORAL MOMENT ANALYSIS OF PARTITIONING 
TRACERS IN LABORATORY SANDBOX AQUIFERS 
 
14.1 INTRODUCTION 
 There are a number of approaches to characterize the presence of DNAPLs in the source 
area. In general, methods to characterize DNAPL source zones are based on core sampling, cone 
penetrometer testing, geophysical logging and partitioning tracer methods [Kram et al., 2001].  
Kram et al. [2001] provided a literature survey on the strengths and weaknesses of various 
characterization methods. 
 Baseline methods [DNAPL samples obtained from observation wells, chemical analysis 
of soil, water and rock samples among others] consist of sample collection during drilling. 
Samples are collected using drilling equipment and are analyzed by means of EPA-approved 
methods for identifying Volatile Organic Carbons [VOCs]. Due to the fact that VOC can be 
readily set free during handling and transport related operations, the loss of VOCs could result in 
the underestimation of actual concentrations. Another important issue is that DNAPLs may be 
found as tiny globules, and the probability of detecting them is low unless the sampling 
frequency is high. There are also uncertainties related to the soil-water partitioning coefficient 
which depends on the fraction of organic carbon content present in the subsurface, sorption and 
other phenomena [Kram et al., 2001]. 
 Soil gas surveys can also be used to screen DNAPLs. This is done by inserting soil-vapor 
collection devices, and capturing the samples by means of applying a vacuum in the soil. Once 
the sample is collected, the VOCs can be measured using gas chromatography analysis. The data 
obtained is used in order to detect a DNAPL release area. Another method to detect DNAPLs is 
by measuring the concentrations of Radon-222. This element [which is often present as a 
dissolved, inert gas in subsurface fluids] occurs in nature, and results from the decaying of 
Uranium-238. Since this gas has a strong affinity to organic fluids compared to water, the loss of 
Rn-222 concentrations measured at monitoring wells is a signal of DNAPL presence [Semprini 
et al. 1998]. However, since this technique relies on a best-guess approach for sampling, it is 
used more as an evaluation technique of remedial effectiveness than a detection tool [Kram et al., 
2001]. 
 Another method to characterize DNAPL source zone is through partitioning tracers. The 
partitioning tracer test was first used in the petroleum industry as a way to measure oil 
saturations prior to the beginning of enhanced oil recovery [Cooke, 1971; Deans, 1971; Tomich, 
1973] by measuring residual oil. Later Jin et al., 1995, used PTTs to detect NAPLs. Partitioning 
Tracer Tests [PTTs] are a technique that can be used or applied in place in order to estimate the 
volume and saturation of the DNAPLs including chlorinated solvents such as TCE and PCE in 
the subsurface. The theoretical basis of partitioning tracer tests is summarized by Annable et al. 
[1998] based on the method proposed by Jin et al. [1995]. The technique consists of injection and 
extraction of a solution of non-partitioning and partitioning tracers into a porous media. The 
concentrations of the injected tracers are known a priori and the concentrations of the extracted 
tracers are monitored over time. A non-partitioning tracer is injected in conjunction with the 
partitioning tracer in order to separate the effects of the non-partitioning and partitioning tracers. 
 The difference between the arrival times of the tracers is monitored by analyzing the 
breakthrough curve [BTC]. The “delay” [Figure 10.1] in the BTCs will lead to what is called the 
retardation factor [R]. The retardation factor is proportional to the water-NAPL partition 
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coefficient, KNW NS, and the saturation of the DNAPL [ ]. Each partitioning tracer will experience 
different retarded arrival times at the extraction wells. The time necessary for a tracer to arrive at 
the recovery well is a function of its partitioning coefficient and the average DNAPL saturation, 

NS , in the section tested [Jin et al. 1995; Annable et al 1998]. As the partitioning coefficient 
increases, the time required for the tracer to reach the extraction well increases. By monitoring 
the concentrations at the wells, BTCs for each tracer will be generated and the separation 
between the partitioning and the non partitioning tracers will allow an estimation of the DNAPL 
volume in the subsurface. If there is no DNAPL present in the subsurface, all the curves [the 
ones for non-partitioning and partitioning tracers] should be superimposed. Prior to the conduct 
of a partitioning tracer test, it may be necessary that the general location of the DNAPL is 
identified through other characterization methods a priori [Kram et al. 2001].  
  

 
Figure 14.1: Microscopic view of the NAPL/Tracer interaction and breakthrough curves. 
 
To date, many studies have been conducted on the use of PTTs as an innovative tool to assess 
NAPL saturations in the subsurface at the field scale [e.g., Annable et al., 1998; Brooks et al., 
2005], in laboratory column experiments [e.g., Maloszewki et al. 1994; Jin et al., 1995; Pang et 
al. 1998; Yu et al., 1999], and in flow cells with heterogeneous media and diverse sampling 
configurations [e.g., Nelson et al., 1999] while others have studied the effect of DNAPL 
architecture on the performance of partitioning tracer tests [e.g., Moreno-Barbero et al., 2007]. 
 The objectives of this investigation are: 1] to investigate the effect of hydraulic 
conductivity heterogeneity on TCE saturation estimates from the temporal moment analysis of 
partitioning tracers and 2] to investigate the performance of various partitioning tracers in 
heterogeneous aquifers. To accomplish the objectives, we conducted a set of PTTs in three 
different heterogeneous artificial aquifers [SB3-1, SB-3-2 and SB 1-2] with a TCE source zone. 
We describe the laboratory experimental methods and provide corresponding analyses of data. 
Then we provide an interpretation for the results and conclusions and recommendations are made 
for future investigations. 
 
14.2 TEMPORAL MOMENT ANALYSIS OF PARTITIONING TRACER TESTS 
  The analysis of BTCs have been carried out principally through two approaches: 
approaches: calibration of an analytical or numerical model or through the Method of Moments 
[MOM]. Our discussion here will be limited to the MOM approach. 
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 The MOM relies on the concept of DNAPL-water partitioning coefficient, NWK  which 
linearly relates the concentration of the tracer in the DNAPL phase to the concentration in the 
aqueous phase. 
 

 
W

N
NW C

C
K =  [14.1] 

 
Under steady state flow conditions, the retardation of the partitioning tracer with respect to the 
non-reactive tracer results due to the presence of DNAPLs and the delayed average travel time is 
a function of the average DNAPL saturation, NS , within the tracer flow field [Pope et al. 1994] 
 

 ( )1
1

−+
−

=
RK

RS
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N     [14.2] 

 
where R  is the retardation factor, which accounts for the difference of average characteristic 
times for  both the partitioning, pt  and the non partitioning, nt , tracers 
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t

R =   [14.3] 

 
The average travel times [ pt  and nt ] are computed through the MOM approach [Annable et al, 
1998]. 
 We have the dimensionless relative concentration of the tracer, ( )txC ie , , in space and 
time which is expressed as: 
 

 ( ) ( )
i

ii
ie CC

CtxC
txC

−
−

=
0

,
,   [14.4] 

 
where: ( )txC i ,  is the sampled concentration at the port, at any given time “ t ” during the 
experiment; 0C , is the initial concentration of the tracer [partitioning or non-partitioning] at the 
tracer reservoir and iC  is the initial concentration [background concentration] of the tracer 
[partitioning or non-partitioning] in the SB. The nth

 
 moment equation is given by: 

 ( ) ( ) dttxCtxM ie
n

in ⋅⋅= ∫
∞

,
0

 [14.5] 

 
where nt is time, n is an exponent with values of 0,1,2,… and ),( txC ie  is the dimensionless 
relative concentration in space and time. Equation 14.5 allows one to compute the 0th and the 1st

 

 
moments as: 
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  [14.6] 
 

 ( ) ∫
∞

⋅⋅=
0

1 ),( dtttxCxM iei  [14.7] 

The moments can be approximated by a summation [Eikens and Carr 1989], thus the 0th and 1st

 

 
moment at each well can be obtained through the following expressions: 
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Here, ( )tC ie ,  is the relative concentration of the sample at the time of its acquisition [ t ] and t∆  is 
the time difference between the sample time it  and the previous sample time 1−it . The average 
arrival time for each tracer is then obtained by the division of the 1st and the 0th

 

 moment as 
shown below 
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Assuming that the there are no DNAPL mass losses and that with the contribution of each well 
the source zone is swept, the estimation of the DNAPL volume in the sandbox per sampling 
interval is given by the following expression: 
 
 iNvoidiNAPL SVV ,, ⋅=  [14.12] 
 
where, iNS ,  is the DNAPL saturation per port and voidV is the void volume of the swept zone. 
Finally, the average DNAPL volume can be computed by averaging the DNAPL volume 
estimate from all sampled wells as follows: 
 
 iNvoidNAPL SVV ,⋅=  [14.13] 
 
  
 
 

( ) ( ) dttxCxM iei ⋅= ∫
∞

,
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14.3 EXPERIMENTAL METHODS 
 
14.3.1 Sandbox descriptions 
 Four sandboxes [SB 3-1, SB 3-2, SB 1-2 and SB 1-3] were built at the IIHR-
Hydroscience & Engineering at the University of Iowa  in order to conduct the laboratory 
investigation of partitioning tracer tests. Sandboxes 3-1 and 3-2 were to be used as a pilot study 
for DNAPL release and partitioning tracer tests [PTTs].  Details to each of the sandboxes and 
hydraulic tests conducted in them are described in section 10. 
 
14.3.2 TCE source zone creation in SBs 3-1, 3-2 and 1-2  
 TCE source zones were created in sandboxes 3-1, 3-2 and 1-2 [figures 14.2 – 14.4] by 
injecting known volumes of TCE into the porous media just below the soil surface. In sandbox 3-
1, 25 mL of TCE previously dyed with [Red Sudan IV, Sigma-Aldrich] was injected to create a 
source zone which constituted a model-averaged DNAPL saturation, NS , around 1%.  In SB 3-2, 
the amount of dyed TCE injected was 125mL which constituted a model-averaged TCE 
saturation around 5%. The saturation estimates are calculated with the following expression:  

  
voids

NAPL
Ni V

V
S =  [14.14] 

where NAPLV  is the volume of TCE present and voidsV  is the volume of voids. For SB 1-2, 2000 ml 
of TCE were spilled in the sandbox yielding an average DNAPL saturation around 5%. 
 

 
Figure 14.2: TCE source zone created in sandbox 3-1. 
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Figure 14.3: TCE source zone created in sandbox 3-2. 

 
Figure 14.4: TCE source zones created in sandbox 1-2. Clockwise from top left to bottom right: 
photo taken after 15 min; photo taken after 30 min; photo taken after 2 hours; photo taken after 
24 hours. 
 
14.3.3 Determination of tracer partitioning coefficients through batch tests  

In order to determine the DNAPL saturation, knowledge of the partitioning tracer 
coefficients for each site and each type of DNAPL needs to be known. Methods to estimate 
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partitioning coefficients have been developed using UNIFAC [Wang et al., 1998] and on 
defining equivalent alkane carbon number for each contaminant in a DNAPL and the tracers 
[Dwarakanath and Pope, 1998].  We propose to follow the example of other researchers 
[Brusseau et al., 1999; Hayden and Linnemeyer, 1999; Cain et al., 2000] who determined 
specific partitioning coefficients for individual tracers with the specific samples of the DNAPLs 
from their sites.   
 Four alcohols were chosen to be used as partitioning tracers for this study.  These tracers 
were chosen because of their frequent use in partitioning tracer tests and because they exhibit a 
wide range of KNW 

≥

values.  The NAPL-phase used in this study was trichloroethylene [TCE] 
because it is such a common DNAPL pollutant in the United States. The purities of the alcohols 
and TCE purchased from Sigma-Aldrich and Fluka are as follows:  TCE > 99.5%;  IPA > 99.5%;  
2M1B > 99%;  2E1H > 99%;  2, 4DM3P = 99%; and Hex  99.9%.   

Seven sets of batch tests were conducted to determine NAPL – water partition 
coefficients for each tracer in water-tracer-NAPL solutions as well as to examine the effects of 
the presence or organic carbon [foc] 

 The batch tests to determine NAPL-water partition coefficients for each tracer contained 
six sample groups.  The batch tests were prepared in pre-cleaned 25mL EPA/ VOA glass vials 
with Teflon-lined septa from EnviroTech.  Each sample set consisted of triplicate vials 
containing TCE and the aqueous tracer solution and a control group of triplicate vials containing 
aqueous tracer solution only [initial concentration].  20 mL of aqueous tracer solution was 
dispensed into each vial using a 10 mL pipette followed by 2.5 mL injection of TCE with a gas-
tight syringe. The vials were immediately capped to avoid losses to the atmosphere. 

on partition coefficient estimation.  Six partitioning-tracer 
stock solutions [levels] were prepared volumetrically with Hamilton gas-tight syringes in 250-
mL volumetric flasks.  The levels ranged from 20mg/L to 640 mg/L except for 2E1H.  2E1H, 
due to its low solubility limit of approximately 850 mg/L [Istok et al. [2002]], was prepared at 
concentrations ranging from 12.5mg/L to 400mg/L.  Purified water [Barnstead Nanopure, 
Diamond] was used to dilute the aqueous tracer stock solutions to the six different 
concentrations: 50, 100, 200, 400, 800, and 1600 mg/L.  The 6 different levels were prepared in 
pre-cleaned 20mL EPA/ VOA glass vials with Teflon-lined septa from EnviroTech.  For 2E1H 
the 6 batch test levels were 25, 50, 75, 150, 300, and 600 mg/L.   

 The 25mL vials were allowed to equilibrate on a platform shaker [Innova 2000] at 150 
rpm and room temperature for 24 hours, which is sufficient to obtain equilibrium [McCray and 
Dugan, 2002].  1.5 mL aliquots of the aqueous phase were withdrawn from the 25mL vials with 
minimal disturbance using a gas-tight syringe and transferred to 1.5 mL glass GC auto sampler 
vials with Teflon septa. 
 
14.3.4 Determination of partitioning tracer concentrations 
 Concentrations of alcohols used as partitioning tracers were determined using a gas 
chromatograph [Shimadzu GC 2010] with an auto sampler [AOC-20i auto injector] equipped 
with a flame ionization detector [FID].  The GC/FID method consisted of a Restek Stabilwax® 
capillary column [30m, 0.32 mm ID, with film thickness of 1µm], helium as the carrier gas, zero-
grade air, an injection volume of 1 µL, and injector and FID temperatures of 200°C.  Also, a split 
ratio of 35:1 to vent excess water [steam] in the sample and a linear velocity of 50 cm/s were 
incorporated into the method.  A different temperature program was used for each alcohol.  This 
provided more efficient way to estimate the concentration of the collected samples [the 5 
different temperature gradient programs used are listed in Appendix F]. Four external calibration 
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standards were prepared for 2M1B in deionized water at levels of 1, 10, 100, and 1000 mg/L.  
The calibration plots were created by injecting triplicates of each calibration level and were 
linear [R2

 The same procedure was applied to obtain the partitioning coefficients of the tracers with 
PCE. PCE was selected to create a source zone in SB1-3 due to its lower solubility compared 
with TCE. 

 > 0.99].  Calibrations were made in each analysis sequence consisting of 12 calibration 
injections [triplicates from each one of the 4 standards], 120 tracer samples, and 3 quality control 
samples.  The quality control samples were vials filled with 100 mg/L standard and was analyzed 
after each set of 40 samples to ensure that the signal response of the machine remained accurate.  
Methanol injections [blanks] were made in between sets of samples to prevent carryover. We 
note that previous researchers [Dugan et al. 2003] prepared calibration standards composed of 
the tracers in methanol. We used water instead of methanol to analyze the sample set more 
accurately since our samples are aqueous and we need calibration curves that fully represent the 
actual conditions of our samples. 

 
14.3.5 Determination of conservative tracer concentrations 
 Conservative tracer [Br] concentrations were determined using an ion chromatograph 
[IC] [Dionex ICS 2000] equipped with an AS40 auto sampler.  The IC analysis method consisted 
of an AS-18 4 mm column, EGC II KOH eluent generator with an eluent concentration of 
23mM, SRS-Ultra II 4mm suppressor with a current of 57 mA, DS6 heated conductivity cell 
with a cell temperature of 35° C, and a flow rate of 1 mL/min.  Four external calibration 
standards were prepared for bromide with 1000mg/L Fluka IC standard diluted with de-ionized 
water at levels of 1, 10, 100, and 200 mg/L.  The calibration plots were created by injecting 
triplicates of each calibration level and were linear [R2

 

 > 0.99].  Calibrations were made in each 
analysis sequence consisting of 12 calibration injections [triplicates of the 4 standards] followed 
by 80 tracer samples.  Clean up runs were made in between each standard and sample injection 
to prevent carryover by increasing the eluent strength to 50 mM and increasing the suppressor 
current to 124 mA for 8 minutes. 

14.3.6 Partitioning tracer tests in SBs 3-1, 3-2 and 1-2 
 PTTs were conducted on SB 3-1, 3-2 and 1-2 to quantify DNAPL saturations in the 
heterogeneous aquifers. In each PTT, a dipole flow field was created by injecting water at one 
port at a rate of about 500 mL/min and extracting at another port at a rate of about 450 mL/min.  
A mass balance is then achieved by setting 12 sampling lines at a cumulative rate of about 50 
mL/min [~4.17 mL/min/line].  Achieving a mass balance is crucial because the 4 boundaries of 
the sandboxes had no-flow boundary conditions. Deviations in the mass balance would show up 
as a rising or falling water level.   
 Once steady state flow conditions were reached, a valve was switched on the injection 
line from water to a tracer solution consisting of bromide [non-partitioning tracer ~100mg/L] and 
2-methyl-1-butanol [2M1B] [partitioning tracer ~500mg/L] for 10 minutes and then the valve 
was switched back to water. Separate sample sets were collected for bromide and 2M1B 
throughout the duration of the test and a time stamp was assigned to each sample. 
 The data collection from each one of the sampling lines was possible with a manifold 
created in the lab. In this fashion we obtained 12 simultaneous samples with vials placed in 
sampling racks. Thirty 2M1B samples and 20 bromide samples were collected from each of the 
12 sampling lines during each PTT for a total of 600 samples per PTT.  
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 A series of six PTTs were conducted in sandbox 3-1.  In each PTT, a dipole flow field is 
created by injecting water at one port at a rate of about 500 mL/min and extracting at another 
port at a rate of about 450 mL/min.  A mass balance is then achieved by setting 12 sampling lines 
at a cumulative rate of about 50 mL/min [~4.17 mL/min per line]. Figure 14.5 illustrates the 
injection, extraction, and sampling ports of all PTTs carried out in sandbox 3-1. 
 

 

 

 
Figure 14.5: PTT configurations in SB3-1. From top left, clockwise, PPT1, PPT2, PTT3, PTT4, 
PTT5 and PTT6, in that order. 
 
 A series of four PTTs were conducted in sandbox 3-2.  In each PTT, a dipole flow field 
was created by injecting water at one port at a rate of about 500 mL/min and extracting at 
another port at a rate of about 450 mL/min.  A mass balance is then achieved by setting 12 
sampling lines at a cumulative rate of about 50 mL/min [~4.17 mL/min per line]. Figure 14.6 
illustrates the design of all PPTs carried out in sandbox 3-2. 
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 A series of four PTTs were conducted in sandbox 1-2.  In each PTT, a dipole flow field is 
created by injecting water at one port at a rate of about 500 mL/min and extracting at another 
port at a rate of about 450 mL/min.  A mass balance is then achieved by setting 12 sampling lines 
at a cumulative rate of about 50 mL/min [~4.17 mL/min per line]. PTTs 1 through 3 were 
conducted with bromide [non-partitioning tracer] and 2M1B [partitioning tracer].  PTT 5 was 
conducted with bromide and three partitioning tracers: 2M1B, 2-4-dimethyl-3-pentanol [24DM-
3P], and 1-hexanol [1-HEX]. A schematic representation of the configuration of each PTT test in 
SB 1-2 is presented in Figure 14.7.  
 

 

 
Figure 14.6: PTT configurations in SB 3-2. From PTT1 [top left], PTT2 [top right], PTT3 
[bottom left], and PTT4 [bottom right]. 
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Figure 14.7: Sandbox 1-2 PTT designs: PTT1 [top left], PTT2 [top right], PTT3 [bottom left] 
and PTT5 [bottom right]. 
 
14.3.7 Extraction of cores and its analyses 
 As soon as PTTs were completed on SB 3-2 and SB 1-2, cores were taken from those 
sandboxes. The purpose of obtaining cores was to obtain an independent data set of TCE 
saturations so that we can compare to those obtained by means of MOM analysis of PTTs. For 
SB 3-2, six brass tubes were inserted [vertically downward] into the sandbox in fully saturated 
conditions until they reached the floor of the model.  A short piece of larger diameter tubing 
served as a guide where another brass tube was inserted vertically [Figure 14.8; see also Figure 
14.9]. Then, bentonite was added to the top of the core to eliminate the empty space and the core 
tubes were plugged at the end with epoxy putty.  Once the epoxy putty was dried, the rest of the 
model was. The cores were then removed individually and cut into segments with a pipe cutter 
following the schematic presented on Figure 14.10 for SB3-2 and Figure 14.11 for SB1-2.  Each 
of the segments was capped on each end with a silicone plug [Figure 14.12] and placed in a 
refrigerator at 5° C.  
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Figure 14.8: Picture of the telescopic tubing arrangement for SB 1-2 [similar process for SB 3-2 
was applied]. 
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Figure 14.9: Fully inserted coring wells [SB 1-2]. 

 
Figure 14.10: Partitioning of core samples in SB 3-2. 
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Figure 14.11: Coring scheme applied on SB 1-2. 
 
  

 
Figure 14.12: Picture of a completed core sample. 
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 The core samples were collected from the core tubing segments and deposited into pre-
labeled, pre-weighed 40 mL vials and capped with Teflon lined septa caps. After this step, thee 
vials were then weighed again and the mass of the vial containing the cap and sample was 
recorded. The vials were then filled to the top with Methylene Chloride [MeCl] and weighed 
again.  We then recorded the mass of the vial, along with the cap, sample and the MeCl. The 
volume of MeCl was calculated based on the mass differences and density of MeCl. The vials 
were placed on an Innova 2000 orbital shaker at 150 rpm for 24 hours.  After shaking, the vials 
were weighed again and the volume of MeCl was corrected if any mass loss was observed.  
Approximately 5 mL was extracted from each core sample vial and transferred to three 1.5 mL 
GC vials.  
 The GC samples were then analyzed via GC-FID with a 7 level triplicate calibration 
method consisting of standards of TCE in MeCl at levels of 1, 10,100, 500, 1,000, 5,000 and 
10,000 mg/L.  The sample TCE concentrations were recorded and the average and standard 
deviations from each set of 3 samples were calculated.  The mass of TCE in each core sample 
was calculated by multiplying the average sample concentration by the volume of liquid in the 
sample [assumed to be the volume of MeCl]. The mass was then converted to volume by 
dividing by the density of TCE. The core samples were then dried thoroughly by baking at 50° C 
to evaporate the MeCl and then at 105° C for 24 hours to remove any remaining water in the core 
sample.  Total volume of the dried sample was determined by measuring in a 25 mL graduated 
cylinder with 0.2 mL graduations.   
 The volume of solids in each sample was determined by placing the sample in a 25 mL 
graduated cylinder pre-filled with 12 mL of de-ionized water and measuring the displaced 
volume.  The void volume is then calculated by the total volume minus the solid volume. The 
TCE saturation of each sample was calculated using equation 14.2. 
 
14.4 RESULTS 
 
14.4.1 Batch test results 
 In order to estimate the saturations of the DNAPL [TCE for SBs 3-1, 3-2, 1-2 and PCE 
for SB1-3] one must determine the equilibrium partitioning coefficient between the DNAPL and 
the alcohols involved. More details of these results are provided in Appendix E.  
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Figure 14.13: Equilibrium partitioning of 2,4-dimethyl-3-pentanol with TCE. 
 
 An example of a linear model fit to the equilibrium partitioning of 2,4-dimethyl-3-
pentanol with TCE [Trichloroethylene] is shown in Figure 14.13. In this figure each point 
represents an arithmetic mean of 5 separate batch tests. A linear model fit with a R2

 Batch test results for the partitioning tracers utilized and the TCE are summarized in 
Table 14.1 while partitioning coefficient for PCE with the tracers are summarized in Table 14.2. 
In both tables, we compare our values to those obtained by others. We notice partitioning 
coefficients can vary from one laboratory to the next. All the values resulting from our work had 
linear fits with high correlation coefficients [R

>0.99 
provides confidence in these test data. The slope is the equilibrium partitioning coefficient 
determined from the batch test. 

2

  

 > 0.99], ensuring the quality of the values. In 
Appendix E, we present additional plots and details of these values that were obtained to study 
the effects of tracer interaction by conducting batch tests for each alcohol on its own, by pairs of 
alcohols and in a multi-tracer cocktail [three alcohols and PCE]. 

Table 14.1: TCE - equilibrium partitioning coefficient [KNW
Alcohol Tracer 

]. 
Dimensionless TCE-Water KNW values 

Isopropyl alcohol [IPA] 0.35a  0.36b  0.1c 
2-methyl-1butanol [2M1B] 3.37a  3.71b 
2-ethyl-1hexanol [2E1H] 221a  202b  227d 
2,4-dimethyl-3-pentanol [2, 4DM3P] 63.3a  71.3b  38e 
Source: a] this study; b] Dugan et al., [2003]; c] Wang et al. [1998]; d] Istok et al. [2002]; and e] Young et al. 
[1999]. 
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Table 14.2: PCE - equilibrium partitioning coefficient [KNW
Alcohol Tracer 

]. 
Dimensionless PCE-Water KNW values 

2-methyl-1butanol [2M1B] 1.3a  
4-methyl-2pentanol [4M2P] 4.56a ;4.22a; 4.33a; 4.96a; 10.3b; 3.6c; 5.63d 
1-hexanol [1-Hex] 7.88a; 7.72a; 8.00a; 6.80a; 10.00b; 8.49c ;6.56c   
2,4-dimethyl-3-pentanol [2, 
4DM3P] 

28.77a; 28.16a; 29.64a; 27.80a; 26.30a; 31.6b ; 30f 

Source: a] this study; b] Dugan, P.J. et al. [2007]; c] Cho J. et al. [2003]; d] Moreno-Barbero and Illangasekare 
[2006]; e] Dwarakanath and Pope [1998]; and e] Ramsburg et al. [2005].  
 
14.4.2 Partitioning tracer test results 
 The concentration records of both non-partitioning and partitioning tracers obtained from 
the sampling ports of each PTT displays the history of the solute transport inside the synthetic 
aquifer. In this section we describe some of the breakthrough curves [BTCs] from the SBs 
studied. The breakthrough curves show [Figures 14.14-14.16] the propagation of the tracers in 
terms of Ce pulse inside the SBs, depicting bell shaped curves for both tracers. This behavior 
was experienced in all partitioning tracer tests. From these figures, it is possible to see a shift 
between the arrival times of the non-partitioning and partitioning tracer. For example, Figure 
14.14 shows the normalized BTCs for partitioning [2M1B] and non-partitioning [Br] tracers in 
PTT2 at port 12 for SB 3-1. The graph illustrates the retardation of 2M1B relative to bromide. 
Figure 14.15 shows the BTCs at port 12 for PTT2 in SB 3-2. Here the delay between 2M1B and 
bromide is more visible than that seen in Figure 14.14. The greater retardation is due to the fact 
that the TCE volume spilled in SB3-2 was 5 times that spilled in SB3-1. 
 Figure 14.16 plots the breakthrough curves from the multi-tracer experiment [PTT 5, SB 
1-2]. Here, 4 curves are shown. One is for the non-partitioning tracer [bromide] and the others 
for the suite of partitioning tracers [2M1B, 1-Hex and 2,4DM 3P]. It is possible to see that all 
three partitioning tracers depict bell shapes, but they have their own characteristics in terms of 
maximum concentration and tail based on their range of partitioning coefficients. 
 

 
Figure 14.14: Breakthrough curves of Bromide and 2M1B from port 12 in PTT 2 conducted in 
SB3-1. 
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Figure 14.15: Breakthrough curves of Bromide and 2M1B from port 12 in PTT 2 conducted in 
SB3-2. 
 

 
Figure 14.16: Breakthrough curves of Bromide, 2M1B, 2,4DM3P, and 1-Hex from port 47 in 
PTT 2 conducted in SB1-2. 
 
14.4.3 Temporal Moment Analysis [MOM]-Estimations of SN
 

 and DNAPL volumes 

14.4.3.1 Results from SB3-1 
As we mentioned earlier, 6 PTTs were carried out in SB3-1. Sandbox 3-1 had a total 

volume of 9,593 cm3 and a corresponding void volume of 3,135 cm3 computed with an average 
porosity of 0.33 [which is the overall average between the arithmetic mean and geometric mean 
for fine and coarse sands porosity range reported by Sanders, 1998]. For each test, concentrations 
of partitioning and non-partitioning tracers were monitored at 12 sampling ports throughout all 
tests. The data analyzed via MOM for PTT 1-6 of SB 3-1 are presented in Tables 14.3 – 14.8. 
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For each table we list the port number, estimated retardation coefficient, the TCE saturation 
estimated at the particular port, and the average TCE volume computed in the sandbox from the 
data from the port using a weighting scheme that we describe below. 
 A weighted average assuming that the weights are linear function of the distance from the 
injection point to the monitoring ports [WDI] is also applied to compute the TCE saturation and 
volumes per each port studied and a total estimate is computed by adding the contribution of the 
ports involved on each PTT. The WDI approach is based weights the total distance [TD ] from 
the injection port to the monitoring or sampling ports, 

iPId , ,  

 ∑
=

=
N

i
PI i

dTD
1

,  [14.14] 

 
while the weights [

iPIweight , ] are computed using 
 

 
TD
d

weight i

i

PI
PI

,
, =  [14.15] 

 
The volume of TCE is computed by multiplying the weight of every port times the volume of 
TCE 
 
 voidsiNPIiTCE VSweightV

i
××= ,,,  [14.16] 

 
We note that the sum of all weights is equal to 1 and that if the distance between the injection to 
the sampling ports were the same we would be computing the arithmetic mean. 
 Table 14.3 summarizes the results from PTT1. It reveals that TCE volume detected in 
each port varies considerably from one port to the next. The potential causes of this behavior will 
be discussed later. 
 Table 14.4 summarizes the results from PTT2. It reveals that the average TCE volume 
detected through PTT2 is lower than PTT1 [for all methods]. The potential causes of this 
behavior will be discussed later. 
 Table 14.5 summarizes the results from PTT3. It reveals that the average TCE volume 
detected through PTT3 is lower than PTT2 [for all methods]. Table 14.5 also shows that there is 
one negative value of volume [-5.58L] and saturation [-0.018] due to a retardation factor that is 
lower than 1. Negatives values of retardation [ R ] are not included in the computations since they 
are not physically correct. Negative values are likely due to non-equilibrium interaction between 
the tracer and a DNAPL pool, or the degradation of the tracer. 
 Table 14.6 summarizes the results from PTT4. It reveals that the average TCE volume 
detected through PTT4 is approximately the same as PPT3 and the variance [440.98] found to be 
more than 2 times smaller for this test in comparison to the variance on PTT3. 
 Table 14.7 summarizes the results from PTT5. It shows that the average TCE volume 
detected through PTT5 is approximately 42.64 ml which reverses the tendency shown on the first 
four PTTs, in which the estimated TCE volumes decreased from test to test. The detected TCE 
volume from PTT 5 is similar to that obtained from PTT1. 
 Table 14.8 summarizes the results from PTT6. The estimates are again similar to the 
PTT5.  There was an overestimation of the DNAPL saturation and volume in the aquifer [39.4 
ml]. 



224 
 

 From all the results described for SB 3-1 it can be seen that the MOM analysis does not 
provide an accurate estimate of TCE saturation and the corresponding volume. 
 
Table 14.3: Summary of PTT 1 – sandbox 3-1. 

PTT1 Port R  NS  VTCE V [mL] TCE [mL]- WDI 
 2 1.0415 0.0122 38.16 3.94 
 3 1.1129 0.0324 101.61 8.68 
 4 1.1519 0.0431 135.21 9.02 
 6 1.0177 0.0052 16.39 0.84 
 7 1.0368 0.0108 33.85 3.98 
 12 1.0470 0.0138 43.16 1.66 
 13 1.0268 0.0079 24.69 2.81 
 19 1.0150 0.0044 13.90 1.55 
 25 1.0154 0.0046 14.29 1.59 
 26 1.0277 0.0082 25.55 2.29 
 27 1.0336 0.0099 30.94 2.11 
 28 1.0560 0.0164 51.28 2.19 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0485 0.0141 44.09 40.66 
 Geomean 1.0484 0.0108 34.13 Variance 
 Variance 0.0018 0.0001 1387.55 7.37 

 
Table 14.4: Summary of PTT 2 – sandbox 3-1. 
PTT2 Port R  NS  VTCE V [mL] TCE [mL]- WDI 
 3 1.0074 0.0022 6.84 0.30 
 4 1.0275 0.0081 25.40 1.80 
 6 1.0107 0.0032 9.96 1.15 
 12 1.0741 0.0215 67.49 7.81 
 18 1.0956 0.0276 86.45 10.20 
 19 1.0151 0.0045 14.01 0.56 
 24 1.0819 0.0237 74.39 9.05 
 25 1.0035 0.0010 3.21 0.17 
 26 1.0183 0.0054 16.94 0.97 
 27 1.0190 0.0056 17.57 1.21 
 28 1.0207 0.0061 19.12 1.69 
 29 1.0138 0.0041 12.78 1.37 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0323 0.0094 29.51 36.27 
 Geomean 1.0319 0.0061 19.16 Variance 
 Variance 0.0010 0.0001 839.26 13.58 
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Table 14.5: Summary of PTT 3 – sandbox 3-1. 
PTT3 Port R  NS  VTCE V [mL] TCE [mL]-WDI 
 1 1.0063 0.0019 5.85 0.29 
 2 1.0201 0.0059 18.56 1.01 
 3 1.0127 0.0037 11.74 0.77 
 4 1.0059 0.0017 5.48 0.46 
 5 1.0154 0.0045 14.24 1.45 
 12 1.0132 0.0039 12.19 1.41 
 18 1.0055 0.0016 5.14 0.58 
 24 1.0117 0.0035 10.83 1.19 
 27 1.1289 0.0368 115.48 4.85 
 28 1.0245 0.0072 22.64 1.52 
 29 0.9940 -0.0018 -5.58 -0.49 
 30 1.0109 0.0032 10.06 1.10 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0232 0.0067 21.11 14.63 
 Geomean 1.0226 0.0041 12.99 Variance 
 Variance 0.0013 0.0001 1008.85 1.67 

 
Table 14.6: Summary of PTT 4 – sandbox 3-1. 
PTT4 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 1 1.0095 0.0028 8.83 0.96 
 2 1.0121 0.0036 11.21 0.99 
 3 1.0943 0.0272 85.31 5.73 
 4 1.0326 0.0096 30.01 1.26 
 7 1.0188 0.0055 17.37 1.91 
 13 1.0202 0.0060 18.67 2.09 
 19 1.0273 0.0080 25.19 2.91 
 26 1.0283 0.0083 26.15 2.66 
 27 1.0234 0.0069 21.62 1.82 
 28 1.0119 0.0035 11.07 0.73 
 29 1.0072 0.0021 6.71 0.37 
 30 1.0138 0.0041 12.80 0.65 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0250 0.0073 22.91 22.06 
 Geomean 1.0261 0.0061 19.14 Variance 
 Variance 0.0005 0.0000 440.98 2.15 
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Table 14.7: Summary of PTT 5 – sandbox 3-1. 
PTT5 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 3 1.0445 0.0130 40.90 3.59 
 4 1.0308 0.0091 28.41 3.19 
 8 1.0797 0.0231 72.48 4.19 
 10 1.0365 0.0107 33.63 3.47 
 11 1.0308 0.0091 28.40 3.64 
 14 1.0824 0.0239 74.86 3.28 
 15 1.0477 0.0139 43.71 2.86 
 16 1.0322 0.0095 29.67 2.85 
 17 1.0277 0.0082 25.58 3.14 
 20 1.0650 0.0189 59.31 1.94 
 21 1.0494 0.0145 45.32 2.66 
 22 1.0319 0.0094 29.37 2.69 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0466 0.0136 42.64 37.50 
 Geomean 1.0466 0.0127 39.70 Variance 
 Variance 0.0004 0.0000 303.59 0.34 

 
Table 14.8: Summary of PTT 6 – sandbox 3-1. 

PTT6 Port R Sn VTCE V [mL] TCE [mL]-WDI 
 3 1.0285 0.0084 26.25 1.55 
 4 1.0509 0.0149 46.62 4.39 
 8 1.0256 0.0075 23.61 0.81 
 10 1.0585 0.0171 53.54 5.13 
 11 1.0938 0.0271 84.90 10.60 
 14 1.0224 0.0066 20.74 0.95 
 15 1.0300 0.0088 27.64 1.90 
 16 1.0408 0.0120 37.47 3.77 
 17 1.0909 0.0263 82.39 10.59 
 20 1.0389 0.0114 35.77 2.17 
 21 1.0381 0.0112 35.05 2.78 
 22 1.0525 0.0153 48.08 5.20 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0473 0.0126 39.40 49.85 
 Geomean 1.0491 0.0130 40.89 Variance 
 Variance 0.0006 0.0000 453.45 11.32 

 
Examination of Tables 14.3 through 14.8 all show that the TCE saturations and volumes vary 
considerably from one port to the next as well as from one test to the next.  We also computed 
the means of all ports for each test and present those results in Table 14.9. We see a significant 
variation of TCE volumes from one test to the next. Table 14.9 also lists the overall mean from 
all the tests as well as its relative error. From this analysis we find that this average value [33.28 
ml] overestimates the original amount spilled [25.00 ml] in SB 3-1 by 8.28 ml resulting in a 
relative error of 33.11%. Similarly, the overall WDI estimate over-predicted the TCE volume. 
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The best overall result for SB3-1 was computed with the geometric mean, 25.33 mL [1.30% 
error]. 
 
Table 14.9: Overall results of PPTs in SB 3-1. 

 Arith Mean Geomean WDI  
SB 3-1 VTCE V[mL] TCE V[mL] TCE [mL] 
PTT1 44.09 34.13 40.66 
PTT2 29.51 19.16 36.94 
PTT3 21.11 12.99 14.63 
PTT4 22.91 19.14 22.06 
PTT5 42.64 39.70 37.50 
PTT6 39.40 40.89 49.85 
Overall TCE Detected [mL] 33.28 25.33 33.49 
Volume spilled [mL] 25.00 25.00 25.00 
%  Relative Error [RE] 33.11 1.30 33.98 

 
In summary we found that, estimation of TCE volume and/or saturations via MOM varies from 
sampling port to sampling port for each test. The overall average saturations and volumes vary 
from test to test resulting in under and overestimations of the saturation and volume of TCE. 
 
14.4.3.2 SB 3-2 
 Four PTTs were conducted in SB 3-2 which had an actual TCE source zone volume of 
125 mL. Sandbox 3-2 had a total volume of 7,985.02 cm3 and a corresponding void volume of 
2,635.06 cm3

 From PTT1 [Table 14.10], the estimates of DNAPL saturation and detection vary from 
sampling port to port. The DNAPL saturation [S

computed with an average porosity of 0.33 [same as SB 3-1] For each test, 
concentrations of partitioning and non-partitioning tracers were monitored in 12 ports throughout 
all tests. Tables 14.10 through 14.13 provide the results of PPT1 - 4 conducted in SB 3-2. 

N

 The injected volume of TCE was 125 ml thus the average volume obtained from PTT1 
underestimates the actual introduced volume by 8%. The geometric mean was 74.47 mL [-
40.48%].The WDI estimate of 110.7 mL [-12%], was found to be similar to the arithmetic mean 
value.  

] ranges from 0.0033 [0.33%] to 0.119 
[11.9%], with an arithmetic mean of 4.38% and a variance of 0.0014. Based on this, the detected 
volume of TCE ranges from approximately 8.68 mL to 313 mL, with an arithmetic mean of 115 
mL. 

 Some ports [26 and 28] did not show retardation values larger than 1 and therefore gave 
negatives values of TCE. The negative saturation and volumes of these ports were not taken in 
consideration into the overall average and variance.  
 PTT2 is summarized in Table 14.11. The saturation values vary from 0.0002 [0.02%] to 
0.0964 [9.64%] with an arithmetic mean of 2.87% and a variance of 0.0008. from the range of 
detected volumes varies from 0.45 to 254.14 mL with an arithmetic mean of 75.63 mL, a 
geometric mean of 36.48 mL and a variance of 5,254.31; The volume estimated by WDI was 
68.24 mL with a variance of 17.66. Computations with all methods displayed underestimations 
of 39.5%, 70.82% and 47.2% respectively. 
 Table 14.12 summarizes the results for PTT3. The TCE saturations vary from 0.0047 
[0.47%] to 0.0435 [4.35%] with an arithmetic mean of 0.0195 and a variance of 0.0002. In terms 
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of detected volume the range goes from 6.23 to 104 mL with an arithmetic mean of 46.78 mL, a 
geometric mean of 37.32 ml and a variance of 1179.08. The weighted method reported 52.97 mL 
and a variance of 16.04. All values underestimate the TCE by 62.6% [arithmetic], 57.62% 
[WDI], and 70.14% [geometric]. 
 Table 14.13 summarizes the results of PTT4. The DNAPL saturations vary from 0.0007 
[0.07%] to 0.0348 [3.48%] with an arithmetic mean of 0.0095 and a variance of 0.0002. In terms 
of detected volume, the range covers from 1.02 to 91.58 mL with an arithmetic mean of 24.97 
mL a geometric mean of 12.23 mL and a variance of 764.49. The IDW approach resulted in 
23.99 mL with a variance of 26.37. All methods underestimated the amount of TCE by 80%, 
90.22% and 78.90%. 
 
Table 14.10: Summary of PTT 1 – sandbox 3-2. 

PTT1 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 6 1.0796 0.0231 60.82 3.06 
 5 1.1299 0.0371 97.79 5.34 
 4 1.0727 0.0211 55.68 3.65 
 3 1.2709 0.0744 196.09 16.47 
 2 1.0111 0.0033 8.68 0.88 
 7 1.2169 0.0605 159.36 18.41 
 13 1.1459 0.0415 109.36 12.25 
 19 1.4556 0.1191 313.80 34.48 
 25 1.1898 0.0533 140.51 15.34 
 26 0.9956 -0.0013 -3.47 -0.31 
 27 1.0156 0.0046 12.12 0.81 
 28 0.9566 -0.0131 -34.40 -1.44 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.1284 0.0438 115.42 110.70 
 Geomean 1.1522 0.0283 74.47 Variance 
 Variance 0.0199 0.0014 8598.51 113.65 
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Table 14.11: Summary of PTT 2 – sandbox 3-2. 

PTT2 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 1 1.0721 0.0209 55.20 3.99 
 5 1.1145 0.0328 86.56 9.62 
 4 1.1704 0.0481 126.83 11.47 
 3 1.1851 0.0521 137.17 9.91 
 2 1.1041 0.0300 78.95 5.26 
 12 1.0509 0.0149 39.18 4.97 
 18 1.0203 0.0060 15.74 1.91 
 13 1.3597 0.0964 254.14 11.03 
 29 1.1193 0.0342 90.10 8.01 
 24 1.0145 0.0043 11.32 1.33 
 27 1.0006 0.0002 0.45 0.01 
 28 1.0153 0.0045 11.88 0.73 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.1022 0.0287 75.63 68.24 
 Geomean 1.0982 0.0138 36.48 Variance 
 Variance 0.0104 0.0008 5254.31 17.66 

 
 
Table 14.12: Summary of PTT 3 – sandbox 3-2. 

PTT3 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 25 1.0778 0.0226 54.06 3.00 
 5 1.0088 0.0026 6.23 0.60 
 4 1.0195 0.0058 13.78 1.02 
 3 1.0301 0.0088 21.18 0.98 
 6 1.0161 0.0047 11.36 1.36 
 12 1.0843 0.0244 58.46 7.07 
 18 1.0415 0.0122 29.17 3.59 
 26 1.1318 0.0376 90.15 5.41 
 29 1.1371 0.0391 93.66 10.46 
 24 1.1531 0.0435 104.10 13.23 
 27 1.0763 0.0222 53.07 3.83 
 28 1.0372 0.0109 26.19 2.42 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0678 0.0195 46.78 52.97 
 Geomean 1.0667 0.0142 37.32 Variance 
 Variance 0.0026 0.0002 1179.08 16.04 
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Table 14.13: Summary of PTT 4 – sandbox 3-2. 

PTT4 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 25 1.0265 0.0078 20.56 0.92 
 5 0.9322 -0.0205 -54.10 -8.76 
 4 1.0082 0.0024 6.41 0.81 
 3 1.0176 0.0052 13.69 1.18 
 2 1.0013 0.0004 1.02 0.06 
 1 1.0468 0.0137 36.11 1.61 
 7 1.0049 0.0014 3.81 0.08 
 26 1.0485 0.0142 37.41 2.17 
 29 1.1213 0.0348 91.58 14.84 
 19 1.0668 0.0194 51.19 1.14 
 27 1.0141 0.0042 10.97 0.95 
 28 1.0024 0.0007 1.87 0.24 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0242 0.0095 24.97 23.99 
 Geomean 1.0320 0.0046 12.23 Variance 
 Variance 0.0021 0.0002 764.49 26.37 

 
 The values estimated for the PTTs on SB 3-2 are presented in Table 14.14. The 
arithmetic values ranged from 115.42 to 24.97 mL, the geometric values from 74.47 to 12.23 
mL, whereas the WDI vary from 110.70 to 23.99 mL. The overall values for the three methods 
employed are 65.70 mL, 40.13 mL, and 65.33 mL. An underestimation of the TCE by 47.44% 
[arithmetic], 67.9% [geometric] and 45.74 % [WDI] was found. From all the results described 
for SB 3-2 it can be seen that the temporal moment analysis method does not provide an accurate 
estimate of TCE saturation and the corresponding volume.  
 
In summary we found that: 

• Estimation via MOM varies from sampling port to sampling port from individual tests. 
[Tables 14.10 to 14.13] 

• The overall average saturations and volumes vary from test to test [tables 14.10 to 14.13] 
resulting in underestimations of the saturation and volume of TCE. 

• In spite of  injecting a TCE volume 5 times larger than in SB 3-1, the overall average 
value from all PTTs  showed a relative errors of from 47.44% to 67.9% compared with 
the actual volume spilled on SB 3-2 [Table 14.14]. The arithmetic mean was the best 
estimation method. 

• In spite of having a TCE saturation of 5% [5 times the saturation in SB 3-1], the 
architecture of DNAPL contained large pools and this could potentially affect the 
performance of the method. 
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Table 14.14: Overall results of PPTs in SB 3-2. 
 Arith Mean Geomean WDI 
SB 3-2 VTCE V[mL] TCE V[mL] TCE [mL] 
PTT1 115.42 74.47 110.70 
PTT2 75.63 36.48 68.24 
PTT3 46.78 37.32 52.97 
PTT4 24.97 12.23 23.99 
Overall TCE Detected [mL] 65.70 40.13 63.98 
Volume spilled [mL] 125.00 125.00 125.00 
% Relative Error [RE] 47.44 67.90 48.82 

 
14.4.3.3 SB 1-2 
 A set of four PTTs were carried out in sandbox 1-2. The first 3 tests of this set, PTTs 1-3, 
were conducted with bromide [non-partitioning tracer] and 2M1B [partitioning tracer]. For PTT 
4, a suite of three partitioning tracers were injected with the same non - partitioning tracers used 
in this work, bromide [Br]. The partitioning tracers used in these experiments are 2M1B, 2-4-
dimethyl-3-pentanol [24DM-3P], and 1-hexanol [HEX].  
 Sandbox 1-2 had a total volume of 122,227 cm3 and a corresponding void volume of 
46,935.17 cm3 computed 

 Table 14.15 presents the estimations of the saturations and volumes of TCE for PTT1. 
The saturations of the DNAPL ranged from 0.36% to 3.72% with arithmetic mean of 1.43%, a 
geometric mean of 1.23% and a variance of 0.0001. The volumes span from 184.01 mL to 
1917.12 mL with an arithmetic mean of 736.97 mL and a geometric mean 579.24 mL, 
experiencing a variance of 296701.62. WDI provided an estimate of 711.81 mL with a variance 
of 2150.82. 

with an experimental average porosity of 0.384 [for this work]. 
Following are summary tables and illustrations of each PTT from sandbox 1-2 which had an 
actual TCE source zone volume of 2,000 mL.  

 Table 14.16 shows the results for PTT2. The detected DNAPL volume ranged from 
111.81 to 1977.75 mL with an arithmetic mean of 825.08 mL and a variance of 296609.42. The 
TCE saturation reported reveals an arithmetic mean of 0.0176 varying from 0.24% to 4.21%. 
 As in previous cases, some ports reported retardation values lower than 1 therefore these 
ports [3 and 45] were not taken into consideration for the computations of the arithmetic mean 
and WDI. The detected arithmetic mean of TCE increased by almost 100 mL compared with the 
amount detected on PTT1 [736.97 mL], the geometric mean was 629.61 mL and the WDI 
estimate was 731.92 mL with a variance of 3042.21. All methods [arithmetic, geometric and 
WDI] underestimated the actual amount of the TCE by 58.75%, 68.52 % and 63.15%, 
respectively. 
 Table 14.17 shows the results of PTT3. The arithmetic mean of TCE volume is 939.48 
mL, while the corresponding geometric mean is 160.87 mL, and a WDI value of 710.61 mL.  
The arithmetic mean saturation of TCE is 1.44% with a range from 0.02% to 11.86% and a 
variance 0.0019. The geometric mean value for TCE saturation is 0.34%. 

The three methods underestimated the original spill by 53.03% [arithmetic], 91.96% 
[geometric], and 64.47% [WDI]. It is interesting to note is that the low value of the geometric 
estimation is influenced by the drastic reduction on the positive saturations carried by MOM.  
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 Table 14.18 shows the results of PTT5 based on 2M1B and Br. Here, the arithmetic mean 
of TCE saturation is 0.0178 with a variance of 0.0001 and an arithmetic mean of TCE volume is 
834.48 mL with a variance of 324,481.03. 
 The geometric mean of TCE volume was 690.29 mL and the corresponding WDI mean 
value of 843.95 mL. All methods, arithmetic, geometric and WDI, underestimate the injected 
amount of TCE in 58.28%, 65.47% and 57.80%, respectively. 
 
Table 14.15: Summary of PTT 1 – sandbox 1-2. 

PTT1 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 41 1.1435 0.0372 1917.12 167.24 
 3 1.0287 0.0077 396.75 20.55 
 4 1.0133 0.0036 184.01 13.43 
 11 1.0362 0.0097 499.04 44.36 
 42 1.0544 0.0145 745.60 79.67 
 17 1.0592 0.0157 810.18 70.52 
 24 1.0309 0.0082 425.77 45.07 
 28 1.1224 0.0319 1645.34 107.75 
 35 1.0641 0.0170 875.95 75.24 
 47 1.0584 0.0155 799.30 71.09 
 45 1.0144 0.0039 200.11 9.42 
 32 1.0249 0.0067 344.53 7.47 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0542 0.0143 736.97 711.81 
 Geomean 1.0535 0.0123 579.24 Variance 
 Variance 0.0017 0.0001 296701.62 2150.82 

 
Table 14.16: Summary of PTT 2 – sandbox 1-2. 

PTT2 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 41 1.0262 0.0077 361.90 32.42 
 3 0.9902 -0.0029 -136.32 -9.94 
 4 1.0080 0.0024 111.81 10.13 
 11 1.0152 0.0045 210.14 21.60 
 42 1.0844 0.0244 1146.62 126.67 
 17 1.0669 0.0195 913.38 90.26 
 30 1.0739 0.0215 1007.69 113.94 
 28 1.0436 0.0128 599.15 43.63 
 35 1.0748 0.0217 1019.33 92.53 
 47 1.1483 0.0421 1977.75 176.34 
 45 0.9936 -0.0019 -89.08 -3.74 
 32 1.0661 0.0192 903.08 24.41 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0493 0.0176 825.08 731.92 
 Geomean 1.0600 0.0134 629.61 Variance 
 Variance 0.0021 0.0001 296609.42 3042.21 
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Table 14.17: Summary of PTT 3 – sandbox 1-2. 

PTT3 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 41 1.0336 0.0099 462.77 44.69 
 36 1.4535 0.1186 5566.69 617.71 
 4 0.9499 -0.0151 -708.91 -45.42 
 11 1.0055 0.0016 75.95 6.39 
 29 0.9091 -0.0277 -1301.26 -116.71 
 17 1.0213 0.0063 295.18 25.18 
 24 1.0095 0.0028 132.35 14.06 
 33 1.0023 0.0007 32.01 1.80 
 35 0.9749 -0.0075 -351.96 -32.68 
 47 0.9895 -0.0031 -147.11 -14.83 
 45 1.0008 0.0002 11.39 0.78 
 32 0.9826 -0.0052 -243.57 -10.87 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.0545 0.0144 939.48 710.61 
 Geomean 1.0658 0.0034 160.87 Variance 
 Variance 0.0280 0.0019 4189239.67 52049.59 

 
Table 14.18: Summary of PTT 5 – sandbox 1-2. 

PTT5 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 41 1.0250 0.0074 345.90 30.98 
 3 1.0407 0.0119 560.74 40.90 
 4 1.0356 0.0104 490.33 44.42 
 11 1.0152 0.0045 210.41 21.63 
 42 1.0603 0.0176 825.72 91.22 
 17 1.1716 0.0484 2273.62 224.68 
 30 1.0841 0.0243 1142.73 129.21 
 28 1.0401 0.0118 552.58 40.24 
 35 1.0783 0.0227 1065.37 96.71 
 47 1.0812 0.0235 1104.32 98.46 
 45 1.0442 0.0129 607.61 25.49 
 32 0.9849 -0.0045 -211.85 -5.73 
 Port R  NS  VTCE

Σ [mL] VTCE [mL] 
 Average 1.0615 0.0178 834.48 843.95 
 Geomean 1.0542 0.0147 690.29 Variance 
 Variance 0.0019 0.0001 324481.03 3713.93 

 
Finally, the overall amount detected within the 4 tests is presented on Table 14.19. This table 
shows the arithmetic mean, geometric and WDI TCE estimates for each one of the 4 PTTs 
analyzed in SB 1-2.  
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Table 14.19: Overall results of PPTs [2M1B] in SB 1-2. 
 Arith Mean Geomean IDW  
SB 1-2 VTCE [mL] VTCE [mL] VTCE [mL] 
PTT1 736.97 579.24 711.81 
PTT2 825.08 629.61 731.92 
PTT3 939.48 160.87 710.61 
PTT5 834.48 690.29 843.95 
Overall TCE Detected 
[mL] 834.00 515.00 749.57 
Volume spilled [mL] 2000.00 2000.00 2000.00 
% Relative Error [RE] 58.30 74.25 62.52 

 
The overall amount is 834.48 mL [arithmetic], 515.00 mL [geometric] and 749.57 mL [WDI]. If 
we compare this amount with the spilled TCE [2000 mL] we have underestimations of 58.3%, 
74.25% and 62.25% with the actual spill. 
 

 
Figure 14.17: Breakthrough curves from the multi-tracer test [PTT5, Port 5]. 
 
 PTT5 incorporated a suite of three partitioning tracers: 2M1B, 24DM3P, and 1-Hex and a 
non-partitioning tracer, bromide. Based on figure 14.17, we can see the 3 different estimations 
using the 3 partitioning tracers. It is possible to observe that every tracer has a different 
retardation factor, which it is based on the fact that every tracer has a different arrival time 
[vertical solid lines]. The tracer that reported the largest retardation [compared with the Br- 
BTC] was 24DM3P. 
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Tables 14.20 and 14.21 report the estimations based on every pair of tracers by analyzing 
the data of one PT and the bromide separately. Table 14.20 shows the estimates of NS  and TCE 
volume based on 24DM3P and Br. Here the amount of TCE detected is more than 3 times lower 
[269.11 mL] than the arithmetic mean TCE detected by using 2M1B [834.48]. 
 A similar result was obtained by using 1-Hex [Table 14.21], the alcohol with the largest 
KNW

 The saturations range from 0.003% to 1.57% with the arithmetic mean of 0.71%, a 
geometric mean 00049.with a variance of 4E-5. The volumes detected via arithmetic, geometric 
and WDI are 332.16, 231.12 and 325.75 mL with variances of 80,871.76 for the arithmetic and 
geometric mean approaches and 656.64 for the WDI. All of them underestimate the spill by 
83.39 %, 88.44% and 83.71%. 

 and therefore the greatest retardation. However, non-equilibrium is reflected in the under 
estimation. The average TCE volume was 332.16 mL which is almost 3 times lower than the 
amount detected by 2M1B. 

 The 1-Hex estimations were calculated using the NWK of Dugan et al [2003] since batch 
test for 1-Hex and TCE were not conducted for this work. From all the results described for SB 
1-2 it can be seen that the temporal moment analysis method does not provide an accurate 
estimate of TCE saturation and the corresponding volume. In summary we found that: 

• Estimation via MOM varies from sampling port to sampling port from individual tests 
[Tables 14.15 to 14.18]. 

• The overall average saturations and volumes vary from test to test [Tables 14.15 to 14.18] 
resulting in underestimations of the saturation and volume of TCE. 

• The overall average value from all PTTs, based in bromide and 2M1B, showed a relative 
error [based on the arithmetic approach] of 58.30% [Table 14.19]. 

• For PTT5, the estimations based on the three different tracers vary substantially [Table 
14.19, 14.20 and 14.21]. 

• The better results were found for the lowest partitioning tracer [2M1B], Table 14.19 [834 
mL], followed by the 1-Hex estimation, the middle partitioning tracer [332.16 mL] 
ending with the biggest partitioner, 24DM-3P [231.12 mL]. 

• The cause of this low detection was mainly due to the fact that TCE migrated to the 
bottom of SB 1-2 and therefore was out of the swept zone of the partitioning tracer test. 
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Table 14.20: Summary of PTT 5 [2, 4DM3P_Br]. 
PTT5 Port R  NS  VTCE V [mL] TCE [mL] - WDI 
 41 1.2244 0.0035 165.79 14.85 
 3 1.2179 0.0034 161.02 11.74 
 4 1.2181 0.0034 161.16 14.60 
 11 1.0228 0.0004 16.88 1.73 
 42 1.8912 0.0139 651.61 71.98 
 17 1.0832 0.0013 61.61 6.09 
 30 1.2562 0.0040 189.22 21.40 
 28 1.2662 0.0042 196.59 14.32 
 35 1.3048 0.0048 227.75 20.41 
 47 2.1257 0.0175 820.10 73.12 
 45 1.4160 0.0065 308.47 12.86 
 32 1.0127 0.0002 1.67 0.25 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.3667 0.0057 269.11 263.11 
 Geomean 1.3344 0.0038 179.53 Variance 
 Variance 0.1143 0.00003 60549.72 609.18 

 
Table 14.21: Summary of PTT 5 [1-HEX_Br]. 

PTT5 Port R  NS  VTCE V [mL] TCE [mL] – WDI 
 41 1.0947 0.0048 226.82 20.55 
 3 1.0913 0.0047 218.64 15.95 
 4 1.0905 0.0046 216.84 19.65 
 11 1.0152 0.0008 36.49 3.31 
 42 1.3101 0.0157 734.82 66.57 
 17 1.0832 0.0042 199.40 18.07 
 30 1.0212 0.0011 50.88 4.61 
 28 1.1151 0.0059 275.47 24.96 
 35 1.1429 0.0073 341.36 30.93 
 47 1.4160 0.0209 980.39 87.41 
 45 1.1561 0.0079 372.63 33.76 
 32 1.0005 0.0000 1.32 0.12 
 Port R  NS  VTCE Σ [mL] VTCE [mL] 
 Average 1.1397 0.0071 332.16 325.75 
 Geomean 1.1343 0.0049 231.12 Variance 
 Variance 0.0146 0.00004 80871.76 656.64 

 
14.4.4 Core analysis-estimations of SN
 

 and DNAPL volumes 

14.4.4.1 SB 3-2 
 TCE saturation estimates were obtained from the cores and summarized in Table 14.22. 
We then interpolated the local TCE core saturations using the Groundwater Modeling System 
[GMS] software in an equally spaced grid of 25 x 50 elements. The input file was the saturation 
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estimates from the core analysis. Figure 14.18 shows a kriged estimate of TCE saturation in SB 
3-2 whereas Figure 14.19 shows a linear interpolation. 
 By inspecting the results, of the TCE saturations we could see that the values along the 
coring array are very low giving an arithmetic mean saturation of 0.00087. The values reported 
were introduced in the GMS file in order to conduct a clearer spatial distribution. Figures 14.18 
and 14.19 show how the TCE in SB 3-2 is located mostly in the middle of the SB, where the fine 
lens of F-75 is located. Visually, the coring results coincide with the photographs as far as the 
location of the highest concentrations of TCE.  However, the saturations estimated from coring 
are very low. 
 Even if our TCE estimations were too low to make a comparison with the assessed 
amount via PTTs, the information gathered gave an important insight on how the DNAPL was 
distributed inside the porous media. 
 
Table 14.22: Experimental values from core analysis - SB 3-2. 

Core x [in] y [in] TCE NS  Core x [in] y [in.] TCE NS  
1_1 5 3.5 1.1646E-03 4_1 21 3.5 2.3061E-06 
1_2 5 6.75 5.1777E-05 4_2 21 6.75 1.2630E-03 
1_3 5 10 3.2545E-06 4_3 21 10 8.1497E-06 
1_4 5 13.25 3.6038E-06 4_4 21 13.25 1.4596E-05 
1_5 5 16.5 1.1180E-05 4_5 21 16.5 1.3910E-05 
2_1 10 3.5 1.8786E-06 5_1 26 3.5 6.2327E-06 
2_2 10 6.75 1.0859E-02 5_2 26 6.75 2.8763E-04 
2_3 10 10 1.7998E-06 5_3 26 10 1.8142E-06 
2_4 10 13.25 1.5805E-07 5_4 26 13.25 1.7264E-06 
2_5 10 16.5 7.7776E-06 5_5 26 16.5 1.4064E-05 
3_1 15 3.5 2.9508E-06 6_1 31 3.5 6.2803E-06 
3_2 15 6.75 1.2408E-02 6_2 31 6.75 1.4805E-05 
3_3 15 10 1.9712E-05 6_3 31 10 2.3784E-06 
3_4 15 13.25 3.1509E-06 6_4 31 13.25 6.0959E-06 
3_5 15 16.5 3.0145E-06 6_5 31 16.5 1.2669E-05 
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Figure 14.18: Kriged core TCE saturation estimates using GMS. 
 

 
Figure 14.19: Linear interpolation of core TCE saturation estimates using GMS. 
 
14.4.4.2 SB 1-2 
 TCE saturations were estimated from the cores [Table 14.23] and interpolated contour 
plots of the TCE core saturations on SB 3-2 were created with GMS in an equally spaced grid of 
25x50 elements. In the same spirit of the previous section Figures 14.20 [Inverse distance 
weighted interpolation of the TCE saturation] and 14.21 [linear interpolation of TCE saturation] 
shows the location of the mass of TCE in the box. By inspecting the TCE mass counter plots 
generated for SB 1-2, it is possible to see that the TCE migrated to the bottom of SB 1-2. A 
photograph of the TCE architecture in SB 1-2 is shown in Figure 14.22. 
 The average saturation from the interpolation based on the core samples is 0.0028 which 
is lower than the saturation estimate from PTTs. More work has to be developed refining the 
coring technique for future work. Regardless, these results collectively suggest that high 
resolution coring, even if the core holes are relatively closely spaced and the standard 
interpolation of those results could lead to severe underestimations of DNAPL saturations. 
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Table 14.23: Experimental values from core analysis from SB 1-2. 
Core x [cm] z [cm] TCE NS  Core x [cm] z [cm] TCE NS  
1   2 15.71625 12.3825 3.18E-06 7   2 80.48625 12.3825 0.000217 
1   3 15.71625 20.6375 1.11E-06 7   3 80.48625 20.6375 0.006331 
1   4 15.71625 28.8925 1.11E-06 7   4 80.48625 28.8925 0.00128 
1   5 15.71625 37.1475 1.22E-06 7   7 80.48625 53.6575 6.63E-06 
1   6 15.71625 45.4025 1.00E-06 7   8 80.48625 61.9125 1.14E-05 
2   1 28.41625 4.1275 2.25E-05 8   1 94.45625 4.1275 0.012636 
2   2 28.41625 12.3825 6.95E-07 8   2 94.45625 12.3825 3.85E-05 
2   3 28.41625 20.6375 8.58E-07 8   3 94.45625 20.6375 3.20E-05 
2   4 28.41625 28.8925 6.73E-07 8   4 94.45625 28.8925 4.16E-05 
2   5 28.41625 37.1475 5.27E-07 8   5 94.45625 37.1475 0.007091 
2   6 28.41625 45.4025 6.36E-07 8   6 94.45625 45.4025 1.15E-05 
3   1 36.03625 4.1275 5.16E-05 9   1 102.0763 4.1275 0.019093 
3   2 36.03625 12.3825 6.11E-06 9   2 102.0763 12.3825 0.003568 
3   3 36.03625 20.6375 1.68E-06 9   3 102.0763 20.6375 2.47E-06 
3   4 36.03625 28.8925 7.76E-07 9   4 102.0763 28.8925 0.000105 
3   5 36.03625 37.1475 1.44E-06 9   5 102.0763 37.1475 3.02E-05 
3   6 36.03625 45.4025 1.28E-06 9   6 102.0763 45.4025 3.68E-06 
4   1 48.73625 4.1275 0.013373 9   7 102.0763 53.6575 2.39E-06 
4   2 48.73625 12.3825 2.31E-06 10   1 114.7763 4.1275 0.006814 
4   3 48.73625 20.6375 1.44E-06 10   2 114.7763 12.3825 0.000489 
4   4 48.73625 28.8925 8.44E-07 10   3 114.7763 20.6375 0.003702 
4   5 48.73625 37.1475 1.23E-06 10   4 114.7763 28.8925 3.08E-05 
4   6 48.73625 45.4025 2.19E-06 10   5 114.7763 37.1475 1.11E-05 
4   7 48.73625 53.6575 1.46E-06 10   6 114.7763 45.4025 1.24E-05 
5   1 56.35625 4.1275 0.005145 11   1 122.3963 4.1275 0.074713 
5   2 56.35625 12.3825 3.84E-05 11   2 122.3963 12.3825 0.008387 
5   3 56.35625 20.6375 4.41E-06 11   3 122.3963 20.6375 0.010679 
5   4 56.35625 28.8925 3.96E-06 11   4 122.3963 28.8925 1.37E-05 
5   5 56.35625 37.1475 3.11E-06 11   5 122.3963 37.1475 7.49E-06 
5   6 56.35625 45.4025 3.56E-06 11   6 122.3963 45.4025 3.05E-06 
6   1 70.32625 4.1275 0.004832 12   1 135.0963 4.1275 0.01644 
6   2 70.32625 12.3825 1.99E-05 12   2 135.0963 12.3825 3.18E-05 
6   3 70.32625 20.6375 0.000637 12   3 135.0963 20.6375 4.01E-06 
6   4 70.32625 28.8925 5.61E-06 12   4 135.0963 28.8925 2.12E-05 
6   5 70.32625 37.1475 3.60E-06 12   5 135.0963 37.1475 2.46E-05 
6   6 70.32625 45.4025 0.000112 12   6 135.0963 45.4025 1.02E-05 
6   7 70.32625 53.6575 2.12E-06         
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Figure 14.20: Inverse distance weighted interpolation of core TCE saturation values. 
 

 
Figure 14.21: Linear interpolation of core TCE saturation values. 
 

 
Figure 14.22: Picture of the TCE distribution in SB 1-2. 
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14.5 DISCUSSION  
 
14.5.1 Influence of partitioning coefficient on saturation estimates  
 The estimates from the multi tracer experiment in SB 1-2 resulted in different TCE 
saturation estimates. Similar results were observed by Moreno-Barbero et al. [2006], Brooks et 
al. [2002] and Imhoff et al. [2003]. These researchers found that smaller partitioning coefficient 
yielded more accurate results.  
 This is shown in the reported arithmetic TCE volumes: 834.48 ml [2M1B-TCE] for the 
lowest NWK , 332.16 ml for the middle partitioning alcohol [1-Hex-TCE] and the 263.11 ml 
[24DM-3P] for the highest partitioning tracer detected. Intuitively, we would think that with an 
increase in equilibrium partitioning coefficient [ NWK ], the saturation estimates would be closer 
to the actual amount since the retardation is proportional to NWK . However, this is not the case 
under non-equilibrium conditions. The MOM approach assumes an equilibrium partitioning 
coefficient. 
 At early times, when the tracers are injected, the partitioning coefficients are lower than 
the values obtained for the equilibrium batch tests exhibiting a kinetic behavior. Figure 14.23 
[after Moreno-Barbero et al, 2006], shows how at early times, the tracer with the highest 
partitioning coefficient yields very low values compared with its equilibrium value. However, 
with time the partitioning coefficient approaches the equilibrium value. We also see that this 
behavior is accentuated when NWK  is larger.  

The use of the equilibrium coefficient could introduce significant errors in the mass 
estimation when the partitioning coefficient is high and the contact time between the tracer pulse 
and DNAPL is less than the time required to achieve equilibrium partitioning. In general, the 
results of the MOM in terms of the detected DNAPL volume [with the exception of the overall 
results on SB 3-1], were low.  
 Table 14.24 reports the partitioning coefficients [ NWK  ] computed using equation 14.2 
from the average values of the TCE saturations [ NS ] and the retardation [ R ] obtained on every 
PTT conducted in the three SBs studied. The results give us an indication of whether equilibrium 
conditions are achieved or not for each tracer test. For SB 3-1, reported values were very similar 
to the equilibrium coefficient for 2M1B. For SB 3-2, the NWK  values vary more than those 
determined from SB 3-1. However the NWK  values from the PTT are close to the equilibrium 
value of 3.71. For SB 1-2, the results do not vary as much as SB 3-2 for 2M1B. Likewise, the 1-
Hex tracer showed an average experimental partitioning coefficient [19.87] that is close to the 
equilibrium [19.5] value reported in Dugan et al. [2003]. In contrast the partitioning tracer with 
the highest NWK , 24DM3P, revealed the largest discrepancy [63.4] from its equilibrium value 
[71.3], which signifies that the tracer partitioning did not reach equilibrium conditions. These 
computations are not conclusive but imply the need for further research. 
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Table 14.24: KNW-PTT vs. KNW 

Tracer 
equilibrium. 

2M1B 
SB 3-1 NWK -PTT NWK  equilibrium 
PTT1 3.84 3.71 
PTT2 3.80  
PTT3 3.81  
PTT4 3.78  
PTT5 3.81  
PTT6 4.19  
SB 3-2 NWK -PTT  
PTT1 3.33  
PTT2 4.00  
PTT3 3.88  
PTT4 2.83  
SB 1-2 NWK -PTT  
PTT1 3.51  
PTT2 3.52  
PTT3 3.83  
PTT5 3.52  
Tracer 1-Hex 
SB 1-2 NWK -PTT NWK  equilibrium 
PTT5 19.87 19.5 
Tracer 24DM3P 
SB 1-2 NWK -PTT  NWK  equilibrium 
PTT5 64.31 71.3 
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Figure 14.23: Effective partition coefficient [Kpe] of tracers with DNAPL [PCE]. 
 
14.4.2 Influence of DNAPL architecture on saturation estimates 
  
14.4.2.1 SB 3-1 
 The architecture of the spill plays an important role on saturation estimates. For example, 
for SB 3-1 the spill had two important pathways, one near the middle of the SB and the other at 
the right half of the SB. This distribution could help to achieve a greater interaction between the 
tracers and the DNAPL when changing the flow directions from test to test. SB3-1 had the 
lowest amount of TCE released but it resulted in a residual phase source zone. According to 
Moreno-Barbero et al. [2006], the PTT approach can determine TCE at residual saturation but 
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does not provide reliable estimates when it exists as pools. This is likely the reason of the high 
overall saturation estimates with the three approaches [arithmetic, geometric and IDW]. In this 
sandbox, the geometric mean provided the best estimate of DNAPL volume. 
 
14.4.2.2 SB 3-2 
 A more uniform spill was achieved but the formation of large pools jeopardized the 
results. This also was found by other researchers. Rao et al. [2000] and Moreno-Barbero et al. 
[2006] mentioned that DNAPL pools compromises the reliability of the PTTs and this is 
reflected in the outcome of the MOM estimates. DNAPL pools are not homogeneous. These 
arrangements contain various zones that have associated diverse saturations [Moreno-Barbero et 
al. 2006]. Therefore, our estimates can severely under or overestimate the DNAPL volume in the 
majority of the cases that we have examined. Pools have high saturations on their lower portions, 
and the tracer interaction is limited by the interface thickness between the DNAPL and the tracer. 
This results in the tracer traveling on the outer portions of the DNAPL [Moreno-Barbero et al. 
2006]. 
 
14.4.2.3 SB 1-2 
 In this case, the TCE reached the bottom of the SB and the DNAPL was undetectable 
because it resided outside any possible sampling intervals [below the bottom row of ports]. The 
12/20 sand triggered the migration to the bottom of the SB. The consequence was that a 
significant amount of TCE was not accounted for with the MOM estimates. Figure 14.24 shows 
how the TCE penetrated the silicone seals of SB 1-2. This picture was taken when we were 
refurbishing SB 1-2 in order to create SB 1-3. This also indicates that TCE mass losses occurred 
in SB 1-2.  Some TCE was trapped in the silicone. 
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Figure 14.24: Penetration of dyed TCE into the silicone seals of SB 1-2. 
 
14.4.3. Influence of flow and sampling on saturation estimates 
 The variability of the estimates between ports can be explained by the diverse flow paths 
experienced by the tracers within the porous media. Since we have low hydraulic conductivity 
blocks inside our porous media, the flow can be deflected or by-passed by the tracers resulting in 
some ports having preferential locations for sample collection. 
 When the sampling and flowing scheme were repeated, PTT2 and PTT5 in SB 1-2, the 
experimental estimates did vary in less than 2% which tells us: 1] that the detection was 
repeatable and 2] there were not important TCE mass losses. The sampling scheme [Nelson et 
al., 1999] is critical and the experience gained in these tests was of incredible value. 
 
14.4.4 Influence of TCE mass loss due to dissolution on saturation estimates 
 In order to estimate the TCE mass loss during each PTT conducted, a simplified 
computation was carried out by assuming that the TCE [and its concentration] is uniformly 
distributed within the synthetic aquifer. The spilled TCE mass [volume spilled times the TCE 
density] for each test was divided by the void volume of the synthetic aquifer in order to 
compute the TCE concentration. The TCE mass loss is then computed as: 
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 * *TCE

TCE

C t QTCEloss
ρ

=   [14.17] 

 
where CTCE is the TCE concentration, t is the length of each PTT, Q is pumping rate, ρTCE

 

 is 
TCE density. By summing the TCE mass from one PTT to the next, one can then compute the 
cumulative TCE loss as: 

 ∑−=
n

i iinitialeLossCummulativ TCElossTCETCE   [14.18] 
 
where iTCEloss  is computed using equation 14.17. Table 14.25 summarizes the results of these 
calculations. It reveals that TCE mass loss for PTT in SB3-1 was on the order of 2 mL, while for 
SB 3-2 it was 7.5 mL and for SB 1-2, it was 15 mL. 
  
Table 14.25: TCE mass loss computations. 

SB 3-1       

PTT 
 
time[s] 

TCEloss  [mL] per 
PTT 

Initial TCE [mL] per 
PTT 

1 6000 0.39868 25.00 
2 6000 0.39868 24.60 
3 6000 0.39868 24.20 
4 6000 0.39868 23.80 
5 5000 0.33224 23.41 
6 5000   23.07 
SB 3-2     

PTT 
 
time[s] 

TCEloss  [mL] per 
PTT 

Initial TCE [mL] per 
PTT 

1 6400 2.52999 125.00 
2 6200 2.45093 122.47 
3 6400 2.52999 120.02 
4 6400   117.49 
SB 1-2     

PTT 
 
time[s] 

TCEloss  [mL] per 
PTT 

Initial TCE [mL] per 
PTT 

1 14000 4.85755 2000.00 
2 14000 4.85755 1995.14 
3 14000 4.85755 1990.28 
4 18000   1985.43 
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15. HYDRAULIC AND PARTITIONING TRACER 
TOMOGRAPHY FOR TRICHLOROETHYLENE SOURCE 
ZONE CHARACTERIZATION: SMALL-SCALE SANDBOX 
EXPERIMENTS 
 
15.1. INTRODUCTION 

Dense Nonaqueous Phase Liquids [DNAPLs] are prevalent at a large number of sites 
throughout the world. The high densities, low interfacial tensions, and low viscosities of 
halogenated solvents can lead to deep DNAPL penetration [Pankow and Cherry, 1996]. In 
porous media, much of the DNAPL mass remains in the groundwater as persistent source zones.  
The variable release history, unstable flow, and geologic heterogeneity make the distribution of 
DNAPL in the source zone complex, where DNAPLs exist as residuals or as pools of pure phase. 
Without remediation, these source zones can contribute to long-term groundwater contamination 
for decades to centuries. The spatial distribution of DNAPLs in the source zone needs to be 
characterized so that efficient active or passive remediation schemes [Alvarez and Illman, 2006; 
Illman and Alvarez, 2009] can be designed. 

To determine the extent of DNAPL contamination, the most common methods are the use 
of groundwater monitoring wells and soil sampling [Pankow and Cherry, 1996; Cohen and 
Mercer, 1993].  The use of fully screened monitoring wells, however, may only imply the likely 
presence of DNAPLs because groundwater contaminant concentrations near DNAPLs are 
usually less than their aqueous solubility.  Furthermore, the usage of fully screened monitoring 
wells can result in errors on orders of magnitude in assessing DNAPL distributions because the 
measurement is integrated over the length of the screened interval. 

One alternative is to directly sample groundwater and soil materials by obtaining cores 
using split spoon samplers or direct push methods [Kram et al., 2001]. If a sufficient number of 
samples are collected, the approach could potentially produce high resolution records of DNAPL 
concentrations from groundwater and soil samples down each borehole. The organic 
contaminants are commonly extracted from the soil with organic solvents such as methylene 
chloride and the contaminants present are then determined with a gas chromatograph. If a 
sufficient number of samples are available in multiple boreholes, a three-dimensional distribution 
of DNAPL saturations can then be obtained through various interpolation techniques.  However, 
applications of the method to real-world problems are limited because the large number of 
samples is cost-prohibitive. 

Other techniques to characterize DNAPL source zones include visual inspections of drill 
cores, soil vapor analysis, geophysical surveys, use of radon abundance data, and partitioning 
tracer tests [Kram et al., 2001]. In particular, partitioning tracer tests have been used as a tool to 
provide a spatially integrated measure of residual DNAPL volume in the flow without causing 
disturbances to the source zone domain [Jin et al., 1995; Nelson and Brusseau, 1996; Annable et 
al., 1998]. Partitioning tracer tests are appealing from the standpoint of minimizing drilling in the 
source zone because the tracer injection and samples collection wells can be located outside of 
the DNAPL source zone. These tests are performed through the comparison of the transport 
behavior of conservative and partitioning tracers injected across a suspected DNAPL source 
zone.    

The partitioning tracer method relies on the reaction of tracers with DNAPLs. In 
particular, transport of tracers through the source zone causes partitioning into and out of 
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DNAPLs which results in the retardation of tracer arrival at monitoring wells in comparison to 
conservative tracers. The resulting breakthrough curves are then typically analyzed using a 
temporal moment method to compute the average DNAPL saturation. Despite the success of the 
approach demonstrated through several field studies [Nelson and Brusseau, 1996; Annable et al., 
1998; Young et al., 1999; Cain et al., 2000; Brooks et al., 2002], the temporal moment approach 
is not capable of obtaining information on the distribution of DNAPLs because the approach 
does not consider the flow paths of the tracer. Despite its shortcomings, the second and third 
temporal moments of the breakthrough curves can be used to estimate the statistical parameters 
characterizing the DNAPL spatial distribution [Jawitz et al., 2003]. Recent research also 
suggests that the partitioning tracer tests may be of limited utility in detecting high saturation 
zones [i.e., pools], and can be affected by nonequilibrium effects if the partitioning tracer utilized 
has a high partitioning coefficient [Moreno-Barbero and Illangasekare, 2006]. 

To our knowledge, there are only few studies that have shown the estimation of DNAPL 
saturation distributions through interpretation of partitioning tracer tests.  For example, a 
stochastic method was developed to estimate spatial distribution of NAPL residual content from 
tracer breakthrough curve moments [James et al., 2000], and an inverse method was developed 
to locate DNAPL pools under steady flow conditions [Sciortino et al., 2000]. A distributed-
parameter extended Kalman filter approach was then developed for estimating spatially 
distributed residual saturation of NAPL and Darcy flux to predict the movement of a partitioning 
tracer plume in a three-dimensional heterogeneous aquifer [Zhang and Graham, 2001]. 
Moreover, a streamline-based inverse method for analyzing partitioning tracer tests was 
developed to estimate the three dimensional spatial variation of NAPL saturation through the 
analogy between streamlines and seismic ray tracing [Datta-Gupta et al., 2002]. Most recently, 
an analytical-numerical inverse modeling approach that utilizes concentration profiles obtained 
from a TCE plume to predict the distribution of the TCE in a vertical plane within the source 
zone has been developed [Dridi et al., 2009]. As our literature survey shows, interpretive 
techniques developed are promising in delineating residual DNAPL distributions in the 
subsurface. However, existing techniques have not incorporated potentially useful hydraulic head 
data during the test and prior knowledge of hydraulic heterogeneity. 

Recently, the Hydraulic/Partitioning Tracer Tomography [HPTT] was developed to 
characterize DNAPL source zones [Yeh and Zhu, 2007]. The HPTT technology relies on the 
fusion of data from hydraulic tomography [HT] and partitioning tracer tomography [PTT]. HT is 
similar in concept to the Computerized Axial Tomography [CAT] scan technology, but the 
energy source is a change [decrease or increase] in hydraulic head achieved through water 
pumping or injection, and the sensors [pressure transducers] detect the arrival of head change at 
multiple locations throughout the source zone. Hydraulic head monitored at numerous 
observation ports are then used to quantify the spatial distribution of hydraulic parameters, their 
connectivity, and uncertainties associated with the Sequential Successive Linear Estimator 
[SSLE] algorithm developed for steady state [SSHT] and transient hydraulic tomography [THT]. 
To date, the technique has been tested using synthetic simulations [Yeh and Liu, 2000; Zhu and 
Yeh, 2005; Zhu and Yeh, 2006; Ni et al., 2009], laboratory sandbox experiments [Liu et al., 2002; 
Illman et al., 2007; 2008; Liu et al., 2007; Yin and Illman, 2009; Illman et al., 2010] and in the 
field [Straface et al., 2007; Illman et al., 2009; Berg and Illman, 2009]. 

PTT is similar in concept to HT, but the source is a partitioning tracer that is introduced 
at some injection point and the signal is the corresponding breakthrough curve that is obtained at 
multiple sampling points. Additional partitioning tracer tests are then sequentially conducted by 
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injecting the tracers at other locations and the corresponding breakthrough curves are obtained at 
various sampling points. Because the partitioning tracers sweep through the DNAPL source zone 
from several different directions, there is an opportunity to see the source zone from different 
directions yielding additional information on saturation distributions that cannot be obtained 
from a single partitioning tracer test or through its interpretation using a temporal moment 
method. 

The main advantage of conducting HT first and then conducting PTT is that the K 
heterogeneity can first be captured through HT. This then allows one to conduct a partitioning 
tracer test that can be better controlled hydraulically leading to an improved sweep of the 
DNAPLs in the source zone. In particular synthetic simulations have shown [Yeh and Zhu, 2007] 
that the accurate knowledge of K distribution within the source zone is critical in obtaining an 
accurate estimate of DNAPL saturation distribution. In addition, when the partitioning tracer 
tests are conducted in a tomographic manner, more detailed information on DNAPL saturations 
can be obtained in comparison to a traditional partitioning tracer test. 

Our ultimate goal is to validate the HPTT approach in the field to image DNAPL source 
zones for hydraulic heterogeneity and DNAPL saturations as well as their uncertainties. 
However, it is necessary that the approach is first tested in the laboratory in which the source 
zone characteristics are well known and experimental conditions can be fully controlled. 
Therefore, the main goal of this study is to independently evaluate the performance of the HPTT 
algorithm [Yeh and Zhu, 2007] in a synthetic aquifer constructed in a laboratory sandbox. 
Specific objectives of the study include imaging of K heterogeneity of a synthetic sandbox 
aquifer through hydraulic tomography and to characterize the TCE source zone through HPTT 
and direct sampling of cores. We compare the K and TCE saturation distributions [or K and TCE 
saturation tomograms from now on] to the actual position of the TCE source zone visually 
obtained and to results from geostatistical analysis of core samples. 

 
15.2 CONSTRUCTION OF HETEROGENEOUS AQUIFER AND ITS HYDRAULIC 
CHARACTERIZATION 
 
15.2.1 Sandbox design and construction 

A synthetic TCE source zone was constructed in a small sandbox to validate the 
hydraulic and partitioning tracer tomography algorithm.  The sandbox is 91.44 cm in length, 61 
cm in height, and has a thickness of 1.9 cm. The height of the sand in the tank is 45.7 cm.  The 
small thickness of the sandbox was to enable the visual comparison of dyed TCE spills to 
resulting TCE saturation tomograms. The sandbox was constructed with ¾” thick Plexiglas. The 
sandbox has solid “no-flow” boundaries on the left and right ends and at the bottom. The top 
boundary is open to the atmosphere in which water was allowed to pond on top of the sand. 

The sandbox was equipped with 30 water sampling and pressure monitoring ports that 
could also be utilized for water injection and extraction [Figure 15.1]. Unlike previous sandboxes 
built by our group [Illman et al., 2007; 2010], there were no wells completed in the synthetic 
aquifer.  Instead, a circular piece of stainless steel mesh was placed into a recessed circle on the 
inside wall covering the port hole.  The screen held the sand in place and allowed water flow.  
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Figure 15.1: Schematic diagram of the sandbox showing sand types, water sampling, and 
pressure monitoring ports. Two rectangular boxes indicate locations of sand lenses consisting of 
#14 and F-75 sands.  

15.2.2 Porous media used to pack the sandbox 
 Porous media chosen for packing the sandbox was based on two criteria: 1] to create a 
simplified heterogeneity pattern with sufficient contrast K to allow hydraulic tomography to 
image the various K zones and 2] to create a low K zone in the central part of the source zone to 
cause infiltrating TCE from the top to pool on this layer. Our goal was to create a realistic 
looking TCE source zone through infiltration in the central part of the sandbox so that 
partitioning tracer tests can be conducted across the central zone. Based on these criteria, we 
selected three commercially available sands [F-75, #14, and 20/30]. The F-75 sand is the finest 
sand [d50 = 0.174 mm] among the three sand types and was carefully packed as a single 
horizontal lens within a coarse matrix of 20/30 sand [d50 = 0.750 mm] [Figure 15.1]. The #14 
sand is a medium grained sand [d50 = 0.457 mm] and was packed as short layer above the F-75 
layer. The synthetic aquifer has a total volume of 7,985.02 cm3 and a corresponding void volume 
of 2,635.06 cm3

 A schematic diagram of the 30 sampling ports and pressure monitoring ports as well as 
the sand distribution is shown on Figure 15.1. Table 15.1 summarizes the K of the sands 
previously determined [Illman et al., 2007; Liu et al., 2007; Illman et al., 2010] using an 
empirical model [Shepherd, 1989] and a constant head permeameter [Klute and Dirksen, 1986]. 

 yielding an average porosity of 0.33. 

 
Table 15.1: Characteristics of porous media used to create a synthetic heterogeneous aquifer. 
 Sand type d50 K [cm/s] Shepherd [mm] K [cm/s] Darcy 
20/30 0.750 1.03 × 10 3.12 × 10-1 -1 
#14 0.457 4.53 × 10 1.21 × 10-2 -1 
F75 0.174 9.22 × 10 1.73 × 10-3 -2 
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15.2.3 Hydraulic characterization prior to TCE spill 
 To characterize the synthetic heterogeneous aquifer in the sandbox, we conducted dipole 
cross-hole tests prior to spilling the TCE. In the dipole cross-hole test, a mass balance of water 
injected and extracted was maintained using a peristaltic pump by connecting the injection and 
extraction ports in a single loop.  Nine pairs of ports consisting of tests 1 through 9 [e.g., test 1: 
injection at port 1 and extraction at port 30, from now on I1/E30; test 2: I2/E29; test 3: I3/E28; 
test 4: I4/E27; test 5: I5/E26; test 6: I6/E25; test 7: I7/E24; test 8: I12/E19; and test 9: I13/E18] 
were chosen for these dipole cross-hole tests based on symmetry and coverage of the aquifer 
features [Figure 15.1]. Nine additional tests [tests 10-18] with the injection and extraction ports 
reversed were later used to evaluate the computed K tomogram [i.e., test 10: I30/E1; test 11: 
I29/E2; test 12: I28/E3; test 13: I27/E4; test 14: I26/E5; test 15: I25/E6; test 16: I24/E7; test 17: 
I19/E12; and test 18: I18/E13]. Injection and extraction rates for all dipole cross-hole tests 
averaged 150 mL/min.  Prior to each cross-hole pumping test, all pressure transducers were 
calibrated to ensure accurate data collection. We then collected hydraulic head data for several 
minutes in all pressure transducers to establish a static, initial condition. After establishment of 
static conditions, we pumped from each port using a peristaltic pump, while taking head 
measurements in all 30 ports. For each test, pumping continued until the development of steady 
state conditions, which was determined by observing the stabilization of all head measurements 
on the data logger connected to a computer. After reaching steady state, the pump was shut off to 
collect recovery head data until its full recovery. Transient head data were also collected, but in 
this study, we only utilized steady-state head data for steady state hydraulic tomography to 
estimate a K tomogram. 

 
15.3 CREATION OF TCE SOURCE ZONE 
 A TCE source zone was then created in the synthetic aquifer by injecting 125 mL of TCE 
[> 99.5% purity, Sigma-Aldrich] dyed with Sudan IV [Sigma-Aldrich] using a syringe 
approximately 5 mm beneath the soil surface as shown on Figure 15.1. To achieve a constant 
injection rate, we used a peristaltic pump and the TCE was injected a rate of 12.5 ml per minute 
over 10 minutes. After commencing the injection, the TCE quickly infiltrated through the 20/30 
sand, slowly moved through the #14 sand layer, and ponded on the F-75 sand as shown on 
Figure 15.2. The presence of the #14 sand layer apparently caused some spreading of the TCE 
resulting in a wider zone of contamination than initially anticipated. Figure 15.2 is photograph of 
the TCE distribution after no additional movement of the TCE infiltration front was observed. 
This figure also shows that some of the TCE moved downwards off the F-75 layer on the left 
side approximately 5 cm into the 20/30 sand. The injection of TCE in this sandbox resulted in a 
sandbox aquifer-averaged TCE saturation [SN] of approximately 5% by assuming a porosity of 
0.33 typical of these sands, which is equivalent to a volumetric TCE content of 0.0165. 
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Figure 15.2: Photograph of the TCE source zone after TCE migration has stopped. 

 
15.4 CHARACTERIZATION OF TCE SOURCE ZONE 
 
15.4.1 Determination of partitioning coefficient through batch tests 

In order to determine TCE saturation from partitioning tracer tests, the partitioning 
coefficient [KNW

Six partitioning-tracer stock solutions of varying concentrations were prepared 
volumetrically with Hamilton gas-tight syringes in 250-mL volumetric flasks.  Purified water 
[Barnstead Nanopure] was used to dilute the aqueous tracer stock solutions to the six different 
concentrations: 50, 100, 200, 400, 800, and 1600 mg/L of 2M1B.  The 6 different levels were 
prepared in pre-cleaned 20mL EPA/ VOA glass vials with Teflon-lined septa [EnviroTech].  
Each sample set consisted of triplicate vials containing TCE and the aqueous 2M1B tracer 
solution and a control group of triplicate vials containing aqueous tracer solution only.  Twenty 
mL of aqueous tracer solution was dispensed into each vial using a 10 mL pipette followed by 
2.5 mL injection of TCE with a gas-tight syringe. The vials were immediately capped to avoid 
volatilization to the atmosphere. 

] of the tracer and TCE is needed. Methods to estimate partitioning coefficients 
have been developed using UNIFAC [Wang et al., 1997] and on defining equivalent alkane 
carbon number for each contaminant in a DNAPL and the tracers [Dwarakanath and Pope, 
1998].  Here, we estimated the partitioning coefficients through batch tests. The partitioning 
tracer selected for this study was 2-methyl-1-butanol [2M1B, purity > 99%; Sigma-Aldrich]. 

 The 25mL vials were allowed to equilibrate on a platform shaker [Innova 2000] at 150 
rpm and room temperature for 24 hours, sufficient to obtain equilibrium.  Aliquots with an 
aqueous phase volume of 1.5 mL were withdrawn from the 25mL vials with minimal disturbance 
using a gas-tight syringe and transferred to 1.5 mL glass GC auto sampler vials with Teflon septa 
and analyzed for 2M1B concentrations using a gas chromatograph [Shimadzu GC 2010] with an 
auto sampler [AOC-20i auto injector] equipped with a flame ionization detector [FID].  The GC-
FID method consisted of a Restek Stabilwax® capillary column [30 m, 0.32 mm ID, with film 
thickness of 1µm], helium as the carrier gas, zero-grade air, injection volume of 1 µL, and 
injector and FID temperatures of 200°C.  Also, a split ratio of 35:1 to vent excess water [steam] 
in the sample and a linear velocity of 50 cm/s were incorporated into the method. Four external 
calibration standards were prepared for 2M1B in deionized water at levels of 1, 10, 100, and 
1000 mg/L.  The calibration curve [R2 > 0.99] was created by injecting triplicates of water 
samples containing different concentrations of 2M1B. The batch test results were plotted on an 
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arithmetic plot and the partitioning coefficient [KNW

 

] for TCE-2M1B was estimated to be 3.54. 
This value compares favorably to those obtained by another research group [Dugan et al., 2003]. 

15.4.2 Partitioning tracer tests 
 Upon settlement of the TCE in the source area, we conducted 4 separate partitioning 
tracer tests. In each partitioning tracer test, a dipole flow field was created by injecting tap water 
at one port at a rate of 500 mL/min and extracting at another port at 450 mL/min.  A water mass 
balance was then achieved by setting 12 sampling lines at a cumulative rate of 50 mL/min.  
Achieving a mass balance was crucial because the 3 boundaries of the sandboxes had no-flow 
boundary conditions, while the top boundary was open to the atmosphere. Deviations in the mass 
balance would result in a rising or falling water level which we monitored with pressure 
transducers. Table 15.2 summarizes the injection, extraction, and sampling ports for each of the 4 
partitioning tracer tests. 
 
Table 15.2: Injection, extraction, and water sampling locations during partitioning tracer test 1 - 
4. 
Partitioning tracer test Injection/extration ports Sampling port 
1 30/1 2, 3, 4, 5, 6, 7, 13, 19, 25, 26, 27, 28 
2 26/6 1, 2, 3, 4, 5, 12, 13, 18, 24, 27, 28, 29 
3 1/30 3, 4, 5, 6, 12, 18, 24, 25, 26, 27, 28, 29 
4 18/13 1, 2, 3, 4, 5, 7, 19, 25, 26, 27, 28, 29 
 
 Once steady state flow conditions were reached in which the injection, extraction, and 
sampling rates all stabilized, a valve was switched on the injection line from water to a solution 
containing 2M1B as the partitioning tracer with a concentration of 500mg/L. Bromide was used 
as a conservative tracer with a concentration of 100 mg/L. The tracer solution was injected for 10 
minutes and then the valve was switched back to tap water. Separate sample sets were collected 
for bromide and 2M1B throughout the duration of the test from the 12 sampling ports. Crude 
estimates of the tracer travel time were obtained using Darcy’s law to estimate sampling times at 
each port. Water sampling from each one of the sampling lines was made possible with a 
manifold that fed the water samples into twelve 1.5 ml vials simultaneously. Thirty 2M1B 
samples and 20 bromide samples were collected from each of the 12 sampling lines during each 
partitioning tracer test for a total of 600 samples. Each tracer test lasted approximately 2 hours. 
 The 4 tracer tests were designed to maximize the contact of the tracer solution with the 
TCE source area. Each of the tracer tests was performed with different injection/extraction and 
water sampling schemes to sweep the tracers through the source zone from different directions in 
a tomographic fashion. During these experiments, nonaqueous phase TCE was observed to be 
stable. This means that we did not witness mobilization of TCE during the tracer tests despite the 
fact that water was injected and extracted during each tracer test. 

Water samples taken during each tracer test were separated and chilled in a refrigerator at 
4oC until sample analysis. Concentrations of 2M1B were determined using a procedure described 
earlier for the analysis of the batch test samples using the GC-FID.  One notable difference is the 
calibration sequence. Calibrations were made in each analysis sequence consisting of 12 
calibration injections [triplicates from each one of the 4 standards], 120 tracer samples, and 3 
quality control samples.  The quality control samples were vials filled with 100 mg/L standard 
and was analyzed after each set of 40 samples to ensure that the signal response of the machine 
remained accurate.  Methanol injections [blanks] were made in between sets of samples to 
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prevent carryover. We note that other researchers [Dugan et al., 2003] prepared calibration 
standards composed of the tracers in methanol. We used water instead of methanol to analyze the 
sample set more accurately, since our samples are aqueous that required calibration curves that 
fully represent the actual conditions of our samples. 
 The conservative tracer [Br] concentrations were determined using an ion chromatograph 
[IC] [Dionex ICS 2000] equipped with an AS40 auto sampler.  The IC analysis method consisted 
of an AS-18 4 mm column, EGC II KOH eluent generator with an eluent concentration of 
23mM, SRS-Ultra II 4mm suppressor with a current of 57 mA, DS6 heated conductivity cell 
with a cell temperature of 35°C, and a flow rate of 1 mL/min.  Four external calibration 
standards were prepared for bromide with 1000mg/L Fluka IC standard diluted with de-ionized 
water at levels of 1, 10, 100, and 200 mg/L.  The calibration plots were created by injecting 
triplicates of each calibration level and were linear [R2

 

 > 0.99].  Calibrations were made in each 
analysis sequence consisting of 12 calibration injections [triplicates of the 4 standards] followed 
by 80 tracer samples.  Clean up runs were made in between each standard and sample injection 
to prevent carryover by increasing the eluent strength to 50 mM and increasing the suppressor 
current to 124 mA for 8 minutes. 

15.4.3 Direct sampling of TCE saturation through coring 
 As soon as the partitioning tracer tests were completed, six core sampling tubes were 
inserted from the top of the sandbox to obtain independent estimates of TCE saturations to 
facilitate the comparison of TCE saturation estimates. In particular, 6 brass tubes were pushed 
vertically downward slightly offset from each of the six columns of sampling ports into the 
sandbox under fully saturated conditions until they reached the sandbox bottom. Then, bentonite 
was added to the top of the core to eliminate the empty space and the core tubes were plugged at 
the end with epoxy putty.  Once the epoxy putty was dried, the cores were then removed 
individually and cut into segments with a pipe cutter.  Each of the segments was capped on each 
end with a silicone plug and cooled in the refrigerator at 4°C until the samples were ready for 
sample preparation.  The core samples were collected from the core tubing segments and 
deposited into pre-labeled, pre-weighed 40 mL vials and capped with Teflon-lined septa caps. 
After this step, the vials were then weighed again and the mass of the vial containing the cap and 
sample was recorded. The vials were then filled to the top with methylene chloride and weighed 
again.  We then recorded the mass of the vial, along with the cap, sample and the methylene 
chloride. The volume of methylene chloride was calculated based on the mass differences and 
density of methylene chloride. The vials were placed on an Innova 2000 orbital shaker at 150 
rpm for 24 hours.  After shaking, the vials were weighed again and the volume of methylene 
chloride was corrected if any mass loss was observed.  Approximately 5 mL of the solution was 
extracted from each 40 mL vial and transferred to three 1.5 mL vials for GC analysis. 
 The GC samples were then analyzed via GC-FID with a 7-level triplicate calibration 
method consisting of standards of TCE in methylene chloride at levels of 1, 10,100, 500, 1,000, 
5,000 and 10,000 mg/L.  The sample TCE concentrations were recorded and the average and 
standard deviations from each set of 3 samples were calculated.  The mass of TCE in each core 
sample was calculated by multiplying the average sample by volume of liquid in the sample 
[assumed to be the volume of methylene chloride]. The mass was then converted to volume by 
dividing by the density of TCE. The core samples were then dried thoroughly by baking at 50° C 
to evaporate the methylene chloride and then at 105° C for 24 hours to remove any remaining 
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water in the core sample.  Total volume of the dried sample was determined by measuring in a 
25 mL graduated cylinder with 0.2 mL graduations.   
 The volume of solids in each sample was determined by placing the sample in a 25 mL 
graduated cylinder pre-filled with 12 mL of de-ionized water and measuring the displaced 
volume.  The void volume is then calculated by the total volume minus the solid volume. The 
TCE saturation of each sample was calculated using: 

 
voids

NAPL
Ni V

V
S =  [15.1] 

 
15.5 INVERSE MODELING OF DIPOLE CROSS-HOLE AND PARTITIONING 
TRACER TESTS 
 The hydraulic and partitioning tracer tomography analysis of the dipole cross-hole and 
partitioning tracer tests were conducted using the Sequential Successive Linear Estimator 
[SSLE] developed for HPTT [Yeh and Zhu, 2007]. The SSLE algorithm first analyzes data from 
the dipole cross-hole tests to estimate the K field and then the dipole partitioning tracer test data 
sequentially to delineate both the volumetric water content [θw] and volumetric TCE content [θN

 

] 
distributions. Note that the porosity is the sum of water content and TCE content. The general 
procedure for hydraulic and partitioning tracer tomography analyses is identical and the details to 
the algorithm are provided in the original publication [Yeh and Zhu, 2007]. Here, we provide a 
brief description of the inversion method. 

15.5.1 Description of algorithm 
 The inverse model assumes a steady flow field and the natural logarithm of K, θw, and θN 
[ln K, ln θw, and ln θN, respectively] are treated as a stationary stochastic process. The model 
additionally assumes that the mean and correlation structure of the K, θw, and θN fields are 
known, a priori. The algorithm is composed of two parts. First, the Successive Linear Estimator 
[SLE] is employed for each dipole cross-hole test to estimate a K tomogram. The estimator 
begins by cokriging the initial estimate of effective hydraulic conductivity [Keff] and observed 
heads collected in one pumping test during the tomographic sequence to create a cokriged, mean 
removed ln K [f, i.e., perturbation of ln K] map for the hydraulic tomography analysis. For the 
partitioning tracer tomography, the cokriging is done instead using the initial estimates of 
effective θw, and θN
 Cokriging does not take full advantage of the observed head values because it assumes a 
linear relationship [Yeh and Liu, 2000] between head and K, while the true relationship is 
nonlinear. To circumvent this problem, a linear estimator based on the differences between the 
simulated and observed head values is successively employed to improve the estimate. 
Analogous to inversion of head data, the partitioning tracer tomography utilizes the differences 
between the concentration measurements in a successive fashion to overcome the nonlinear 
relationships between concentrations, θ

 with the concentration data. 

w, and θN
 The second step is to use the hydraulic head data sets [or concentration data for PTT] 
sequentially instead of including them simultaneously in the inverse model thus the term, 
“Sequential Successive Linear Estimator” [SSLE] is used to describe the inverse algorithm 
hereon. In essence, the sequential approach uses the estimated K [or θ

. 

w, and θN for PTT] field 
and covariances, conditioned on previous sets of head measurements [or concentration 
measurements for PTT] as prior information for the next estimation based on a new set of 
pumping test data for HT and tracer test data for PTT. This process continues until all the data 
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sets are fully utilized. Modifications made to the code for this study include its ability to account 
for variations in the boundary conditions with each pumping test as they are sequentially 
included and implementing the modified loop scheme [Zhu and Yeh, 2005]. 
 
15.5.2 Inverse modeling of dipole cross-hole tests 
 To obtain a K tomogram from the available cross-hole pumping tests, we solve an inverse 
problem for steady-state flow conditions. The synthetic aquifer was discretized into 612 elements 
and 1332 nodes with element dimensions averaging 2.54 cm × 1.91 cm × 2.69 cm. The top 
boundary was set to be a constant head boundary while the other three sides were set as no flow 
boundaries. Input data to the inverse model include initial guesses for the effective hydraulic 
conductivity [Keff

2
ln Kσ = 0.3 cm/s], variance [ = 0.1] and the correlation scales [λx = 40.0 cm, λy 

= 1.91 cm and λz

For the steady state hydraulic tomography analysis, we selected 9 dipole cross-hole tests 
1- 9 and the corresponding steady-state head observations at the rest of 28 ports during each test 
as data sets. We elected to not use the head data from the injection and extraction ports from 
each test because those ports could be affected by skin effects [Illman et al., 2007]. Prior to the 
computation of the K tomogram with the SSLE algorithm, we pre-processed the hydraulic head 
data to remove noise. This is because previous efforts [Illman et al., 2008; Xiang et al., 2009] 
have shown that the signal-to-noise ratio can be critical in inverse modeling of cross-hole 
pumping tests.  

 = 5.0 cm], injection/extration rates [Q] during each dipole cross-hole test, as 
well as available point [small-scale, i.e., core, slug, and single-hole tests] measurements of K. 
For the SSHT analysis presented here no small scale data were used for the inverse modeling. 

 
15.5.3 Inverse modeling of dipole partitioning tracer tests 

After the computation of the K tomogram, we used the HPTT code to compute the TCE 
content tomogram within the laboratory aquifer. The TCE content tomogram was converted to a 
TCE saturation tomogram by dividing the TCE content tomogram by the porosity [0.33]. 

The model domain utilized for the inverse modeling of the partitioning tracers was 
identical to that for the steady state hydraulic tomography. Boundary conditions are also identical 
with the exception that the upper boundary is treated as a no flow boundary as oppose to a 
constant head boundary. The selection of no flow boundaries for all sides ensures that no mass is 
lost across a boundary during the simulations. 

Input data to the inverse model for PTT include the hydraulic conductivity distribution 
[either determined from SSHT or assigned values based on knowledge of the layers within the 
tank], dispersivity [set to 0 uniformly within the model domain], 2M1B-TCE partitioning 
coefficient [3.54], variance [for TCE content] [ 2

ln Kσ = 0.01] and the correlation scales for TCE 
content [λx = 20.0 cm, λy = 1.91 cm and λz

Since bromide was included in the PTT injection solution as a conservative tracer it was 
possible to assess the ability of the K-tomogram to reproduce the transport of the conservative 
tracer. The observed breakthrough curves [BTCs] at each sample location, for each tracer test 
were visually compared to a synthetic simulation of the test. In general there was good 
agreement between the synthetic and observed breakthrough curves. Simulated and observed 
breakthrough curves were considered to be in good agreement when they were nearly coincident. 

 = 1.0 cm], injection/extraction, and water sampling 
rates [Q] during each dipole partitioning tracer test, as well as available point scale 
measurements of TCE content obtained from coring or other means. Similar to the SSHT 
analysis presented earlier, no small scale data were used to condition the inverse model. 
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When this was the case it meant that the flow path between the injection port and the observation 
port was accurately represented by the model. Any error between the simulated and observed 
breakthrough curves (particularly in terms of the tail end) could be result in errors in the estimate 
of DNAPL location and mass. As such, only those observations ports that had good agreement 
for the conservative tracer breakthrough curves were included for the estimation of DNAPL 
residual saturation.  

The sampling ports included in the DNAPL saturation estimation were: test 1-Ports 2, 3, 
6, 13, 25, 26, 27, 28; test 2 - Ports 4, 5, 12,  13, 18, 24, 27, 28, 29; test 3 - Ports 3, 4, 5, 6, 12, 24, 
25, 26, 27; and  test 4 - Ports 1, 5, 25, 26, 27, 28, 29. We selected an average of 5 data points to 
define the breakthrough curves at each port. The first point selected was at approximately 1% of 
the injected concentration. The second point was approximately half the peak concentration. The 
third point was the peak concentration and the fourth point was half the peak concentration after 
the passing of the peak and the fifth point represented approximately 1% of the injected 
concentration after the passing of the peak. The total number of data points used for each test 
was 40, 55, 60, and 45 for tests 1, 2, 3 and 4, respectively. 
 
15.6 RESULTS 
 
15.6.1 K tomogram and its validation 

All computations for steady state hydraulic tomography analyses were executed using 44 
of 48 processors on a PC-cluster consisting [of 1 master and 12 slaves each with Intel Q6600 
Quad Core CPU running at 2.4 GHz with 16 GB of RAM per slave] at University of Waterloo.  
The operating system managing the cluster was CentOS 5.3 based on a 64-bit system. The total 
computational time for inverting data from 9 dipole cross-hole tests was about 1 minute 
indicating the efficiency of the SSLE algorithm to image the K distribution using steady state 
head data. 

Figure 15.3 is the K tomogram obtained by inverting the steady state head data from 9 
dipole cross-hole pumping tests. The K values range between 5.3×10-1 and 9.0×10-3 cm/s, has a 
geometric mean of 2.1×10-1 2

ln Kσ cm/s cm/s and a  of 0.91. For comparison purposes, we include 
the outline of the two blocks embedded within the 20/30 sand. Comparison of the K values from 
the tomogram to those from the permeameter analysis of core samples previously reported 
elsewhere [24, 28] shows that the values are quite comparable. In particular, the permeameter 
estimate of K for the 20/30 sand is 3.12×10-1 cm/s, for #14 sand K = 1.21×10-1 cm/s, and for F75 
sand K = 1.73×10-2

There are a number of approaches to evaluate the K tomogram. One is the visual 
assessment which involves the comparison of the tomogram to the actual sand distributions if 
this is available as in this laboratory case. Another method may be to compare local estimates of 
K or their statistical moments to those from the tomogram. We previously [Illman et al., 2007; 
Liu et al., 2007] concluded that the best way to evaluate a K tomogram was to simulate one or 
more independent pumping tests not used in the construction of the K tomogram.  

 cm/s [Table 5.1]. Given the small difference between the K values of #14 and 
20/30 sands, it is not surprising that the block consisting of #14 sands is not detected. In contrast, 
the block consisting of F75 appears quite clearly due to the larger contrast in the K values 
between the 20/30 and F75 sands, although the block appear smoother and larger than the outline 
indicated on the tomogram. This is a direct consequence of having only 30 ports available for 
pressure measurements. A previous study [Yeh and Liu, 2000] has shown that as the number of 
pressure measurement points increase, the resolution of the K heterogeneity increases. 
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Figure 15.3: K tomogram generated using drawdown data from 9 dipole tests. 

Here, to quantitatively assess the validity of the K tomogram, we simulated 9 additional 
dipole cross-hole tests [tests 10 - 19] using the forward groundwater model MMOC3 [Yeh et al., 
1993]. For the validation using dipole cross-hole tests, the simulated and measured drawdown 
values for each case are plotted on separate scatter plots and a linear model is fitted to each case 
without forcing the intercept to zero. The linear model fit and the coefficient of determination 
[R2] provide indications of scatter and bias. The R2 is a statistic that provides a quantitative 
measure of similarity between the simulated and measured drawdown values. A high R2 value 
means that the simulated and measured drawdown values are linearly correlated, even though the 
mean values could be different. Other measures of correspondence between the simulated and 
observed drawdown values are the mean absolute error [L1] and the mean square error [L2] 
norms. The L1 and L2

  [15.1] 

 norms are computed as: 

  [15.2] 

where n is the total number of drawdown data, i indicates the data number, and  and  
represent the estimates from the simulated and measured drawdowns, respectively.   
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Figure 15.4: Scatter plot of simulated [cm] versus observed drawdown [cm] under steady state 
flow conditions. 

Figure 15.4 shows a series of scatter plots that compare the simulated drawdown values 
obtained through forward simulations of the 9 independent dipole cross-hole tests using the K 
tomogram from figure 15.3 to the measured drawdown values from the actual tests. The figure 
includes a 45 degree line which indicates a perfect correlation. In general, we observe that the K 
tomogram yields excellent predictions of 9 dipole cross-hole tests as indicated by the linear 
model fit, coefficient of determination and L1 and L2

 

 norms. One reason why the fits may be so 
good is that the test configurations are identical except for the switching of the injection and 
extraction locations. More recently, another study [Illman et al., 2010] showed a similar 
evaluation in a different sandbox with a considerably more complex heterogeneity pattern 
created by the cyclic flux of sediment laden water. In those tests, independent cross-hole 
pumping tests with different source locations were used to construct and validate their K 
tomogram showing the excellent performance of SSHT in imaging the subsurface heterogeneity 
in K. 

15.6.2 Computation of TCE saturation tomograms using the K tomogram 
After the completion of SSHT to obtain the K tomogram, we next computed the TCE 

saturation tomogram using the K tomogram as the K field for the tracer inversion. As in SSHT, 
the computations for partitioning tracer tomography were executed using 44 of 48 processors on 
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the same PC-cluster described above. The total computational time for inverting data from 1 
partitioning tracer test data ranged between 5 min to 10 min depending on the test. The 
sequential inversion of the 4 partitioning tracer tests required approximately 30 minutes and with 
the looping scheme [described next] the inversion required approximately 60 minutes indicating 
that more computational resources are required for the inversion of tracer test data. 

A looping scheme [Zhu and Yeh, 2005] was developed to improve the SSLE algorithm to 
fully exploit the data as they are included sequentially. In this scheme, as new data sets are added 
into SSLE, the algorithm iterates until the data set meets a converge criterion.  Then, instead of 
going straight to the next new data set, the scheme goes back to check the convergence for the 
first data set. If the converge criterion is not met, the program starts a loop iteration in which the 
iteration involves both the first and second data sets. That is, the first data set is iterated once, 
and then the second data set is incorporated and iterated once also in a loop. The loop iteration 
continues until both data sets meet the converge criterion within one loop. Then, the next new 
data set is added. The algorithm treats this new data set similarly to the second data set, except 
the loop iteration now involves three data sets. Additional data sets are added in a similar way. 
As a consequence, the SSLE approach improves estimates throughout the loops, maximizes the 
usefulness of data sets, and alleviates the problems associated with their previous SSLE 
approach. 

Figures 15.5a - f show results from various cases in inverting the partitioning tracer test 
data. In particular, Figures 15.5a – d shows inversions of individual partitioning tracer tests 1 
through 4, respectively. These results reveal that with a single partitioning tracer test, the 
existence of TCE in the source area is confirmed although the distribution is not very realistic 
compared to the photograph of the TCE distribution. This suggests that perhaps one tracer test 
with a limited number of sampling ports [Test 1: Ports 2, 3, 6, 13, 25, 26, 27, 28; test 2 - Ports 4, 
5, 12,  13, 18, 24, 27, 28, 29; test 3 -  Ports 3, 4, 5, 6, 12, 24, 25, 26, 27; and  test 4 - Ports 1, 5, 
25, 26, 27, 28, 29] may not yield accurate distributions of TCE saturation. Interestingly, each 
TCE saturation tomogram shows a different TCE saturation distribution as well as mean TCE 
saturations [Table 5.3] suggesting that the inversion of a single partitioning tracer test can yield a 
different mean TCE saturation value. For example, the inversion of test 1 alone yields a mean 
TCE saturation of 3.7% while test 4 yields 1.9%. Recalling that 125 ml of TCE was injected into 
the sandbox, the mean saturation is 5% suggesting that the mean estimate is close but there is 
definitely some error which could affect remediation designs. 
 
Table 15.3: Mean TCE saturation and volume estimated through the inversion of various 
partitioning tracer tests using the K tomogram from steady state hydraulic tomography and a 
known K distribution. 
  K tomogram from SSHT Known K distribution 

Test 

Mean  TCE 
saturation 

VTCE

Mean TCE 
saturation 

 [mL] VTCE [mL] 
1 0.0372 98.10 0.0277 71.99 
2 0.0496 128.55 0.0476 126.09 
3 0.0317 81.39 0.0309 81.09 
4 0.0189 46.53 0.0202 51.48 
1-4 0.0218 55.46 0.0491 128.73 
1-4 [L] 0.0473 130.06 0.0593 156.94 
4-1 0.0360 97.09 0.0521 139.60 
4-1 [L] 0.0475 128.12 0.0699 189.58 
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Figure 15.5: Estimated TCE saturation tomograms with inversion of: a] test 1 only; b] test 2 
only; c] test 3 only; d] test 4 only;  e] tests 1 - 4; and f] tests 1 - 4 with loop iteration. In this case, 
the K tomogram estimated using steady state hydraulic tomography [Figure 15.3] was used for 
partitioning tracer tomography. 

 
We next sequentially inverted tests 1 through 4 in that order without the loop iteration 

scheme and the corresponding TCE saturation tomogram is shown in Figure 15.6e. This figure 
shows a region of elevated TCE saturation above the F75 block suggesting that after including 4 
tests, HPTT is able to locate a higher TCE saturation region in the central part of the aquifer, 
despite the exact position not being correct as it is above the F75 lens. We do note that the mean 
TCE saturation is approximately 50% less of the true value [5%] at 2.2%. Applying the loop 
iteration scheme described earlier, our estimate of the mean TCE saturation improves to 4.7% 
and the, the TCE saturation tomogram looks more realistic with higher TCE saturations in the 
expected area. 

 
15.7 DISCUSSION 

Despite the encouraging results, it is natural for one to question whether the TCE 
saturation distribution can be further improved if we had a better estimate of K heterogeneity. A 
better estimate of K heterogeneity can be obtained with a larger number of measurement points 
during steady state hydraulic tomography [Yeh and Liu, 2000]. As we do not have additional 
sampling ports, we instead deterministically assign K values to the 3 sand types based on K 
measurements from the permeameter tests and then use this K field for the inversion of the 
partitioning tracer tests. The K tomogram that we computed earlier can be considered to be an 
unbiased conditional mean field and because it is based on geostatistical methods, the variability 
in the heterogeneity is relatively smooth with a limited number of pressure measurement points. 
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Assigning K values as we do here is tantamount to knowing precisely the location of the 
stratification and its morphology as well as the locations of sharp boundaries between zones of 
different K values. 

Figures 15.6a through 15.6f are the estimated TCE saturation tomograms for the various 
cases that we examined before. In particular, Figures 15.6a-d are those estimated from individual 
tests 1 through 4, Figure 15.6e is the result from sequentially inverting tests 1 through 4, and 
Figure 15.6f is the result from sequentially inverting tests 1 – 4 but also incorporates the loop 
iteration scheme. As in Figure 15.5a-d, the inversion of individual partitioning tracer tests shows 
that the mean TCE saturation estimates are not that much better than the case when the K 
tomogram was used. However, as Figures 15.6e and 15.6f shows the position of the high TCE 
saturation zone is considerably better constrained when the positions of the strata are known. 
This suggests that improved knowledge of K heterogeneity and in particular, precise knowledge 
of boundaries between strata can be critical in imaging TCE saturations in heterogeneous 
aquifers. 

 

Figure 15.6: Estimated TCE saturation tomograms with inversion of: a] test 1 only; b] test 2 
only; c] test 3 only; d] test 4 only;  e] tests 1 - 4; and f] tests 1 - 4 with loop iteration. In this case, 
the K values of the 3 sand types were obtained from permeameter measurements and 
deterministically assigned for partitioning tracer tomography. 

The visual comparison of the photograph showing the likely location of the TCE and the 
TCE saturation tomograms that we have computed show that HPTT is promising as it can 
location areas of higher saturations. Obviously, a better method to quantify TCE saturation is 
needed. For example, researchers have utilized X-ray [Oostrom et al., 1999; Moreno-Barbero 
and Illangasekare, 2006] to image DNAPL saturations in their flow cells. 

However, a direct comparison of saturation estimates to those from HPTT is more 
desirable. To achieve this, we next compare the TCE saturation tomogram to those obtained from 
the interpolation of TCE saturation data that we have obtained through coring. In particular, 
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Figure 15.7 is the kriged TCE saturation distribution showing regions of elevated TCE saturation 
above and within the upper portion of the F75 layer. A grid by 1 cm by 1cm was used for 
kriging. A slightly higher TCE saturation region is also visible to the left side of the F75 block 
that corresponds with the contaminated area evident in the photograph [Figure 15.2]. 

 

Figure: 15.7: Kriged TCE distribution based on the interpolation of 30 core samples. Solid 
circles show the approximate centroid location of the core samples. 

There are two important features to note in Figure 15.7. One is that the TCE saturation is 
considerably lower than those estimated by the HPTT technique. The mean TCE saturation 
estimated through interpolation is 0.088%, which is significantly lower than the actual mean 
TCE saturation of 5% or those estimated by HPTT. This suggests that direct sampling through 
coring could potentially contribute to underestimation of TCE saturations. Another observation is 
that the higher TCE saturation zone is partially located within the F75 block. This is highly 
unlikely as seen also in Figure 15.2 that nonaqueous phase of TCE cannot penetrate the F75 
sands due to the higher displacement pressure to overcome in order for the nonaqueous phase 
TCE to penetrate into the F75 sand. One likely explanation for observing nonaqueous phase TCE 
within the block is that the driving of the coring tube may have consolidated the sands causing 
the location of the high TCE saturation zone to be pushed deeper. This observation highlights the 
problem with direct sampling in the source zone - that drilling can contribute to mobilization of 
DNAPLs to greater depths exacerbating the contamination. In addition, coring of unconsolidated 
sediments can result in sample loss which can additionally contribute to inaccuracies in estimates 
of TCE saturations.   
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16. COMPARISON OF HETEROGENEITY 
CHARACTERIZATION METHODS FOR IMPROVED 
PREDICTIONS OF SOLUTE TRANSPORT: LABORATORY 
SANDBOX EXPERIMENTS 
 
16.1 INTRODUCTION 

Solute transport in heterogeneous media has been a topic of great interest over the last 
several decades. This is because the accurate prediction of contaminant transport will improve 
our ability to safeguard groundwater supplies through wellhead protection programs, and 
improvements in remediation designs will increase the efficiency of cleanup efforts. The 
recognition that improved predictions of solute transport results from better accounting for 
subsurface heterogeneity in hydraulic conductivity [K] has led to the development of stochastic 
theories for groundwater flow and solute transport. The emergence of stochastic theories has led 
to much optimism about our abilities to predict solute transport behavior both spatially and 
temporally. In particular, Yeh [1992] reviewed a number of these theories and discussed their 
advantages and limitations. He concluded that effective parameter approaches based on modern 
stochastic theories can yield averaged predictions of concentrations; however, more detailed 
information on the subsurface is needed to describe local scale behavior. 

Various field [e.g., MacKay et al., 1986; LeBlanc et al., 1991; Boggs et al., 1992] and 
laboratory experiments [e.g., Fernàndez‐Garcia et al., 2005 and others] have been conducted to 
show the applicability of these stochastic theories. In particular, Sudicky [1986] characterized the 
spatial variability of hydraulic conductivity in great detail at the Borden site in Canada, by 
conducting permeability measurements on a series of cores taken along the longitudinal and 
transverse directions of a natural gradient tracer test conducted adjacently. He then used the 
theoretical expressions developed by Gelhar and Axness [1983] and Dagan [1982, 1984] to show 
a good prediction of dispersion from the injected tracer resulting in optimism that theoretical 
expressions can provide meaningful estimates of effective transport parameters. More recently, 
at a landfill site in North Bay, Canada, Sudicky et al. [2010] obtained a large number of 
hydraulic conductivity estimates at many locations, similar to the study at Borden [Sudicky, 
1986]. Using these estimates Sudicky et al. [2010] conducted geostatistical analysis, calculated 
the effective conductivity and macrodispersivity, and used those estimates in a three-dimensional 
numerical model to show a reasonably close prediction of the water table position as well as the 
extent and migration rates of a plume emanating from the landfill. This study demonstrated that 
the use of statistically derived parameters based on stochastic theories results in reliable large-
scale three-dimensional flow and transport models for complex hydrogeological systems. One 
other important finding was that the length of the plume was relatively insensitive to the value of 
the longitudinal macrodispersivity under the conditions of steady flow in three-dimensions with a 
constant source strength. The success of the effective parameter approach along with the 
macrodispersion concept [e.g., Gelhar and Axness, 1983; Dagan, 1982, 1984] for large scale 
plumes at the Borden and North Bay sites is very encouraging. This is because of the simplicity 
and practicality of these solutions in satisfactorily reproducing the spatial moments of the plume. 
However, this success is largely due to the fact that the plume has travelled a distance much 
larger than the dominant scales of heterogeneity resulting in a Fickian regime of solute transport. 
For shorter distances, this approach may be inadequate owing to limitations of the ergodicity 
assumption embedded in the macrodispersion concept [Yeh, 1992]. 
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This limitation was demonstrated at the Georgetown site in South Carolina, USA, where 
McCarthy et al. [1996] conducted two‐well, forced‐gradient tracer experiments over a distance of 
5 m in a coastal sandy aquifer. The evolution of three‐dimensional chloride plumes during two 
tracer experiments was observed. A three‐dimensional finite element model for flow and 
transport was then utilized by Yeh et al. [1995] to model the tracer test data. The site was unique 
because there was a large number of hydraulic conductivity data obtained from slug tests used to 
predict solute transport in the aquifer. Results showed that their predictive ability was limited to 
the bulk behavior of the plumes, which was mainly controlled by some ‘significant’ 
heterogeneities. It is clear from these field sites that stochastic theories are useful in predicting 
the average behavior of the solute plume, but solute transport behavior at individual point 
locations is still difficult to predict based on these theories. In other words, the classical 
advection-dispersion equation often fails to predict the behavior of solute in the subsurface. 

Subsurface heterogeneity is often the cause of this failure and has been attributed to non-
Fickian behavior observed both through laboratory [e.g., Levy and Berkowitz, 2003; Cortis et al., 
2004] and field experiments [e.g., Sudicky et al., 1983; Mackay et al., 1986]. Research at other 
sites, most notably the MADE site also suggests that existing stochastic theories may not be able 
to predict even the average plume behavior when the site is strongly heterogeneous and when the 
statistical distribution of hydraulic parameters is nonstationary [Rehfeldt et al., 1992] leading to 
non-Fickian behavior. This has led to a race for more complex mathematical approaches such as 
space-time nonlocal stochastic advective-dispersive flux theory [e.g., Neuman, 1993; Cushman 
and Ginn, 1993; Zhang and Neuman, 1996], continuous time random walk [CTRW], [e.g., Scher 
and Lax, 1973; Berkowitz et al., 2006], and advection dispersion equations based on fractional 
derivatives to describe solute transport in strongly heterogeneous porous and fractured geological 
media [e.g., Meerschaert et al., 1999; Benson et al., 2000]. Neuman and Tartakovsky [2009] 
recently offered their perspective on differences, commonalities, and relative merits of these 
approaches. 
 Despite the increasing complexity of mathematical models that have been developed, the 
goal of accurately predicting solute transport concentrations in a multiscale heterogeneous 
environment is still elusive, and a much improved approach to efficiently characterize the  
subsurface is needed. Such accuracy in predicting solute transport is likely needed in 
contaminant transport forecasting and the design of remediation programs. That is, at many sites, 
tracer tests and the injection of remediation agents are conducted at a scale smaller than which 
the effective parameter concept applies. 
 Hydraulic tomography has been proposed as an alternative to traditional site 
characterization approaches. The method relies on the inversion of multiple cross-hole pumping 
or injection tests that are conducted in the saturated zone. To date, various inversion strategies 
have been developed [e.g., Gottlieb and Dietrich, 1995; Yeh and Liu, 2000; Vesselinov et al., 
2001; Bohling et al., 2002; Brauchler et al., 2003; McDermott et al., 2003; Zhu and Yeh, 2005, 
2006; Li et al., 2005; Fienen et al., 2008; Castagna and Bellin, 2009; Xiang et al., 2009] that 
show success in mapping subsurface hydraulic parameters. Laboratory experiments have been 
conducted by a number of researchers [Liu et al. 2002; Illman et al., 2007, 2008; 2010; Liu et al., 
2007; Yin and Illman, 2009] to validate hydraulic tomography under conditions in which 
experimental errors and forcing functions can be controlled. The success of hydraulic 
tomography in terms of imaging the heterogeneity patterns in hydraulic parameters is also 
evident through various field experiments [Bohling et al., 2007; Straface et al., 2007; Illman et 
al., 2009; Cardiff et al., 2009; Berg and Illman, 2010]. However, whether the estimates of 
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hydraulic parameters obtained from hydraulic tomography can be used to accurately predict 
solute transport behavior has not been researched to date in the laboratory or in the field. 
 Recently, Ni et al. [2009] conducted numerical simulations to show that hydraulic 
tomography is able to obtain the best estimates of hydraulic parameters that allow for the most 
accurate simulation of solute transport behavior. In particular, these authors used a synthetic two-
dimensional aquifer to assess the accuracy of predicted concentration breakthrough curves 
[BTCs] on the basis of the K fields estimated by geometric mean, kriging, and hydraulic 
tomography. Such K fields represent different degrees of flow resolutions as compared with the 
synthetically generated one. It was found that without intensive experiments to obtain accurate 
estimates of dispersivities at sites, the flow field based on the K distribution or [K tomogram 
from now on] can yield accurate predictions of breakthrough peaks and phases. 
 The main objective of this study is to compare three different heterogeneity 
characterization methods in terms of predicting solute transport. The three methods compared 
are: 1] the effective parameter approach of Gelhar and Axness [1983]; 2] oridinary kriging; and 
3] hydraulic tomography. We conducted our comparison by creating a heterogeneous aquifer 
through the cyclic flux of sediment-laden water in a laboratory sandbox. The aquifer was first 
characterized by taking core samples to obtain local scale estimates of hydraulic conductivity [K] 
which were then used to calculate effective parameters, and to perform kriging. We then conduct 
a hydraulic tomography survey using the code developed by Yeh and Liu [2000] to map the 
heterogeneous K field [K tomogram from now on]. Upon completion of the hydraulic 
tomography survey, we conduct a conservative tracer test in a dipole configuration. Water 
samples collected at various locations within the synthetic aquifer allowed us to obtain 
breakthrough curves. The tracer test is then simulated through a forward transport simulation 
using the effective parameter field, the kriged K field, and the  K tomogram. We compare the 
evolution of the tracer plume qualitatively by examining the photographs of the dyed plume and 
comparing those to the various numerical simulation cases based on the effective parameter 
concept and hydraulic tomography. We then make a direct comparison of the simulated and 
observed breakthrough curves. Finally, we quantitatively assess the results through the 
comparison of temporal moments computed from the simulated and observed breakthrough 
curves. 
 
16.2 EXPERIMENTAL METHODS 
 
16.2.1 Sandbox and Synthetic Aquifer Construction 
 A synthetic heterogeneous aquifer was constructed in a vertical, laboratory sandbox to 
validate various fluid flow and solute transport algorithms. The sandbox is 193.0 cm in length, 
82.6 cm in height, and has a depth of 10.2 cm. The aquifer was created through the cyclic 
deposition of sediments under varying water flow and feed rates of sediments [Illman et al., 
2010a]. Previous efforts by our group [Illman et al., 2007, 2008; Liu et al., 2007; Yin and Illman, 
2009; Illman et al., 2010b] involved packing the sandbox in a relatively simplistic pattern. Our 
goal in relying on sediment transport was to create a more realistic heterogeneity pattern with 
various scales of heterogeneity in an efficient manner. Table 16.1 summarizes the sands used to 
create the synthetic aquifer including d50, which is the particle diameter for which 50% of the 
grains are finer, hydraulic conductivity [K] estimates obtained using Shepherd’s empirical model 
[Shepherd, 1989], and hydraulic conductivity [K] estimates obtained using a constant head 
permeameter device [Klute and Dirksen, 1986]. Figure 16.1 is a photograph of the frontal view 
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of the synthetic aquifer, showing the interfingering nature of the deposits with numbers 
indicating the layers. Port locations are also shown on this figure. Further details to this synthetic 
heterogeneous aquifer and its construction approach are provided in Illman et al. [2010a]. 
 Forty eight ports, 1.3 cm in diameter, have been cut out of the stainless steel wall to allow 
coring of the aquifer as well as installation of horizontal wells. Each well was constructed by 
making 6 cuts spaced 1.46 cm apart in sections of brass tubing.  The cuts were then covered with 
a stainless steel mesh that was bonded to the tubing with corrosion resistant epoxy.  Extreme care 
was taken to avoid the epoxy filling the mesh which could impede water flow. The wells, which 
penetrate the thickness of the synthetic aquifer were installed after the deposition of the layers. 
This allowed each location to be monitored by a pressure transducer, used as a pumping or an 
injection port and as a water sampling port. 

 
Figure 16.1: Photograph of the sandbox showing the synthetic heterogeneous aquifer in which 
the dipole cross-hole and conservative tracer tests were conducted. Large black numbers indicate 
layer numbers, solid circles indicate port locations, and small blue numbers indicate port 
numbers. Layer 1 = 20/30; layer 2 = 4030; layer 3 = F85; layer 4 = 20/40; layer 5 = mix; layer 6 
= mix; layer 7 = #12; layer 8 = F32; layer 9 = 20/40; layer 10 = F65; layer 11 = #12; layer 12 = 
16/30; layer 13 = 20/30; layer 14 = F75; layer 15 = 20/40; layer 16 = mix; layer 17 = F85; layer 
18 = 20/30. Note: The layers labelled “mix” consisted of equal volumes of #14, F75, and 16/30 
sands. 
 
 For this particular study, all boundaries around the synthetic aquifer were set as no-flow 
boundaries to achieve better mass control for our dipole cross-hole and tracer experiments. This 
was found to be critical during our initial studies as our previous sandboxes had constant head 
reservoirs which could potentially diminish the tracer signals via dilution. 
 The data acquisition system used for the laboratory experiments consisted of three major 
components.  Pressure measurements were made with 50 Setra model 209 gauge pressure 
transducers with a range of 0 to 1 psi, 48 of which measured hydraulic head in the aquifer. These 
pressure transducers were installed at each of the 48 ports in the stainless steel wall of the 
sandbox.  
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Table 16.1: Characteristics of porous media used to create a synthetic heterogeneous aquifer. 
 Sand type d50 K [cm/s] 

Shepherd 
[mm] K [cm/s] 

Darcy 
16/30 0.872 1.32 × 10 3.84 × 10-1 -1 
20/30 0.750 1.03 × 10 3.12 × 10-1 -1 
20/40 0.578 6.68 × 10 2.05 × 10-2 -1 
#12 0.525 5.70 × 10 2.05 × 10-2 -1 
F32 0.504 5.33 × 10 1.45 × 10-2 -1 
#14 0.457 4.53 × 10 1.21 × 10-2 -1 
4030 0.355 2.99 × 10 5.79 × 10-2 -2 
F55 0.242 1.59 × 10 2.80 × 10-2 -2 
F65 0.204 1.20 × 10 1.83 × 10-2 -2 
F75 0.174 9.22 × 10 1.73 × 10-3 -2 
F85 0.151 7.29 × 10 1.35 × 10-3 -2 
 
16.2.2 Dipole tracer test 
 
16.2.2.1 Description of dipole tracer test 
 After the completion of the dipole cross-hole tests, we conducted a dipole tracer test 
using bromide as a conservative tracer. Prior to the injection of the tracer, a dipole flow field was 
established by injecting tap water at port 42 at a rate of 372.4 mL/min and extracting at port 7 at 
304 mL/min.  A water mass balance was then achieved by setting 12 sampling lines at a 
cumulative rate of 68.4 mL/min.  Figure 2 is a schematic diagram showing the injection, 
extraction and sampling ports for the dipole conservative tracer test. 
  

 

Figure 16.2: Schematic diagram showing the injection, extraction, and sampling ports during the 
dipole conservative tracer test. 

 Achieving a mass balance was crucial because the 4 boundaries of the sandboxes had no-
flow boundary conditions. Water flow rates in each of the sampling lines were monitored 
frequently and the pressure transducers were also used to measure the pressure in the tank during 
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the tracer test. Deviations in the mass balance could result in an over-pressurization of the tank 
which could cause the glass holding the synthetic aquifer to rupture.  
 Once steady state flow conditions were reached [injection, extraction, and sampling rates 
were stable and in equilibrium] using a valve the injection line was switched from water to a 
solution containing bromide [Fisher Scientific] as the conservative tracer at a concentration of 
151.3 mg/L. Food coloring [70 ml of blue 'Tone's' Food Coloring] was added to the tracer 
solution so that we could observe the movement of the tracer plume in the sandbox through the 
glass. The tracer solution was injected for 10 minutes and then the injection line was switched 
back to tap water. Water samples were collected for bromide throughout the duration of the test 
from the 12 sampling ports and the extraction well at port 7. Crude estimates of the tracer travel 
time were obtained using Darcy’s law to estimate sampling times at each port. Water sampling 
from each one of the sampling lines was made possible with a manifold that fed the water 
samples into twelve 1.5 ml vials simultaneously. Sixty water samples were collected from each 
of the 12 sampling lines [plus the effluent line] during the dipole tracer test for a total of 780 
samples. The dipole tracer test lasted approximately 5 hours. 
 
16.2.2.2 Description of water sample analysis 
 Water samples taken during the tracer test were chilled in a refrigerator at 4oC until 
sample analysis. The conservative tracer [Br-] concentrations were determined using an ion 
chromatograph [IC] [Dionex ICS 2000] equipped with an AS40 auto sampler.  The IC analysis 
method consisted of an AS-18 4 mm column, EGC II KOH eluent generator with an eluent 
concentration of 30mM, SRS-Ultra II 4mm suppressor with a current of 75 mA, DS6 heated 
conductivity cell with a cell temperature of 35°C, and a flow rate of 1 mL/min.  Five external 
calibration standards were prepared for bromide with 1000mg/L Fluka IC standard diluted with 
de-ionized water at levels of 1, 5, 10, 50, 100 mg/L.  The calibration plots were created by 
injecting triplicates of each calibration level and were linear [R2

 

 > 0.99].  Calibrations were made 
in each analysis sequence consisting of 15 calibration injections [triplicates of the 5 standards] 
followed by 60 tracer samples. 

16.2.3 Aquifer Characterization Methods 
 
16.2.3.1 Permeameter analysis of core samples 
 We first determined the K of the sands from the horizontal cores obtained during the 
placement of ports. The extracted cores had dimensions of 1.28 cm in diameter and 10.16 cm in 
length. These cores were then attached to a custom-made constant head permeameter [Klute and 
Dirksen, 1986] for determination of K. Details of the core extraction method and the design of 
the constant head permeameter is provided in Craig [2005]. The K values from cores are 
calculated using Darcy’s law. 
 
16.2.3.2 Dipole cross-hole tests 
 Cross-hole hydraulic tests were conducted by pumping water from one well and injecting 
the pumped water at another location [dipole cross-hole tests from now on] to characterize the 
synthetic heterogeneous aquifer in the sandbox. We note that these tests are new and different 
from the cross-hole pumping tests conducted using a single well that were previously reported by 
Illman et al. [2010a]. 
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 In the dipole cross-hole tests, a mass balance of water injected and extracted was 
maintained using a peristaltic pump by connecting the injection and extraction ports in a single 
loop. Eight pairs of ports consisting of tests 1 through 8 [e.g., test 1: extraction at port 2 and 
injection at port 47, from now on E42/I47; test 2: E42/I7; test 3: E4/I45; test 4: E15/I34; test 5: 
E24/I25; test 6: E17/I32; test 7: E23/I26; and test 8: E20/I29] were chosen for these dipole cross-
hole tests [see Figure 1 for port locations]. Eight additional tests [tests 9-16] were also conducted 
to collect data to evaluate the hydraulic tomography results that we discuss later. Injection and 
pumping rates for all dipole cross-hole tests averaged 480 mL/min.  Prior to each cross-hole 
pumping test, all pressure transducers were calibrated to ensure accurate data collection. We then 
collected hydraulic head data for several minutes in all pressure transducers to establish a static, 
initial condition. After establishment of static conditions, we pumped from each port using a 
peristaltic pump, injecting the pumped water into another port, while taking head measurements 
at all 48 ports. For each test, pumping continued until the development of steady state conditions, 
which was determined by observing the stabilization of all head measurements on the data logger 
connected to a computer. After reaching steady state, the pump was shut off to collect recovery 
head data until its full recovery. Transient head data were also collected, but in this study, we 
only utilized steady-state head data for steady state hydraulic tomography to estimate K 
tomograms. 
 
16.3 HETEROGENEITY CHARACTERIZATION METHODS 
 
16.3.1 Geostatistical analysis and kriging of core K estimates 

Geostatistical analysis of core K data was conducted using the Surfer 8 software developed 
by Golden Software, Inc [www.goldensoftware.com]. The exponential variogram model was 
used to fit the experimental variograms in both horizontal and vertical directions, resulting in an 
anisotropic variogram model.  The variogram parameters fit to the experimental variograms 
include the geometric mean [KG = 0.08 cms-1 2

ln Kσ], the variance [  = 0.87] and the correlation 
lengths [λx = 17.00 cm and λz
 We then kriged the core K estimates using the anisotropic variogram model. The kriged 
domain was discretized into 73 vertical elements and 162 horizontal elements. The search 
ellipsoid measured 60 cm by 60 cm. Figure 3 shows the kriged K field which delineates some of 
the major layers but definitely has a smoothed appearance.  

 = 7.73 cm].  

 
Figure 16.3: K distribution obtained through kriging of core scale K data from permeameter 
analysis. 
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16.3.2 Estimates of effective hydraulic conductivity and macrodispersivity 
 The development of stochastic theories for application to solute transport in 
heterogeneous media [e.g., Gelhar and Axness, 1983; Dagan, 1982, 1984; Neuman et al. 1987] 
has led to a methodology for predicting the bulk effective flow and transport parameters from a 
knowledge of the geostatistical parameters describing the spatial variations of the underlying 
Ln[K] process. The use of effective flow and transport parameters should allow the replacement 
of the real heterogeneous aquifer with a macroscopic homogeneous equivalent for the purposes 
of making the large-scale predictions of groundwater flow and contaminant migration. 
 The relationship between the asymptotic macrodispersivity tensor [Aii, i = 1, 2, 3] and the 
geostatistical parameters describing the spatial variability of the hydraulic conductivity field 
have been derived for a variety of hydrogeological settings by Gelhar and Axness [1983] under 
the assumption of uniform flow. For the case of statistical anisotropy in the vertical and 
horizontal directions where λ1 > λ2 > λ3 [Case 2, Gelhar and Axness, 1983], the longitudinal 
macrodispersivity A11

 

 is given by 

( )1 22 2 2 2 2 2
11 1 2 1 2sin cosYA σ λ λ ξ λ φ λ φ = +  

 [16.1] 

where 
 ( ) ( )2 2 2

22 22 11exp 0.5 sin cosY g K Kξ σ φ φ = − +   [16.2] 
 
 2

11 1YA σ λ=  [16.3] 
and φ is the angle in the horizontal plane between the mean flow direction and the longitudinal 
axis of the effective hydraulic conductivity tensor [ iiK ]. It should be noted that a longitudinal 
macrodispersion coefficient calculated using equation [16.3] must be augmented by the value of 
the local longitudinal dispersion coefficient. When the mean flow direction coincides with the λ1 
direction [φ = 0o

 

], the transverse macrodispersivity values are zero, thus indicating that the 
transverse macrodispersion process is controlled by local transverse dispersion. The effective 
hydraulic conductivity tensor used above is given by  

( )2exp 0.5ii g Y iiK K gσ = −   [16.4] 
where the flow integrals, gii

Using the best-fit estimate values for λ

 are functions of the correlation lengths defined by Gelhar and 
Axness [1983]. 

1 and λ2
2
Yσ

 equal to 17.00 cm and 7.73 cm, 
respectively, and a variance = 0.87, as estimated from the two-dimensional variogram 
analysis, the principal values of the effective hydraulic conductivity tensor are given as K11 = 
0.09 cm/s and K22

Because our tracer experiment was conducted as a dipole test, strictly speaking, the Gelhar 
and Axness [1983] solution is not applicable as the solution was derived under the assumption of 
uniform flow. Tiedeman and Hsieh [2004] have shown that equal strength two well tracer test 
produced dispersivity estimates that are comparable to those from a natural gradient tracer test 
when the heterogeneity in hydraulic conductivity was low [i.e., 

 = 0.07 cm/s for the permeameter estimates of K. The computed value of the 
longitudinal macrodispersivity using equation [16.3] equals 14.76 cm on the basis of the 
geostatistical parameters derived from the two-dimensional variogram analysis.  

2 1.0Yσ =  and the separation 
distance between the injection and extraction wells was relatively large so that sufficient mixing 
of the tracers can take place. Available estimates of 2

Yσ  from the geostatistical analyses of core 
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and single-hole K estimates yielded values of 0.87 and 0.38, respectively [see Table 16.2]. 
Likewise, Illman et al. [2010a] obtained a variance estimate of 1.12 from hydraulic tomography 
after inverting 8 cross-hole pumping tests. Therefore, based on these 2

Yσ  estimates, we anticipate 
that effective parameters determined using the Gelhar and Axness [1983] solution will be 
appropriate even under our experimental conditions. 

In terms of the distance between the injection and extraction points, Tiedeman and Hsieh 
[2004] also provided comparisons between those determined using dipole and natural gradient 
tracer tests. Their study showed that as the distance between the injection and extraction points 
increased with respect to the correlation scale of the heterogeneity, the closer the estimate of the 
dispersivities were from the dipole and natural gradient tests. 

The straight-line distance between the injection point [port 42] and the extraction point 
[port 7] for our synthetic aquifer is 113.8 cm. Table 16.2 provides estimates of correlation 
lengths obtained via geostatistical analysis of core samples and single-hole test data. Likewise, 
Illman et al. [2010a] also presented estimates of λ1 = 18.00 cm and λ2

Because the tracers traverses along and across the layers, we compute an average 
correlation scale by taking the arithmetic mean of λ

 = 7.00 cm which were 
obtained through the inversion of 8 cross-hole pumping tests. The estimates of correlation 
lengths from all three data sets are quite similar. 

1 = 18.00 cm and λ2

 

 = 7.00 cm obtained y 
Illman et al. [2010a]. This yields an averaged value of 12.5 cm. This value is approximately one-
tenth of the straight line distance between the injection and extraction points. Based on the 
numerical experiments conducted by Tiedeman and Hsieh [2004], the dispersivity estimates will 
be somewhat smaller due to the short separation distance between the injection and extraction 
wells. We also anticipate that the boundary effects may have an impact on the dispersivity 
estimates as it restricts flow and tracer transport. To overcome this difficulty, we later show 
numerical simulation results with macrodispersivity estimates lowered by 30% from those 
computed by the Gelhar and Axness solution to examine the sensitivity of the macrodispersivity 
on tracer transport results. 

16.3.3 Hydraulic tomography analysis of dipole cross-hole tests 
 
16.3.3.1 Inverse modeling approach 

The steady state hydraulic tomography analysis of dipole cross-hole tests in the sandbox 
was conducted using a sequential geostatistical inverse approach developed by Yeh and Liu 
[2000]. We only provide a brief description of the inversion approach here. The inverse model 
assumes a steady flow field and the natural logarithm of K [ln K] is treated as a stationary 
stochastic process. The model additionally assumes that the mean and correlation structure of the 
K field is known a priori. The algorithm essentially is composed of two parts. First, the 
Successive Linear Estimator [SLE] is employed for each cross-hole test. The estimator begins by 
cokriging the initial estimate of Keff

Cokriging does not take full advantage of the observed head values because it assumes a 
linear relationship [Yeh and Liu, 2000] between head and K, while the true relationship is 
nonlinear. To circumvent this problem, a linear estimator based on the differences between the 
simulated and observed head values is successively employed to improve the estimate. 

 and observed heads collected in one pumping test during the 
tomographic sequence to create a cokriged, mean removed ln K [f, i.e., perturbation of ln K] map. 

The second step of Yeh and Liu [2000]’s approach is to use the hydraulic head data sets 
sequentially instead of including them simultaneously in the inverse model thus the term, 
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“sequential successive linear estimator” [SSLE] is used to describe the inverse algorithm hereon. 
In essence, the sequential approach uses the estimated K field and covariances, conditioned on 
previous sets of head measurements as prior information for the next estimation based on a new 
set of pumping data. This process continues until all the data sets are fully utilized. 

To obtain a K tomogram from the available dipole cross-hole tests, we solve an inverse 
problem for steady-state flow conditions. Boundary conditions were set to be no-flow for all 
sides. We created a fine grid with the synthetic aquifer discretized into 11,826 elements and 
24,124 nodes with element dimensions of 1.0 cm × 10.2 cm × 1.0 cm. 

Inputs to the inverse model include initial guesses for the K, estimates of variances and the 
correlation scales for both parameters, volumetric discharge [Qn

A number of methods can be used to obtain the initial guess of K. One can set an arbitrary 
value that is reasonable for the geologic medium considered or to estimate the average or 
effective hydraulic conductivity [K

] from each pumping test where 
n is the test number, available point [small-scale] measurements of K, as well as steady-state 
head data.  Although available point [small-scale] measurements of K can be input to the inverse 
model, we do not use these measurements to condition the estimated parameter fields to test the 
inversion algorithm. 

eff

The variances and correlation scales of the K field are also required inputs to the inverse 
model.  However, estimation of variance always involves uncertainty. A previous numerical 
study conducted by Yeh and Liu [2000] has shown that the variance has negligible effects on the 
estimated K using the inverse model. Therefore, we obtain variance estimates from the available 
small scale data given earlier and use this as our input variance in the inverse model for the real 
data set. 

] for an equivalent homogeneous sandbox. Here, we elect to 
utilize the mean value of the K obtained from the analysis of core K estimate given earlier. 

Correlation scales represent the average size of heterogeneity, which is difficult to 
determine accurately without a large number of data sets in the field. The effects of uncertainty 
in correlation scales on the estimate based on the tomography are negligible because the 
tomography produces a large number of head measurements, reflecting the detailed site-specific 
heterogeneity [Yeh and Liu, 2000]. Therefore, the correlation scales were approximated based 
only on the average thickness and length of the discontinuous sand bodies. For this analysis, we 
approximated the λ1 and λ2

For the steady state hydraulic tomography analysis, we selected 8 dipole cross-hole tests 
[test 1: E2/I47; test 2: E42/I7; test 3: E4/I45; test 4: E15/I34; test 5: E24/I25; test 6: E17/I32; test 
7: E23/I26; and test 8: E20/I29] and the corresponding steady-state head observations at the rest 
of 46 ports during each test as data sets. The steady–state head value from each port was 
obtained by averaging the steady-state portion of the record. We elected to not use the head data 
from the injection and extraction ports from each test because these ports could be affected by 
skin effects [Illman et al., 2007]. 

 to be 40.00 cm and 5.00 cm as an initial guess, respectively, based 
on the average thickness and length of the discontinuous sand bodies in this sandbox. 

Prior to the computation of the K tomogram with the SSLE algorithm, we pre-processed 
the hydraulic head data. This is because Illman et al. [2008] found from the analysis of cross-
hole pumping test data obtained in a laboratory sandbox aquifer that the signal-to-noise ratio can 
be critical in inverse modeling of cross-hole pumping test data. Despite calibrating the pressure 
transducer prior to the start of each pumping test, there is a minute level of drift always present 
in each of the pressure transducers. Therefore, we removed this drift by shifting the head value to 
a common one for all transducers in the sandbox prior to each test. The collected data were 
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additionally processed by taking the average of the steady state head values collected over a 
period of time in a given monitoring port. 

All computations for steady state hydraulic tomography analyses were executed using 44 
of 48 processors on a PC-cluster consisting [of 1 master and 12 slaves each with Intel Q6600 
Quad Core CPU running at 2.4 GHz with 16 GB of RAM per slave] at the University of 
Waterloo.  The operating system managing the cluster was CentOS 5.3 based on a 64-bit system. 
The total computational time for inverting data from 8 pumping tests was about 330 minutes [5.5 
hours]. 

Figure 16.4 is the K tomogram obtained by inverting the steady state head data from 8 
dipole cross-hole tests. Noteworthy statistical properties of this K tomogram include the 
geometric mean [KG = 0.15 cms-1 2

ln Kσ], the variance [  = 1.70] and the correlation lengths [λx = 
60 cm and λz = 20 cm]. These values are somewhat higher than those presented in a previous 
study using the same sandbox [Illman et al 2010a]. Some key differences in experimental design 
may be responsible for this difference: 1] This study uses a dipole cross-hole test configuration 
where the previous study used single well cross-hole tests; 2] the pumping locations used in this 
study are different than the previous study resulting in different regions of the aquifer being 
stressed to different degrees; and 3] all of the boundary conditions in this study are no flow, 
whereas three of the boundary conditions [top, and both ends] were constant head in the previous 
study. The most notable difference in the K-tomogram from the two studies is that the 
tomograms generated in this study have a large high K zone near the top of the aquifer. This 
appears to be dominating the geostatistical analysis resulting in longer estimated correlation 
lengths and a higher geometric mean [KG

 

]. The tomograms from both this study and the previous 
study were tested against independent dipole cross-hole tests and the tomogram generated from 
this study performed the best indicating that for this particular case/configuration this is the most 
accurate tomogram to use. 

Figure 16.4: K tomograms computed using the steady state hydraulic tomography algorithm of 
Yeh and Liu [2000]. 

To quantitatively assess the results, we plotted the simulated and measured drawdown 
responses for each dipole cross-hole test used for the inverse modeling effort [i.e., calibration] on 
separate scatter plots and a linear model was fit to each case without forcing the intercept to zero. 
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The linear model fit and the coefficient of determination [R2] provide indications of scatter and 
bias. The R2 is a statistic that provides a quantitative measure of similarity between the simulated 
and measured drawdown values. A high R2 value means that the simulated and measured 
drawdown values are linearly correlated, even though the mean values could be different. The 
slope and intercept of the linear model fit, and the R2

 
 values are summarized in Table 16.2. 

Table 16.2: Results of linear model fit to simulated versus observed drawdowns for coarse and 
fine grids. Simulated values were obtained during the inverse modeling of these tests [i.e., 
calibration]. 

Test Slope Intercept R2 
E2_I47 1.00 -0.11 0.96 
E42_I7 0.84 0.11 0.93 
E4_I45 1.01 -0.02 0.97 
E15_I34 1.13 0.16 0.89 
E24_I25 1.01 0.05 0.96 
E17_I32 1.04 0.03 0.95 
E23_I26 1.03 0.04 0.95 
E20_I29 0.98 0.05 0.91 
 
16.3.3.1 Validation of the K tomograms using additional tests 

Illman et al. [2007, 2008, 2010a] and Liu et al. [2007] previously found that the best way 
to test the results from hydraulic tomography was to use the hydraulic parameter distributions in 
predicting one or more independent drawdown inducing events. Therefore, to further assess 
reliability of the K tomograms, we simulated 8 additional dipole cross-hole tests [no. 9 – 16] 
[i.e., test 9: E8/I41; test 10: E9/I40; test 11: E10/I39; test 12: E11/I38; test 13: E12/I37; test 14: 
E16/I33; test 15: E18/I31; and test 16: E30/I19] using the forward groundwater model MMOC3 
[Yeh et al., 1993]. The results were then assessed by plotting individual scatterplots of simulated 
and measured drawdown values and fitting a linear model as described earlier. Results 
summarized in Table 16.3 suggest that the K tomogram is able to accurately predict independent 
cross-hole dipole tests. These statistics collectively provide quantitative measures of the 
performance of each steady-state forward groundwater model with different K fields in 
simulating the 8 dipole cross-hole tests. The use of more than one dipole cross-hole test 
conducted at different parts of the synthetic heterogeneous aquifer ensures a more credible 
validation of each of these models. 
 
Table 16.3: Results of linear model fit to simulated versus observed drawdowns for coarse and 
fine grids. Simulated values were obtained by modeling independent dipole cross-hole tests not 
used in the construction of the tomograms [i.e., validation].   
Test Slope Intercept R2 
E8_I41 1.01 0.98 0.94 
E9_I40 1.05 0.35 0.95 
E10_I39 1.12 0.64 0.93 
E11_I38 1.03 0.43 0.93 
E12_I37 1.02 0.31 0.94 
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E16_I33 1.08 0.90 0.91 
E18_I31 1.03 0.28 0.95 
E30_I19 0.95 0.02 0.95 
 
 
16.4 RESULTS: DIPOLE TRACER TEST 

We next report on the results from the dipole tracer test by first examining the evolution of 
the tracer plume throughout the experiment. To achieve this, numerous photographs were taken 
during the dipole tracer test. Figure 16.5 shows six such photos taken at t = 12 min, 27 min, 62 
min, 100 min, 175 min, and 286 min. At t = 0 min, the injection of the tracer solution began and 
at t = 10 min, the injection was switched from tracer solution to tap water. 

The photographs are utilized for qualitative assessment of the tracer migration. Figure 
16.5a was taken at t = 12 min, 2 minutes after the injection of the tracer solution at port 42 
completed in layer 5 ended. Layer 5 consisted of a mixture of equal volumes of #14, F75, and 
16/30 sands. We notice from this figure that the tracer solution uniformly distributes in layer 5. 
However, this figure also shows that the tracer solution is preferentially transported along layer 4 
[20/40] which has a K of 2.05 × 10-1 

 

cm/s. 

Figure 16.5: Photographs of sandbox during tracer test 1 at various times: a] t = 12 min; b] t = 
27 min; c] t = 62 min; d] t = 100 min; e] t = 175 min; and f] t = 286 min. 

At 27 min. [Figure 16.5b], 17 minutes after the injection was switched from tracer solution 
to tap water, we notice that the blue dye becomes cleared around the injection port. Figure 16.5b 
shows that the tracer continues to move rapidly through layer 4. The tracer solution also moves 
laterally and upwards through layer 8 [F32], layer 9 [20/40] and into layer 10 [F65]. 

At 62 min. [Figure 16.5c], we notice that the tracer solution becomes more diluted through 
the injection of tap water and the visual observation that the hue of the blue dye lessening. We 
also notice that the tracer has migrated into layers 13 [20/30] and 15 [20/40]. It also begins to 
migrate into layer 17 [F85] which has the lowest K in the aquifer at 1.35 × 10-2 

At 100 min. [Figure 16.5d], the tracer appears to breakthrough layer 17 [F85] vertically 
and reaches layer 18 [20/30]. Because of the high K of the 20/30 sand [3.12 × 10

cm/s. 

-1 cm/s], the 
tracer then rapidly migrates laterally through layer 18. The tracer also appears to migrate rapidly 
through layer 7 [#12] which has a K of 2.05 × 10-1 cm/s. 
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By 175 min. [Figure 16.5e], the tracer appears to reach port 7 which is the extraction port 
that is completed in layer 14 [F75]. We notice that despite the fact the tracer solution appears to 
be diluted, the tracer plume has reached most parts of the aquifer and all of the layers between 
the injection and extraction ports. 

By 286 min. [Figure 16.5f], we observe that the tracer has been removed from the high K 
layers. However, there is a noticeable amount of blue dye in low K layers including: layer 3, 
layer 8, layer 10, layer 14, and layer 17. This suggests that the low K layers can contribute to 
store tracers for a long period requiring a long period to flush the tracers out of the synthetic 
aquifer. 

Figure 16.6 shows normalized concentration breakthrough curves of the bromide tracer at 
the 12 sampling ports [2, 10, 12, 14, 19, 22, 27, 30, 35, 37, 39, 47] and at the extraction port [7]. 
On Figure 16.6, we also note the arrival times [ta], peak concentration [Cp], and the time when 
the normalized concentration reaches background levels [tb

The breakthrough curves obtained from different ports [Figure 16.6] illustrate the 
differences in them. For example, breakthrough curves at ports [30, 35, and 47] that are a short 
distance away from the injection port, show early arrival of tracers, sharp peaks and a rapid 
return to background concentrations. The normalized peak concentrations range from 0.82 – 0.99 
and qualitatively, the breakthrough curves look similar. 

]. 
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Figure 16.6: Normalized concentration breakthroughs at the 12 sampling ports [2, 10, 12, 14, 19, 
22, 27, 30, 35, 37, 39, 47] and the extraction port [7]. The arrival times [ta], peak concentration, 
[Cp] and the time when the normalized concentration reaches background levels [tb

For the ports [10, 12, 22, 27, 37, and 39] that can be considered to be at intermediate 
distances, the breakthrough curves can be separated into two groups. In one group of ports [10, 
12, 22, and 39], the normalized peak concentrations are generally higher with values ranging 
between 0.65 and 0.71 in comparison to the other group of ports [27 and 37] with values ranging 
between 0.24 and 0.26. The breakthrough curve from ports 27 and 37 have a lower peak, but is 
more spread out. In both groups, the breakthrough curves all appear to have a Gaussian 

] is also 
noted. 
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distribution. We also note that the recovered mass is less at these intermediate distance ports 
because sampling is taking place continuously. 

Examination of breakthrough curves from ports [2, 14, and 19] that are farthest away from 
the injection port shows a different behaviour at least for ports 2 and 19. In particular, the 
breakthrough curve at port 2 suggests the presence of 3 peaks with the first one arriving 
approximately at 2,563 sec, the second at about 5,962 sec, and the last one at about 9,738 sec. 
Given the low noise level of the concentration measurements, we think that these are real peaks. 
This type of multi peak behaviour has been observed in fractured rocks and in highly 
heterogeneous porous media. 

Port 19 also shows a different breakthough curve in which there is only a single peak, but it 
exhibits a long tail with concentrations reaching background levels at approximately 13,605 sec. 
This suggests a non-Gaussian transport behaviour at the sampling port. 

The extraction port also reveals multiple peaks, one arriving at 2,661 sec, the second one at 
7,174 sec, and a third one at 14,625 sec. We notice a considerable tailing of concentrations after 
the second peak and the concentration does not reach background levels at the conclusion of the 
tracer experiment [~18,000 sec]. 
 
16.5 PREDICTION OF DIPOLE TRACER TEST 
 
16.5.1 Description of tracer transport simulations 

A two-dimensional, saturated flow and transport model of the synthetic aquifer was 
developed using the finite-element code MMOC3 [Yeh et al., 1993]. The purpose of this 
modeling effort was to compare drawdowns and solute concentrations during the dipole tracer 
tests at various sampling points. We conducted the simulation using an effective parameter 
approach and a heterogeneous K field using results from hydraulic tomography. For the effective 
parameter approach, we utilized the effective hydraulic conductivity [Keff] to simulate 
groundwater flow during the dipole tracer test, and a longitudinal macrodispersivity [A11] to 
simulate the migration of the conservative tracer. Both the Keff and A11

For all cases, flow conditions were established by simulating steady state groundwater flow 
with injection, extraction, and sampling ports. A tracer solution with a bromide concentration of 
151.3 mg/L is then injected for 10 minutes and the solute transport is simulated under transient 
conditions. As in the experiment, all boundaries are set as no-flow and no-flux boundaries. 

 were estimated from the 
stochastic theory of Gelhar and Axness [1983]. To address the issue that dipole tracer tests 
conducted in a bounded aquifer could potentially yield smaller dispersivity estimates, we also 
conducted an additional simulation with macrodispersivity reduced by 30% to examine its 
sensitivity to tracer transport. We also simulated groundwater flow and plume migration using 
the kriged K field and the K tomogram. For the transport simulation using the kriged K field and 
the K tomogram, we set the dispersivity value equal to zero, while the effective porosity was set 
to 0.36 for all cases. In total, 3 different cases were considered. 

 
16.5.2 Groundwater flow results 

We first modeled the steady-state drawdown values during the dipole tracer test at the 
sampling ports for the effective and heterogeneous K distributions. Figure 16.7 shows scatter 
plots of simulated versus observed drawdowns for the 3 cases that we examined. In particular, 
Figure 16.7a shows the comparison when the Keff computed using the Gelhar and Axness [1983] 
solution is used to simulate the drawdown behaviour. Likewise, Figure 16.7b shows the same 
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when the kriged K field is used for the forward simulation. These comparisons show that the Keff 
and kriged K field both yield biased predictions of drawdowns at various locations. In addition, 
we observe a significant scatter suggesting that the Keff

 

 and kriged K field may not be suitable for 
predicting drawdowns within this synthetic aquifer. In contrast, Figures 16.7c shows a much 
improved prediction of steady state drawdowns using the K tomogram. There is some scatter and 
bias, but it is evident that the K tomogram yields considerably improved results in terms of 
drawdown predictions in comparison to the effective parameter approach. 

 
Figure 16.7: Simulated versus observed drawdowns at 48 ports during the dipole tracer test. 
Simulated values were computed using: a] Keff

16.5.3 Dipole tracer transport results 

 from Gelhar and Axness [1983] solution with 
statistics of permeameter analysis of core samples; b] kriged K field; and e] K tomogram 
computed using fine mesh. 

We next modeled the tracer migration using the various effective and heterogeneous 
parameter fields. Figure 16.8 shows the concentration distributions from the various tracer 
transport simulations. In particular, Figure 16.8a shows the spatial distribution of tracer 
concentrations at various times using the macrodisperisivity estimates obtained via the Gelhar 
and Axness [1983] solution. The results reveal that the concentration distribution evolves quite 
uniformly with significant spreading of the tracer concentration. Not shown here are results of 
simulations in which we reduced the macrodispersivity by 30%. Surprisingly, reducing 
macrodispersivity by 30% did not influence our results confirming the findings by Sudicky et al. 
[2010]. 

Accounting for heterogeneity in K results in nonuniform concentration distributions. In 
particular, Figure 16.8b is the result using the kriged K field while Figure 16.8c is the result 
based on the K tomogram. We note that dispersivity was set to zero for both cases. Both Figures 
16.8b and 16.8c show that due to the mapping of the heterogeneity, the concentration 
distributions are less smooth in comparison to the effective parameter case [Figure 16.8a]. These 
figures reveal a much more heterogeneous distribution of tracer concentrations with tracers 
following preferential pathways with hydraulic tomography providing a more heterogeneous 
concentration distribution in comparison to kriging. 

We next compare the results from Figure 16.8a through 16.8c with Figure 16.5a through 
16.5c. The time when the photographs were taken and the transport simulation results are not 
exactly coincident, but the two figures nonetheless can be compared qualitatively. The 
comparison shows that the migration of the tracer represented by the migration of the dye is 
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better represented by Figure 16.8b and best represented by Figure 16.8c. This is expected as the 
transport simulations involving effective parameters do not consider the K heterogeneity, while 
kriging and steady state hydraulic tomography yields increasingly realistic distributions of K 
heterogeneity that can better represent the migration of tracers. 

One significant point to make is that while the effective parameter approach requires an 
effective hydraulic conductivity and macrodispersivity coefficient obtained from the 
geostatistical analysis of a large number of core or single-well hydraulic test, hydraulic 
tomography can yield a K distribution that does not require the collection of a large number of 
small scale samples as well as costly tracer experiments to obtain estimates of dispersivity. 
 
a] 

 
b] 

 
c] 

 
Figure 16.8: Concentration distributions from tracer transport simulation with: a] Keff and A11

 

 
computed using Gelhar and Axness [1983 solution with statistics of permeameter analysis of 
core samples [case 1]; b] kriged K field [case 2]; and c] K tomogram [case 3]. 
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16.5.3.1 Simulated versus observed breakthrough curves 
We next make a direct comparison of the breakthrough curves obtained through numerical 

simulations and the actual tracer data [Figure 16.9]. The matches of the breakthrough curves 
obtained from ports [30, 35, and 47] close to the injection port is quite good for all cases. In 
particular, the arrival time, peak concentrations, and time for tracer concentrations to reach 
background levels is quite consistent for all cases. 

Differences in the quality of matches begin to emerge when the breakthrough curves from 
the intermediate distance ports [10, 12, 22, 27, 37, and 39] are examined. We observe that case 1 
[effective parameters] consistently underpredicts the peak concentration at all ports in this 
category and show an earlier arrival of tracers. In contrast, cases 2 [kriging] and 3 [K tomogram] 
show a marked improvement in the quality of the fits with case 3 performing the best visually, on 
the average. 

Examination of the furthest ports [2, 14, 19] from the injection port shows mixed results. In 
general, we observe that case 3 performs better than cases 1 and 2 in terms of better predicting 
the peak concentrations and arrival times of tracers. However, we also note that the matches are 
far from perfect. 

At the extraction port [7], the results are again mixed, although we find case 3 to capture 
the first 2 peaks that arrive at different times. Case 1, on the other hand, because it is based on 
the effective parameter approach, cannot capture the multiple peak behavior. Likewise, case 2 
with the smoother K field does not capture this behavior. Because the visual comparisons of the 
simulated versus observed break through curves are qualitative, we next compute and compare 
the temporal moments. 
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Figure 16.9: Breakthrough curves from the dipole tracer test and corresponding match of 
forward simulations. Tracer transport simulations were performed using various K fields. 

16.5.3.2 Temporal moment analysis 
The method of moments for temporal concentration distribution was used to characterize 

the bromide breakthrough data at all wells. The nth temporal moments [Mn] of concentration [C] 
at location [x, y] at time [t] are given by: 
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nM t C x y t dt

∞

= ∫  [16.5] 

where t is time, ( , )iC x t is tracer concentration. One can compute the zeroth [M0], first [M1], and 
second [M2

The total mass of solute passing through the sandbox at each sampling point is obtained by 
computing the M

] temporal moments using the moment generating function [eqn. 5] by setting n = 0, 
1 and 2 respectively. The temporal moments were obtained through numerical integration of the 
breakthrough data using the trapezoidal rule. 

0

 

 from the breakthrough curves. The first normalized moment of breakthrough 
curves at each sampling ports were used to estimate the mean arrival time of the center of 
bromide mass [µ]: 

1

0
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M

µ =  [16.6] 

The variance of the breakthrough curve is then calculated by, 
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σ
 

= −  
 

 [16.7] 

In general, the variance represents the spread of the concentration distribution and is influenced 
by mechanical dispersion and molecular diffusion. 

Figures 16.10 through 16.12 show the M0, µ, and σ computed from the temporal moment 
analyses of simulated and observed breakthrough curves. In particular, Figure 16.10 reveals the 
estimates of M0

 

 are, on average, higher for the simulated breakthrough curves for case 1. This 
suggests that there are discrepancies of total mass estimated at many of the water sampling 
points. One reason behind this is that in uniform media, the tracer mass spreads uniformly 
causing tracer mass to increase throughout the domain. However, in reality, the synthetic aquifer 
is heterogeneous which causes more tracer mass to arrive in some sampling intervals than others 
depending on the flow path and the heterogeneities that the tracer cloud encounters. Cases 2 and 
3 suggest that when the heterogeneity in K is considered, the estimation of the total mass at a 
given sampling point improves. 

 
Figure 16.10: Total mass computed by the M0 for each sampling port: a] case 1; b] case 2; and 
c] case 3. 
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The mean arrival time of the center of mass [µ] for the 6 cases is plotted on Figure 16.11. 

Case 1 shows that the arrival times simulated using the effective parameters for the ports close to 
the injection port is very similar to those observed. As the tracer cloud moves away from the 
injection point, we see the discrepancy between the simulated and observed values to increase. 
Similar behaviours are observed for cases 2 and 3 which suggest that the more detailed 
heterogeneity pattern included does not affect the prediction of the arrival time of the center of 
mass at large times. What is encouraging is that the scatter is centered around the 1:1 line for 
cases 1 and 2. Case 3, on the other hand, shows considerably less scatter. There are two sampling 
points 2 and 37 that causes the simulated versus observed relationship to be biased at larger 
times. These two ports are at a large travel distance and near boundaries. If we choose to 
disregard these two points, then the relationship between the simulated and observed values 
becomes quite similar. This suggests that the mapping of heterogeneity via hydraulic 
tomography yields more accurate estimates of the arrival times of the center of mass for this 
synthetic aquifer. 

 

Figure 16.11: Mean arrival time of the center of mass [µ] computed for each sampling port: a] 
case 1, b] case 2, and c] case 3. 

The variance of the breakthrough curves [σ] was also calculated at each sampling point 
and plotted on Figure 16.12. It is evident from case 1 that the simulated variances are 
considerably higher than the observed ones closer to the injection point. This suggests that the 
effective parameters used in the transport simulation may be overpredicting the temporal 
spreading of the plume. This may be the case as the transport regime maybe in a non-Fickian 
regime close to the injection point. The variance estimates at the extraction point for case 1 are, 
however, very good, suggesting that effective parameters can yield accurate estimates of the 
variance at the extraction point if the travel distance/time is long enough reaching a Fickian 
regime. When we examine case 2 in which the kriged K field is used, the bias in the variance 
estimates diminishes at sampling intervals close to the injection well. In contrast, a remarkable 
improvement is seen in case 3 in which both the bias and scatter diminish considerably. This 
suggests that hydraulic tomography is the best approach for predictions of tracer migration. 
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Figure 16.12: The variance of the breakthrough curve [σ] at each sampling port: a] case 1; b] 
case 2; and c] case 3. 

16.6 DISCUSSION 
The main purpose of this paper was to compare the accuracy of solute transport predictions 

based on numerical simulations conducted using various heterogeneity characterization methods. 
Results clearly showed the large improvement of predictions in terms of drawdown behavior and 
tracer transport when the K distribution obtained from hydraulic tomography was used. As stated 
by Yeh [1992] and demonstrated through field studies [e.g., Sudicky, 1986; Sudicky et al., 
2010], the effective parameter concept is likely applicable in a large enough domain where the 
pumping or tracer tests are conducted so that the approach can be used to predict the bulk 
behavior of the system. However, we found that in this sandbox through forward numerical 
simulations that the effective hydraulic conductivity failed to provide accurate predictions of 
drawdowns during the dipole tracer test and the macrodispersivity used in the forward transport 
simulations could not predict solute transport behavior well. In addition, lowering of the 
macrodisperisvity by 30% did not affect our results. This suggests that macrodispersivity is 
relatively insensitive to the arrival time, peak concentration, and time to which concentration 
drops to a background level. This is in line with the sensitivity analysis of macrodispersivity 
conducted by Sudicky et al. [2010] based on data at the North Bay site in Canada. 

The overall implication of our findings is that in a smaller flow and transport domain, these 
effective parameter approaches may not be applicable in predicting local scale or even large 
scale behaviors of drawdowns and solute transport. This necessitates the development of 
heterogeneity characterization and modeling approaches. Results from hydraulic tomography 
showed that the prediction of drawdowns during the dipole tracer test was quite good, and that 
both qualitative and quantitative evaluations of tracer transport revealed that the transport 
behavior can be captured quite well.  However, we do note that the K distribution obtained from 
hydraulic tomography still could not capture all the details of the tracer breakthrough. This is 
likely due to the fact that the hydraulic tomography was done at a coarser scale than what an 
accurate prediction of tracer transport requires. That is, it appears that a finer characterization of 
the aquifer through hydraulic tomography or some other method is necessary in obtaining more 
accurate predictions of solute transport at the scale of the sandbox that we investigated. Finer 
scale characterization can be achieved in a number of ways. One approach is to place additional 
monitoring points along each of the boreholes. This will result in hydraulic tomography 
conducted at a higher resolution. Another approach may be to condition hydraulic tomography 
with other types of information such as geology, high resolution core and slug test data, as well 
as through geophysical tests. Yet another approach may be to utilize the tracer test data in the 
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inverse modeling effort to further refine the K distribution. This is obviously beyond the current 
manuscript but is a topic for further research in the future. 
 Finally, our study suggests that accurate predictions of solute transport can become 
possible without collecting a large number of small scale samples to estimate effective 
parameters or ascribing dispersivity estimates that are costly to obtain at the field scale through 
tracer tests. All one has to conduct are well designed hydraulic tomography surveys to capture 
the K heterogeneity pattern at a given site. 
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17. HYDRAULIC AND PARTITIONING TRACER 
TOMOGRAPHY EXPERIMENTS IN AN INTERMEDIATE 
SCALE SANDBOX         
 
17.1 Introduction 

Trichloroethene [TCE] and other dense nonaqueous phase liquids [DNAPL] are prevalent 
at a large number of sites throughout the world. The variable release history, unstable flow, and 
geologic heterogeneity make the spatial distribution of DNAPLs complex. This causes 
difficulties in site remediation contributing to long-term groundwater contamination for decades 
to centuries. One important reason for long cleanup times is the large uncertainty in DNAPL 
saturations in source zones. Significant improvement in remediation designs requires the 
accurate knowledge of hydraulic conductivity [K] heterogeneity and DNAPL saturation [SN

Illman et al. [2010b] presented small-scale laboratory experiments to demonstrate the 
efficacy of Sequential Successive Linear Estimator [SSLE] algorithm that images DNAPL 
source zones. The algorithm relies on the fusion of hydraulic and partitioning tracer tomography 
[HPTT] to derive the best estimate of the K heterogeneity, DNAPL saturation [S

] 
distributions. 

N] distribution 
and their uncertainty. The HPTT approach is a non-destructive approach and can be applied 
repeatedly prior to and post-remediation. More importantly, it also provides uncertainty 
estimates that can facilitate better decision making on source zone characterization, remediation, 
and long-term monitoring. Results from their laboratory experiments showed that SN 
distributions compare favorably with DNAPL distributions observed in the sandbox, but not so 
with local SN estimates from core samples. They also found that the delineation of K 
heterogeneity can have a large impact on computed SN

Despite the success of these experiments, additional work was deemed necessary as only 
one tracer was used in the study of Illman et al. [2010b] and the heterogeneity pattern was very 
simple. Therefore, the main objective of this study was to conduct additional HPTT experiments 
in an intermediate scale sandbox with a considerably more complex heterogeneity pattern that 
was previously characterized by Illman et al. [2010b] and Berg and Illman [in review]. 

 distributions emphasizing the importance 
of accurate delineation of hydraulic heterogeneity. 

 
17.2 Sandbox and aquifer description 

A synthetic heterogeneous aquifer was constructed in a sandbox to validate the HPTT 
algorithm of Yeh and Zhu [2007]. The sandbox is 193.0 cm in length, 82.6 cm in height, and has 
a depth of 10.2 cm. Forty eight ports, 1.3 cm in diameter, have been cut out of the stainless steel 
wall to allow coring of the aquifer as well as installation of horizontal wells. The wells fully 
penetrate the thickness of the synthetic aquifer. This allowed each location to be monitored by a 
pressure transducer, used as a pumping or an injection port and as a water sampling port. Figure 
17.1 is a schematic drawing of the frontal view of the synthetic aquifer, showing the 48 port and 
pressure transducer locations. 

In this study, the synthetic heterogeneous aquifer was created through the cyclic 
deposition of sediments under varying water flow and feed rates of sediments. Previous sandbox 
aquifer studies by our group [Illman et al., 2007, 2008; Liu et al., 2007; Yin and Illman, 2009] 
involved careful packing of heterogeneity patterns in a prescribed fashion. Packing of sand 
bodies by hand is a laborious procedure and complex heterogeneity patterns are hard to create. 
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Our goal in relying on sediment transport was to create a more realistic heterogeneity pattern 
with various scales of heterogeneity in an efficient manner. The one drawback of this approach is 
that the heterogeneity pattern in the sandbox cannot be controlled precisely as in the case of 
packing a sandbox aquifer by hand. Further details to the sandbox and the synthetic 
heterogeneous aquifer can be found in Illman et al. [2010a] 

 

Figure 17.1: Photograph of the sandbox showing the synthetic heterogeneous aquifer in which 
the dipole cross-hole and conservative tracer tests were conducted. Large black numbers indicate 
layer numbers, solid circles indicate port locations, and small blue numbers indicate port 
numbers. Layer 1 = 20/30; layer 2 = 4030; layer 3 = F85; layer 4 = 20/40; layer 5 = mix; layer 6 
= mix; layer 7 = #12; layer 8 = F32; layer 9 = 20/40; layer 10 = F65; layer 11 = #12; layer 12 = 
16/30; layer 13 = 20/30; layer 14 = F75; layer 15 = 20/40; layer 16 = mix; layer 17 = F85; layer 
18 = 20/30. Note: The layers labelled “mix” consisted of equal volumes of #14, F75, and 16/30 
sands. 
 
17.3 Dipole hydraulic tomography survey results 

 Cross-hole hydraulic tests were conducted by pumping water from one well and injecting 
the pumped water at another location [dipole cross-hole tests from now on] to characterize the 
synthetic heterogeneous aquifer in the sandbox. We note that these tests are new and different 
from the cross-hole pumping tests conducted using a single well that were previously reported by 
Illman et al. [2010a]. 

In the dipole cross-hole tests, a mass balance of water injected and extracted was 
maintained using a peristaltic pump by connecting the injection and extraction ports in a single 
loop. Eight pairs of ports consisting of tests 1 through 8 [e.g., test 1: extraction at port 2 and 
injection at port 47, from now on E42/I47; test 2: E42/I7; test 3: E4/I45; test 4: E15/I34; test 5: 
E24/I25; test 6: E17/I32; test 7: E23/I26; and test 8: E20/I29] were chosen for these dipole cross-
hole tests [see Figure 1 for port locations]. Eight additional tests [tests 9-16] were also conducted 
to collect data to evaluate the hydraulic tomography results that we discuss later. Injection and 
pumping rates for all dipole cross-hole tests averaged 480 mL/min.  Prior to each cross-hole 
pumping test, all pressure transducers were calibrated to ensure accurate data collection. We then 
collected hydraulic head data for several minutes in all pressure transducers to establish a static, 
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initial condition. After establishment of static conditions, we pumped from each port using a 
peristaltic pump, injecting the pumped water into another port, while taking head measurements 
at all 48 ports. For each test, pumping continued until the development of steady state conditions, 
which was determined by observing the stabilization of all head measurements on the data logger 
connected to a computer. After reaching steady state, the pump was shut off to collect recovery 
head data until its full recovery. Transient head data were also collected, but in this study, we 
only utilized steady-state head data for steady state hydraulic tomography to estimate K 
tomograms. 

The steady state hydraulic tomography analysis of dipole cross-hole tests in the sandbox 
was conducted using a sequential geostatistical inverse approach developed by Yeh and Liu 
[2000]. Details to the analysis are described in Chapter 8. Figure 17.2 is the K tomogram 
obtained by inverting the steady state head data from 8 dipole cross-hole tests. Noteworthy 
statistical properties of this K tomogram include the geometric mean [KG = 0.15 cms-1

2
ln Kσ

], the 
variance [  = 1.70] and the correlation lengths [λx = 60 cm and λz = 20 cm]. These values are 
somewhat higher than those presented in a previous study using the same sandbox [Illman et al 
2010a]. Some key differences in experimental design may be responsible for this difference: 1] 
This study uses a dipole cross-hole test configuration where the previous study used single well 
cross-hole tests; 2] the pumping locations used in this study are different than the previous study 
resulting in different regions of the aquifer being stressed to different degrees; and 3] all of the 
boundary conditions in this study are no flow, whereas three of the boundary conditions [top, and 
both ends] were constant head in the previous study. The most notable difference in the K-
tomogram from the two studies is that the tomograms generated in this study have a large high K 
zone near the top of the aquifer. This appears to be dominating the geostatistical analysis 
resulting in longer estimated correlation lengths and a higher geometric mean [KG

 

]. The 
tomograms from both this study and the previous study were tested against independent dipole 
cross-hole tests and the tomogram generated from this study performed the best indicating that 
for this particular case/configuration this is the most accurate tomogram to use. 

Figure 17.2: K tomogram computed using the steady state hydraulic tomography algorithm of 
Yeh and Liu [2000]. 
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17.4 Description of PCE spill 
A PCE source zone was then created in the synthetic aquifer by injecting 1.25 L of PCE 

[> 99.9% purity, Sigma-Aldrich] dyed with Sudan IV [Sigma-Aldrich] at the top center of the 
sandbox. To achieve a constant injection rate, we used a peristaltic pump and the PCE was 
injected a rate of 50 ml per minute over 25 minutes. After commencing the injection, the PCE 
quickly infiltrated through the 20/30 sand, slowly moved through layers 15, 16 and 17, and 
ponded on the F-65 sand [layer 10] as shown on Figure 17.3. Figure 17.3 is photograph of the 
PCE distribution after no additional movement of the PCE infiltration front was observed prior to 
the partitioning tracer tests for test 1. The injection of PCE in this sandbox resulted in a sandbox 
aquifer-averaged TCE saturation [SN

 

] of approximately 3% by assuming a porosity of 0.33 
typical of these sands, which is equivalent to a volumetric TCE content of 0.0105. 

 
Figure 17.3: Photograph of the sandbox showing the distribution of PCE prior to conducting the 
partitioning tracer tests. 
 
17.5 Determination of partitioning coefficient through batch tests 

In order to determine PCE saturation from partitioning tracer tests, the partitioning 
coefficient [KNW

 

] of the tracer and PCE is needed. Methods to estimate partitioning coefficients 
have been developed using UNIFAC [Wang et al., 1997] and on defining equivalent alkane 
carbon number for each contaminant in a DNAPL and the tracers [Dwarkanath et al., 1998].  
Here, we estimated the partitioning coefficients through batch tests and follow the work of 
Illman et al. [2010b]. The partitioning tracers selected for this study were 2-methyl-1-butanol 
[2M1B, purity > 99%; Sigma-Aldrich], 1-hexanol [1-Hex, purity > 99%; Sigma-Aldrich], 4-
Methyl-2-Pentanol [4M2P, purity > 99%; Sigma-Aldrich], and 2-4-Dimethyl-Pentanol [24-DMP, 
purity > 99%; Sigma-Aldrich]. Details to the batch tests to determine the partitioning coefficient 
between the tracers and the PCE are provided in Chapter 14. 

17.6 Description of partitioning tracer tests 
Upon settlement of the PCE in the source area, we conducted 5 separate partitioning tracer 

tests. In each partitioning tracer test, a dipole flow field was created by injecting tap water at one 
port at a rate of 400 mL/min and extracting at another port at 340 mL/min.  A water mass 
balance was then achieved by setting 12 sampling lines at a cumulative rate of 60 mL/min.  
Achieving a mass balance was crucial because the 3 boundaries of the sandboxes had no-flow 
boundary conditions, while the top boundary was open to the atmosphere. Deviations in the mass 
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balance would result in a rising or falling water level which we monitored with pressure 
transducers. Table 1 summarizes the injection, extraction, and sampling ports for each of the 5 
partitioning tracer tests. 
 
Table 17.1: Injection, extraction, and water sampling locations during tests 1 - 5. 
Partitioning tracer 
test 

Injection/extration 
ports 

Injected tracers Sampling port 

1 37/12 Bromide, 2M1B, 1-Hex 3, 4, 5, 10, 11, 17, 21, 27, 28, 29, 
33, 35 

2 42/7 Chloride, 4M2P, 24-DMP 2, 3, 10, 11, 14, 19, 20, 21, 27, 
28, 29, 32 

3 24/25 Bromide, 2M1B, 1-Hex 2, 3, 10, 11, 14, 19, 20, 21, 27, 
28, 29, 32 

4 25/24 Chloride, 4M2P, 24-DMP 10, 11, 14, 20, 21, 27, 28, 29, 34, 
35, 41, 47 

5 37/12 Bromide, 2M1B, 1-Hex 4, 9, 10, 11, 20, 21, 28, 29, 34, 
35, 41, 47 

 Once steady state flow conditions were reached in which the injection, extraction, and 
sampling rates all stabilized, a valve was switched on the injection line from water to a solution 
containing various partitioning tracers depending on the tracer test with a concentration of 
approximately 500 mg/L. Bromide [Fisher Scientific] was used as a conservative tracer with a 
concentration of approximately 100 mg/L. The tracer solution was injected for 10 minutes and 
then the valve was switched back to tap water. Separate sample sets were collected for bromide 
and the partitioning tracers throughout the duration of the test from the 12 sampling ports. Crude 
estimates of the tracer travel time were obtained using Darcy’s law to estimate sampling times at 
each port. Water sampling from each one of the sampling lines was made possible with a 
manifold that fed the water samples into twelve 1.5 ml vials simultaneously. Sixty samples for 
analysis of partitioning tracers and 60 bromide samples were collected from each of the 12 
sampling lines during each partitioning tracer test for a total of 1440 samples per tracer test. Each 
tracer test lasted approximately 5 hours. 
  

 
Figure 17.4: Breakthrough curves from the various sampled ports and the effluent port during 
partitioning tracer test 1. 
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Figure 17.5: Breakthrough curves from the various sampled ports and the effluent port during 
partitioning tracer test 2. 
 
 

 
Figure 17.6: Breakthrough curves from the various sampled ports and the effluent port during 
partitioning tracer test 3. 
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Figure 17.7: Breakthrough curves from the various sampled ports and the effluent port during 
partitioning tracer test 4. 
 

 

Figure 17.8: Breakthrough curves from the various sampled ports and the effluent port during 
partitioning tracer test 5. 

 
The 5 tracer tests were designed to maximize the contact of the tracer solution with the 

PCE source area. Each of the tracer tests was performed with different conservative and 
partitioning tracer as well as different injection/extraction and water sampling schemes to sweep 
the tracers through the source zone from different directions in a tomographic fashion. Figures 
17.4 – 17.8 are breakthrough curves from partitioning tracer test 1 – 5. 

C
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The PCE appeared to be relatively stable after injection and during the first two 
partitioning tracer tests. However, during the third partitioning tracer test, the PCE was 
mobilized [Figure 17.9]. At the beginning of partitioning tracer test 3 the PCE was located as 
centrally in the tank as a pool on top of sand layers #10 and #11. During the third partitioning 
tracer test the PCE broke through these layers and continued to migrate downwards, eventually 
pooling on top of sand layers #1 and #2. There are several possibilities that can provide 
explanations for this: 1] the PCE even though it looked like it was in equilibrium was in fact still 
moving very slowly; 2] that the tracer tests caused enhanced dissolution of PCE from the 
nonaqueous to the aqueous phase due to the flushing which then caused the spontaneous 
movement of the PCE [e.g., Roy et al. 2004]. Regardless of the mechanism behind the 
mobilization, this causes additional challenges to the interpretation of these tests. The 
mobilization of the DNAPL was not witnessed in the experiments of Illman et al. [2010b] who 
used TCE for their experiments. 

 
Figure 17.9: Photograph of PCE distribution in the sandbox at various stages of partitioning 
tracer tests. 
 
17.8 Direct sampling of PCE through excavation 

Upon completion of the partitioning tracer tests, the top cover was removed to excavate the 
aquifer in order to obtain direct samples to facilitate the comparison of PCE saturation estimates 
from HPTT and the actual distribution in the sandbox aquifer. In particular, a grid of 10 cm by 
10 cm blocks was drawn on the sandbox and the excavation took place row by row by inserting a 
divider. To ensure the samples were representative of the entire grid block, the sand within each 
block was mixed prior to sampling. Excavation took place under fully saturated conditions and 
the water level was lowered to the next row after the completion of the excavation of a given row 
until they reached the sandbox bottom. The excavated samples were then deposited into pre-
labeled, pre-weighed 40 mL vials and capped with Teflon-lined septa caps. After this step, the 
vials were then weighed again and the mass of the vial containing the cap and sample was 
recorded. The vials were then filled to the top with methylene chloride [Sigma Aldrich] and 
weighed again.  We then recorded the mass of the vial, along with the cap, sample and the 
methylene chloride. The volume of methylene chloride was calculated based on the mass 
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differences and density of methylene chloride. The samples were then cooled in the refrigerator 
at 4°C until they were ready for sample preparation and analysis for PCE mass. 

Initially, PCE Standards in the range of 1mg/L thru 1000 mg/L were prepared in DCM 
(Dichloromethane). Then, 5 uL of the PCE in DCM standards and samples were added to 2 ml of 
internal standard solution (500 ug/L of 1,2-Dibromoethane in pentane) in a 5mL screw cap glass 
vials with Teflon-faced septum. The sample was then placed on an orbital shaker for 15 minutes 
at 300 RPM. The sample was then transferred to a 2 mL glass crimp-top GC vial and put on a 
Hewlett Packard 5890 Series II gas chromatograph equipped with a Ni63 ECD detector.  Using a 
HP 7673 liquid auto sampler a 1uL sample was injected onto a J&W DB-624 (30m x 0.52mm x 
3u) capillary column. The detector temperature was 300oC, injection temperature was 200oC and 
the column temperature ramp is 50oC to 150oC at a rate of 15o

The mass of PCE in each core sample was calculated by multiplying the average sample by 
volume of liquid in the sample [assumed to be the volume of methylene chloride]. The mass was 
then converted to volume by dividing by the density of PCE. To determine the volume of soil in 
each vial we backcalculated it since we had information on grain density, PCE mass, and 
methylene chloride mass. We then assumed a porosity of 0.33 to estimate the saturation. 

C/min and then held for 1 min. The 
carrier gas is ultrapure helium with a total flow rate of 25 mL/min and the make-up gas is 5% 
methane, 95% argon.  The method detection limit was 0.46 mg/L.  

Saturation estimates were available at 106 locations within the sandbox. We kriged these 
saturation estimates by fitting an exponential variogram to the experimental variogram. The 
vertical correlation length was 15.4 cm and the with an anisotropy ratio of 2. Figure 17.10 shows 
the saturation distribution in the sand tank. 

 

Figure 17.10: Preliminary PCE saturations from kriging excavated samples after conduct of 5 
partitioning tracer tests. 

17.9 Plans for future analysis 
Funding has run out for the analysis of these tracer tests. Additional funding will be 

sought through SERDP in the future through a separate project to continue the analysis of these 
data sets. 
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18. A REVISIT OF DRAWDOWN BEHAVIOR DURING 
PUMPING IN UNCONFINED AQUIFERS 
 
18.1 Introduction 

The response of an unconfined aquifer during a pumping test often is characterized by an 
S-shaped drawdown-time curve on a log-log scale graph. More specifically, when an unconfined 
aquifer is pumped at a constant rate, the depth-averaged drawdown appears to follow the Theis 
[1935] solution for flow in a confined aquifer at early times; at intermediate times, the drawdown 
becomes less than that predicted by the Theis model; the drawdown again appears to conform to 
the Theis solution at late times. Such a phenomenon has often been referred to as the delayed 
yield or delayed gravity response of the water table. The explanation and analysis of this 
response have been a topic for debate over the years. 

Flow processes induced by pumping in unconfined aquifers are generally complex due to 
presence of saturated and unsaturated zones, and the time-varying interface of the two zones [the 
water table], in addition to the heterogeneous nature of geologic media.  As a consequence, 
hydrologists over the past few decades have adopted simplified conceptual models such that the 
mathematical analysis of the drawdown caused by pumping in an unconfined aquifer is 
mathematically tractable. 

Generally speaking, two categories of conceptual mathematical models based on analytical 
solutions have been developed over the years to quantify and explain the delayed yield 
phenomenon.  The first category is the depth-averaged, radial flow model with a delayed 
drainage source term [Boulton, 1954, 1963]. As stated by Boulton [1963], "the water-bearing 
material through which the water table has fallen during the early stages of pumping does not 
yield up its water immediately." As a result, the Boulton model includes an empirical delay 
coefficient to the specific yield term to represent the slow water-release process, and to account 
for the intermediate stage of the S-shaped well hydrograph [the log-log drawdown-time data 
plot]. 

The other category includes those based on a concept of instantaneous and complete 
drainage at the water table [e.g., Dagan, 1967; Brutsaert, 1970; Streltsova, 1972a, 1972b; 
Neuman, 1972; and Lakshminarayana and Rajagopalan, 1978]. These are radial flow models 
which consider 2-D flow field in the vertical plane along the radial distance, and the delayed 
drawdown region of the time-drawdown curve is considered to be caused by the downward 
hydraulic-head gradient below the water table [i.e., gravity delayed yield].  They neglect the 
influence of the unsaturated zone above the water table and assume instantaneous drainage of the 
initially saturated pores. 

Application of both types of models to time-drawdown data collected from field pumping 
tests generally yields specific-yield values that are substantially below those that would be 
expected on the basis of other methods of measurement [see Nwankwor et al., 1984; Endres et 
al., 2006]. Nwankwor et al. [1984] attributed the low values of specific yield obtained from the 
type-curve methods to an inadequate representation of the drainage processes occurring near the 
water table. 

Based on the field data, Nwankwor et al. [1992] explained the S-shaped time-drawdown 
behavior of unconfined sand aquifers as a consequence of changes in vertical hydraulic gradients 
and water-content profile above the water table.  Numerical modeling of variably-saturated 
flow by Akindunni and Gillham [1992] and analysis of drainage from a soil column by 
Narasimhan and Zhu [1993] supported the explanation by Nwankwor et al. [1992] about the 
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importance of the initially unsaturated zone above the water table.  Narasimhan and Zhu [1993] 
concluded that a simple exponential release function used by Boulton does not accurately 
simulate drainage from above the water table. To obtain a more general mathematical 
approximation of the drainage process, Moench et al. [2001] developed an analytical model that 
used a linear combination of exponential functions to simulate release from above the water 
table. 

Endres et al [2006] compared bulk vadose zone response predicted by the analytical 
models [i.e., Boulton, 1954, 1963; Neuman, 1972; Moench et al. 2001] and inferred from field 
measurements using hydraulic head data and soil moisture content profiles obtained during a 
seven day pumping test at CFB Borden, Ontario. They concluded that the water table boundary 
conditions used in these analytical models do not adequately replicate the mechanisms 
controlling the vadose zone behavior during a pumping test. 

Tartakovsky and Neuman [2007] developed a semi-analytical model that includes flow 
through unsaturated zone above the water table.  The analytical nature of the model forced them 
to ignore unsaturated flow induced by lowering the water table during the pumping test, and to 
assume that the unsaturated hydraulic conductivity and moisture capacity term vary with 
elevation instead of capillary pressure which varies with flow at different locations. Based on 
this model, they concluded that unsaturated flow in the vadose zone above the initial water table 
has significant impact on dimensionless log-log drawdown-time behavior in the saturated zone 
when the aquifer has large retention capacity and/or small initial saturated thickness.  Moreover, 
as horizontal saturated hydraulic conductivity increases relative to the vertical, the effect of 
unsaturated flow on drawdown in the aquifer diminishes. 

Although effects of heterogeneity on variably saturated flow have been investigated by Li 
and Yeh [1998], few have investigated the effects of heterogeneity on drawdown-time curves 
during pumping in unconfined aquifers.  Akindunni and Gillham [1992] mentioned possible 
effects of heterogeneity when analyzing data from pumping tests in the Borden Aquifer.  Bunn et 
al. [2010] conducted a Monte Carlo analysis to investigate the effects of the spatial variability of 
the saturated hydraulic conductivity in the unconfined aquifer on the capillary fringe extension 
observed in the field [Bevan et al., 2005]. 

In this study, numerical experiments of pumping in an unconfined aquifer are conducted 
using a finite element numerical model which solves the governing equations for flow through 
variably saturated media. A first-order stochastic moment approach is then developed to quantify 
the effects of spatial variability of parameters for both saturated and unsaturated zones on the 
drawdown-time curve induced by the pumping in the aquifer.  By examining the rate of change 
in storage at various locations in the aquifer including the saturated zone, the vadose zone above 
the initial water table, and the porous medium after lowering of the water table in the aquifer, we 
demonstrate that the S-shaped log-log drawdown time behavior during pumping in an 
unconfined aquifer is merely a manifestation of the transition of the water release mechanism 
from compaction of porous media and expansion of water to actual dewatering of porous media 
under vertical flows. We subsequently employ the stochastic moment approach to explore the 
role of heterogeneity in the development of the S-shaped drawdown-time curves and the spatial 
cross-correlation between the drawdown at a given location and heterogeneity at various part of 
the aquifer.  Finally, implications of the results of this study are discussed. 
 
 
 



299 
 

18.2 METHODOLOGY 
A finite-element numerical model, VSAFT3 [Variably Saturated Flow and Transport in 

3D] by Srivastava and Yeh [1992] is employed in this investigation.  This program solves the 
partial differential equation that describes flow in 3-D, variably saturated geologic media: 

 

  
( )[ ( , ) ( )] ( ) ( ) ( , )s s

h hK h h z S S C h
t t t

θω ω∂ ∂ ∂
∇⋅ ∇ + = + = +
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x x x x

  [18.1] 
 
where ∇ is the spatial gradient, t is time, θ represents the volumetric moisture content, and z is the 
elevation, which is positive upward. h is the pressure head and is positive when the medium is 
fully saturated and negative when unsaturated. The saturation index ω is equal to one if the 
medium is saturated and zero if the medium is unsaturated. The term Ss

We use VSAFT3 to simulate flow to a well due to pumping in a 3-D unconfined aquifer.  
The dimension of the aquifer is 200 m×200 m in the horizontal plane and 9 m in the vertical and 
is discretized into 380,880 finite elements. A variable mesh is used for the discretization. In the 
vertical plane, a vertical interval of 0.2m is used from z=6.0 m to 7.5 m [i.e., about the water 
table] and a vertical interval of 0.5 m is employed from z=0.0 m to 6.0 m and from z=7.5m to 
9.0m.  In the horizontal plane, the interval of the mesh is 0.5m from x=76m to 124m and y=76m 
to 124m [around the pumping well] and 4.0m otherwise. 

[x] represents the specific 
storage, C[h,x] is the soil moisture capacity, which can be derived from the moisture/pressure 
constitutive relationship, and K[h,x] is the hydraulic conductivity-pressure constitutive function. 
The program employs the Newton-Raphson iteration scheme to solve the nonlinear finite 
element approximation of equation [18.1].   

A no-flux boundary is assigned to the top [no infiltration or evaporation] and bottom of 
the aquifer; no-flux boundaries are imposed on the other four sides of the aquifer. The initial 
pressure head distribution in the aquifer is set to be hydrostatic with the water table at z = 6.7 m, 
representing a static condition. A well is represented by a line source of length 4.0 m from the 
bottom center of the aquifer [x = 100 m, and y = 100 m] with a constant rate of discharge [0.06 
m3

The hydraulic conductivity-pressure head and moisture-pressure head constitutive 
relationship of the aquifer are described by an exponential model [Gardner, 1958]: 

/min], in which the borehole storage is neglected. 

 

            ( ) exp( )sK h K h= α        [18.2]  
 And 
 

  ( ) ( )exp( )r s rh h= + −θ θ θ θ β  ,      [18.3] 
 
respectively. In equations [18.2] and [18.3], α and β are pore-size distribution parameters for the 
unsaturated hydraulic conductivity/pressure head function and the moisture/pressure head 
relationship, respectively; θs and θr

For the cases where the aquifer is assumed homogeneous, values of the parameters in 
equations [18.2] and [18.3] are referred from the study by Akindunni and Gillham [1992]: K

 denote saturated and residual water content. 

s= 
0.00396 m/min, Ss= 0.000325/m, θs= 0.37 and θr= 0.07, α = 4.0/m and β = 4.0/m, respectively.  
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The thickness of the capillary fringe [or air entry value] is assumed to be1 / β . The pumping test 
is simulated for 2,000 minutes. 

In order to investigate the effect of parameter heterogeneity on the drawdown-time curve, a 
first-order stochastic moment analysis developed by Li and Yeh [1998] and Hughson and Yeh 
[2000] is employed. Specifically, natural logarithms of the parameters in the constitutive 
relationships of the unsaturated hydraulic properties are treated as stochastic processes in space, 
which are characterized by their means and spatial covariance functions.  Subsequently, the head 
is expanded in a Taylor series about the mean values of hydraulic parameters. After neglecting 
the second-order and high-order terms, the first-order approximation of the total head can be 
written as 
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where f[x], s[x], a[x], b[x], ts[x] and tr[x] are the perturbations of the logarithms of parameters, 
Ks[x], Ss[x], α[x], β[x], θs[x] and θr H[x]. These perturbations are dimensionless.  is the mean 
total head, evaluated using the mean parameters and it represents the head in an equivalent 
homogeneous aquifer; p denotes the head perturbation around the mean head, resulting from 
spatial variability of the parameters. The partial derivatives are the sensitivity matrices, which 

are evaluated at the mean parameters , , , , ands s s rK S α β θ θ . According to equation [18.4], the 
head perturbation can be written in a matrix form as 
 

  s rpf ps pa pb pt s pt= + + + + + rp J f J s J a J b J t J t        [18.5] 
 

Here, bold characters denote either matrices or vectors. pfJ is the sensitivity of p to change in 
parameter f or Jacobian matrix, which is calculated by the adjoint method [see Skyes et al., 1985; 
Li and Yeh, 1998 and 1999; Hughson and Yeh, 2000]. Multiplying equation [18.5] with itself, 
taking the expectation, and assuming that the perturbation of the different parameters are 
statistically independent from each other lead to the covariance of the head: 
 

s s s s r r r r

T T T T T T
pp pf ff pf ps ss ps pa aa pa pb bb pb pt t t pt pt t t pt= + + + + +R J R J J R J J R J J R J J R J J R J   

            [18.6] 

Rff, Rss, Raa, Rbb s st tR, and r rt tR are the covariance function matrices for the parameters, which are 
assumed to follow an exponential covariance model [Gelhar, 1993].  The superscript T denotes 

the transpose.  Each diagonal element of ppR is the head variance [
2
pσ ] at location x and at time 

t, representing the mean square deviation of head in a heterogeneous aquifer from the head 
calculated using the mean parameters for the homogeneous aquifer. The corresponding standard 

deviation [ pσ ] is added to and subtracted from mean drawdown-time curves at a given 
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observation location calculated by the mean parameters to yield an upper and a lower bounds of 
the drawdown-time curve. Such lower and upper bounds delineate the influence of heterogeneity 
of different parameters.  In other words, the log-log drawdown-time curve of a heterogeneous 
unconfined aquifer will likely fall in between these bounds. Greater differences between the 
upper and lower bounds suggest that the log-log drawdown-time curve of the heterogeneous 
aquifer may be quite different from the perfect S shape obtained using the mean parameters, 
representing an equivalent homogeneous aquifer. While the first-order analysis only yields 
approximate upper and lower bounds and Monte Carlo simulations with a large number of 
realizations would produce a more accurate upper and lower bounds, the result of the first-order 
analysis efficiently illustrates general effects of heterogeneity on the S shaped drawdown-time 
curve. 

To evaluate the mean head in equation [18.4], the values of the mean parameters are 
assumed to be the same as the parameter values in the homogeneous case and VSAFT3 is used.  
Two levels of heterogeneity [variances of the logarithm of parameters equal to 0.1 and 1] for all 
parameters are examined. In addition, the spatial structure of all parameters is assumed to be 
described by a 3-D exponential correlation function with some specified correlation scales in 
horizontal and vertical directions, which represent the spatial structure of the heterogeneity. 
In addition to the first-order stochastic moment analysis, a single realization of each parameter 
field is generated using a stochastic field generator with the given mean and variance and 
correlation scales of the parameters of the exponential constitutive model.  These fields are then 
input to VSAFT3 to simulate the response of a heterogeneous aquifer.  The response of the 
heterogeneous aquifer is subsequently compared to the response derived from mean parameters 
[homogeneous aquifer] to show the effect of heterogeneity on the drawdown-time curve.   
 Subsequently, a cross-correlation analysis is carried out to investigate how the head at a 
given location in the saturated zone is affected by the parameter value at different locations in the 
aquifer. This cross-correlation analysis again is based on the first-order stochastic moment 

analysis.  For example, the cross-correlation between p at location ix and f at jx  can be expressed 
as 
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where j = 1, N and N is the total number of elements in the domain and fσ is the standard 
deviation of f. Here, we also assume independence of each different parameter.  The cross-

correlation between p at location ix and the other parameters at jx  can be written in a similar 
expression. 
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18.3. RESULTS AND DISCUSSIONS 
 The results and discussions will be grouped into 1] flow to a well in a homogeneous 
aquifer, 2] 1-D variably saturated flow, and 3] flow to a well in a heterogeneous aquifer. 
 
18.3.1. Flow to a Well in a Homogeneous Aquifer 
 
18.3.1.1 Drawdown-Time Curve 

Simulated drawdowns in the unconfined aquifer as a function of time at five elevations [1.5 
m, 3.0 m, 6.0 m, 7.1 m, and 7.5 m] at radial distance 5.0 m and 30.0 m from the pumping well 
are plotted using log scales in Figures 1a, and 1b, respectively. Notice that elevations 7.1 m and 
7.5 m are above the water table, and drawdowns at these elevations denote change of pressures in 
the vadose zone due to pumping in the saturated zone. These two figures show that drawdowns 
in the saturated zone exhibit the characteristic S shape, which is most pronounced at bottom of 
the aquifer.  The flat part of the S curve at z = 6.0 m occurs earlier than at the bottom of the 
aquifer [i.e., z = 1.5 m and z = 3.0 m].  On the other hand, the drawdown-time curves at 
elevations 7.1 m and 7.5 m in the unsaturated zone do not exhibit the S shape.  These simulated 
results are consistent with field observations [e.g., Bevan et al., 2005]. 

 
Figure 18.1: Log-log drawdown time curves at five different elevations [z =1.5, 3.0, 6.0, 7.1, 7.5 
m] at a] r = 5 m and b] r = 30 m. Solid lines denote the results based on the solution by Hantush 
at three observation elevations in the saturated zone z = 1.5, z = 3.0, z = 6.0m. In Figure a, the 
difference between the Hantush solution at z=1.5 m and z=3.0 m is not distinguishable. In Figure 
b, the solutions are the same at all three elevations.    

Time (min)

D
ra

w
do

w
n

(m
)

10-3 10-2 10-1 100 101 102 10310-4

10-3

10-2

10-1

100

z= 1.5m
z= 3.0m
z= 6.0m
z= 7.1m
z= 7.5m

a)

Time (min)

D
ra

w
do

w
n

(m
)

100 101 102 10310-5

10-4

10-3

10-2

10-1

z= 1.5m
z= 3.0m
z= 6.0m
z= 7.1m
z= 7.5m

b)

Hantush
z=1.5m
z=3.0m
z=6.0m

Hantush
z=1.5m
z=3.0m

Hantush
z=6.0m



303 
 

Figures 18.1a and 18.1b also show drawdown-time curves at different elevations [z = 1.5 
m, 3.0 m, and 6.0 m] in a confined aquifer that has an infinite lateral extent, with the same 
saturated thickness [6.7m] and the saturated hydraulic properties of the unconfined aquifer. 
These curves are obtained by using the solution of Hantush [1961a and 1961b], which considers 
the partial perforation of the pumping well in the aquifer.  According to Figure 18.1a, 
drawdowns in the confined aquifer at r = 5 m, at higher elevation z=6.0 m are smaller that those 
at z = 1.5 m and z = 3.0 m, indicative of vertical flow.  At r = 30.0 m, far from pumping well, 
identical drawdowns at the three elevations suggest that the effect of the partial perforation of the 
pumping well [i.e., vertical flow] is negligible [Figure 18.1b]. As expected, no S-shaped curve is 
observed. 

Notice that in both figures the drawdown-time curves in the unconfined aquifer departs 
from its initial steep drawdown portion and deviates from the corresponding drawdowns of the 
confined aquifer in a descending elevation order [i.e., z = 6.0 m, z = 3.0 m and z = 1.5 m]. This 
sequential departure [i.e., smaller drawdowns than the confined aquifer] implies that an 
“additional” source of water is flowing from the upper to the lower part of the saturated zone of 
the aquifer as recharge, in comparison with the flow process in the confined aquifer. As will be 
explained below, such an “additional” source of water is mainly attributed to a different water 
release mechanism at this stage of the flow process in the unconfined aquifer.  
 
18.3.1.2 Rate of Change in Storage 

Different from previous works, our study uses the evolution of the “rate of change in 
storage” per volume of the porous medium [Ω] at various distances and depths during a pumping 
test in an unconfined aquifer to explain the so called “delayed yield” phenomenon. 
Mathematically, this rate of change in storage is the right-hand side of equation [18.1], which 
represents the net mass flux in a unit volume of the porous medium: 
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    [18.8] 
 

In VSAFT3, each node links a number of elements depending on the discretization. The 
rate of change in storage per unit volume of around a node between two successive time steps is 
calculated by dividing the change in storage over the elements associated with the node by the 
time step and total volume of the elements. 
 
18.3.1.3 Early times 

In Figure 18.2a, the quantity Ω is plotted as a function of elevation at different radial 
distances from the pumping well at various times of the early stage of the S-shaped drawdown-
time curve.  Specifically, these distances and times are r = 2.5 m at t = 0.02 min; r = 5.0 m at t = 
0.07 min; r = 10 m at t = 0.3 min; r = 20 m at t = 1.0 min, r = 30 m at t = 3.0 min. We use 
different times for different radii to illuminate the effect.  At this early stage, the Ω value at r = 
2.5 m is the largest at the bottom of the aquifer over the elevation from 0 m to 4 m where the 
pumping well screen is located. This value then decreases with elevation and reaches the 
minimum at the water table; it then increases sharply at the water table and subsequently 
decreases with elevation in the unsaturated zone.  Overall, the Ω values below the water table 
exhibit a strong nonlinear pattern with greater Ω values at the bottom of the aquifer than those 
near the water table.  This pattern is consistent with the fact that the greatest change in pressure 
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is at the bottom of the aquifer near the pumping location. The Ω value in unsaturated zone at 
these times is virtually zero except close to the water table. Similar behaviors are also observed 
at the other radial distances. This behavior suggests that water flow into the pumping well is 
mainly from expansion of water and compaction of the aquifer in the saturated zone, which is 
characterized by the specific storage of the aquifer. This time period corresponds to the early 
time segment in the log-log drawdown-time plot. The water table position can only be 
approximated from the plot of Ω as a function of elevation in Figure 18.2, as different finite 
element meshes are used at different radial distances.  
 
18.3.1.4 Intermediate Times 

During the intermediate stage [the flat portion] of the log-log drawdown-time curve [t = 10 
min after pumping], the behavior of Ω as a function of elevation at r = 2.5 m, 5.0 m, 10.0 m, 20.0 
m and 30.0 m from the pumping well is shown in Figure 18.2b.  In comparison with Figure 
18.2a, the Ω values in the vadose zone above the water table [near the sharp break in curve 
around z=6.5 m] at all radii begin to increase. The Ω values in the saturated region below the 
water table decrease at all radial distances. The closer to the pumping well the location, the 
greater reduction in Ω in comparison with Figure 18.2a.  Furthermore, the Ω values at locations 
close to the pumping well are almost constant with elevation. All these behaviors indicate that 
the flow field near the well is close to the steady state [quasi steady state] in which the head field 
changes at the same rate at all elevations. 
They also suggests that pumping has begun to induce significant amount of water released from 
the vadose zone to supply the well discharge, whereas the elastic storage of the aquifer near the 
pumping location is almost exhausted. In other words, the drainage of water from pores in the 
unsaturated zone increasingly becomes the primary source of water for the well discharge. It 
yields more water to the saturated region below than the elastic storage of the region itself and 
contributes to an “additional” source of water compared with the similar flow in the confined 
aquifer. As a result, the drawdown-time curve deviates from that based on the Hantush solution 
[1961a, 1961b]. The transition of water release mechanism from compaction of the porous 
medium and expansion of water to dewatering of pores thus explains the “additional” source of 
water and in turn, the flat part of the intermediate stage of the S-shaped drawdown-time curve.  
 

 
Figure 18.2: Ω  as a function of elevation a] at five early times [t = 0.02, 0.07, 0.3, 1.0, and 3.0 
min] corresponding to five different radii [r = 2.5, 5, 10, 20 and 30 m]; b] at an intermediate 
stage [10 minutes after pumping] and c] a late stage [1000 minutes after pumping] at the five 
radii.  The water table is located at the sharp discontinuity. 
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18.3.1.5 Late Times 

The behavior of Ω as a function of elevation at the five radii at t = 1000 min after pumping 
[i.e., the late stage of the S curve] are plotted in Figure 18.2c. At this stage the water table at all 
radii starts to fall noticeably; the Ω values in the unsaturated zone are much greater at high 
elevations at this late stage than the early or the intermediate stage.  The Ω values in the saturated 
region at all radii are very small and do not vary with the elevation. These behaviors of the Ω 
values indicate that flow in this region apparently approaches steady-state conditions; water 
released from the unsaturated zone and from previously saturated pores due to falling of the 
water table is equal to the amount of water withdrawn by the pumping well.  Thus, little change 
in storage occurs in the saturated region of the aquifer. Note that although there is still water 
released from the aquifer due to compaction of the aquifer and expansion of water, its amount is 
much smaller than the amount of water released from falling of the water table and the initially 
unsaturated zone. 
 
18.3.2. 1-D Vertical Variably Saturated Flow 

To further emphasize the importance of the transition of water release mechanism from 
compaction of the aquifer to drainage of porous media in the formation of the S-shaped 
hydrograph, the drainage process of a vertical soil column is simulated. The column is 150 cm in 
length and 0.1 cm in width and thickness. The column is discretized into 1500 square elements 
with 0.1cm in length, width, and thickness. Such a small element size is selected to ensure 
accurate tracking the location of water table and correct mass balance of the experiments. 

No-flux boundaries are assigned to the top, bottom, and all sides of the column. The initial 
pressure distribution in the domain is assumed to be hydrostatic. The initial water table is located 
at elevation 110 cm from the bottom of the vertical domain, and an initial thickness of the 
unsaturated zone is 40cm. At time greater than zero, a constant discharge q=0.08 cm/min is 
imposed at the bottom boundary of the column. The simulation lasts 150 min and drawdown data 
[difference between the initial head and head after the drainage starts] are recorded at elevations 
z = 10 cm, 40 cm, 70 cm. 

The saturated hydraulic parameters for the soil column are Ks= 0.495 cm/min, Ss

 

= 
0.0001/cm. The experiment is conducted for two different unsaturated hydraulic properties: the 
exponential model [equations 2 and 3] and Van Genuchten model [1980]. 

    ( )( ) ( ) 1
mn

r s rh h
−

θ =θ + θ − θ + γ
                [18.9] 

 
where | | is absolute value, θs is the saturated moisture content, θr

γ
 is the moisture content at 

residual saturation and , n, and m are shape-fitting parameters with m=1-1/n.  We further 
assume that the K[h] follows Mualem’s [1976] pore-size distribution model expressed as: 
 

   
1 2 /2( ) (1 ( | |) [1 ( | |) ] ) / [1 ( | |) ]n n m n m

sK h K h h h− −= − γ + γ + γ      [18.10] 
 
where Ks

γ is the locally isotropic saturated hydraulic conductivity; and , n, and m are assumed 
to be the same as those in equation [18.9].  Hereafter, equations [18.9] and [18.10] are referred to 



306 
 

as the VGM model [hereafter].  The parameters for the exponential model are α = 0.25/cm, β = 
0.15/cm, and γ =0.15/cm, n=2.5 for the VGM model.  For both models, θs and θr

An analytical solution describing saturated flow in a semi-infinite vertical domain [Ozisik, 
1993] is also used to describe drawdown behavior due to release of water from the column 
caused by compaction of the porous medium and expansion of water only. Using the definition 
of hydraulic diffusivity D=K/S

 are set to 0.35 
and 0.045, respectively.  Notice that VGM model has a slightly more distinct capillary fringe 
than the exponential model. 

s
 

, the analytical solution to the governing equation: 

     

2

2

1H H
z D t

∂ ∂
=

∂ ∂                                    [18.11] 
 
with initial and boundary conditions: 
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K Dt Dt

     = − = − − − −     
    π  [18.13] 

where ( , )s z t is the drawdown. The parameters and discharge in the equation are kept the same as 
those in the 1-D variably saturated experiment, i.e., Ks= 0.495cm/min, Ss

 

= 0.0001/cm, and q = 
0.08 cm/min. 

 
Figure 18.3: Comparison of drawdown-time curves at three different elevations z=10cm, 
z=40cm and z=70cm in a fully saturated column and those in a soil column with an unsaturated 
zone of 40 cm with the exponential constitutive relationships, and those with VGM constitutive 
relationships.  
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Figure 18.3 depicts simulated drawdowns as a function of time at elevations z = 10 cm, z = 
40 cm, and z = 70 cm during the drainage process in the soil column with the exponential and the 
VGM models as well as during the drainage process under the fully saturated condition.  
According to the figure, 1-D vertical variably saturated flow can yield S-shaped log-log 
drawdown-time curves similar to those drawdown time curves in the 3-D unconfined aquifer.  
Furthermore, the drawdown from the variably saturated model deviates from the drawdown of 
the fully saturated model sequentially at z = 70 cm first, then at z = 40 cm and z = 10 cm. This 
sequential occurrence of the deviation [smaller drawdown] indicates that the water released by 
desaturation of the unsaturated zone above the water table arrives at z = 70cm first and then 
progressively migrates downward. In other words, the transition of water release mechanism 
progresses from the location near the water table to the bottom of the column. These results are 
the same as those in the case of pumping in an unconfined aquifer as indicated in Figure 18.1. 
 
18.3.2.1 Effects of the Exponential Model vs. the VGM model 

Compared with the VGM model, the exponential model does not describe the unsaturated 
hydraulic properties of real soils well near the air entry pressure value.  Nevertheless, according 
to Figure 18.3, the overall shapes of the drawdown-time curves resulting from the two models 
are similar.  Drawdowns based on the VGM model are however consistently larger than those 
based on the exponential model once the effects of the drainage process become effective.  This 
can be attributed to the greater water holding capacity of the moisture retention curve of the 
VGM model. The Ω values in the 1-D vertical column as a function of elevation at t = 0.01 min, 
3.0 min, and 100.0 min after drainage started are plotted in Figures 18.4a and 18.4c for the 
exponential and the VGM model, respectively.  Both figures show that at the early time [t =0.01 
min], change in storage takes place below the water table; it is the greatest at the bottom of the 
column; it decreases nonlinearly towards zero near the elevation of 50 cm. The discharge from 
the column at this time is the water released due to compaction of the porous medium and 
expansion of the water. As expected, the rates of change in storage in these two figures for the 
two models at the early time are identical. 

At t = 3.0 min, the nonlinear behavior of the Ω value in the saturated zone becomes less 
pronounced; contributions from the unsaturated zone above the water table begins to increase.  
Differences in the rate of change in storage resulting from these two models become apparent.  
In the case of the VGM model, the Ω value decreases sharply right above the water table and 
then increases with the elevation [see circled areas in Figure 18.4c]. The sharp decrease in the 
rate of change in storage occurs at the location corresponding to the capillary fringe depicted by 
the model. The capillary fringe is under negative pressure and does not release water unless its 
air entry pressure is exceeded by downward forces.  The same plot based on the exponential 
model [Figure 18.4a] however does not show such a sharp change near the water table.  This is 
attributed to the fact the exponential model does not have a distinct air entry cut-off pressure [or 
an abrupt capillary fringe]. Above the water table, both models show that the rate change of 
storage decreases with the height but the VGM model results in a smoother pattern than the 
exponential model. 
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Figure 18.4: The rate change in storage as a function of the elevation in a 1-D soil column for a] 
exponential model and b] VGM models at time 0.01 min, 3.0 min and 100 min after drainage 
started. WT denotes the water table. The initial water table before draining is at 110cm. b] and d] 
are the cumulative volume of water released from 1] compaction of the aquifer, 2] drainage from 
the initial unsaturated zone, and 3] drainage from pores during falling of the water table over the 
column at a function of time for exponential and VGM constitutive models, respectively. 
 

At time equal to 100 min, the water table has dropped significantly.  The rate of change in 
storage of the unsaturated zone above the water table becomes very large.  Conversely, the Ω 
values at all locations below the water table become very small and remains constant over the 
depth, indicating that flow in the saturated zone below the water table is close to a steady state. 
That is, discharge from desaturation of previously saturated pores due to falling of the water 
table and desaturation of the unsaturated zone above are transmitted to the bottom discharge 
boundary without causing a noticeable change in storage in the region below the water table. At 
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this time, the discharge from the column is mainly from the drainage of pores above the water 
table. Notice that the behavior of the Ω value in the 1-D experiment is very similar to that in the 
3-D experiments [Figure 18.2]. 

Figures 18.4b and 18.4d depict the cumulative volume of water released over the length of 
the column as a function of time simulated using the exponential and the VGM models, 
respectively.  The volume of water released is classified into three groups 1] from compaction of 
the aquifer, 2] from drainage of the unsaturated zone above the initial water table and 3] from 
drainage of the initially saturated medium during falling of the water table. The pattern of these 
curves from the exponential and the VGM models generally are almost identical. The water 
coming from the initially unsaturated zone of exponential model is slightly higher than the water 
from VGM model.  The contribution from falling of the water table simulated by the exponential 
model begins a little earlier than that by the VGM model [0.3 vs. 1.3 min] due to the distinct air 
entry value and greater water holding capacity of the VGM.  At time greater than 20 min, 
drainage of initially saturated media due to falling of the water table becomes the dominant water 
release mechanism. 

These results suggest that the use of the VGM or the exponential model does not 
significantly change the result in general.  The exponential model will be used in the rest of 
analysis. 
 
18.3.2.2 Effects of Hydraulic Conductivity Curve vs. Moisture Retention Curve 

The comparison of the simulated drawdown-time curves based on the VGM and the 
exponential models indicates that the moisture/pressure constitutive relation seems to have a 
greater influence on the drawdown than the hydraulic conductivity/pressure constitutive relation. 
To confirm this speculation, the 1-D column drainage problem is investigated with the 
exponential model with different α and β.  The parameter α dictates the rate of reduction in 
unsaturated hydraulic conductivity, while β controls the rate of reduction in moisture content as 
the medium becomes less saturated.  Figures 18.5a and 18.5b illustrate the influence of 
parameters α and β, respectively, on the log-log drawdown-time behavior at elevation z = 20 cm 
in the column. With an increase of α value, drawdown becomes greater and the S shape of the 
drawdown-time curve becomes less obvious.  Conversely, when the value of β increases, the 
drawdown becomes smaller, and the S shape becomes more pronounced.  That is, a porous 
medium which has a smaller air entry value [a large β value] in the moisture retention curve can 
release more water from pores than a medium with a larger air entry value [a small β value].  
This finding is consistent with the previous findings of the effects of the exponential and VGM 
models on the S-shaped drawdown-time curve.  As indicated by these results, the influence of 
the two parameters on drawdown is entirely different. Therefore, it is inappropriate to treat these 
two parameters as identical as has been done in the past [e.g., Tartakovsky and Neuman, 2007]. 
In effects, laboratory experiments by Yeh and Harvey [1990], Moench [2008], and others have 
demonstrated that the two parameters are not necessarily the same. 
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Figure 18.5: a] Drawdown-time curve at z=20cm with different α values when β=0.15/cm and b] 
Different β values while fixing α=0.15/cm.  
 
18.3.2.3. Role of an Initially Unsaturated Zone 

While the important role of the vadose zone [initially unsaturated zone] has been 
emphasized by many previous studies as discussed in the introduction, our study here advocates 
the importance of transition of the water release mechanisms in variably saturated flow process 
during an aquifer pumping test. That is, we argue that even in a fully saturated aquifer without an 
initially unsaturated zone, the transition between the two water release mechanisms may occur 
when the discharge is greater than recharge and thus initially fully saturated pores are 
desaturated. As such, S-shaped drawdown curves likely will occur during pumping in such an 
aquifer. 

In order to test this hypothesis, we conducted a new numerical column experiment by 
relocating the upper impermeable boundary to the location of the initial water table of the 
previous column experiment.  As a result, the length of the new column is reduced to 110 cm 
from the length of 150 cm of the previous experiment.  The new column is initially fully 
saturated with a hydrostatic pressure head distribution with zero pressure at the top. We shall call 
the previous experiment as Case 1, which involves the vadose zone, and the new experiment as 
Case 2, in which the vadose zone does not exist.  Figure 18.6 shows the log-log drawdown-time 
curves at two elevations [z = 20 cm and 50 cm] for the two cases.  In both cases, the log-log 
drawdown-time curves follow an S shape. At the beginning, the drawdown curves are identical 
for the two cases since the water is released strictly from the specific storage of the column of the 
two cases. Afterwards, water is released mainly from unsaturated zone and desaturation of the 
initially fully saturated pores due to falling of the water table for Case 1. On the other hand, in 
Case 2, water is released mainly from the latter. While log-log drawdown-time curves of both 
cases are similar, a major difference between the two cases is that for the case without an initial 
unsaturated zone, the drawdown is slightly greater since no water from initially unsaturated zone 
is available as in Case 1. At large times, behaviors of the two drawdown-time curves appear to 
be the same although the drawdown in Case 2 is slightly higher. 

Results of this experiment further confirm that the “additional” source of water causing the 
S-shaped drawdown curve is not limited to the additional water from the initial vadose zone 
above the water table of an unconfined aquifer.  It also includes the drainage of initially fully 
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saturated pores in the saturated zone.   Therefore, the transition of water release mechanism 
during vertical flows is the cause of the S-shaped drawdown observed in the saturated zone 
during pumping in an unconfined aquifer.  The concept of the expansion of capillary fringe 
proposed by Nwankwor et al [1992] and the delayed yield concept are phenomena created by 
this transition of water release mechanisms. 

 
Figure 18.6: The drawdown-time curve at two elevations z=20cm and 50cm showing the role of 
an initial unsaturated zone. 
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18.3.3. Flow to a Well in Heterogeneous Aquifers 
 
18.3.3.1 Drawdown-time Curve 

As mentioned in section 2, effects of spatial variability of aquifer parameters on the 
drawdown-time curve will be quantified by an upper bound and a lower bound of the drawdown 
around its mean as a function of time at an observation point in the aquifer.  The upper bound is 
the mean drawdown plus the standard deviation of the head [σp] at the given time and location 
and the lower bound is the mean minus σp

The mean drawdown-time curves for the aquifer considered have been presented in Figure 
18.1. The temporal evolutions of σ

. 

p at three elevations z = 3m, z = 6m, and z = 7.1m at radius r = 
5m from the pumping well in the aquifer due to spatial variability of all six hydraulic parameters 
[Ks, Ss, α, β, θs, and θr] are plotted as solid red lines in Figure 18.7 a, b, and c.  The three 
elevations represent the bottom, the middle of the saturated zone and the initially unsaturated 
zone of the unconfined aquifer. The contribution to σp

According to Figures 18.7a and 18.7d, the head standard deviation in the initially 
unsaturated zone [note that initial water table is located at z=6.7m] at r=5m and r=30m generally 
increases with time. However, it decreases slightly at the location close to pumping well [r=5m, 
Figure 18.7a] at large times.  This reduction can be attributed to the fact that the flow in the 
unsaturated zone close to the well approaches the hydrostatic condition earlier. Overall, 
variations in K

 from variability of each of the six 
parameters is shown as a line with a different symbol in the same figures.  Similar plots for 
locations at r = 30m at elevations z=3m, z=6m, and z=7.1m are illustrated in Figures 18.7d, e, 
and f respectively.  The aquifer considered in these figures is considered to be statistically 
isotropic with correlation scale 3m in all directions. The variances of the logarithm of parameters 
are intentionally set to the same variance: 1.0 such that the effect of the variance can be isolated. 

s and θs are shown to have greater effects on the head variation in the unsaturated 
zone than those of α, β, and θr. and the effect of the variation in Ss

For the head in the saturated region, the impact of the variation in K
 is minimal. 

s is most profound and 
it persists over time [see Figures 18.7b, c, e, and f].  The effect of variability in Ss is as 
significant as that of Ks at the early time but it decreases rapidly and stabilizes when the 
transition of water release mechanism from elastic compaction and expansion to drainage of 
pores commences or when the variability of unsaturated parameters [α, β, θs, and θr] takes effect. 
At large times, the effect of the variability of θs becomes as significant as those of Ks and greater 
than effects of variability of α, β, and θr

Comparisons of Figures 18.7a, 18.7b, and 18.7c with Figures 18.7d, 18.7e, and 18.7f 
indicate that the temporal evolution of the head standard deviation due to variability of each 
parameter at the same elevation at different radii from the pumping well follows similar patterns. 
In the saturated zone, the head standard deviation increases rapidly at the early time, stabilizes 
slightly at the intermediate time, and increases again at the large time [Figure 18.7b, 18.7c, 
18.7e, and 18.7f]. This seems to suggest that the head standard deviation is dependent on the 
mean hydraulic head. The magnitude of the head standard deviation generally is smaller at larger 
distance [r=30m] from the pumping well. 

. 

In general, smaller variances of the parameters are found to yield a smaller σp while the 
temporal evolution of σp remains the same as those shown in Figure 18.7. Similarly, as the 
statistical anisotropy increases [i.e., the correlation scales in the horizontal directions become 
greater than the vertical one], the magnitude of σp increases and the temporal behavior of σp 
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remains similar to as those of aquifers with statistical isotropy [Figure 18.7]. This implies that 
effects of variability of parameters on head increase if the geologic formation is stratified. 

The above analysis shows that even the variance is assumed to be the same, the variability 
of of Ks, Ss or θs has greater consequential impacts on the drawdown-time curve in the saturated 
zone than the variability of α, β, and θr

These results may also suggest that identifying the spatial variability of α and β values of 
the exponential model for the vadose zone using the head observed in the saturated zone may be 
difficult unless head and moisture content measurements in the unsaturated zone are used. 

.  While few studies have quantified the variance of the 
parameters of the exponential model, studies of the variance of the VGM parameters at several 
field sites [Russo and Bouton, 1992] have shown that the variability of the parameters for 
saturated media is generally greater than that of parameters for unsaturated media.  Therefore, 
the spatial variability of parameters of media under unsaturated conditions do not have 
significant impacts on the drawdown-time curve in the saturated zone during pumping tests in 
unconfined aquifers. 

To demonstrate the utility of the head standard deviation, a single realization of heterogeneous 
unconfined aquifers is created. In this example, we only consider the combined effects of spatial 
variability of Ks, Ss and θs parameters since other parameters have minor impacts on the 
drawdown as indicated in Figure 18.7. To make this example realistic, vertical and horizontal 
correlation scales of the heterogeneity are set to be 0.15m and 3.0 m, respectively, the same as 
the statistics of the Borden aquifer [see Sudicky, 1986]. Variance for Ks specified as 0.25 
according to the work by Woodbury and Sudicky [1991] and the same for Ss. A variance of 0.05 
is assigned for θs

Figure 18.8 shows the simulated drawdown as a function of time at r = 5m and z = 3m in 
this heterogeneous aquifer, the corresponding mean drawdown-time curve predicted based on 
aquifer homogeneity assumption, and upper and lower bounds associated with the mean curve. 
Apparently, the drawdown-time curve of this realization of heterogeneous aquifers is different 
from the one based on a homogeneous model using the mean parameter values and is bounded 
by its upper and lower bounds. In other words, the upper and lower bounds are a measure of 
uncertainty associated with prediction based on the homogeneous model [or likely deviation of 
drawdown in a heterogeneous aquifer from the predicted one assuming aquifer homogeneity].  
The deviation reported by Akindunni and Gillham [1992] of the observed drawdown in the 
Borden aquifer from that predicted by an equivalent homogeneous model thus is likely due to 
local heterogeneity neglected by the model. That is, one should not force an equivalent 
homogenous model to reproduce exactly the observed drawdown-time curve in a field aquifer. 
The upper and lower bounds can serve as the calibration target to avoid over-fitting of the model.  

. The mean values of these parameters, pumping rate, and setup are the same as 
values used in the previous 3D homogeneous model. 
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Figure 18.7: The standard deviation [σp

 

] of the head for every parameter as a function of time 
with variances 1.0 and correlation scale 3m.  a] to f] represent the results for observation point at 
two different radius r=5m and 30m and three different elevations z=3m, z=6m and z=7.1m. The 
red solid lines show the combined effect of all the six parameters. 
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Figure 18.8:  Deviations of drawdown-time curve in an aquifer with heterogeneous Ks, Ss and θs

 

 
parameters from the drawdown-time curve derived with the assumption of aquifer homogeneity;  
the upper and lower bounds based on the first-order stochastic moment analysis that quantify the 
deviation. 

18.3.3.2 Cross-correlation Analysis 
The degree of influence on the head at a given location in the aquifer by different 

properties at every part of the aquifer of the above example at different times is discussed next.  
Figure 18.9 shows the spatial distributions of cross-correlation value between the head observed 
at r=5m and z=3m and Ks in a cross-sectional vertical plane running through the pumping well 
and the observation location.  At the early time [0.08 min] when the water table remains static, 
the head at the observation location is negatively correlated with Ks values in the region between 
the pumping well and the observation location [Figure 18.9a].  At intermediate time [t=10 min] 
when the water table starts to fall, the head becomes positively correlated with Ks values in the 
area above the observation point and the pumping well, and is negatively correlated with Ks
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values in the region between the observation location and pumping well, below the positive 
correlation zone [Figure 18.9b].  This pattern of correlation [from upper positive correlation 
region to the negative correlation region] follows the direction of the vertical flow.  This 
intermediate time period corresponds to the time when the flat portion of the drawdown-time 
curve occurs [Figure 18.1].  At the large time [1000 min], the lowering of the water table near 
the pumping well becomes noticeable. The positive correlation region at t = 10 min breaks into 
two: one at the top left of the observation and the other on the right of the pumping well [figure 



316 
 

18.9c]. Such changes in the correlation pattern seem to follow the change of the flow field [i.e., 
from mostly vertical flow to greater horizontal flow]. The overall non-symmetrical pattern is 
consistent with results from Mizell et al. [1982], Li and Yeh [1999], Wu et al. [2005] and Zhu 
and Yeh [2006] for confined aquifers. That is, the head at a given location is positively correlated 
with the Ks of the up gradient region, negatively correlated with Ks in the down gradient region 
with respect to the head location along the stream line toward the pumping well. It is slightly 
positively correlated with the Ks
  

 along stream lines on the other side of the pumping well. 

 
 

 
 

 
Figure 18.9: Spatial distributions of the cross-correlation between head at observation 
point[Obs. x=95.0 m, y=100.0 m and z=3.0m] and Ks

 

 along a vertical plane running through 
both the pumping well [Pw] and the observation point at a] the early time, b] the intermediate 
time, and c] the late time of an S-shaped drawdown-time curve.  
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observation location at early times [Figure 18.10]; this correlation diminishes to zero as flow 
near the pumping well approaches a quasi-steady state during the late times. 

Very small positive cross correlation of the observed head and θs appears at the early time t 
= 10 min and is confined to the region above the observation location and the water table.  This 
positive correlation then continues to increase and the size of the correlated area expands with 
the expansion of cone of depression as time progresses [Figure 18.11]. That is, the head at the 
observation location at the late time is highly influenced by the θs
 

 values in this region. 

 
Figure 18.10: Spatial distributions of the cross-correlation between head at observation point 
[Obs. x=95.0 m, y=100.0 m and z=3.0m] and Ss

 

 along a vertical plane running through both the 
pumping well [Pw] and the observation point at the early time of an S-shaped drawdown-time 
curve.  The cross-correlation diminishes as the time progresses. 

 
Figure 18.11: Spatial distributions of the cross-correlation between head at observation point 

[Obs. x=95.0 m, y=100.0 m and z=3.0m] and sθ along a vertical plane running through both the 
pumping well [Pw] and the observation point at the late time of an S-shaped drawdown-time 
curve. 
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spatial average] embedded in the homogeneous flow equations is satisfied. We believe the same 
issues confront the estimation of parameters for unconfined aquifers by application of a model 
based on the homogeneity assumption without using a large number of observation wells [e.g., 
Tartakovsky and Neuman, 2007]. These issues certainly deserve a rigorous analysis, which is 
however beyond the scope of this paper.     

Finally, results of our analysis point to a simple fact: a multi-dimensional variably 
saturated flow model such as equation [18.1], which considers the transition of water release 
mechanisms and heterogeneity would provide a more realistic representation of flow processes in 
the unconfined aquifer during a pumping test. In addition, our results show that variability of 
unsaturated constitutive relationships in the unsaturated zone does not play a significant role in 
the head in the saturated zone except θs, which does not vary significantly in general. As such, 
recently developed hydraulic tomography [Tosaka et al.,1993; Gottlieb and Dietrich, 1995; 
Vasco et al., 2000; Yeh and Liu, 2000; Bohling et al., 2002; Liu et al., 2002; Brauchler et al., 
2003; and Zhu and Yeh, 2005 and 2006; Li et al., 2007; Liu et al.; 2007; Illman et al., 2007, 
2008; Fienen et al., 2008; Castagna and Bellin, 2009; Cardiff et al., 2009; Yin and Illman, 2009; 
Xiang et al., 2009; Illman et al., 2010] coupling with equation [1] using spatially averaged 
unsaturated constitutive relationships for the unsaturated zone [i.e., neglecting their spatial 
variability] may foster a practical way for delineating Ks and Ss

 

 heterogeneity in the saturated 
region of the unconfined aquifer. 
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19. HYDRAULIC TOMOGRAPHY TO CHARACTERIZATION 
OF HETEROGENEITY OF UNCONFINED AQUIFERS 

 
19.1. INTRODUCTION 

While detailed characterization of the subsurface is critical to groundwater resources 
management and remediation, classical cross-well aquifer test and analysis has been shown to 
yield spatially averaged hydraulic properties of an aquifer. The estimated values depend on the 
location of observation and pumping wells, and heterogeneity [Wu et al., 2005, Liu et al., 2007, 
and Straface et al., 2007].  To overcome this problem and to provide high-resolution aquifer 
characterization, a new aquifer characterization technology, known as hydraulic tomography 
[HT], has recently been developed [e.g., Neuman 1987a; Gottlieb and Dietrich 1995; Vasco et 
al., 2000;  Yeh and Liu, 2000;  Bohling et al., 2002;  Brauchler et al., 2003;  Zhu and Yeh, 2005 
and 2006; and others].  In simple terms, HT is a sequential cross-hole hydraulic test followed by 
inversion of all the data to map the spatial distribution of aquifer hydraulic properties.  Although 
the ability of HT remains to be fully assessed under field conditions, results from sandbox 
experiments by Liu et al. [2002], Illman et al. [2007 and 2008], and Liu et al. [2007] are 
encouraging.  These studies showed that the transient HT can identify not only the pattern of the 
heterogeneous hydraulic conductivity [ Ks] field, but also the variation of specific storage [ Ss] in 
the sandbox.  These estimated Ks and Ss

Although HT has been successfully applied to confined aquifers to address issues related to 
heterogeneity, few attempts have been focused on its application to unconfined aquifers.  Some 
of the main reasons are the complexity of an unconfined flow system due to its interface with the 
unsaturated zone, the difficulties inherent in solving the unsaturated flow problem, and effects of 
heterogeneity.  Over the past few decades, attempts have been made to simplify the problem with 
idealized approximations so that the problem is made tractable [i.e., principle of parsimony].  
Besides the aquifer homogeneity assumption, a key feature that these idealizations must account 
for is the inflection frequently observed in the log time-drawdown plot of data [S shape drawn-
time curve or well hydrograph] from unconfined aquifer pumping tests. That is, when a known 
unconfined aquifer is pumped at a constant rate, the water-level drawdown follows the Theis 
[1935] non-equilibrium response at early time; at intermediate times the drawdown is less than 
that predicted by the Theis model; while at late time, the drawdown again conforms with the 
Theis response. 

 fields from the HT sandbox experiments accurately 
predicted the drawdown evolution caused by a pumping test that was not used in the HT 
analysis. A field application of HT to a well field at Montalto Uffugo Scalo, Italy, produced an 
estimated transmissivity field that is deemed to be consistent with the geology of the site 
[Straface et al., 2007].  Bohling et al. [2007] and Li et al. [2007] also showed promising results 
of HT in their field experiments. 

Briefly, two categories of simplifications have been used in this regard.  Both these 
simplifications restrict attention to flow in the saturated zone but account for the drainage of 
water from above the moving water table through the use of a source term in the governing 
differential equation.  The first category is the one-dimensional, depth-averaged, radial flow 
model with delayed drainage of Boulton [1954, 1963]. As expressed by Boulton [1963], "the 
water-bearing material through which the water table has fallen during the early stages of 
pumping does not yield up its water immediately." The Boulton model includes an empirical 
delay coefficient to represent the water-release process, accounting for the delayed-drawdown 
region of the time-drawdown graph. 
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The other category includes those based on a concept of instantaneous and complete 
drainage at the water table [Dagan, 1967; Neuman, 1972]. These are radial flow models which 
consider 2-D flow field in the vertical plan along the radial distance, and the delayed¬ drawdown 
region of the time-drawdown curve is considered to be caused by the downward hydraulic-head 
gradient below the water table [i.e., gravity delay yield]. Similar approaches and assumptions of 
instantaneous and complete drainage at the water table were used by Brutsaert [1970], Streltsova 
[1972a, b], and Lakshiminarayna and Rajagopalan [1978]. Both types of models consider water 
released during the rapid drawdown at very early time to be the result of elastic effects of the 
aquifer. 

Application of the type curves developed from both types of models to time-drawdown 
data collected from field pumping tests generally give specific-yield [effective porosity] values 
that are substantially below those that would be expected on the basis of other methods of 
measurement [see Nwankwor et al. [1984], Endres et al., [2007]]. For example, most 
nonindurated sand or gravel aquifers are expected to have values of specific yield in the range of 
about 0.2 to 0.3. However, applications of Boulton type curves to time-drawdown data measured 
in a sand- gravel aquifer yielded the values between 0.02 and 0.09 [Boulton, 1963]. Similarly, for 
glaciofluvial sand aquifers Prickett [1965] obtained values ranging from 0.03 to 0.13.  Bonnet et 
al. [1970] reported values of 0.04 and 0.08 for a predominantly medium-grain sand aquifer. For 
the same aquifer studied by Bonnet et al., and using the Neuman type curves, Neuman [1975] 
reported specific-yield values between 0.04 and 0.07. 

Nwankwor et al. [1984] speculate that the low values of specific yield obtained from the 
type-curve methods are the result of an inadequate representation of the drainage processes 
occurring near the water table. Neuman [1987b] argued that whereas specific yields obtained in 
the laboratory may be useful for the evaluation of ground-water reserves that may be potentially 
recoverable over long time periods; they are generally not relevant to the problem of relating 
ground-water level fluctuations to pumpage. 

Numerical modeling of variably-saturated flow by Narasimhan and Zhu [1993] and 
Akindunni and Gillham [1992] confirmed that a simple exponential release function used by 
Boulton does not accurately simulate drainage from above the water table. To obtain a more 
general mathematical approximation of the drainage process, Moench et al. [2001] developed a 
model that used a linear combination of exponential functions to simulate release from above the 
water table. Moench [2004] found that this model improved the match between the observed and 
predicted hydraulic head time-drawdown relationships for unconfined aquifer pumping tests. 
Further, Moench [2003] suggested that parameters from this model could be used as the basis for 
estimation of soil-moisture characteristics on a field scale from pumping test data. 

Endres et al [2007] compared bulk vadose zone response predicted by the analytical 
models and inferred from field measurements using hydraulic head data and soil moisture 
content profiles obtained during a seven day pumping test at CFB Borden, Ontario. They 
concluded that the water table boundary conditions used in these analytical models do not 
adequately replicate the mechanisms controlling the vadose zone behavior during a pumping test. 

Recently, Tartakovsky and Neuman [2007] presented a semi-analytical model that avoids 
the simplifying assumptions by Boulton [1954] and Neuman [1972].  However, because of the 
analytical nature of the model, they had to assume the aquifer and vadose zone are homogeneous 
and have uniform thickness.  Moreover, hydraulic properties of the vadose zone are limited to a 
highly simplified exponential model.  While their study is a step forward in the analysis of 
unconfined aquifer tests, accuracy of the estimates by their simplified, homogeneous approach 
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for real-world, heterogeneous aquifers remains questionable, see Wu et al. [2005] and Straface et 
al., [2007]. 

Moreover, Narasimhan [2007] contended that “the advent of the digital computers during 
the 1960s, and their subsequent phenomenal growth have significantly improved our abilities to 
quantitatively study transient flow of groundwater under field conditions of practical interest. 
Numerical models, in conjunction with powerful desk-top computers and graphics capabilities 
enable us to efficiently solve transient flow of groundwater under far more general conditions 
than could ever be handled analytically. In concluding their paper, Endres et al. [2007] ask, ‘‘. . . 
what are the mechanisms that need to be incorporated into an unconfined aquifer model to 
accurately simulate the bulk vadose zone response to pumping?’’. The answer includes 
saturated-unsaturated flow in general three dimensions, well-bore storage effects, actual 
thickness of the vadose zone, variations in flow rates, effect of external loads, and non-
hydrostatic boundary conditions.  These process details can now be readily handled with 
available numerical models. From a practical, data interpretation perspective, the time has come 
to exploit the power of numerical models to minimize model approximations and give increased 
credence to physical attributes of aquifer systems in interpreting field data. We are not 
constrained any more by the mathematical difficulties inherent in obtaining analytical solutions 
to partial differential equations. 

This optimistic statement about the utility of numerical models should be moderated by the 
recognition that even the most sophisticated mathematics available to us can describe natural 
earth systems only as approximate idealizations.  Outputs from mathematical models serve us 
best when they are appreciated with judgment stemming practical field experience.” 

In reply to Narasimhan [2007], Endres et al. [2007] suggested that “…, we can envision the 
eventual use of joint geophysical-hydraulic data sets for pumping test analysis in unconfined 
aquifers where geophysical images will be the basis for vadose zone characterization.” 

We share the view of Narasimhan [2007], Endres et al. [2007], Nwankwor et al. [1992], 
and others about the limitation of analytical models, the need for better understanding of 
processes in the vadose zone, and the necessity of exploiting the power of numerical models and 
hydrogeophysics. Moreover, we contend that aquifer heterogeneity neglected in analytical or 
numerical analysis of aquifer tests also has significantly impaired our understanding of flow 
behavior in unconfined aquifers [e.g., Wu et al. [2005] for confined aquifers].  Similarly, we 
believe that geophysical images will be the basis for vadose zone characterization but we caution 
the danger of ignoring spatial variability of constitutive relation between geophysical and vadose 
zone hydrologic attributes [Yeh et al., 2002]. 

In this study, we first describe the equation used for solving the groundwater flow in a 
heterogeneous unconfined aquifer. We then derive a geostatistical inverse method for estimating 
hydraulic parameters of an unconfined aquifer using pressure heads from a HT survey.  We 
subsequently test the method using a well-posed case and explore the relation between pressure 
heads and different parameters.  As a proof of concept, we finally apply the method to a 
synthetic three-dimensional heterogeneous unconfined aquifer. 
 
19.2. METHODOLOGY 

We assume groundwater flow in a heterogeneous unconfined aquifer can be described by 
the Richards equation as follows: 

 
  ,       [19.1]  
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where ψ is pressure head, which is positive when the aquifer is fully saturated and is negative 
when the aquifer is unsaturated, and z is the vertical coordinate positive in upward direction; the 
term  is hydraulic conductivity, which equals saturated hydraulic conductivity Ks when 

 and is pressure depended when  ; The term Ss

 

 represents specific storage;  β is a 
saturation index, which is one when ψ is non-negative  and is zero when ψ is negative; t is time; 
and   is the moisture capacity.  To describe the saturation-pressure relationship in an 
unconfined aquifer, we use Gardner-Russo model: 

   ,                      [19.2] 
 

 ,     [19.3] 
 
where α is the a parameter related the soil pore size distribution;  and  are saturated water 
content and residual water content, respectively; and m is a parameter related to soil tortuosity 
and is chosen to be zero for mathematical simplicity.  Eq. [19.1] is solved by the finite element 
method. Since it is a nonlinear equation, Eq. [19.1] is solved by the Newton-Raphson method. 

To estimate hydraulic parameters for an unconfined aquifer, we use the successive linear 
estimator [SLE].  The SLE is a geostatistical inverse method that seeks mean parameter fields 
conditioned on available point data [i.e, pressure observations and parameter measurements] as 
well as geologic and hydrologic structures [i.e., spatial covariance functions of parameters].  
Originated from the traditional cokriging algorithm, the SLE uses an iterative process to 
successively update the estimated parameter values using differences between observed and 
simulated pressure heads, such that the nonlinear relation between pressure heads and parameters 
is considered.  During the iteration process, both conditional means and covariances of the 
estimates are also updated successively to achieve fast convergence and to quantify uncertainties.   
The general idea of the SLE can be summarized as 

 
       [19.4] 

         [19.5] 
 
where in Eq. [19.4],   is the first estimation of parameter  [i.e., Ks, Ss, and α] at location x; 

 is the observed parameter value,  represents the observed pressure heads from the first 
test;  and  are weights calculated using statistic moments [i.e., covariances of parameters, 
covariances of pressure head observations, and the cross-covariances between pressure head 
observations and parameters] by minimizing the estimation variance.  Those statistic moments 
are evaluated by a first order approximation of the Taylor series expansion.  In Eq. [19.5],   
and  are the ith and [i-1]th estimation of the parameter;   is the weights calculated from 
residual covariances of observed pressure heads;    is the observed pressure heads from the 
kth test, and   is the calculated pressure heads from the [i-1]th estimated parameters. The 
pressure head observations from different tests can be added into the inversion process either 
sequentially or simultaneously.  The method of sequential inclusion of data is referred as 
sequential SLE or SSLE, which reduces the computation burden of an inverse problem by 
keeping the covariance matrix of pressure head observations in a management size.  The SSLE is 
particularly useful for large data sets.  The method of simultaneous inclusion of data is referred 
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as simultaneous SLE or SimSLE, which provides faster convergence than SSLE and avoids the 
possible different estimated parameters in SSLE if adding noisy data in different sequences.  
More detailed description of SLE can be found in Zhang and Yeh [1997], Hughson and Yeh 
[2000], Zhu and Yeh [2005], and Xiang et al. [2009]. In this study, the pressure head data were 
interpreted sequentially. 
 
19.3 NUMERICAL EXAMPLES 

We illustrate the method by three numerical examples. The purpose of the first example 
is to test the capability of the inverse method if sufficient data are collected.  The second 
example is to explore the relation between pressure head and different parameters through 
sensitivity analysis.  In the final example, we apply the hydraulic tomography concept to a three-
dimensional heterogeneous unconfined aquifer.  
 
19.3.1 One Dimensional Aquifer 

Gardner-Russo model [Eq. [19.2]] indicates that, if two K[ψ] –ψ data pairs are collected 
for a homogeneous soil block, Ks and α of this block can be uniquely solved. Based on above 
consideration, we tested the SLE method in a steady state unsaturated flow case. The case was a 
2 m vertical soil column with 20 soil blocks of same size.  Both Ks and α were considered as 
heterogeneous with values varying from block to block.  Figs. 19.1a and 19.1b show the Ks and 
α field, respectively. Two infiltrations were simulated. The first one set the bottom as constant 
pressure head of zero and an infiltration rate of 0.01 m/d on top. The second case set the bottom 
constant pressure head as -1 m and an infiltration rate of 0.001 m/d on top. For each test, 19 
steady state pressure observations, one for each block, were collected.  Ks and α for the top block 
were also collected [Fig. 19.2]. Then all the collected data were used in the SLE inverse method 
to estimate Ks and α for the remaining 19 soil blocks. Fig. 19.3 shows that estimated Ks

 

 and α 
replicate the “true” fields near perfectly.  This case demonstrates that SLE can accurately 
estimate unsaturated flow parameters.   
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Figure 19.1: [a] heterogeneous Ks

 
 field and [b] α field for 1D synthetic aquifer. 
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Figure 19.2: Simulated pressure heads of two infiltrations for 1D aquifer. 
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Figure 19.3: Estimated:  a] Ks

 
 and b] α fields for 1D aquifer. 

19.3.2 Sensitivity Analysis 
A typical hydraulic tomography survey consists of multiple pumping tests with each test 

injecting or pumping water from different locations and depths.  The transient pressure changes 
[i.e., drawdown-time curve] during each pumping test are recorded from multiple observation 
wells. Each drawdown-time curve can have a large number of data points, especially if recorded 
with automatic pressure transducers.  Including all the data points is computational prohibitive 
and unnecessary.  Zhu and Yeh [2005] showed that transient head data at one observation 
location during a pumping test are correlated to each other. As a result, by choosing observations 
at several time steps can significantly reduce the computational burden.  On the other hand,  
through sensitivity and cross-covariance analysis, Zhu and Yeh [2005] and Wu et al. [2005] 
showed, for a confined aquifer, transient heads at different stages of a pumping test have 
different correlation to Ks and Ss.  To keep the usefulness of heads, the chosen time steps should 
encompass the entire pumping stages, including early time and late time.  To understand the 
relation between transient pressure responses due to a pumping test in an unconfined aquifer and 
different parameters, a three-dimensional axial radical symmetric aquifer was generated.  The 
homogeneous cylindrical aquifer was 80 m in radius, 10 m in height.  The values for Ks, Ss, α,  

 and  were 5.70 m/d, 0.000325 m-1, 0.8 m-1, 0.37, and 0.07, respectively.  The water table 
was 3 m below the ground surface.  The pumping well was located at the center of the aquifer 
with screened depth from bottom to 5 m below the ground surface and the pumping rate was 
0.001 m3

 

/s. The observation well was located at depth of 5 m from the bottom and 1 m 
horizontally from the pumping well [Fig. 19.4]. 
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Figure 19.4: Axial radially symmetric aquifer. 
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c] 

 
Figure 19.5: Sensitivities of transient pressure to a] Ks and; b] Ss
 

, and c] α 

Fig. 19.5 shows the simulated drawdown-time curve and the sensitivities of the transient 
pressure to the three parameters, Ks, Ss, and α. The simulated drawdown-time curve shows 
apparent S shape in the middle, which is an indication that the 3-D variably saturated flow model 
[Eq. 19.1] is appropriate for simulating flow in an unconfined aquifer. Fig. 19.5a shows that the 
drawdowns at early time are slightly related to Ks and the sensitivity increases with time.  Fig. 
19.5b shows that only drawdowns at very early time are sensitivity to Ss

 

. Fig. 19.5c shows that 
drawdowns at early time are not sensitivity to α at all and the value increases with. Notice that 
the sensitivity of the pressure to α is negative.  Fig. 19.5 indicates that, to accurately estimate the 
three parameters simultaneously, drawdown data at early time, at intermediate time, and at later 
time should be included.        

19.3.3 Three Dimensional Numerical Example 
In this section, we applied hydraulic tomography to a synthetic three dimensional 

heterogeneous unconfined aquifer. This aquifer was 60 m long, 60 m wide, and 18 m in depth 
[elevation was zero at the bottom and positive upward]. The elevation of water table is 14 m. The 
heterogeneous Ks, Ss, and α fields were generated by a spectral method [Gutjahr, 1989].  The 
values of homogeneous   and  were 0.45 and 0.045, respectively. Total five wells were 
placed in the center of the aquifer [shown by green lines in Fig. 19.6].  Each well was served as 
fully-penetrating pumping well and multi-level observation well while not pumping.  The five 
wells were used to simulate a hydraulic tomography survey consisting of five pumping tests.  A 
constant rate of 0.0096 m3/sec was used for all pumping tests and each pumping test was 
simulated for 3600 seconds. For each drawdown-time curve, four time steps at 80, 400, 2000, 
and 3600 seconds were selected.  Totally 800 drawdown observations were used for estimating 
Ks, Ss, and α simultaneously.  Chosen data for each pumping test were treated as one data set and 
data sets from different pumping tests were added sequentially. 
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Figure 19.6: Domain and grid of a 3D unconfined aquifer [green columns representing wells]. 

 
This example was simulated using multi-grid method, using brick and prism elements in 

difference sizes [see Fig. 19.6].  The base element is a brick of 2 m × 2 m × 1 m with 1m size in 
vertical direction.  To accurately simulate the transient flow near the water table and in the 
unsaturated zone due to a pumping test, the vertical grid size was cut in half for the field between 
elevation12 m to the top.  The horizontal grid size for the area encompassing the well field was 
also cut in half in both x and y directions.  The finer brick elements were connected to the coarse 
brick elements through prism elements. It also needs to point out that although the forward 
simulation used multi-grid, the inversion process used uniform grid of the size of the base 
element.  As a result, the forward problem had 44512 elements and the inverse problem had 8100 
elements. The data interpretation was carried out on a PC-cluster, using eight processors [Intel 
Pentium 2.8 GHz each]. The total run time was about 3200 minutes. 

Figs 19.7 through 19.9 compare the estimated fields with the “true” fields. Fig. 19.7 shows 
that the estimated Ks field reveals the general pattern of the “true” field near the central area.  
However, the estimated heterogeneities were limited within the central field due to the short 
period of pumping time and location of well fields.  Fig. 19.8 illustrates that estimated Ss field 
only shows a large Ss zone near the bottom of the aquifer. Notice that the Ss can only be inferred 
from saturated pressure data; it is impossible to infer any value of Ss

 

 for unsaturated and 
drainage areas.  Fig. 19.9 indicates that estimated field only shows a large α zone near the central 
top of the aquifer.  Again, α is a model-related parameter and can only be inferred from 
unsaturated pressure data.  Nevertheless, as a proof of concept, this case shows the potential of 
applying hydraulic tomography to characterize unconfined aquifers. 
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Figure 19.7: Comparison between a] “true” and b] estimated Ks
 

 fields. 
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Figure 19.8: Comparison between a] “true” and b] estimated Ss
 

 fields. 
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Figure 19.9: Comparison between a] “true” and b] estimated α fields. 
 
19.4 DISCUSSION 

In this study, we applied the hydraulic tomography concept to characterize heterogeneities 
of unconfined aquifers.  A three dimensional variably saturated flow model was used to simulate 
groundwater flow in unconfined aquifers due to the complex nature of groundwater movement 
near the water table and in the vadose zone.  The spatial variations of major hydraulic parameters 
[Ks, Ss, and α] were estimated by the SSLE method using transient pressure data collected from a 
hydraulic tomography survey.  The method was tested by two numerical examples and the 
relation between unconfined transient pressure heads and the three parameters were also 
explored.  The synthetic examples demonstrate that a fully variably saturated flow model is 
appropriate for simulating groundwater flow in unconfined aquifers and hydraulic tomography is 
a promising tool for characterizing unconfined aquifer.  The examples also show that SSLE can 
handle highly nonlinear problems, providing unbiased estimates of multiple parameters 
simultaneously. The sensitivity analysis shows that the transient pressure head changes due to a 
pumping test are related to different parameters non-equally at different stage of the pumping 
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test. As a result, the pressure data from all stages of the pumping tests should be used to 
maximize information utilization. 

This particular study of developing a hydraulic tomography algorithm that fully considers 
the effect of the unsaturated zone is merely a proof of concept. This is because the joint 
estimation of saturated and unsaturated zone parameters from pumping tests in unconfined 
aquifers is complex considering the nonlinear relationships between unsaturated hydraulic 
conductivity and water content (as well as the nonlinear relationship between water content and 
pressure head).  Below we discuss some of the limitations and also some potential areas for 
future research. 

First, we only considered three hydraulic parameters [Ks, Ss

Second, the parameter α for Gardner-Russo model is apparently model-dependent. If one 
other saturation-pressure model was used, new parameters need to be estimated.  The parameters 
for any saturation-pressure model are likely to be spatial varying [Yeh et al., 2002] and should be 
treated as stochastic processes [Hughson and Yeh, 2000]. 

, and α] as spatial varying 
parameters in this study.  Other parameters, including  and , were considered as 
homogeneous and known a priori. In reality, these parameters are also heterogeneous in nature. 
However, including too many parameters in the inversion process can potentially cause 
numerical instability and less reliable estimates.   A correlation analysis of pressure responses to 
all potential spatial varying parameters may be the first logical step to identify a few most 
responsible parameters that will be estimated through inversion. The remaining parameters will 
be considered as constant. 

Third, A unique aspect of characterizing an unconfined aquifer is that some parameters 
[such as Ss

Finally, the variably saturated flow model is nonlinear in nature and requires fine spatial 
and temporal resolutions for accurate representation of unsaturated flow.  The interpretation of 
field HT for an unconfined aquifer using any inverse method will be likely computational 
intensive.  In this study, although a multi-grid method and parallel computing were used for the 
fully three dimensional case, the computational cost is still too high for a typical field 
application. While more sophisticated computing technologies should be pursued to further 
reduce the computation cost, the future research should also focus on establishing a practical, 
field-oriented protocol for HT application of unconfined aquifers similar to that developed by 
Xiang et al. [2009] for confined aquifers. 

] only relate to positive pressure heads [i.e., where the flow is in saturated condition] 
whereas other parameters [such as α in this study] only relate to negative pressure heads [i.e., 
where the flow is unsaturated condition].  The full characterizations of these parameters for the 
entire field of interest are typically unobtainable.  The aspect can limit the application of HT for 
unconfined aquifer.  For example, if a HT was conducted when the water table is high [i.e, a very 
wet year], the estimated α will be limited to small portion of the aquifer and will not be reliable 
for simulating the groundwater flow when the water table is much lower [i.e., a very dry year]. 
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20. FLOW TO A WELL IN A HETEROGENEOUS 
UNCONFINED AQUIFER:  
INSIGHTS FROM AN INTERMEDIATE SCALE SANDBOX 
 
20.1 Introduction 

In recent decades the topic of flow to wells during pumping in unconfined aquifers has 
been both a topic of great interest, and, great debate. The need to better understand and interpret 
the observations from these tests has led to the development of various analytical solutions [e.g., 
Boulton, 1954, 1963; Dagan, 1967; Kroszynski and Dagan, 1975; Streltsova, 1973; Neuman, 
1972, 1974; Moench, 1997; Mathias and Butler, 2006]. Mishra and Neuman [2010] provided a 
comprehensive review of these solutions offering their perspectives on the advancement of the 
theoretical development of unconfined aquifer analysis. Mishra and Neuman [2010] also 
presented an analytical solution for flow to a partially penetrating well in a compressible 
unconfined aquifer that infers saturated and unsaturated hydraulic properties from drawdowns 
recorded in the saturated and/or unsaturated zone. This work is an extension of the solution 
developed by Tartakovsky and Neuman [2007] and adds: i] a more flexible representation of 
unsaturated constitutive properties; and ii] a finite thickness for the unsaturated zone. The type 
curve approach was used in conjunction with PEST [Doherty, 1994] to simultaneously analyze 
seven observed drawdown records from a pumping test conducted at the Cape Cod site by 
Moench et al. [2001]. The analysis yielded comparable estimates of hydraulic conductivity [K] 
and specific storage [Ss] and somewhat higher values of specific yield [Sy

To date, a limited number of investigations have explicitly examined the effect of 
heterogeneity on pumping tests performed in unconfined aquifers [e.g., Bunn et al., 2010; Mao et 
al., in review]. For example, using multiple realizations of heterogeneous fields, Bunn et al. 
[2010] examined the connection between K heterogeneity and the capillary fringe extension 
phenomenon observed during a pumping test conducted by Bevan et al. [2005] at the Borden site 
in Canada. The ensemble mean hydraulic heads were able to reproduce the field observations 
quite well, however, these simulations were unable to reproduce the capillary fringe extension 
observed in the field data.  

] when compared to 
those obtained by Moench et al. [2001] and Tartakovsky and Neuman [2007]. Their estimates of 
the van Genuchten-Mualem parameters were also found to be comparable to laboratory estimates 
obtained for similar materials in the area. Despite the completeness and usefulness of Mishra and 
Neuman’s [2010] solution, analytical solutions that treat the medium to be homogeneous cannot 
address the issue of heterogeneity, which is the rule rather than the exception. Recently, the 
homogeneity assumption required by analytical solutions for heterogeneous saturated aquifers 
have come into question by Wu et al. [2005]. Wu et al. [2005] used random Gaussian fields [of 
transmissivity and storativity] to demonstrate that parameter estimates made using the Theis 
[1935] solution varied throughout the duration of the pumping test. Transmissivity estimates 
approached the geometric mean and storativity estimates were dominated by the material 
between the pumping well and the observation point. It is reasonable to expect similar limitations 
for analytical solutions used to estimate parameters from unconfined pumping tests. 

 More recently, Mao et al. [in review] utilized the stochastic moment approach to better 
understand the role of heterogeneity in the development of the S-shaped drawdown curves and a 
cross-correlation analysis to show that drawdowns at locations in a heterogeneous unconfined 
aquifer are mainly affected by local heterogeneity near the pumping and observation wells. Mao 
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et al. [in review] also looked at the sensitivity of the S-shaped curve to the spatial variability of 
hydraulic parameters and concluded that it is most sensitive to hydraulic conductivity [K], 
specific storage [Ss] and saturated water content [θs

Mapping of K heterogeneity in unconfined aquifers was recently reported by Cardiff et al. 
[2009] under steady-state conditions. These authors analyzed multiple drawdown data collected 
from fully-screened wells completed in an unconfined aquifer located at the Boise 
Hydrogeophysical Research Site to obtain depth-averaged K distributions through their hydraulic 
tomography algorithm. Various inverse methods have been developed for hydraulic tomography, 
which utilize pumping test data simultaneously or sequentially [e.g., Gottlieb and Dietrich, 1995; 
Yeh and Liu, 2000; Bohling et al., 2002; Brauchler et al., 2003; Zhu and Yeh, 2005, 2006; Li et 
al., 2005; 2007; Fienen et al., 2008; Cardiff et al., 2009; Castagna and Bellin, 2009; Xiang et al., 
2009; Liu and Kitanidis, 2011], but to our knowledge, there are no hydraulic tomography 
algorithms that can interpret the transient drawdown records from a heterogeneous, unconfined 
aquifer. One potential reason for this is that pumping in unconfined aquifers induces flow 
regimes that are considerably more complex than in confined aquifers, as it involves flow in both 
the saturated and unsaturated zones with the water table acting as a time-varying interface [Mao 
et al., in review]. In fact, Mao et al. [in review] advocates the use of a variably saturated flow 
equation for the interpretation of drawdown responses in an unconfined aquifer. 

] and insensitive to the variability of 
unsaturated hydraulic parameters. 

In this study, we ask the question: “if we have the necessary parameters and forcing 
functions to populate a variably saturated flow model, can we accurately model the responses to 
pumping in a heterogeneous unconfined aquifer in both the saturated and unsaturated zones?” To 
answer this question, we designed an intermediate-scale laboratory sandbox containing a 
heterogeneous aquifer that was instrumented pressure transducers, tensiometers, and water 
content sensors. A number of cross-hole pumping tests were performed while the tank was fully 
saturated for characterization purposes. These cross-hole tests were used to estimated both 
homogeneous and heterogeneous K and Ss

We next conduct another pumping test in which we allow the water table to fall, while the 
drawdown responses are monitored at multiple locations in the saturated zone with pressure 
transducers. Concurrently, we monitor the unsaturated zone with tensiometers equipped with 
pressure transducers and water content sensors. After this, we model the pumping test using 
MMOC3 [Yeh et al., 1993], a variably saturated flow and transport model to evaluate the ability 
of different homogeneous and heterogeneous representations of the sandbox aquifer in both the 
saturated and unsaturated zones to reproduce the observed drawdown responses. By comparing 
various idealizations of saturated and unsaturated zone parameters, we are able to find out what 
parameters have the greatest impacts on making accurate predictions of responses in the 
unsaturated and saturated zones.   

 distributions. Unsaturated parameters of the different 
material types in the sandbox were measured using hanging water column experiments. 

 
20.2 EXPERIMENTAL SETUP 
 
20.2.1 Sandbox design and instrumentation 

A synthetic heterogeneous unconfined aquifer was constructed in a vertical, laboratory 
sandbox to investigate how the saturated and unsaturated zones respond to a pumping test that 
results in drainage. The sandbox was 244 cm in length, 122 cm in height, and had a depth of 9.4 
cm. A glass plate covers the front of the sandbox and a stainless steel plate covers the back. A 
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total of one hundred four ports were drilled into the stainless plate to allow the sandbox to be 
instrumented with sensors [pressure transducers, tensiometers, and water content sensors]. 

Fifty eight of these ports were used for the installation of fully penetrating horizontal wells. 
Each well was constructed by drilling  fourteen 0.5-cm diameter holes along a section of brass 
tubing.  The holes were then covered with a stainless steel mesh that was bonded to the tubing 
with corrosion resistant epoxy.  These wells, which penetrate the thickness of the synthetic 
aquifer were installed after the packing of the sandbox aquifer. Additionally, 47 of these wells 
contain 0-2 psig pressure transducers [Model S35] from BHL Instruments. Eleven wells do not 
contain pressure transducers but can still be used for pumping purposes. 

Twenty two of the ports [located in the upper portion of the sandbox] were used for the 
installation of column tensiometers [CL-029B Flow Cell Tensiometer, Soil Measurement 
Systems] equipped with Microswitch pressure transducers. The remaining 24 ports [also located 
in the upper portion of the sandbox] were instrumented with EC5 water content sensors 
[Decagon Devices Inc.].  All sensors were connected to a National Instruments Compaq Data 
Acquisition System [NIDAQ] [Model #9178] which allows for real-time monitoring of signals 
during pumping tests. Figure 20.1 is a photograph of the sandbox showing the locations of the 
sensors. 

For this particular study, all boundaries except the upper boundary are no-flow boundaries. 
The top boundary was set as a constant head boundary for the saturated cross-hole tests 
performed for characterization purposes, and left open to the atmosphere for the unconfined 
pumping test. 
 
20.2.2 Packing of sandbox and types of sands used 

Prior to the installation of the wells and tensiometers, and concurrent with the installation 
of the water content sensors, the sandbox was packed with commercially sieved silica sand [six 
types; F35, F45, F65, F75, F85, and F110] and silt [four types; Sil-co-sil 45, Sil-co-sil 53, Sil-co-
sil 106, and Sil-co-sil 250] from U.S. Silica. This material was packed to match a heterogeneity 
pattern drawn on the glass side of the sandbox. The sand was slowly added to the sandbox in thin 
layers [approximately 0.5 to 1 cm thick] and packed between each addition to achieve uniform 
compaction. 

After the sand box was filled, CO2 gas was injected into the sandbox to displace the air 
trapped during packing. Over the period of 3 days, CO2 was injected at a low pressure [2 - 5 psi] 
from a number of different ports working from the bottom of the sandbox to the top. The top of 
the sandbox was sealed except for a small hole that allowed the gas to exit. After all of the CO2 
was pushed through the sandbox de-aired water was added at port 3 under a gradient of 
approximately 10 - 20 cm. This low gradient meant that any air above the water level would be 
displaced out the top of the sandbox. Since the air in the sandbox was replaced with CO2

The predominant materials in the sandbox are the medium sands F35 and F45. Within 
these sands are discontinuous layers of finer grained material that average 0.8 m to 1 m in length 
and average 10 to 15 cm thick. The most notable features of this heterogeneity pattern are the 
three discontinuous lenses near the top of the sandbox [Sil-co-sil 106 in the top left, Sil-co-sil 53 
in the upper middle, and F110 in the top right]. These lenses [in particular the silt lenses] are 
expected to have significantly different saturated and unsaturated properties than the surrounding 
F35 and F45 sand. Near the bottom of the sandbox, the most salient feature is a layer of silt [Sil-

, any 
trapped gas would readily dissolve into the water phase. This procedure minimized the risk of air 
entrapment and ensured the sandbox was fully saturated.   
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co-sil 250] that extends along the length of the sandbox expect for near the middle where a 
window is present. This window connects the F35 sand layer below with the F35 layer above.  

 
Figure 20.1: Photograph of the sandbox showing all sensor locations [● = pressure transducers; 
● without pressure transducers; ○ = tensiometers; and  x = water content sensors] and the various 
layers that were packed. Sensor locations are approximate. 

 
20.3 CHARACTERIZATION OF AQUIFER HETEROGENEITY 
 The analysis of pumping tests performed in unconfined aquifers requires knowledge of 
both saturated and unsaturated parameters. Our analysis will require knowledge K, Ss, θs 
[saturated moisture content], θr

20.3.1 Characterization of K and S

 [residual moisture content], and the van Genuchten [1980] fitting 
parameters describing the primary drainage curve [α and n].  

 While the sandbox was fully saturated a number of cross-hole pumping tests were 
performed for characterization purposes. During these tests the top boundary of the sandbox was 
maintained as a constant head boundary by having 3 cm of standing water in the top portion of 
the sandbox [above the sand]. The extraction line was connected the desired well and the pump 
was operated long enough to fill the effluent line [which discharged into the top reservoir, 
creating a loop and ensuring mass balance]. Once the line was filled the pump was turned off and 
the system was allowed to return to equilibrium [static]. 

s 

Sixteen ports were chosen for these cross-hole tests [Figure 20.2]. During these tests, one 
port was pumped, while the pressure responses within the sandbox were simultaneously 
monitored at 47 points sampling at a rate of 4 Hz. The pumping rates for all cross-hole tests was 
240 mL/min.  Prior to the cross-hole pumping tests, all pressure transducers were calibrated to 
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ensure accurate data collection. We then collected hydraulic head data for several minutes in all 
pressure transducers to establish a static, initial condition. After establishment of static 
conditions, we pumped from each port using a peristaltic pump, while taking head measurements 
at all 47 ports. For each test, pumping continued until the development of steady state conditions 
[approximately 1-2 minutes], which was determined by observing the stabilization of all head 
measurements on the data logger connected to a computer. After reaching steady state, the pump 
was shut off and recovery data were collected. 

Analysis methods for interpreting pumping test data, whether for confined, semi-
confined, or unconfined aquifers often assume the aquifer to be homogeneous, however, this is 
rarely the case. As such, the cross-hole data collected in this sandbox is analyzed in two 
manners; 1] A single cross-hole test is used to estimate effective K and Ss values [section 20.3.2] 
and, 2] eight cross-hole tests are used create heterogeneous K and Ss

 

 estimates using hydraulic 
tomography [section 20.3.3]. The remaining eight cross-hole tests are then used to validate these 
transient hydraulic tomography generated heterogeneous fields. 

 
Figure 20.2: Schematic diagram showing the ports that were pumped for the cross-hole pumping 
tests. Solid black circles represent locations of pressure transducers and solid grey circles 
represent ports that were not instrumented. Solid squares are pumping locations used for the 
estimation of heterogeneous K and Ss 

 

fields. Dashed squares are pumping locations for the 
validation of the results from transient hydraulic tomography. 

20.3.2 Estimation of Effective K and S
Using a cross-hole pumping test performed at port 22, the parameter estimation program 

PEST [Doherty, 1994] was coupled with MMOC3 [Yeh et al., 1993] to estimate effective K and 
S

s 

s values representing the entire domain by fitting all the drawdown curves simultaneously. The 
synthetic aquifer was discretized into 3,645 elements and 7,544 nodes with average element 
dimensions of 3.0 cm × 9.4 cm × 2.5 cm. The top boundary was set to be a constant head 
boundary and the remaining boundaries of the sandbox were no-flow boundaries. Six data points 
[at t  = 1, 5, 10, 20, 40, and 80 seconds] from 46 ports totalling 276 data points were used for  
parameter estimation.  The initial estimates of K and Ss were 0.1 cm/s and 1 x 10-4 cm-1 

The estimated effective K was 1.85 x 10
respectively. 

-2 cm/s [with lower and upper 95% confidence 
bounds of 1.76 x 10-2 cm/s and 1.94 x 10-2 cm/s respectively], and the estimated effective Ss was 
3.94 x 10-5 cm-1 [with lower and upper 95% confidence bounds of 3.40 x 10-5 cm-1 and 4.57 x 10-

5 cm-1 respectively]. The estimate parameters were then used to simulate the cross-hole test at 
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port 22, essentially testing the calibration of the effective parameters. Figure 20.3 is a calibration 
scatter plot [observed vs. simulated drawdown] for the cross-hole test at port 22. This plot shows 
the ability of these effective values to reproduce the observed drawdown. The dashed line 
represents the 1:1 line which would be a perfect match between simulated and observed. The 
linear model fit [solid line] has a slope near 1 suggesting that the effective values capture the 
average response in the sandbox for this cross-hole test. The scatter as indicated by the 
coefficient of determination [R2] suggests that the details of the heterogeneity are not accurately 
captured. This is expected since homogeneous values of K and Ss

 
 were used for this simulation.  

  
Figure 20.3: Simulated versus observed drawdown for the cross-hole test at port 22 using 
effective K and Ss
 

 values. 

20.3.3 Estimation of Heterogeneous K and S
 The use of hydraulic tomography for the characterization of heterogeneity in sandbox 

aquifers has been shown to be a robust technique that outperforms other methods which often 
rely on the interpolation of point scale data [Illman et al., 2007; Liu et al., 2007; Illman et al. 
2010; and Berg and Illman, in review]. Thus, we elect to use transient hydraulic tomography 
[Zhu and Yeh, 2005] for the characterization of K and S

s  

s
The Sequential Successive Linear Estimator [SSLE] code developed by Zhu and Yeh 

[2005] was used to conduct transient hydraulic tomography with multiple cross-hole tests 
performed under fully saturated conditions to obtain a heterogeneous distribution of K and S

 within this sandbox. 

s 
[from now on referred to as K and Ss tomograms]. The model domain used for this inversion is 
identical to the one used for estimation of effective K and Ss

Inputs to the inverse model include initial guesses for the K [0.1 cm/s] and S
 described in section 20.3.1. 

s [1 x 10-4 cm-

1], estimates of variances [σ2
lnK = 3.0 and σ2

lnSs = 3.0]  and estimated correlation scales for both 
K [λx = 150 cm and λz = 20 cm] and Ss [λx = 150 cm and λz = 20 cm], volumetric discharge [Qn] 
from each pumping test where n is the test number, available point [small-scale] measurements 
of K and Ss, as well as head data at various times selected from the head-time curve.  Although 
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available point [small-scale] measurements of K and Ss

In total, we utilized 8 independent cross-hole tests with pumping taking place at ports 2, 
11, 15, 22, 39, 42, 64 and 86 for the transient hydraulic tomography analysis. More specifically, 
we utilized 6 data points [at t  = 1, 5, 10, 20, 40, and 80 seconds] from 46 ports totalling 276 data 
for each test. We excluded the data from the pumped port because of possible skin effects. In 
total, we utilized 2208 data points from 8 different tests in our transient inversions. 

 can be input to the inverse model, we do 
not use these measurements to condition the estimated parameter fields to test the inversion 
algorithm. 

All computations for transient hydraulic tomography analyses were executed using 44 of 
48 processors on a PC-cluster consisting [of 1 master and 12 slaves each with Intel Q6600 Quad 
Core CPU running at 2.4 GHz with 16 GB of RAM per slave] at the University of Waterloo.  
The operating system managing the cluster was CentOS 5.3 based on a 64-bit system. The total 
computational time for inverting data from 8 pumping tests was approximately 24 hours. 

The resulting K and Ss

Examination of the S

 tomograms are shown on Figure 20.4a and 20.4b. A visual 
comparison of the K tomogram to the deposits [Figure 20.1] shows that many of the important 
features are captured. Of particular note are the low K zones which compare very favourably 
with the real distribution. The two low K layers extending towards the middle from both sides 
near the bottom of the sandbox are present, as well as the two low K zones near the top left [there 
is even some indication in the tomogram that these may not be connected, which is the case]. 
Additionally, the Sil-co-Sil 106 layer near the middle right of the sandbox is captured, however, 
it does not extend all the way to the boundary. This is not surprising considering there are no 
observation points in this region, thus, estimates here have greater uncertainty. The K tomogram 
also preserves the connectivity of the high K units, particularly the window in the silt [Sil-co-sil 
250] layer near the bottom middle, and the large window in the silt near the top right. Thus, we 
feel confident that the K tomogram reflects the heterogeneity of the sandbox. 

s tomogram [Figure 20.4b] reveals a trend of increasing Ss values with 
increasing elevation within the sand box. Such a trend was also observed in the Ss values from 
separate sandbox studies packed using different methods, and containing different heterogeneity 
patterns [Liu et al., 2007; Berg and Illman, in review]. A likely explanation for this pattern being 
witnessed in several sandbox studies is that the material near the bottom of the sandbox is much 
less compressible due to the weight of the overlying material, thus, resulting in low Ss values 
near the bottom of the sandbox and higher Ss values near the top. Additionally some 
heterogeneity in the distribution of Ss is present within this trend from top to bottom, however, it 
does not appear to be strongly correlated with any of the features seen in the K tomogram [Figure 
4a] or the picture of the sandbox [Figure 20.1]. This suggests that the vertical trend in Ss

To quantitatively assess the results, we plot the simulated and observed drawdown 
responses [Figure 20.5a] for each cross-hole test used for the inverse modeling effort [i.e., 
calibration] on separate scatter plots. A linear model [solid line] was fit to each case without 
forcing the intercept to zero. All 276 points included [6 data points at t  = 1, 5, 10, 20, 40, and 80 
seconds from 46 ports] are presented on the scatter plots. The dashed line represents the 1:1 line 
which would be a perfect match between simulated and observed. The linear model fit [solid 
line0 and the coefficient of determination [R

 is the 
dominant feature controlling the drawdown response in the sandbox. 

2] provided on each plot give an indication of scatter 
and bias. The R2 is a statistic that provides a quantitative measure of similarity between the 
simulated and measured drawdown values. A high R2 value means that the simulated and 
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observed drawdown values are linearly correlated, even though the mean values could be 
different. 

Illman et al. [2007, 2008, 2010] and Liu et al. [2007] previously found that the best way to 
test the results from hydraulic tomography was to use the hydraulic parameter distributions in 
predicting one or more independent drawdown events. Therefore, to further assess the reliability 
of the K and Ss tomograms, we simulated 8 additional cross-hole tests performed at ports 3, 5, 6, 
12, 13, 14, 24, and 37 using the forward groundwater model MMOC3 [Yeh et al., 1993]. The 
results were then assessed by plotting individual scatterplots of simulated and observed 
drawdown [Figure 20.5b] and fitting a linear model as described earlier. The scatter plots in 
Figure 5b show that the K and Ss

 

 tomograms were able to accurately predict independent cross-
hole tests. The largest error is seen for the independent cross-hole test at port 5. There are 6 
points that are significantly below the 1:1 line were measure at port 4 [adjacent to port 5]. This 
suggest that the heterogeneity in this portion of the sandbox may not be accurately captured. 
Despite this, the remaining ports for the cross-hole test at port 5 are matched accurately 
suggesting that the rest of the sandbox is fairly accurately characterized. In addition, the other 
validation tests in Figure 20.5b show good agreement between observed and simulated 
suggesting that the heterogeneity pattern of the sandbox is accurately captured. 

Figure 20.4: a] K and b] Ss 

 

tomograms computed using the transient hydraulic tomography 
algorithm of Zhu and Yeh [2005] SSLE with 8 cross-hole pumping tests. Solid squares are 
pumping locations used for transient hydraulic tomography dashed squares are pumping 
locations for the validation of the results from transient hydraulic tomography. 
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a] 

 

b] 

 

Figure 20.5: a] Simulated versus observed drawdowns from 8 cross-hole pumping tests used for 
calibration purposes and b] additional tests used for the validation of the K and Ss tomograms. 
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20.3.4 Estimation of θs, θr

Using the hanging water column method [Stephens, 1995] the primary drainage curve 
was measured for five of the materials packed in the sandbox [F35, F45, F110, Sil-co-sil 53, and 
Sil-co-sil 106]. These materials were selected because they are located in the upper portion of the 
sandbox and are likely to experience negative pressure heads [and as a result a possible release of 
water] when the water table is lowered during drainage or and unconfined pumping test. 

, α and n 

Negative pressure head was increased incrementally until either residual water content 
was reached, or a value of -100 cm was achieved. A value of -100 cm was selected because it is 
unlikely that values greater than this will be seen during unconfined pumping or drainage tests in 
the sandbox. The van Genuchten [1980] model was fit to the primary drainage curves for each 
material by varying the α and n parameters using a generalized reduced gradient nonlinear 
routine implemented in Excel [except for Sil-co-Sil 53 and 106 which were fit manually because 
the solver failed to converge for these two cases]. In this analysis, the residual water content was 
estimated from the moisture characteristic curve and fixed during the regression. The model fit to 
the moisture characteristic curve, optimized parameters and the associated coefficient of 
determination [R2

 

] are presented on Figure 20.6. The parameter values obtained for each of these 
materials [Figure 20.6a-e] can be used to construct a heterogeneous case for the model domain, 
however, this level of detail is rarely available and a single 'effective' drainage curve would be 
used to describe the entire domain.  

Figure 20.6: Moisture characteristic curves determined through the hanging column method of: 
a] F-35; b] F-45; c] F110; d] Sil-co-Sil 53; e] Sil-co-Sil 106; and f] F35 and F45 matched 
simultaneously. The squares represent F35 and gradient symbols represent F35. 
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To obtain an effective α and n representing the entire aquifer domain, we fit the van 
Genuchten [1980] model to the primary drainage curves for both F35 and F45 simultaneously 
[Figure 20.5f]. These two sands were selected because they comprise the majority of the material 
in the unsaturated zone and will therefore largely control the drainage response. The other 
materials present in the unsaturated zone [F110, Sil-co-Sil 53, and Sil-co-Sil 106] were not 
included in this simultaneous match as they are only present in minor portions of the unsaturated 
zone and are present as discontinuous lenses. Since they are present as discontinuous lenses, it is 
possible that when the coarse F35 and F45 material drains these lenses will become disconnected 
from the main aquifer and will not be able to effectively release their water. Thus, only the two 
dominant material types in the upper portion of the sandbox are selected for this effective 
parameter estimation. 
 
20.4 UNCONFINED PUMPING TEST 

After the sandbox was characterized using cross-hole tests while fully saturated the water 
table was allowed to fall under unconfined conditions. The objective of this test was to collect 
data from both the saturated and unsaturated zones during a pumping test so that we can compare 
the observations to variably saturated flow simulations constructed from our characterization 
efforts. Figure 20.7 is a schematic diagram showing the locations of pressure transducers, 
tensiometers, and water content sensors installed in the sandbox as well as the port pumped for 
this test. 
 

 
Figure 20.7:  Schematic diagram of the sandbox showing an array of sensors [● = pressure 
transducers; ● = port without pressure transducers; ○ = tensiometers; and  x = water content 
sensors] utilized to monitor the pumping test in a heterogeneous unconfined aquifer. The box 
indicates the port at which the unconfined pumping test was performed. 
 

The pumping test started with the sandbox fully saturated and the water table at the same 
elevation as the top of the sand. This was confirmed visually using a manometer to get an 
independent reading of the static water level. Prior to the beginning of the test all sensors were 
monitored for several minutes to check for sensor stability and to record baseline data. This 
baseline data is then use as the t = 0 reference to which the data collected during the test can be 
compared. Port 3 [located at the bottom middle of the sandbox] was then pumped at a rate 60 
ml/min for 7.5 hrs. The signal from all of the  sensors [pressure transducers, tensiometers, and 
water content sensors] was recorded for the duration of the test. 
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Figure 20.8 shows the drawdown as measured at selected pressure transducers [Figure 
20.8a] and tensiometers [Figure 20.8b]. The ports in these figures are organized such that their 
relative positions to each other reflect their relative positions within the sandbox. For example, 
Port 58 is located left of Port 62 and above Port 31. Figure 20.7 can be used as a reference to 
determine the absolute location of each port within the sandbox. The response measured at all 
ports is available in the supplementary section. 

The pressure transducers [Figure 20.8a] are only able to measure the pressure response 
within the saturated zone. As the test progresses and the water table lowers some of the upper 
wells drain and the pressure transducer is no longer able to measure a change in pressure. The 
plateau in the signal for the upper ports [Ports 58, 62, and 66] in Figure 20.8a reflects this 
process. The shape of the drawdown curves are very different from what would be expected for a 
fully saturated system and reflect the unconfined nature of this test. The early portion of the 
curves display characteristic S-shaped behaviour of pumping tests performed in an unconfined 
aquifer. The S-shape is more pronounced for deep ports [further below the water table] than for 
shallow ports. This observation is consistent with that of Nwankwor et al.,  [1992] and Bevan et 
al., [2005]. At late time the observed drawdown increases again, deviating from the classical S-
shaped unconfined drawdown curve. We attribute this to the lack of a constant head boundary 
which means at late time the no flow boundaries dominate the observed response and additional 
drawdown occurs. 

The tensiometer responses measured during this test are shown in Figure 20.8b. Since the 
water table at the start of the test was coincident with the top of the sand in the sandbox the 
tensiometers were located below the water table at the start of the test. By calibrating the 
tensiometers for this range, these tensiometers record a continuous signal as the water table drops 
past them [i.e. they record both positive and negative pressure head]. Thus, unlike the pressure 
transducers installed in wells [Figure 20.8a], the tensiometers are able to record a signal for the 
entire duration of the test. Initial inspection of Figure 20.8b seems to suggest that the S-shaped 
curve is present in the tensiometer response. However, upon closer inspection the S-shape at 
early time is missing and it is the additional late time drawdown caused by the no flow 
boundaries that creates the impression of an S-shape at late time. Some of the bottom 
tensiometers [Ports 46 to 52] appear to have a slight S-shape at early time, however, it is not very 
prominent and sensor noise makes it difficult to make any concrete statements about this. 
Pressure transducers at similar elevations [Figure 20.8a: Ports 58 - 66] do not have a very 
pronounced S-shape at early time. Tensiometer data collected by Nwankwor et al., [1992] during 
a pumping test at CFB Borden shows a very slight S-shaped response at early time only for ports 
near the pumping well. Thus, the absence of an S-shaped response in the tensiometer data here is 
not surprising. Ports 92, 98, and 104 [located in the top row of the sandbox] appear to plateau at 
late time. This likely indicates that the soil they are in is now disconnected from the main body 
of water, thus, the continued drop of the water table no longer influences the soil in this region.  

Figure 20.9 shows spatial distributions of pressure head [Figure 20.9a] and water content 
[Figure 20.9b] at t = 400 s, 2,000s, 8,000s, and 27,000 s, after pumping began at port 3. The 
pressure and water content data were interpolated through kriging. We point out that the 
curvature of pressure head seen along the side boundaries are an artifact of the interpolation 
procedure. Figure 4a reveals that based on the pressure head distributions, an unsaturated zone 
begins to develop as early as t = 400 s. Subsequent pressure head distributions reveal that the 
water table drops with time and at t = 27,000 s, we notice the impact of the heterogeneity [i.e., 
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the low K zone] on the contours of the pressure head. Based on this figure the water table is 
approximately 65 cm from the top of the aquifer. 
 
a] 

 
b] 
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Figure 20.8: Observed drawdown during the unconfined pumping test at a] 9 pressure transducer  
ports; and, b] 6 tensiometers. 
  
a] 
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b] 

 

Figure 20.9: Spatial distribution of: a] pressure head and b] volumetric water content in the 
upper half of the sandbox with time during the unconfined aquifer pumping test at port 3. 
Symbols indicate the position of various sensors used to monitor the pumping test [● = pressure 
transducers; ○ = tensiometers; and  x = water content sensors]]. 
 

Figure 20.9b shows the spatial distribution of the volumetric water content profiles in the 
upper half of the sandbox. Volumetric water content is generally uniform at the beginning of the 
test, but we see the impacts of pumping at t = 400 s in which the water content begins to decrease 
near the top of the aquifer. A slightly higher region of water content is visible near the top of the 
aquifer indicating the presence of a low K, high porosity layer. As the pumping test continues, 
the pore space drains throughout the aquifer except for the low K lens which retains some of its 
water due to capillarity. By t = 27,000 s, the upper portion of the aquifer is at or near residual 
water content [shown as dark blue] although some water is still retained in the low K lens.  
 
20.5. VARIABLY SATURATED FLOW MODELING OF PUMPING TEST IN AN 
UNCONFINED AQUIFER 

We next utilize the homogeneous and heterogeneous values of K, Ss

 

, n, and α for 
predicting the response of the unsaturated and saturated zones during the unconfined pumping 
test that we described in section 4. A finite-element numerical model, MMOC3 developed by Yeh 
et al. [1993] is used for these calculations.  This program solves the partial differential equation 
that describes flow in 3-D, variably saturated geologic media: 

( )[ ( , ) ( )] ( ) ( ) ( , )s sK z S S C
t t t

ψ θ ψψ ψ ω ω ψ∂ ∂ ∂
∇ ⋅ ∇ + = + = +

∂ ∂ ∂
x x x x  [20.1]  

where ∇ is the spatial gradient, ( , )K ψ x is the unsaturated hydraulic conductivity function, ψ is 
the pressure head where it is positive in the saturated zone, while negative in the unsaturated 
zone, x is spatial coordinates, z is the elevation, ω is the saturation index, ( , )sS ψ x  is specific 
storage, t is time, θ is volumetric moisture content, and ( , )C ψ x is the soil moisture capacity 
derived from the moisture/pressure constitutive relationship. The saturation index is equal to 1 
when the porous medium is fully saturated and zero when it is unsaturated. The program 
employs the Newton-Raphson iteration scheme to solve the nonlinear finite element 
approximation of equation [1]. 

We use MMOC3 [Yeh et al., 1993] to simulate flow to a well due to pumping in a 2-D 
unconfined aquifer.  The dimension of the aquifer is 2.44 m × 0.094 m in the horizontal plane 
and 1.12 m in the vertical and is discretized into 3,645 finite elements and 7,544 nodes. A 
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nonuniform mesh is used for the discretization in which some elements are larger than others so 
that the elements line up properly with the ports. 

A no-flux boundary is assigned to the top [no infiltration or evaporation] and bottom of the 
aquifer; no-flux boundaries are imposed on the other five sides of the aquifer. The initial pressure 
head distribution in the aquifer is set to be hydrostatic with the water table at z = 1.12 m, 
representing a static condition. Pumping takes place at Port 3, located 7.3 cm from the bottom 
center of the aquifer with a constant pumping rate 60 cm3

The hydraulic conductivity-pressure head and moisture-pressure head constitutive 
relationship of the aquifer are described by the model by van-Genuchten [1980]: 

/min. Because pumping takes place at a 
point, we neglected borehole storage which we consider to be a minor effect. 

 

 
 [20.2] 

 
where | | is absolute value, θs is the saturated moisture content, θr

 

 is the moisture content at 
residual saturation and α, n, and m are shape-fitting parameters with m=1-1/n.  We further 
assume that the K[h] follows Mualem’s [1976] pore-size distribution model expressed as: 
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where Ks is the locally isotropic saturated hydraulic conductivity; and α, n, and m are assumed to 
be the same as those in equation [2].  The Ks and Ss

20.5.1 Case 1: Homogeneous saturated and unsaturated zone parameters 

 were estimated earlier from the cross-hole 
pumping tests described in section 3.1.2, while the unsaturated zone parameters for the van 
Genuchten-Mualem model were obtained through the hanging water column [3.1.3]. 

In Case 1, we obtained effective K and Ss estimates for the cross-hole test performed at 
Port 22 by coupling MMOC3 with the parameter estimation PEST. The resulting PEST 
estimated K and Ss values were 1.85 x 10-2 cm/s and 3.94 x 10-5 cm-1

Forward simulation results for the pumping test under unconfined conditions are shown on 
Figure 20.10. In particular, Figure 10a shows the simulated [solid line] versus the observed 
[dashed line] drawdowns from selected pressure transducers in the saturated zone, while Figure 
20.10b shows a similar comparison for pressure transducers installed in the unsaturated zone. 
Figures 20.10a and 20.10b reveal that the comparison between the simulated and observed 
drawdowns in both the saturated [Figure 20.10a] and unsaturated [Figure 20.10b] zones are poor. 
The simulated drawdown is generally greater than the observed, especially at intermediate and 
late time. Early time drawdown at pressure transducers are overestimated at some ports and 
underestimated at others. This is attributed to the homogeneous K and S

 respectively. We also used 
the van-Genuchten model parameters [α = 0.032 and n = 6.6] estimated from a simultaneous 
match of sands F35 and F45 [Figure 20.5f] to obtain a homogeneous estimate for the unsaturated 
zone parameters.  

s

 

 field which, captures 
the heterogeneity in an average sense, and thus, is not expected to accurately simulate the 
response at all ports. 
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b] 



351 
 

  

Figure 20.10: Simulated [solid line] and observed [dashed line] drawdown from selected: a] 
pressure transducers; and, b] tensiometers during the unconfined aquifer pumping test [Case 1]. 

 
20.5.2 Case 2: Heterogeneous saturated parameters and homogeneous unsaturated zone 
parameters  
 In Case 2, we obtained the K and Ss 

  

fields through transient hydraulic tomography of 8 
separate cross-hole tests. The treatment of unsaturated zone parameters is identical to Case 1 
[effective homogeneous values]. Forward simulation results shown on Figures 20.11a for the 
saturated zone reveals a marked improvement in the prediction of drawdowns at all times with 
the variably saturated flow model. On the other hand, we observe that the drawdown predictions 
in the unsaturated zone [Figure 20.11b] are slightly improved but still not very good showing 
that the simulated values generally exceeding the observed values especially at early time. This 
discrepancy could be attributed to a number of factors such as heterogeneity in unsaturated zone 
parameters and also due to a delay in response of the tensiometers.  
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b] 

 

Figure 20.11: Simulated [solid line] and observed [dashed line] drawdown from selected: a] 
pressure transducers; and, b] tensiometers during the unconfined aquifer pumping test [Case 2]. 

20.5.3 Case 3: Heterogeneous saturated parameters and heterogeneous unsaturated zone 
parameters 
 To investigate the cause of discrepancy of drawdowns observed in the unsaturated zone, 
we also considered in Case 3, the variability of the unsaturated zone parameters by assigning 
homogeneous values for each layer. Figure 12a reveals that the quality of matches has virtually 
not changed in comparison to Figure 20.11a perhaps suggesting that heterogeneity in unsaturated 
zone parameters may not be that critical in responses in the saturated zone. This observation is in 
agreement with the findings from a numerical study conducted by Mao et al. [in review]. 
Predictions of drawdown in the unsaturated zone show only a slight improvement, suggesting 
that as long as the K and Ss 

 

are accurately know and the unsaturated parameters are represented 
accurately [in an effective sense], it is possible to predict unconfined pumping tests using a 
variably saturated flow model. 
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b] 

 

Figure 20.12: Simulated [solid line] and observed [dashed line] drawdown from selected: a] 
pressure transducers; and, b] tensiometers during the unconfined aquifer pumping test [Case 3].  

20.6. DISCUSSION 
Flow to wells due to the pumping of unconfined aquifers has been a topic of great interest 

for many decades. The majority of the studies described in the literature have focused on 
analytical solutions which treat the medium to be homogeneous. However, it is the rule rather 
than the exception that aquifers are heterogeneous. 

We study the impact of the unsaturated zone and effects of heterogeneity on unconfined 
aquifer flow in a synthetic aquifer packed in an intermediate-scale laboratory sandbox. The 
synthetic aquifer was characterized initially with eight cross-hole pumping tests under fully 
saturated conditions and the hydraulic data are interpreted using the transient hydraulic 
tomography code developed by Zhu and Yeh [2005]. The resulting hydraulic conductivity [K] 
and specific storage [Ss] tomograms were validated using eight additional tests not used in the 
inverse modeling. Effective parameters of K and Ss

Forward models of various complexities in saturated and unsaturated parameters were then 
built using the variably saturated code, MMOC3 [Yeh et al., 1993] to examine the sensitivity of 

 were also estimated through the inverse 
modeling of individual cross-hole pumping tests. Laboratory hanging column experiments of 
sands in the unsaturated zone were also to determine the van Genuchten parameters. We then 
conducted another cross-hole pumping test in which a port near the bottom of the aquifer was 
pumped at a constant rate. During this test, the water table was allowed to freely move 
downwards in response to pumping. The saturated zone was monitored via pressure transducers 
and the unsaturated zone with tensiometers and water content sensors.  
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the homogeneous and heterogeneous parameter estimates on the predictability of the unconfined 
aquifer test. Results show that an average or effective K and Ss determined through the averaging 
of equivalent K and Ss obtained from the inverse modeling of a pumping test cannot yield 
accurate predictions of drawdown responses in the saturated and unsaturated zones. Our 
predictions of drawdown responses in the saturated zone improved dramatically when the K and 
Ss

Based on this study it is possible to accurately predict the response of a heterogeneous 
unconfined aquifer to pumping as long as the saturated parameters [K and S

 distributions were utilized in the forward simulation of the unconfined aquifer pumping test. 
Because we monitored the pressure changes in the unsaturated zone during this experiment, we 
also attempted to evaluate the predictions of pressure responses in the unsaturated zone. Results 
show that slightly improved predictions of drawdowns in the unsaturated zone could be achieved 
if heterogeneous zones were assigned to the model. However, our results showed that predictions 
of drawdowns in the saturated zone were relatively insensitive to whether we conceptualized the 
unsaturated zone to be homogeneous or heterogeneous which confirms a conclusion reached by 
Mao et al. [in review] using numerical simulations. 

s

 

] are accurately 
characterized and an accurate effective value of the unsaturated parameters is known. This study 
was unique in that the heterogeneity pattern was exactly known and it was possible to select 
effective unsaturated parameters by assessing would material would dominate the drainage 
response. In the field however, this is not as straight forward and the selection of unsaturated 
parameters could pose a challenge. As such, interpreting pumping tests in heterogeneous aquifers 
will benefit from inverse modelling of both the unsaturated and saturated zones. This will require 
the use of a variably saturated model coupled with an inverse algorithm such as the Sequential 
Successive Linear Estimator [e.g., Hughson and Yeh, 2000] for the proper interpretation of flow 
to wells in a heterogeneous unconfined aquifer. 
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21. FINDINGS AND CONCLUSIONS 
 
21.1 FINDINGS AND CONCLUSIONS FROM TASK 1: ALGORITHM 
DEVELOPMENT 
 
21.1.1 Characterization of aquifer heterogeneity using transient hydraulic tomography 
methodology 
 

• The synthetic cases show that transient hydraulic tomography is a promising and viable 
tool for detecting detailed spatial variations of hydraulic parameters with a limited 
number of wells. Our SSLE can provide unbiased estimates of multiple parameters 
simultaneously, and reveal their detailed spatial distributions.  In addition, our SSLE 
permits sequential inclusion of head data from different pumping tests, such that the size 
of the covariance matrix is small and can be solved with relative ease.  By using a loop-
iteration scheme, our new SSLE improves estimates throughout the loops and maximizes 
the usefulness of head information.  

 
• The cross correlation analysis shows that the correlation between head and specific 

storage is high at early time, diminishes rapidly with time, and is confined to the vicinity 
of the head observation location.  On the contrary, the correlation between head and 
hydraulic conductivity increases and the area with high correlations broadens with time. 
To simultaneously estimate hydraulic conductivity and specific storage parameters, head 
data at both early and late times thus should be used.  

 
• The transient heads are highly temporally correlated, especially at later times.  Such a 

temporal correlation structure allows our SSLE to use only a few selected heads at some 
time steps, instead of all available heads at all time steps, to reduce computational cost, 
while keeping the usefulness of the head information. 

 
• Our SSLE approach involves backward calculation of adjoint equations during the 

sensitivity analysis for transient flow. For the same number of observation locations, a 
transient pumping test generates much more head information than a steady state 
pumping test. Even when head data are used for only a few selected time steps, instead of 
all time steps, the computational burden of transient hydraulic conductivity is 
significantly greater than steady state hydraulic tomography. More computationally 
efficient methodologies must be developed to improve the analysis of transient hydraulic 
tomographic surveys.  Finally, a 2-D version of SSLE for the transient hydraulic 
tomography is available at http://tian.hwr.arizona.edu/yeh/download. 

 
21.1.2 Analysis of hydraulic tomography using temporal moments drawdown-recovery 
data 
 

• The temporal moment approach significantly reduces computational cost for interpreting 
transient hydraulic tomography. The cost reduction is attributed to the fact that the 

http://tian.hwr.arizona.edu/yeh/download�
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governing equations for the temporal moments are Poisson’s equations.  As a 
consequence, the forward modeling required for improving new estimates of 
transmissivity and storage coefficients does not have to solve the parabolic equation that 
governs groundwater flow.   The parabolic equation in general has to be solved by a time 
marching scheme, implying that a system of equations must be evaluated at each time 
step.  Avoiding solving the system of equations for each time step thus reduces 
computational efforts.  Furthermore, the adjoint equations for evaluating sensitivity 
matrices of temporal moments are also Poisson’s equations.  In our SSLE and some other 
inverse models, the adjoint equations are solved for each measurement during each 
iteration of the estimation process.  Again, without evaluating time-dependent adjoint 
equations, computational burdens during evaluation of sensitivity are reduced.   This 
reduction is particularly significant when the number of temporal and spatial observations 
is large. 

 
• The temporal moment approach for interpreting hydraulic tomography is unequivocally 

more efficient than the approach using transient head data directly.  The differences in 
results of the moment and head approaches are small if a dense network is used.   
Furthermore, for the situations where only hydraulic conductivity is of interest, the zeroth 
temporal moment of transient well hydrograph can be used to estimate transmissivity 
without involving the estimation of the storage coefficient.  This unique characteristic of 
the temporal moment approach makes the approach highly attractive for practical 
applications.   

 
21.1.3 A new estimator and a guide for hydraulic tomography analysis 
 

• Results of this study show that in spite of noise in hydrographs from a HT survey, the 
least squares approach can satisfactorily estimate effective hydraulic properties of the 
synthetic aquifer with hierarchical heterogeneity because the inverse problem is well 
posed. 

 
• Accurate estimation of spatial variances of K and Ss

 

 from HT data is difficult due to the 
nonstationary nature of the flow field, which demands a large amount of head data to 
obtain representative sample head variances. 

• For ill-posed problems, HT in conjunction with our SimSLE yield satisfactory estimates 
of the hierarchical K and Ss

 

 fields of the synthetic aquifer.  If hydrographs are corrupted 
with noise, the SNR is a useful measure of reliability of a corrupted hydrograph, and 
wavelet denoising the hydrographs is a viable means to improve the estimate.  In 
addition, the use of stabilization of the conditional L2 norm of head as a convergence 
criterion in SimSLE avoids overexploitation of noisy data. 

• HT surveys delineate detailed hydraulic heterogeneity in aquifers, which can be used to 
predict different flow scenarios. That is, the estimate hydraulic properties do not suffer 
from the phenomenological nature associated with the domain-scale effective properties.   

 
• Finally, simultaneous inclusion of hydrographs from all pumping tests in the analysis 
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offers some advantages over the previous sequential approach but it suffers from the 
requirement of huge computational resources. 

 
21.1.4 Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous 
phase liquid source zones 
 

• We have developed a hydraulic/tracer tomography technique for characterizing NAPL 
source zone. The hydraulic/tracer tomography generates a large number of head and 
tracer data, which is interpreted by a joint SSLE inverse approach. The synthetic cases 
show that our technique can reveal major spatial distributions of NAPL using only four 
wells.  Although field situations are more complicated than the synthetic case, the 
primary results from the synthetic case demonstrate that the hydraulic/tracer tomography 
combining with SSLE method potentially is a viable and cost-effective tool for 
subsurface heterogeneity and contaminant characterization.   

 
• Under saturated condition, the variation of wθ  [the porosity in this case] is usually small. 

For example, the porosity of sandy material ranges from 0.25 to 0.50 [Freeze and Cherry, 
1979]. Due to the naturally small variability of porosity, the variation of water saturation 
in a NAPL source zone has limit impacts on NAPL estimates, especially when tracers 
with high partitioning coefficient between water and NAPL are used. In our synthetic 
case, the porosity was intentionally created with higher variability than most natural 
porous media. As a result, the water saturation in field problems will have even less 
influences on NAPL estimations. 

 
• Heterogeneity of hydraulic conductivity, on the other hand, has great impacts on NAPL 

estimation. Without detailed characterization of hydraulic conductivity, it would be 
extremely difficult to provide a reliable characterization of NAPL source zone.  
Hydraulic tomography is a viable tool for characterizing hydraulic conductivity 
distribution and can facilitate better NAPL estimation. 

 
• Our synthetic cases show that adding tracer data my not improve K estimation. The cases 

also show using head data alone generates better results than using tracer data alone.  
Similar findings were also reported by Li and Yeh [1999] and Cirpka and Kitanidis 
[2001].  However, Datta-Gupta et al. [1997] claimed that tracer data are better than 
transient pressure in estimating large-scale permeability variations. Huang et al. [2004] 
concluded that tracer breakthroughs are important indicators of the flow paths and flow 
barriers and therefore should be used in heterogeneity characterization whenever they are 
available. These issues need additional investigation and are beyond the scope of this 
study.  

 
• In our four inverse cases [case 1 to case 4], we assume only one NAPL measurement is 

available for inversion. Our SSLE method can include all direct NAPL measurements 
whenever they are available. These direct measurements will definitely increase the 
accuracy on NAPL estimations [Liu and Yeh, 2004].  
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• Directly interpreting concentration data using SSLE adds significant computational 
burden than interpreting head data. One head observation involves solving one adjoint 
equation for the evaluation of sensitivity while one concentration observation needs two 
adjoint equations. In this study, we used 8 processors [Pentium 2.8GHz each] in a PC 
cluster. The running time for one case is about 4000 minutes. As a result, more 
computationally efficient methodologies must be developed to expedite the analysis of 
tracer tomographic surveys.   

 
21.1.5 Analysis of tracer tomography temporal moments of tracer breakthrough curves 
 

• Using hydraulic/tracer tomography for characterizing DNAPL source zone is new but it 
faces a few challenges.  One of them is the computational cost, which is mainly arises 
from the usage of a large number of discrete concentration measurements during the 
estimation procedure, in which the solution to the hyperbolic advection-dispersion 
equation demands fine spatial and temporal discretizations.  Even with computationally 
efficient adjoint state method for evaluating sensitivities, the computational cost remains 
to be very high since a tracer tomographic survey is designed to collect a large number of 
concentration measurements during tracer releases at different locations. To reduce the 
computational cost associated with the new technology, the temporal moments of tracer 
BTCs are employed for parameter estimation in this study instead of point concentration 
measurements at some discrete times.  Temporal moments are calculated using moment-
generating equations.  Solving these moment-generating equations is computationally 
more efficient than solving transient advection dispersion equation because the temporal 
moments are time independent.  Furthermore, the adjoint state equations have similar 
form as the corresponding forward equation, thus there is huge reduction in 
computational cost during the sensitivity calculation. The synthetic case study indicates 
that inverting the first moment on a single PC only needs ¼ of the time used in inverting 
direct concentrations on an 8-node PC cluster.  Thus, using temporal moments makes 
hydraulic/tracer tomography approach feasible for applications with large-scale domains. 
A similar computational cost comparison between direct head measurements and head 
temporal moments was given by Zhu and Yeh [2006]. 

 
• Solving advection dominated moment-generating equations is prone to numerical 

oscillations. The oscillations occur during evaluation of both forward and adjoint state 
equations, which can lead to numerical instability during inversion.  As the SUPG 
method is commonly used to reduce the oscillation, choosing an appropriate stabilization 
factor is critical.  Our numerical simulations indicate that the one we used in conjunction 
with a solver from Diffpack works very well.  With a Peclet number of approximately 10 
in the synthetic cases, we do not experience convergence problems using the first 
temporal moment alone.  However, small oscillations still remain with SUPG method.  
Whether the oscillations could cause numerical instability for other cases has not been 
tested. Cirpka and Kitanidis [2001] used a stabilization factor different than our choice 
for solving moment generating equations, but they reported that inverse modeling using 
arrival time alone could lead to convergence problems.  More elegant solving techniques 
that further reduce oscillation, such as adaptive mesh refinement, may be needed for 
more general applications. 
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• Our results show that the estimates of  nθ  from the first moments are not as good as those 

using discrete concentration data of the BTCs.  This can be attributed to the fact that the 
first temporal moment of a BTC is an average value of the arrival times of concentration 
values of different parts of a BTC.  The arrival time of each concentration value of a BTC 
reflects the travel path and heterogeneity that a volume of a tracer encountered between 
the injection and sampling points.   Thus, the first moment only contains a portion of 
information in the BTC.  Although higher moments potentially contain more information, 
the computational cost for using higher moments however will be significantly greater 
than the first moment since all moments have to be solved recursively.  Nevertheless, 
estimates from the first moment reveal major high and low DNAPL content zones in the 
synthetic case, suggesting that the first temporal moments are useful for estimation of 
DNAPL source zones. 

 
• The cross correlation analysis indicates that a tracer first moment measurement at one 

location contains information about parameters along a narrow stripe between the 
injection location and the tracer measurement location while a steady head at the same 
location is correlated with hydraulic conductivity over a large area.  Transient head 
measurements at later time of a pumping test exhibit similar cross correlation with 
hydraulic conductivity as steady state heads. One tracer test with a limited number of 
sampling locations therefore can only provide limited area coverage, making tracer 
moment measurements less efficient than hydraulic head measurements in estimating 
hydraulic conductivity.  Furthermore, with all the simplifications and assumptions in this 
work for describing tracer movements through a DNAPL source zone, a  tracer first 
moment measurement  is still correlated not only to hydraulic conductivity but also to 
water content [conservative and partitioning tracers] and DNAPL content [partitioning 
tracer].  A tracer measurement can also be affected by parameters such as diffusivity, 
partitioning coefficient and others, potentially further reducing the correlation between 
tracer first moment and hydraulic conductivity.  Consequently, to yield a reasonable 
estimate of hydraulic conductivity using tracer measurements, one should consider 
conducting multiple tracer tests in a tomographic fashion, where each test provides 
different areal coverage. 

 
• Notice that cross correlation analysis is different from sensitivity analysis.  Equations 

[8.27] and [8.28] show that calculating cross correlation between a state variable [i.e. 
tracer first moment] and a parameter [i.e. hydraulic conductivity] is the cross-covariance 
normalized by the variance of the state variable and the variance of the parameter.  The 
variance of the state variable in turn is affected by both the sensitivities of the state 
variables to all parameters and the covariances [or uncertainties] of all parameters [i.e., 
hydraulic conductivity, water content, and DNAPL content in this study].  The cross-
correlation as demonstrated in this study is therefore an appropriate criterion for assessing 
the effectiveness of a measurement as well as different types of measurements on 
parameter estimation.  

 
• Finally, other issues related to the applicability of the new approach to real-world 

problems have yet to be addressed. These include: 1] the assumption that tracer only 
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reacts with DNAPLs; 2] the assumption that the partitioning process is in equilibrium; 3] 
the assumption that DNAPLs are not mobilized by tracer tests; 4] memory requirement 
for large-scale problems. Nevertheless, our study demonstrates that using tracer temporal 
moments can dramatically reduce the computational cost in interpreting tracer 
tomography and can yield reasonable estimates of DNAPL content, making a step 
forward for applying hydraulic/tracer tomography to real-world problems. 

 
21.2 FINDINGS AND CONCLUSIONS FROM TASK 2: LABORATORY 
EXPERIMENTAL AND NUMERICAL MODELING STUDIES 
 
21.2.1 Laboratory sandbox validation of steady-state hydraulic tomography 
 

• Hydraulic tomography is a technology that facilitates the imaging of subsurface 
heterogeneity in hydraulic parameters. To date, a comprehensive validation of the 
hydraulic conductivity [K] tomogram has not been done either at the laboratory or field 
scales. Previous laboratory investigations assumed that packing was perfect and in 
general, small scale data were not available for a direct comparison. This study provides 
the first such examination using small-scale K data obtained from cores and single-hole 
tests as well as large-scale K estimates obtained from flow-through experiments in a 
sandbox with deterministic heterogeneity in hydraulic parameters. 

 
• Prior to inverse modeling of data, we conducted a detailed diagnostic study to investigate 

the magnitude and cause of errors and biases in data through scatter plots, contour plots 
and data animations. Such diagnostic tests of data used in forward and inverse models are 
rarely discussed in the literature, but we found that it should be an integral component of 
all phases of numerical forward and inverse modeling of cross-hole tests as the use of 
data corrupted by noise can have a profound effect on both forward and inverse model 
results. 

 
• Validation of the K tomograms involved a multi-method and multiscale approach which 

included: 1] visual comparisons of K tomograms to the true sand distributions as well as 
to the reference K tomogram; 2] testing the ability of the K tomogram to predict the 
hydraulic head distribution of an independent cross-hole test not used in the computation 
of the K tomogram; 3]  comparison of the conditional mean and variance of local K from 
the K tomograms to the sample mean and variance of results from other measurements; 4] 
comparison of local K values in K tomograms to those from the reference tomogram; and 
5] comparison of local K values in K tomograms to those obtained from cores and single-
hole tests. The multi-method and multiscale validation approach proposed herein further 
illustrates the robustness of hydraulic tomography in subsurface heterogeneity 
delineation. 

 
• Previously, the effects of errors and biases on the K tomograms have not been 

investigated in detail. The steady state inversion of cross-hole tests in a synthetic 
laboratory aquifer showed that the approach is sensitive to errors and biases. Data 
diagnostics combined with forward modeling provided valuable insight into identifying 
the cause of such errors and biases. Specifically, the errors identified include drift in 
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pressure transducer readings, a skin effect influencing hydraulic head at the pumped well, 
and inaccurate treatment of boundary conditions, among others. We found that accurate 
modeling of boundary conditions is essential in conducting steady-state hydraulic 
tomography and obtaining accurate K tomograms. In real field situations, the boundary 
conditions of the field site need to be studied carefully through forward modeling and 
better site characterization. Further research is clearly needed to improve hydraulic 
tomography technology both in the laboratory and under field conditions. 

 
21.2.2 Practical issues in imaging hydraulic conductivity through hydraulic tomography 
 

• We first investigated the mean values of the synthetic and real hydraulic tests conducted 
on the computer and in the laboratory sandbox aquifer. Results show that the mean K in 
general increases with the measurement scale for the synthetic simulations when the 
mean K from cores is compared to the mean K from both slug and single-hole tests. There 
is also a scale effect in K for the real data, when mean K from cores is compared to mean 
K values from cross-hole and flow-through tests. The same holds true for the comparison 
between mean K from both slug and single-hole tests to the larger scale tests. The 
variance, however, decreases with the measurement scale as the larger scale 
measurements average the porous medium. 

 
• We investigated the effect of pumping rate which affects the signal-to-noise ratio of 

observed test data on the quality of the computed K tomogram. We found that the signal-
to-noise ratio is not as important for the synthetic case, but very important for the real 
case. That is, the computed K tomogram was clearer [and closer to the reference K 
tomogram] when the pumping test was conducted at a higher rate, yielding higher signal-
to-noise ratio data, when analyzing real data. This is because different cross-hole 
pumping test data sets contains different levels of noise and its magnitude depends on a 
number of factors including: 1] quality of pressure transducers [i.e., accuracy and 
precision of pressure transducers]; 2] calibration of pressure transducers and its repetition 
prior to pumping tests; 3] proximity of the monitoring ports to the pumping location; 4] 
the pumping rate which affects the signal-to-noise ratio of observed test data; 5] presence 
or absence of constant head or no-flow boundaries; 6] external stresses; and 7] aquifer 
diffusivities and their heterogeneity. Therefore, we recommend that in practice, more 
attention should be placed in designing cross-hole pumping tests to maximize the 
information content of the data sets and to minimize noise through signal processing 
and/or noise reduction techniques. 

 
• We also examined the order of pumping tests included in the inversion algorithm and 

found that the order has a minimal impact on the inversion results for synthetic data, but 
greatly affects the K tomogram using real data. This is because each cross-hole pumping 
test data set contains different levels of noise. Our experiments in the laboratory were 
conducted as uniformly as possible, but there are noises that we could not control from 
one test to the next. Our findings include the importance of examining test data carefully 
and utilizing the cleanest data [with the highest signal-to-noise ratio] first and 
progressively including noisier data [with lower signal-to-noise ratio] into the SSLE 
algorithm. This is because SSLE in its current form is more sensitive to noise during the 
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beginning stages of K tomogram computation. This sensitivity is due to the uniform 
convergence criteria used for sequentially inverting all pumping test data. One 
improvement that could be made to the SSLE algorithm is to include an option for 
variable convergence criteria to account for different pumping tests with different noise 
levels. Furthermore, when hydraulic tomography is conducted using field data with SSLE 
in its current form, we recommend that the cleanest data be included into the SSLE 
algorithm first and progressively including noisier data. 

 
• Conditioning has been thought to help constrain inverse modeling results. We found that 

this is certainly the case for synthetic test data when utilizing the SSLE algorithm. 
However, this study shows that the conditioning data itself can be subject to errors and so 
conditioning may not necessarily help in obtaining an improved solution. In particular, 
conditioning with data that are corrupted with noise can actually worsen the quality of the 
K tomograms. Therefore, we recommend that more attention should be paid to collection 
of better conditioning data and minimization of its errors.  

 
• We also examined the type of data used to conduct the conditioning of K tomograms. In 

this paper, we utilized synthetic and real core, slug, and single-hole K estimates. Our 
study showed that core data [assuming that they can be accurately obtained] improved 
both synthetic and real K tomograms. Conditioning of the K tomogram with slug and 
single-hole K estimates smoothed the K tomograms for this sandbox due to the larger 
support volume associated with these tests in comparison to the numerical grid used to 
compute the K tomograms. Therefore, we recommend scrutinizing the data type used to 
do the conditioning as not all data are created equally. Furthermore, we recommend that 
one should consider the support volume of data used to condition the K tomogram as it 
can have an impact on the resolution of the K tomogram. 

 
21.2.3 Laboratory sandbox validation of transient hydraulic tomography 
 

• The main objective of the study is to validate the recently developed hydraulic 
tomography concept and an analysis algorithm [i.e., SSLE] in a heterogeneous sand box.  
In order to accomplish this goal, we investigated the ability of various hydraulic tests and 
analyses to characterize the heterogeneous sand box.  These tests and analyses include 
determination of the K from core samples, slug tests, single-hole analyses, cross-hole 
analyses, and unidirectional flow-through test.   

 
• Based on the results of this investigation, we draw the following major conclusions:  1] 

with the number of samples and test locations used in our experiment, the estimated K 
values from core samples and slug tests can delineate the heterogeneity pattern of the 
sand box, but the hydraulic tomography provides considerably more details; 2] the 
average of the 95 K estimates from the cross-hole tests and analyses yield an averaged K 
value that is close to the effective K determined from the uniform flow experiment or the 
mean value of the estimates from hydraulic tomography;  3] estimates of Ss from the 
single-hole analysis and those from hydraulic tomography exhibit physically plausible Ss 
distributions; 4] while some of the tests and analyses yield similar K and Ss statistics and 
patterns, it is difficult to validate each other due to scale disparity, different flow 
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conditions, etc. As a consequently, an appropriate validation approach is to test the 
predictability of the estimates under different flow scenarios.   

• This is the approach we chose to validate the hydraulic tomography concept and the 
SSLE algorithm.  Based on this approach, we demonstrate that using the estimated K and 
Ss

 

 fields from the hydraulic tomography, a classic governing flow equation predicts 
drawdown distributions caused by an independent pumping event in close agreement 
with the observed distributions at three different times.  We thereby conclude that the 
hydraulic tomography concept and the analysis algorithm [SSLE] is a viable tool for 
characterizing aquifers at high resolutions although field tests are needed to further 
substantiate this claim for a real-world problem. 

21.2.4 Laboratory sandbox validation of hydraulic tomography that uses the temporal 
moments of drawdown-recovery data 
 

• We find that it is possible to analyze multiple cross-hole pumping test data with hydraulic 
tomography which uses the moments of the drawdown-recovery data sets [HT-m]. The 
HT-m approach is considerably faster than the THT approach with the latter approach 
utilizing transient drawdown records. This is because the HT-m approach simplifies the 
governing equation from a single parabolic equation to two Poisson’s equations for the 
0th moment and characteristic time defined as the ratio between the 1st and 0th

 
 moments. 

• Based on the synthetic simulations and analysis of the real data and its validation we 
conclude that the HT-m approach is a factor of 20 faster than the THT approach for the 
case at hand, but there is a definite tradeoff in the quality of results. The interpretation of 
synthetic cross-hole test data obtained on the computer using the HT-m and THT 
algorithms revealed that the quality of the K tomograms is comparable for both HT-m 
and THT algorithms. However, this is not the case for the Ss tomograms. We find that the 
Ss

 

 tomogram computed using the HT-m algorithm deteriorated in comparison to the 
results obtained from the THT algorithm for the synthetic case which we examined here. 

• The interpretation of the real cross-hole pumping tests conducted in a laboratory sandbox 
aquifer using the HT-m approach showed that the K tomogram is smoother than the one 
computed using the synthetic data set in this paper. The computed tomogram also 
appeared smoother in comparison to the K tomograms computed previously by Illman et 
al. [2007] using the SSHT algorithm and also by Liu et al. [2007] using the THT 
approach. 

 
• The interpretation of the real cross-hole test data using the HT-m approach showed that 

the Ss tomogram appears to be less reliable. This could be due to three possibilities. One 
possibility is that the HT-m approach relies on the computation of the temporal moments 
of the drawdown-recovery data, which involves integration. Data integration causes 
smoothing and perhaps loss of information on aquifer heterogeneity. This could cause 
significant loss of information on Ss which is contained in the early-time data. Previous 
research by Zhu and Yeh [2006] and others suggest that this may be the case. Another 
possible explanation is that the use of the temporal moments, which requires the entire 
drawdown-recovery curve may cause loss of sensitivity to the inversion Ss. We also 
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found that the characteristic time defined as the ratio between the 1st and the 0th moments 
was considerably noisier than the 0th moments, which can perhaps contribute to the 
difficulties in estimating Ss

 
 using the HT-m approach. 

21.2.5 Comparison of aquifer characterization approaches through steady-state 
groundwater model validation: A controlled laboratory sandbox study 

 
• The traditional characterization by means of permeameter analysis of cores, single-hole 

and cross-hole tests of this laboratory heterogeneous aquifer yielded a range of geometric 
mean of hydraulic conductivity [KG

2
ln Kσ] and variance of ln K [ ]. The KG

2
ln Kσ

 ranged from 
0.059 – 0.136 cm/s, while the  ranged from 0.001 to 0.868. The implication of these 
results is that no one method could be relied upon to characterize the aquifer accurately to 
obtain a reliable KG

2
ln Kσ or  because of differences in scales in which the data are 

collected as well as experimental and interpretive errors that arise from various methods. 
 

• Cross-hole pumping tests conducted at different locations within the aquifer [with 
different pumping locations] yielded different KG values of approximately a factor of 
three difference. We emphasize that this small difference in the KG

 

 could be interpreted 
to be small or lie within a margin of error given the uncertainties associated with each 
pumping test. In this sandbox aquifer, the factor of three difference in K caused a large 
variation in terms of model validation. A similar finding that the mean K from cross-
hole tests differed from various cross-hole tests was reported by Vesselinov et al. 
[2001a-b], and Illman [2006] in the context of cross-hole pneumatic injection tests 
conducted in unsaturated fractured tuff at the Apache Leap Research Site [ALRS], and 
by Illman and Tartakovsky [2006] in the context of cross-hole hydraulic tests in 
fractured granite at the Grimsel site. 

• Steady state hydraulic tomography of cross-hole pumping tests on the synthetic 
heterogeneous aquifer yielded the highest 2

ln Kσ  among the various characterization 
approaches. A similar finding was reported by Vesselinov et al. [2001b] who analyzed 3 
cross-hole pneumatic injection tests conducted in unsaturated fractured tuffaceous rock 
at the ALRS in a tomographic manner. The cause of the high 2

ln Kσ  estimates from 
hydraulic and pneumatic tomography result from multiple factors, including but not 
limited to the fact that the approach is more suitable in capturing the heterogeneity 
patterns, but can also be affected by conceptual, numerical and estimation errors. 

 
• Steady state hydraulic tomography analysis of cross-hole pumping tests yielded a K 

tomogram that was qualitatively similar looking to the photograph of the synthetic 
aquifer deposits. In particular, a number of high K features and their locations estimated 
using the steady state hydraulic tomography approach corresponded quite well with 
certain deposits known to have high K values in the aquifer. However, this 
correspondence was far from perfect with a few strata expected to have high K layers 
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did not appear in the K tomogram.  Despite the good correspondence of the general 
locations of high K features, the comparison showed that the boundaries of the 
lithofacies from the deposits to the boundaries of high K features from the tomogram are 
not in close agreement. The similarity or difference between the lithofacies from 
geological investigations and hydrofacies determined from hydraulic tomography and 
other methods should be examined with greater scrutiny in future studies. 

 
• The geometric mean K value determined from small scale data and homogeneous 

interpretation of cross-hole tests were used in a forward model to simulate 16 cross-hole 
pumping tests conducted in the synthetic aquifer. The forward simulations revealed that 
the predictions of 16 pumping tests using geometric and effective K estimates from 
various methods showed biased results in terms of predicting drawdowns from 
independent cross-hole tests. In particular, when the estimated geometric mean value 
was higher, the measured drawdown values were found to be higher in comparison to 
the simulated values. The converse was also found to be true. 

 
• Kriging of K estimates from small scale tests [core, slug, and single-hole] was 

conducted. Forward simulations of the 16 pumping tests showed biased results in terms 
of predicting drawdowns from independent cross-hole tests. This suggests that the 
traditional geostatistical analysis of small scale K data may not yield accurate K 
distributions for the prediction of heads from large scale cross-hole pumping tests. 

 
• Steady state hydraulic tomography analysis of 8 cross-hole tests yielded a more accurate 

heterogeneous distribution of K in comparison to the kriged fields. Our observation is 
based on the forward simulation of 16 cross-hole tests not used in the construction of 
the tomogram which revealed an excellent correspondence between the measured and 
simulated drawdowns. 

 
• The various homogeneous and heterogeneous K estimates were then further tested by 

simulating 6 bidirectional flow-through tests. The homogeneous K estimates by taking 
the geometric mean of core, single-hole and cross-hole estimates of K significantly 
underestimated total flow from the outflow boundary. Likewise, forward simulations 
using heterogeneous K distributions obtained by kriging of core and single-hole K also 
underestimated total flow, although the predictions were slightly better than their 
homogeneous counterpart. In contrast, total flow estimates obtained using the K 
tomogram from steady state hydraulic tomography analysis of 8 cross-hole tests was 
considerably more accurate providing further support for the robustness of hydraulic 
tomography in accurately characterizing the subsurface. 
 

• Based on our experimental work and modeling efforts, we conclude that steady-state 
groundwater models can be validated at least in this laboratory sandbox aquifer. Of 
course, absolute validation will likely never be possible. This conclusion comes with the 
caveat that groundwater model validation is possible only when the subsurface 
heterogeneity patterns and forcing functions are captured to sufficient accuracy. Finally, 
this study suggests that more effort should go into the accurate characterization of the 
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subsurface if the objective is to better predict subsurface head distributions, which then 
should yield better predictions of the fate of subsurface contaminants. Our results lend 
strong support to Yeh and Lee [2007]’s opinion that it is time to change the way we 
collect and analyze data for subsurface characterization. 

 
21.2.6 Capturing heterogeneity in groundwater flow parameters: Comparison of 
approaches through controlled sandbox experiments 
 

• Groundwater modeling has become a vital component to water supply and contaminant 
transport investigations. These models require representative hydraulic conductivity [K] 
and specific storage [Ss] estimates, or sets of estimates that idealize subsurface 
heterogeneity. Currently, there are a number of modeling approaches to idealize K and Ss

 

 
heterogeneity in varying degrees of detail, but there is no consensus in terms of which 
approach results in groundwater models that have the best predictive capability. The main 
goal  of this study is to find out which heterogeneity modeling approach [e.g. effective 
parameters, geostatistics, geological model, and hydraulic tomography] performs the best 
when input into a forward groundwater model in predicting 16 independent cross-hole 
pumping tests not used in the characterization effort. The study is conducted in a 
synthetic heterogeneous, aquifer built in the laboratory under controlled conditions. 

• We first characterized the heterogeneous aquifer through single- and cross-hole pumping 
tests. Single-hole pumping tests conducted at 48 locations throughout the aquifer were 
interpreted by assuming that the medium is uniform. The values were then averaged to 
obtain effective values of K and Ss. A cross-hole test with pumping taking place near the 
central portion of the aquifer [port 21] yielded 48 drawdown curves. Similar to the single-
hole data, 48 drawdown data were interpreted by treating the medium to be uniform, 
which yielded equivalent estimates of K and Ss. A geometric mean of these 48 data was 
then taken to obtain an effective K and Ss estimates for the entire aquifer. Comparison of 
the effective K and Ss

 

 estimates from the single- and cross-hole pumping tests show that 
they are quite different, suggesting that effective values depend on the test type and the 
scale at which they are conducted. 

• The single- and cross-hole pumping test data were then used to construct various forward 
groundwater models with homogeneous and heterogeneous K and Ss estimates. 
Homogeneous models were constructed by using the effective parameters from the 
single- and cross-hole pumping tests. Heterogeneous models consisted of spatially 
variable K and Ss fields obtained via: 1] kriging single-hole data; 2] accurately capturing 
the stratigraphy and assigning single-hole K and Ss estimates corresponding to a given 
layer; and 3] conducting transient hydraulic tomography to obtain ln-K and ln-Ss

 

 
tomograms. 

• Visual comparisons of the ln-K tomogram to the deposits show that many of the features 
are captured although we do not expect a direct correlation of the ln-K distribution and 
the stratification due to the intralayer variability in K and the fact that there are a limited 
number of measurement points along each column of ports. We anticipate that additional 
details to the ln-K tomogram will emerge as more pressure measurements are made along 
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each column. The comparison of the ln-K tomogram obtained using transient hydraulic 
tomography to the one obtained using steady state hydraulic tomography by Illman et al. 
[2010] showed overall similarity. In both cases, 8 pumping tests were used for the inverse 
analysis. However, we observe that more details in the heterogeneity pattern are visible in 
the ln-K tomogram obtained using transient hydraulic tomography. This is the direct 
result of using a larger number of drawdown data in transient hydraulic tomography to 
capture the entire drawdown curve. In contrast, steady state hydraulic tomography only 
uses a single steady state head value from each drawdown record. 

 
• We next compared the ln-Ss tomogram computed using transient hydraulic tomography 

to the kriged ln-Ss field obtained from the geostatistical analysis [not shown here] of the 
48 single-hole K and Ss estimates. The comparison revealed that the pattern in which ln-
Ss is distributed is, in general, similar. In particular, ln-Ss values are higher near the top of 
the aquifer while it decreases towards the bottom. However, the actual values of ln-Ss 

 

differed quite significantly when the results from kriging and transient hydraulic 
tomography are compared. The differences in estimated values can have significant 
impacts on the rate at which drawdown propagates through the aquifer and more 
importantly on estimates of water stored in a given aquifer. 

• The performance of these homogeneous and heterogeneous K and Ss fields were then 
tested through the forward numerical simulation of cross-hole pumping tests that were 
not used in the characterization effort. Drawdown values from 16 cross-hole pumping 
tests conducted in the sandbox aquifer were then directly compared through scatter plots. 
The comparison was done for individual tests and also for all 16 tests together. A linear 
model was fit to each of the scatter plots and the coefficient of determination [R2

 

] 
computed to quantitatively assess the goodness of fit between the observed and simulated 
drawdown values. The slope and intercept of the linear model fit provides information on 
prediction bias. 

• We found that the forward numerical simulations using the effective K and Ss values 
computed by averaging the single- and cross-hole test K and Ss

 

 estimates could not 
predict the 16 cross-hole pumping tests accurately for almost all tests and significant bias 
was shown when the observed and simulated drawdowns were compared through a series 
of scatter plots. The scatter and bias were evident in not just individual tests, but also 
when the data from all 16 tests were plotted together. 

• The heterogeneous models were also tested in a similar fashion. We found that the 
forward simulations of 16 independent cross-hole pumping tests using the kriged K and 
Ss fields and the geological model, which accurately represents the stratification, both 
failed to accurately predict the transient drawdown responses from all 16 tests whether 
they were examined individually or collectively. This was surprising as one would expect 
that both heterogeneous models should better capture the variability in hydraulic 
parameters which should then lead to better predictions of independent cross-hole tests. 
This was certainly not the case in our synthetic heterogeneous aquifer. In contrast, the 
forward numerical modeling of the 16 tests using the ln-K and ln-Ss tomograms 
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computed via transient hydraulic tomography convincingly showed that these 
distributions led to the smallest discrepancy between observed and simulated drawdowns. 

 
• Our sandbox experiments suggest the robustness of transient hydraulic tomography 

conducted in a controlled environment. Perhaps the robustness of hydraulic tomography 
results from the repeated calibration of multiple cross-hole pumping test data, which 
leads to the improved characterization of connectivity of hydraulic parameters. The 
accurate estimation of hydraulic parameters and their connectivity are critical in the 
accurate prediction of independent cross-hole pumping tests which the traditional 
geostatistical approach failed to do so in our laboratory sandbox aquifer. We are 
optimistic of the capabilities of hydraulic tomography, but are also cautious in 
generalizing our sandbox results to the field scale. It remains to be seen whether 
hydraulic tomography will yield robust results under field conditions. We are currently 
conducting a comprehensive field assessment of hydraulic tomography and other 
heterogeneous characterization methods at the University of Waterloo. These results will 
be reported in the near future. 

 
21.2.7 Temporal moment analysis of partitioning tracers in selected laboratory sandbox 
aquifers 
 

• Based on the results analyzed and presented in this work it is possible to conclude the 
following: The Partitioning Tracer Technique [PTT] is highly dependent on several 
factors: 1] the tracer test design including the injection and sampling points 2] the 
heterogeneities of the porous media play a crucial role on the advective transport of 
solutes, even if they are geometrically simple and built in highly controlled artificial 
aquifers [SBs].  

 
• The architecture [morphology of the spill] of the DNAPL spill was found to affect PTT 

results significantly. Uneven DNAPL distributions and entrapped DNAPL in unreachable 
flow and transport pathways were found to be important in the underestimation of 
DNAPL saturations as they are not fully accounted by the method of temporal moments. 

 
• In every PTT design, the interactions between the flow regime and the heterogeneities 

will result in ports that will preferentially sample the tracers. Some low K blocks will 
deflect the currents of the flow field and therefore the interaction between the tracers and 
the entrapped DNAPL is reduced. This behavior leads to underestimation of the DNAPL 
volume. Conversely, part of the flow may travel to other ports increasing the chances of 
the interactions between the entrapped DNAPL and the tracers. This behavior will result 
in over estimations of the DNAPL volume. 

 
• The strength of the partitioning coefficient [KNW] was also found to have an impact of 

DNAPL saturation estimates. We found that tracers with smaller KNW tended to yield 
more accurate DNAPL saturation estimates that those with large KNW values.  Moreno-
Barbero et al. [2006] suggested that the estimates will improve by applying non-
equilibrium models instead of the application of equilibrium models.  Also, an accurate 
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estimate of the interaction time between tracer and DNAPL would provide a means to 
choose a more appropriate KNW

 
 value to apply to the method of temporal moments. 

• The saturation and volume estimates from the method of temporal moments vary from 
port to port and from experiment to experiment due to the conclusions made in point 1. 
The best way to use and estimate DNAPL saturations and volume is by doing an overall 
average for each set of tests. 

 
• Based on our laboratory experiments, we found that the method of temporal moments 

over/underestimates by up to 50% the volume & mass of DNAPL. However, the 
estimates based on method of temporal moments are more accurate than the estimates 
given by the core analysis. 

 
• The multiple tracer test [SB 1-2], showed that the partitioning coefficient plays an 

important role and that the best estimates of DNAPL are obtained from the tracer with the 
lowest partitioning coefficient. The performance of the method of temporal moments may 
be improved by using non-equilibrium partitioning coefficients. 

 
• The use of method of temporal moments is quite simple and useful in spite of all the 

variables involved within a PTT: DNAPL architecture, sampling scheme, nature of 
tracers and possible mass losses from the SB.  

 
• In order to improve the partitioning tracer testing method, it may be necessary to address 

the following issues: 1] PTTs conducted in the laboratory should account for the outflow 
during tracer sampling. By doing so, one should be able to account for DNAPL mass 
losses during tracer sampling. The results reported in this section points to the potential 
need for proper accounting of DNAPL mass loss.  Our results show that the mass losses 
estimates are low; 2] One potential way to improve the performance of PTTs is to lower 
the injection rate in order to maximize the contact of the partitioning tracers with the 
DNAPLs in the source zone. 

 
21.2.8 Hydraulic and partitioning tracer tomography for trichloroethylene source zone 
characterization: Small-scale sandbox experiments 
 

• Trichloroethene [TCE] and other dense nonaqueous phase liquids [DNAPL] are prevalent 
at a large number of sites throughout the world. The variable release history, unstable 
flow, and geologic heterogeneity make the spatial distribution of DNAPLs complex. This 
causes difficulties in site remediation contributing to long-term groundwater 
contamination for decades to centuries. We presented small-scale laboratory experiments 
to demonstrate the efficacy of Sequential Successive Linear Estimator [SSLE] algorithm 
[Yeh and Zhu, 2007] that images DNAPL source zones. The algorithm relies on the 
fusion of hydraulic and partitioning tracer tomography [HPTT] tests to derive the best 
estimate of the hydraulic conductivity [K] heterogeneity, DNAPL saturation distribution 
and their uncertainty. This study leads to the following major conclusions: 
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• HPTT is a non-destructive method that yields reliable estimates of mean TCE saturations. 
The approach utilizes dipole cross-hole tests to image the K heterogeneity through 
hydraulic tomography [HT]. The K tomogram then is employed in partitioning tracer 
tomography [PTT] to image the spatial distribution of TCE saturation. 

 
• The HPTT approach is a non-destructive approach and can be applied repeatedly prior to 

and post-remediation. More importantly, it also provides uncertainty estimates that can 
facilitate better decision making on source zone characterization, remediation, and long-
term monitoring. 

 
• Results from our laboratory experiments show that the mean TCE saturation estimated 

through the interpretation of individual tracer tests can potentially be erroneous. This is 
because the sweeping of the source zone is dependent on the heterogeneity pattern and 
tracer test design. Our findings cast doubt on estimating the saturation and volumes of 
TCE through the interpretation of single tracer test. However, the mean TCE saturation 
was very close to the actual TCE saturation when multiple tracer tests were sequentially 
analyzed using the HPTT method. 

 
• TCE saturation distributions compare favorably with TCE distributions observed in the 

sandbox. The estimates improved when the loop iteration scheme [Zhu and Yeh, 2005] 
developed originally for hydraulic tomography was applied to the interpretation of 
multiple partitioning tracer tests. 

 
• The TCE saturation estimates obtained through HPTT did not compare favorably with 

local saturation estimates from core samples. Direct sampling of core samples to obtain 
point scale estimates of TCE saturations can potentially produce inaccurate maps of TCE 
saturations. This is due to our observation that driving of core sampling tube can cause 
consolidation of sediments and sample loss during extraction of core samples. 

 
• Delineation of K heterogeneity prior to the conduct of partitioning tracer tests can 

improve test designs and maximize sweeping of the tracers through the source zone. The 
interpretation of the partitioning tracer tests through inverse modeling is significantly 
improved because the heterogeneity patterns are imaged a priori. This emphasizes the 
importance of accurate characterization of subsurface heterogeneity as this has a 
significant impact on tracer transport and its corresponding inverse modeling. 

 
• The dipole configuration of cross-hole hydraulic and partitioning tracer tests assists in 

ensuring the mass balance of water and tracers as well as aids in the minimization of the 
impacts of boundary conditions. It also has the benefit of inducing a larger signal in terms 
of drawdowns observed in observation ports. The larger signal detected in the 
observation ports results in a higher signal in comparison to data noise that are inherent in 
laboratory or field experiment. Furthermore, the dipole configuration has a practical 
implication in which pumped water that is likely contaminated is immediately injected 
back into the aquifer which helps in cost savings because an above ground treatment 
facility of contaminated water is not required. Through our laboratory experiments, we 
conclude that the dipole partitioning tracer tests does not mobilize the nonaqueous phase 
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TCE.  Further studies are needed to ascertain the stability of nonaqueous phase TCE in 
the source zone through multiphase flow modeling of dipole partitioning tracer tests 
under different levels of saturations and heterogeneity patterns. 

 
• Maps of TCE saturations imaged with the HPTT technology have multiple benefits. The 

TCE saturation tomogram can be used to design efficient remediation schemes. In 
addition, the K tomogram imaged also can be used to optimize the injection of various 
amendments such as chemical oxidation agents and nanoiron for nonaqueous phase 
destruction and microbes to induce bioremediation. Because the HPTT technology is 
based on stochastic methods, it provides uncertainty estimates in K, TCE saturation, and 
their connectivity. Maps of uncertainties are useful because these can assist in guiding 
additional data collection. 

 
21.2.9 Hydraulic and partitioning tracer tomography experiments in an intermediate scale 
sandbox 
 

• For this study, research is still ongoing thus findings and conclusions will be reported in 
the future. 
 

21.3 FINDINGS AND CONCLUSIONS FROM TASK 3: DEVELOPMENT OF 
HYDRAULIC AND TRACER TOMOGRAPHY ALGORITHMS THAT CONSIDERS 
THE EFFECT OF THE UNSATURATED ZONE 
 
21.3.1 A revisit of drawdown behavior during pumping in unconfined aquifers 
 

• Results of our numerical experiments suggest that the transition between the two water 
release mechanisms [i.e., expansion of water and compaction of porous media and 
drainage of the porous media] along with vertical flow are the cause of the characteristic 
S-shaped drawdown curve commonly observed in the unconfined aquifer pumping test.
 At the early stage of the S-shaped drawdown-time curve, contribution to the well 
discharge is mainly from the compaction of the aquifer and expansion of the water.  At 
the intermediate stage, not only the drainage from the unsaturated zone above the initial 
water table but also that from initially saturated pores during falling of the water table 
play an important role in the development of the S-shape hydrograph.  At the late time 
stage the contribution from falling of the water table [i.e., drainage of initially saturated 
pores] becomes the dominant source of water. We believe the widely accepted terms 
“delayed yield” or “delayed drainage” that suggests a lag in water release from the 
initially unsaturated zone does not elucidate the transition of the two water release 
mechanisms and perhaps these terms are misleading. 

 
• The first-order stochastic moment analysis shows that the S-shaped drawdown-time curve 

during a pumping test in unconfined aquifers is sensitive to the spatial variability of 
hydraulic conductivity, specific storage, and saturated moisture content and insensitive to 
the variability of other parameters for unsaturated hydraulic properties.  This may suggest 
that in order to identify these unsaturated hydraulic properties, measurements of negative 
pressure heads and moisture contents are necessary. Furthermore, a cross-correlation 
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analysis reveals that an observed drawdown at a given location in a heterogeneous 
unconfined aquifer is mainly influenced by local heterogeneity near the pumping and 
observation wells. As such, applications of a model assuming homogeneity to estimation 
of parameters may require a large number of spatial observations in order to yield 
representative parameter values.  This requirement of a large number of observations in 
space may support an inverse modeling effort to estimate the spatially distributed 
parameters.  

 
• In conclusion, we believe a multi-dimensional variably saturated flow model, which 

considers the transition of water release mechanisms and accounts for heterogeneity, 
would provide a more realistic representation of flow processes in unconfined aquifer 
during a pumping test. Hydraulic tomography would be a viable approach for delineating 
heterogeneity in unconfined aquifers.    

 
21.3.2 Hydraulic tomography to characterize the heterogeneity of unconfined aquifers 
 

• In this study, we applied the hydraulic tomography concept to characterize 
heterogeneities of unconfined aquifers.  A three dimensional variably saturated flow 
model was used to simulate groundwater flow in unconfined aquifers due to the complex 
nature of groundwater movement near the water table and in the vadose zone.  The spatial 
variations of major hydraulic parameters [Ks, Ss

 

, and α] were estimated by the SSLE 
method using transient pressure data collected from a hydraulic tomography survey.  The 
method was tested by two numerical examples and the relation between unconfined 
transient pressure heads and the three parameters were also explored.  The synthetic 
examples demonstrate that a fully variably saturated flow model is appropriate for 
simulating groundwater flow in unconfined aquifers and hydraulic tomography is a 
promising tool for characterizing unconfined aquifer.  The examples also show that SSLE 
can handle highly nonlinear problems, providing unbiased estimates of multiple 
parameters simultaneously. The sensitivity analysis shows that the transient pressure head 
changes due to a pumping test are related to different parameters non-equally at different 
stage of the pumping test. As a result, the pressure data from all stages of the pumping 
tests should be used to maximize information utilization. 

• This study is merely a proof of concept; a workable field application of hydraulic 
tomography to unconfined aquifers remains to be developed.  Below we discuss some of 
the limitations and also some potential areas for future research. 

 
• First, we only considered three hydraulic parameters [Ks, Ss

 

, and α] as spatial varying 
parameters in this study.  Other parameters, including  and , were considered as 
homogeneous and known a priori. In reality, these parameters are also heterogeneous in 
nature. However, including too many parameters in the inversion process can potentially 
cause numerical instability and less reliable estimates.   A correlation analysis of pressure 
responses to all potential spatial varying parameters may be the first logical step to 
identify a few most responsible parameters that will be estimated through inversion. The 
remaining parameters will be considered as constant. 
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• Second, the parameter α for Gardner-Russo model is apparently model-dependent. If one 
other saturation-pressure model was used, new parameters need to be estimated.  The 
parameters for any saturation-pressure model are likely to be spatial varying [Yeh et al., 
2002] and should be treated as stochastic processes [Hughson and Yeh, 2000]. 

 
• Third, A unique aspect of characterizing an unconfined aquifer is that some parameters 

[such as Ss

 

] only relate to positive pressure heads [i.e., where the flow is in saturated 
condition] whereas other parameters [such as α in this study] only relate to negative 
pressure heads [i.e., where the flow is unsaturated condition].  The full characterizations 
of these parameters for the entire field of interest are typically unobtainable.  The aspect 
can limit the application of HT for unconfined aquifer.  For example, if a HT was 
conducted when the water table is high [i.e, a very wet year], the estimated α will be 
limited to small portion of the aquifer and will not be reliable for simulating the 
groundwater flow when the water table is much lower [i.e., a very dry year]. 

• Finally, the variably saturated flow model is nonlinear in nature and requires fine spatial 
and temporal resolutions for accurate representation of unsaturated flow.  The 
interpretation of field HT for an unconfined aquifer using any inverse method will be 
likely computational intensive.  In this study, although a multi-grid method and parallel 
computing were used for the fully three dimensional case, the computational cost is still 
too high for a typical field application. While more sophisticated computing technologies 
should be pursued to further reduce the computation cost, the future research should also 
focus on establishing a practical, field-oriented protocol for HT application of unconfined 
aquifers similar to that developed by Xiang et al. [2009] for confined aquifers.  

 
21.4 CONCLUSIONS FROM TASK 4: VALIDATION OF ALGORITHMS DEVELOPED 

IN TASK 3 USING A NEW SANDBOX WITH MONITORING IN BOTH THE 
UNSATURATED AND SATURATED ZONES 

 
21.4.1 Flow to a well in a heterogeneous unconfined aquifer: Insights from an intermediate 
scale sandbox 
 

• Flow to wells due to the pumping of unconfined aquifers has been a topic of great interest 
for many decades. The majority of the studies described in the literature have focused on 
analytical solutions which treat the medium to be homogeneous. However, it is the rule 
rather than the exception that aquifers are heterogeneous. 

 
• We study the impact of the unsaturated zone and effects of heterogeneity on unconfined 

aquifer flow in a synthetic aquifer packed in an intermediate-scale laboratory sandbox. 
The synthetic aquifer was characterized initially with eight cross-hole pumping tests 
under fully saturated conditions and the hydraulic data are interpreted using the transient 
hydraulic tomography code developed by Zhu and Yeh [2005]. The resulting hydraulic 
conductivity [K] and specific storage [Ss] tomograms were validated using eight 
additional tests not used in the inverse modeling. Effective parameters of K and Ss were 
also estimated through the inverse modeling of individual cross-hole pumping tests. 
Laboratory hanging column experiments of sands in the unsaturated zone were also to 
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determine the van Genuchten parameters. We then conducted another cross-hole 
pumping test in which a port near the bottom of the aquifer was pumped at a constant 
rate. During this test, the water table was allowed to freely move downwards in response 
to pumping. The saturated zone was monitored via pressure transducers and the 
unsaturated zone with tensiometers and water content sensors.  

 
• Forward models of various complexities in saturated and unsaturated parameters were 

then built using the variably saturated code, MMOC3 [Yeh et al., 1993] to examine the 
sensitivity of the homogeneous and heterogeneous parameter estimates on the 
predictability of the unconfined aquifer test. Results show that an average or effective K 
and Ss determined through the averaging of equivalent K and Ss obtained from the 
inverse modeling of a pumping test cannot yield accurate predictions of drawdown 
responses in the saturated and unsaturated zones. Our predictions of drawdown responses 
in the saturated zone improved dramatically when the K and Ss

 

 distributions were utilized 
in the forward simulation of the unconfined aquifer pumping test. Because we monitored 
the pressure changes in the unsaturated zone during this experiment, we also attempted to 
evaluate the predictions of pressure responses in the unsaturated zone. Results show that 
slightly improved predictions of drawdowns in the unsaturated zone could be achieved if 
heterogeneous zones were assigned to the model. However, our results showed that 
predictions of drawdowns in the saturated zone were relatively insensitive to whether we 
conceptualized the unsaturated zone to be homogeneous or heterogeneous which 
confirms a conclusion reached by Mao et al. [in review] using numerical simulations. 

• Based on this study it is possible to accurately predict the response of a heterogeneous 
unconfined aquifer to pumping as long as the saturated parameters [K and Ss

 

] are 
accurately characterized and an accurate effective value of the unsaturated parameters is 
known. This study was unique in that the heterogeneity pattern was exactly known and it 
was possible to select effective unsaturated parameters by assessing would material 
would dominate the drainage response. In the field however, this is not as straight 
forward and the selection of unsaturated parameters could pose a challenge. As such, 
interpreting pumping tests in heterogeneous aquifers will benefit from inverse modelling 
of both the unsaturated and saturated zones. This will require the use of a variably 
saturated model coupled with an inverse algorithm such as the Sequential Successive 
Linear Estimator [e.g., Hughson and Yeh, 2000] for the proper interpretation of flow to 
wells in a heterogeneous unconfined aquifer. 
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APPENDICES 
 
Appendix A: Cost Estimate for Implementing the Hydraulic, Conservative Tracer and 
Partitioning Tracer Tomography Tests to Delineate DNAPL Source Zones in a Sandy 
Aquifer [submitted on 7/15/2004]. 
 
A.1. Summary of White Paper 
 This white paper addresses one concern raised by the by the review panel during the 
Spring In-Progress Review [IPR] Meeting held in Washington DC on April 14, 2004. The 
concern is related to the cost of implementing the technology at a representative DNAPL site and 
how the costs are affected by increases in aquifer depth, and volume of the source zone. We 
compare the resulting cost estimates to existing technology that will yield comparable 
information on DNAPL source zones.  
 
A.2. Technology background 
 Dense Nonaqueous Phase Liquids [DNAPLs] are prevalent at a large number of sites 
throughout the world. The variable release history and geologic heterogeneity make the spatial 
distribution of DNAPLs in the source zone complex and make absolute cleanup difficult.  A 
small amount of residual DNAPL can contribute to long-term groundwater contamination for 
decades to centuries. Therefore, the spatial distribution, mass, and composition of DNAPLs 
present in the source zone need to be characterized in great detail so that efficient remediation 
schemes can be designed. Development of a cost-effective technology that provides detailed 
images of DNAPL distributions in the source zones thus is essential. 
 The current technology for characterizing the DNAPL source zone heavily relies on 
invasive sampling conducted at point-scales.  Although it is generally considered to be accurate 
at the sampling point if proper sample handling protocols are followed, for a source zone 
covering a large volume, densely distributed point samples are required to depict a detailed 3-D 
distribution of DNAPLs.  Due to the very large number of samples that are required for proper 
characterization, current technology that relies on invasive sampling can be very costly and 
destructive if accurate site characterization is required for a large source zone.   To overcome the 
shortcomings of current technology, our new technology exploits recently developed 
hydraulic/pneumatic tomography and expands the concept to the development of a conservative 
and partitioning tracer tomography to image the subsurface and DNAPL distributions over a 
large volume of geologic media without extensive invasive sampling. The technology uses a 
stochastic fusion of information methodology to assimilate data obtained from currently 
available indirect and direct methods of DNAPL source zone characterization [Kram et al., 2001] 
and results of hydraulic, conservative, and partitioning tracer tomography surveys to derive the 
best estimate of the DNAPL residual distribution and to quantify its uncertainty.  As a result, the 
new technology can characterize a greater volume of geological media at higher resolution at 
lower cost.  Specifically, it first analyzes the information derived from Hydraulic Tomography 
[HT] by incorporating point samples of hydraulic properties to identify three-dimensional 
hydraulic heterogeneity.  It then improves the estimate of the heterogeneity by incorporating new 
information acquired from the Conservative Tracer Tomography [CTT].  Afterward, the 
improved hydraulic heterogeneity is used to simulate the HT such that more detailed information 
about the response of the subsurface becomes available. This new information again is fed back 
to the technique to update the estimate of the heterogeneity.  The iterative process continues until 
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the available information and measurements are fully utilized for identifying the heterogeneity 
that controls the spatial distribution of DNAPLs.  Upon completion, the newly derived 
knowledge of the heterogeneity are then used to design partitioning tracer tomography [PTT] 
tests and are combined with the hydraulic data and other prior, point-scale information on 
DNAPLs [and the site hydrology] to depict the 3-D spatial distribution of DNAPL residual 
saturation in the source zone.  
 The technology is a new generation technology that images the three-dimensional spatial 
distribution of hydraulic heterogeneity in the subsurface, which allows for the significantly 
improved characterization of DNAPL source zones compared to existing technologies listed in 
Kram et al. [2001]. This new technology also provides the means for real-time monitoring and 
forecasting of the fate of DNAPLs during remediation.  It should be also be beneficial for 
characterization and monitoring efforts that rely on natural attenuation after a significant amount 
of DNAPLs have been removed after active remediation. Most importantly, it provides 
uncertainty estimates that can facilitate better decision making. 
 
A.3. Costs to implement the technology at a representative field site 
 This white paper presents cost estimates for implementing the HT, CTT, and PTT 
technologies [assuming that the proposed technology has been validated and is ready for 
application] in the field by a typical engineering firm in the Northeast.  In particular, we examine 
how the cost of this technology varies with the increasing volume of the DNAPL source zone 
and compare it against the cost of a baseline approach described in Kram et al. [2002]. Four 
representative scenarios of different source zone size [Case 1~10ft3; Case 2~50 ft3; Case 3~100 
ft3; and Case 4~150 ft3] are used to illustrate this variation. We assume that the source zone has 
an area 100 ft2 for case 1, 2,500 ft2 for case 2, 10,000 ft2 for case 3 and 22,500 ft2

 

 for case 4. 
Table A.1 summarizes the physical dimensions of the source zones considered. 

Table A.1: Physical dimensions of source zone for the 4 cases examined. 
 Depth [ft] Source area [ft2 Source Volume [ft] 3] 
Case 1 [10×10×10] 10 100 

 1000 
Case 2 [50×50×50] 50 2500 125,000 
Case 3 [100×100×100] 100 10,000 1,000,000 
Case 4 [150×150×150] 150 22,500 3,375,000 
  
 In all of the scenarios, we assume that there is a DNAPL source zone consisting of 
Trichloroethylene [TCE] in an unconfined aquifer consisting of unconsolidated sediment 
deposits. It is assumed that the site is not well characterized but water samples taken from 
available monitoring wells show TCE concentrations that suggest the presence of a source zone. 
Site hydraulic gradient data is known from a few existing monitoring wells installed already at 
the site.  
 
 As excavation of the contaminated soils could be costly considering its volume, and that 
it has been determined that an in situ treatment of the DNAPL source zone is feasible, a detailed 
characterization of the source zone is deemed necessary. The underlying clay unit is assumed to 
be thin and so drilling and disturbance of the source zone is not feasible as the TCE can further 
migrate downwards into the underlying aquifer which is utilized by this hypothetical Northeast 
city as the municipal water supply. Considering all the risks involved with the traditional 
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methods of DNAPL source zone characterization and following the outside-in approach to 
minimize spreading of contamination [Pankow and Cherry, 1996], it was decided to drill the 
fewest number of boreholes at the site. These site considerations and risks lead to the selection of 
HT, CTT, and PTT tests to delineate the source zone so that well-informed decisions can be 
made with regards to the selection of site remediation that will take place subsequent to the site 
characterization efforts. The major advantage behind this technique over existing techniques is 
that one will be able to obtain a 3-dimensional distribution of DNAPL residual saturation and its 
uncertainty estimates, with minimal invasive drillings. In addition, hydraulic and transport 
properties such as hydraulic conductivity, specific storage, effective porosity and dispersivity 
will also be obtained in three-dimensions [with its corresponding uncertainty estimates] making 
the subsequent selection of a remediation scheme and its design considerably more efficient. 
Uncertainty estimates of all parameters will help site managers and engineers make well-
informed decisions about the next course of action. 
 For each of the 4 cases, we assume that 5 boreholes are drilled in a 5-spot pattern within 
the source zone and 25 injection and observation zones are utilized to conduct the HT, CTT, and 
PTT [Figure A.1]. Table A.2 summarizes the number of HT, CTT, and PTT tests that we 
estimate will be required to characterize the source zone. These numbers especially for the CTT 
and PTT tests are rough estimates as we do not have simulation results for the CTT and PTT 
tests at this time. Our estimates for the number of HT tests are based on our previous [Yeh and 
Liu, 2000] and more recent simulation results. Here we assume that for each HT test, 2 days are 
required from setup to completion. Likewise, for the CTT tests, we assume that it will take 3 
days to complete each test. On the other hand, we assume that each PTT test will take 5 days to 
complete, accounting for the retardation of the partitioning tracers. These estimates are based on 
calculations of steady-state drawdown using the point source solution [Carlslaw and Jaeger, 
1959] and travel times assuming an aquifer with an effective hydraulic conductivity of 86.4 
ft/day [medium sand] and an effective porosity of 0.25. For example, in case 1, we assume that 5 
HT tests, 2 CTT, and 2 PTT tests are conducted sequentially over a period of 26 days [1 day = 10 
hours] with a two-man crew to characterize the source zone. We have also budgeted 80 hours for 
a numerical modeler who is assumed to be fully trained to conduct preliminary simulations and 
interpretation of test results. 
 Estimates of variable costs such as drilling, rental, and sample analyses are obtained from 
RS Means [1998]. As the cost estimates of various items in RS Means [1998] do not reflect the 
costs in 2004, the estimates are adjusted to reflect the 2004 costs with an inflation rate of 3% per 
year. We also use an estimate of disposal of drilling wastes obtained from Kram et al. [2002] 
which we adjust to reflect the costs in 2004. Estimates of project overhead and profit [multiplier 
= 3.1] are obtained from Unger and Coover [2004]. 
 We note that equipment [such as packer assemblage, tracer tanks, data acquisition 
system, etc.] costs presented here are based on the assumption that the contractor will rent the 
necessary equipment for the duration of the field project. Rental of the equipment reduces the 
costs if the testing duration is short, but the costs can be higher if the test duration is long. We 
recommend that the contractor purchase the equipment for long duration projects. 
 We also note that the number of chemical analyses can be significantly reduced if the 
first sweep of PTT does not detect the presence of DNAPLs. Additional partitioning tracer tests 
are used to capture the three-dimensional distribution of DNAPLs if it is found to be present 
from the first PTT test.  We note that the sample analysis cost for the tracers can be high 
[$175/sample for VOC/alcohol analysis] as a large number of samples need to be analyzed for 
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the CTT and PTT tests. However, this variable cost may be reduced considerably if the samples 
can be analyzed by the contractor instead of subcontracting the analysis. We also emphasize that 
a smaller number of CTT and PTT tests may be necessary if the hydraulic heterogeneity is 
quantified well by the HT tests, thus reducing the overall project cost substantially. 
 

 
 
Figure A.1: Conceptual diagram illustrating the tomographic approach to characterize DNAPL 
source zones. 
 
Table A.2: Estimated number of HT, CTT, and PTT tests required to characterize DNAPL 
source zones in Cases 1 through 4. 
 
 HT CTT PTT Days/person 

required 
man-

hours/person 
required 

Case 1 
[10×10×10] 

5 2 2 26.0 260 

Case 2 
[50×50×50] 

10 3 3 44.0 440 
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Case 3 
[100×100×100] 

15 4 4 62.0 620 

Case 4 
[150×150×150] 

20 5 5 80.0 800 

 
A.4. Costs for the Baseline Approach 
 To obtain a useful cost comparison with proven existing technology to characterize 
DNAPL source zones, we compare the costs of our technology to the baseline approach 
discussed in Kram et al. [2002]. The baseline approach consists of discrete sample collection 
from the surface at 5 ft depth intervals. Although this approach is commonly used, the likelihood 
of detecting DNAPL ganglia and microglobules using this approach is very low [Kram et al., 
2002]. We also note that the excessive drilling within the DNAPL source zone may exacerbate 
the contamination problem through short-circuiting of DNAPLs along the boreholes to greater 
depths. 
 For the cost calculation, we assume that boreholes are drilled with direct push equipment 
such as that from Geoprobe. According to the company website [www.geoprobesystems.com], 
the rig is able to push from 20 to 50 holes up to a depth of 100 ft per day. We take their low end 
estimate of 20 boreholes for our calculation of the number of days required to complete the 
investigation. In addition, the website notes that depths of 100 ft can be achieved using this 
approach; however, larger drilling equipment may be necessary to drill and collect samples at 
larger depths and in materials that are less than ideal to push in, which could ultimately increase 
the cost for drilling and sample collection. For simplicity, we assume that the direct push 
technique is applicable for all cases considered here. Other costs pertaining to the baseline 
approach are obtained from Table 2 in Kram et al., [2002] and reproduced here as Table A.3. 
 
Table A.3: Generic cost estimates for line item baseline case components [modified after Kram 
et al., 2002]. 
Item Cost [$] Per Unit 
Drill rig 10 Foot 
Push rig 3500 Day 
Sampling 20 Sample 
Grouting 3 Foot 
Mobilization-demobilization 1000 Day 
Standby labor 170 Hour 
Decontamination labor 100 Hour 
Drilling waste disposal 40 Cubic feet 
Laboratory chemical analyses 
 

150 Sample 

Laboratory physical analyses 200 Sample 
Reporting 3500 Report [average] 
 
 We assume that on a horizontal grid, a borehole is drilled every 5 ft for cases 1 and 2 
while for cases 3 and 4, we assume that boreholes are drilled every 10 ft to achieve the degree of 
characterization that is comparable to the HT, CTT, and PTT approach. Therefore, for case 1 
with a 10 ft by 10 ft grid, we assume that [3 × 3 boreholes] 9 boreholes are required. For case 2 
with a 50 ft by 50 ft grid, [11 × 11 boreholes] 121 boreholes are required. We assume that 
sampling takes place at 5 ft intervals as it was suggested in Kram et al. [2002]. They state that 
this sampling interval is by no means valid for all sites. Rather, Kram et al. [2002] consider this 
to be a typical sampling increment that is applicable to many sites. Using these parameters, we 

http://www.geoprobesystems.com/�
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calculate the total length for the drilling, number of samples taken, and the time it will take for 
the completion of drilling. This information is summarized in Table A.4.  
 
Table A.4: Summary of parameters in calculating cost estimates for the baseline case. 
 *Number 

of 
boreholes 

Total 
length [ft] 

**Number 
of samples 

Days for 
drilling 

Total 
hours 

for 
drilling 

Case 1 9 90 18 0.5 5.0 
Case 2 121 6050 1210 6.1 61.0 
Case 3 121 12100 2420 6.1 61.0 
Case 4 256 38400 7680 12.8 128.0 
Note: *Boreholes are drilled every 5 ft for cases 1 and 2 while for cases 3 and 4 boreholes are drilled every 10 ft. 
**Samples are collected at every 5 ft for all cases 1-4  
 
A.5. Cost Comparisons 
 Table A.5 shows the comparison of costs from the two approaches for all the cases. 
Results show that the costs of characterizing DNAPL source zone rise modestly with increasing 
source area and volume with our HT, CTT, and PTT technology, but the costs rise exponentially 
for the baseline approach. 
 
Table A.5: Summary of costs for the HT, CTT, and PTT approach versus the baseline approach. 
 2004 Cost for HT, CTT, and 

PTT tests 
2004 Cost for Baseline 

Approach 
Case 1 $ 207,327 $ 27,279 
Case 2 $ 357,421 $ 696,098 
Case 3 $ 517,404 $ 1,304,913 
Case 4 $ 677,387 $ 4,034,755 
 
 This is because if a comprehensive characterization of the DNAPL source zone is 
conducted with the baseline approach, a large number of boreholes and samples are required to 
obtain direct estimates of DNAPL concentrations. On the other hand, our technology uses a 
minimum number of boreholes to characterize the source zone. Drilling of a smaller number of 
boreholes will also lessen the chance for exacerbating the contamination problem through short-
circuiting of DNAPLs. 

Several factors can affect the costs in characterizing DNAPL source zone with the HT, 
CTT, and PTT technology. The resolution of the DNAPL residual saturation and the 
hydraulic/transport parameters are dependent on the number of tests conducted at a given field 
site. However, a higher resolution image of the DNAPL source zone should translate into a 
greater cost savings during the remediation phase because more information is available to 
design a better remediation strategy, which in turn should reduce the overall project costs with 
less uncertainty. Other factors such as the degree of physical and chemical heterogeneity may 
also affect the number of tests required. Therefore, the costs will be higher if a larger number of 
HT, CTT, and PTT tests are required to delineate the DNAPL source zone. Despite some of 
these uncertainties, our technology should be applicable in all types of terrains including 
fractured rocks and also in the vadose zone. There is also theoretically no limit to the depth at 
which the technology can be applied. 

On the other hand, drilling costs for the baseline approach can be significantly more in 
gravelly material and in consolidated deposits including fractured rocks as the direct push 
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approach can only be applied in soft, unconsolidated sediments. For large depths, conventional 
drilling technologies need to be used for drilling and sampling collection. 

In conclusion, our cost estimates suggest that the DNAPL source zone characterization 
by the HT, CTT, and PTT technology is considerably more cost effective than traditional 
approaches to obtain a three-dimensional tomogram that shows the spatial variability of flow and 
transport parameters as well as DNAPL saturations within the source zone. The costs are 
considerably lower for medium to larger DNAPL sites, however, the technology could be highly 
effective in smaller DNAPL sites as well because it will yield information that will make the 
remediation effort and decision making considerably easier. These results suggest for the 
expanded research effort into field implementation of the HT, CTT, and PTT technology. 
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Appendix B. Definition of Success, Uncertainty Evaluation, and Field Protocol for 
Implementing the Hydraulic, Conservative Tracer and Partitioning Tracer Tomography 
Tests to Delineate DNAPL Source Zones [submitted on 7/15/2004] 
 
B.1. Summary of White Paper 
 This white paper addresses several concerns raised by the by the review panel during the 
Spring In-Progress Review [IPR] Meeting held in Washington DC on April 14, 2004. These 
concerns are: 1] to establish a clear definition of what constitutes the success of this technology 
with respect to cost-effective characterization and monitoring of DNAPL source zones; 2] to 
provide plans for uncertainty reduction and parameter estimation in our predictive monitoring; 
and 3] to provide a field protocol for the technology. 
 
B.2. Technology background 
 Dense Nonaqueous Phase Liquids [DNAPLs] are prevalent at a large number of sites 
throughout the world. The variable release history and geologic heterogeneity make the spatial 
distribution of DNAPLs in the source zone complex and make absolute cleanup difficult.  A 
small amount of residual DNAPL can contribute to long-term groundwater contamination for 
decades to centuries. Therefore, the spatial distribution, mass, and composition of DNAPLs 
present in the source zone need to be characterized in great detail so that efficient remediation 
schemes can be designed. Development of a cost-effective technology that provides detailed 
images of DNAPL distributions in the source zones thus is essential. 
 The current technology for characterizing the DNAPL source zone heavily relies on 
invasive sampling conducted at point-scales.  Although it is generally considered to be accurate 
at the sampling point if proper sample handling protocols are followed, for a source zone 
covering a large volume, densely distributed point samples are required to depict a detailed 3-D 
distribution of DNAPLs.  Due to the very large number of samples that are required for proper 
characterization, current technology that relies on invasive sampling can be very costly and 
destructive if accurate site characterization is required for a large source zone.   To overcome the 
shortcomings of current technology, our new technology exploits recently developed 
hydraulic/pneumatic tomography and expands the concept to the development of a conservative 
and partitioning tracer tomography to image the subsurface and DNAPL distributions over a 
large volume of geologic media without extensive invasive sampling. The technology uses a 
stochastic fusion of information methodology to assimilate data obtained from currently 
available indirect and direct methods of DNAPL source zone characterization [Kram et al., 2001] 
and results of hydraulic, conservative, and partitioning tracer tomography surveys to derive the 
best estimate of the DNAPL residual distribution and to quantify its uncertainty.  As a result, the 
new technology can characterize a greater volume of geological media at higher resolution at 
lower cost.  Specifically, it first analyzes the information derived from Hydraulic Tomography 
[HT] by incorporating point samples of hydraulic properties to identify three-dimensional 
hydraulic heterogeneity.  It then improves the estimate of the heterogeneity by incorporating new 
information acquired from the Conservative Tracer Tomography [CTT].  Afterward, the 
improved hydraulic heterogeneity is used to simulate the HT such that more detailed information 
about the response of the subsurface becomes available. This new information again is fed back 
to the technique to update the estimate of the heterogeneity.  The iterative process continues until 
the available information and measurements are fully utilized for identifying the heterogeneity 
that controls the spatial distribution of DNAPLs.  Upon completion, the newly derived 
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knowledge of the heterogeneity are then used to design partitioning tracer tomography [PTT] 
tests and are combined with the hydraulic data and other prior, point-scale information on 
DNAPLs [and the site hydrology] to depict the 3-D spatial distribution of DNAPL residual 
saturation in the source zone.  
 The technology is a new generation technology that images the three-dimensional spatial 
distribution of hydraulic heterogeneity in the subsurface, which allows for the significantly 
improved characterization of DNAPL source zones compared to existing technologies listed in 
Kram et al. [2001]. Effective source zone characterization is critical for its efficient remediation 
and long-term monitoring for natural attenuation. This new technology also provides the means 
for real-time monitoring and forecasting of the fate of DNAPLs during remediation.  It should be 
also be beneficial for characterization and monitoring efforts that rely on natural attenuation after 
a significant amount of DNAPLs have been removed after active remediation. Most importantly, 
it provides uncertainty estimates that can facilitate better decision making. 
 
B.3. Definition of Success for the Developed Technology 
 The definition of success for this technology depends on the success of the 3 individual 
tomography tests [hydraulic, conservative tracer, and partitioning tracer] and their joint 
interpretation. 
 We propose three methods to quantify the success of the technology. In the first approach 
we will utilize numerical experiments to test our technology under conditions where “data" are 
free of measurement errors and model errors.  These computational experiments will define the 
quality and reliability of information derived from our approaches, and will assist in defining 
sampling strategies to be used in the field. The second method to quantify the success of the 
approach utilizes the data from the sandbox experiments. These will provide critical data under 
controlled environments where measurement/model errors may exist but can be controlled.  In 
addition, we will create different types of heterogeneities. The ultimate test of the technology 
will be in the field. In this case, measurement/model errors are unknown and heterogeneity is 
realistic. The following describes the approaches in quantifying the success of each component 
of our DNAPL source zone characterization technology. 
 The success of this technology is defined as its ability to depict hydraulic conductivity, 
specific storage, porosity, dispersivity, and DNAPLs [if any] variations over a large volume of 
geological media in three-dimensions at less cost and time than the point sampling approach such 
as those described in Kram et al. [2001].  Several approaches can be used to assess the success of 
the technology: direct and indirect approaches.  A direct approach is to compare the distribution 
of estimated hydraulic conductivity and specific storage with those obtained from densely 
collected small scale estimates such as that from cores, slug and/or single-hole tests conducted 
within the DNAPL source zone. Alternative to the direct approach are indirect approaches, 
including pumping and tracer tests.  Specifically, the estimated hydraulic properties by our 
technology will provide better predictions of overall 3-D hydraulic head and tracer distributions 
resulting from these tests than the properties derived from point samples at the same wells for the 
tomographic surveys.  During the tests, the true 3-D hydraulic head and tracer distributions will 
be obtained by a densely distributed point sampling network.  The success also can be assessed 
by comparing predicted flow and transport processes [i.e., hydraulic heads, flow rates, and tracer 
concentration breakthroughs] observed at the tomographic survey wells by our estimated 
properties with those by the point sampling at the same wells. 
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It is important to remember that none of the direct [e.g., soil and groundwater 
contamination surveys through drilling] or indirect approaches [e.g., visual inspections of drill 
cores, soil vapor analysis, geophysical surveys, use of radon abundance data, and partitioning 
tracer tests] described in Kram et al. [2001] on its own can provide detailed distributions of 
hydraulic heterogeneity and DNAPL saturations in three-dimensions. Distributions of hydraulic 
heterogeneity and variability in transport parameters, and distributions of DNAPL saturations 
may be obtained through the geostatistical analysis of point scale data sets. However, in order to 
obtain a detailed distribution using the geostatistical analysis of point scale samples, a large 
number of boreholes and samples obtained from each borehole will be required to characterize a 
given site. In addition, it is important to remember that the geostatistical analysis of point scale 
measurements do not factor in the physics of flow and transport of fluids and contaminants and 
thus may not provide information on medium connectivity, which can be critical in predicting 
the hydraulic and transport heterogeneity, as well as heterogeneity in DNAPL saturations. For 
example, slug test results and their corresponding geostatistical analysis may provide a 
distribution of hydraulic conductivity but this will not provide information on the connectivity of 
low and high permeability features that can dominate DNAPL infiltration processes and the 
locations of DNAPLs. 
 Our technology will also provide estimates of parameter uncertainties such that additional 
characterization can be designed if deemed necessary. 
 While the proposed technology produces promising results in numerical and laboratory 
experiments and we are confident in our logic behind the proposed technology, there are several 
concerns that need to be resolved. In particular:  

1. We do not know if partitioning tracers can react with other unknown factors in the 
subsurface [other than the DNAPLs] to yield a similar retardation in arrival time under 
field conditions and to cause false alarms.  That is, the idea of using partitioning tracers 
for detecting DNAPLs has been verified in bench-scale and field-scale tests, but the 
effects of geochemical heterogeneity in the field and its influence on the partitioning 
coefficients have not been studied. 

2. The accuracy of hydraulic and tracer test data collected during the tomographic surveys is 
crucial to the results of our analysis.  Issues related to the strength of the signal with 
respect to noise [signal to strength ratio] remain to be resolved under field conditions.  
Possible inconsistencies in the results of different tomographic surveys may occur and 
means to screen out inconsistent data sets are still needed. 

 
B.4. Plans for Uncertainty Reduction and Parameter Estimation in Our Predictive 
Modeling 
 
Our previous experience has shown that more accurate auxiliary information collected can 
lead to greater uncertainty reduction and parameter estimation in our DNAPL source zone 
model.   
 

1. We need to develop our ability to include additional information [such as water and 
chemical fluxes] collected from the packers in the wells used for the tomographic 
surveys. 
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2. We need to develop our ability to include results from geophysical surveys [such as 
cross-bore hole electrical resistivity tomography for tracking three-dimensional tracer 
plumes and surface ground penetrating radar for detecting groundwater spatial variations 
during the tests]. 

 
3. Repeated hydraulic tomography experiments and geophysical surveys with varying 

source strengths may alleviate uncertainty associated with signal/noise ratio and data 
inconsistency issues as we discussed previously. 

 
4. The accuracy of the tomograms for hydraulic conductivity has been demonstrated to be 

directly related to the accuracy of the data taken [i.e., the resolution of the pressure 
transducers] using synthetic simulations [Yeh and Liu, 2000; Liu et al., 2002]. Illman et 
al. [1998; see also Illman, 1999] also found that the quality of the data can be greatly be 
affected by the quality of the pressure transducer used in the field through their study on 
pneumatic tomography tests conducted in unsaturated fractured rocks. We suggest to 
conduct detailed laboratory and field studies to assess this issue to further to reduce the 
uncertainty in the calculated tomograms. 

 
5. Since the effects of geochemical variability on partitioning tracer are not well understood, 

and geochemical variability is often site-specific, we recommend the following to address 
this issue at any given field site.  Prior to employing the proposed technology to 
characterize a DNAPL source zone, we should first conduct column tracer tests using 
core samples excavated from the site to ensure that local geochemical heterogeneity will 
not cause false alarms in our interpretation.     

 
In conclusion, the ability of our proposed technology for field DNAPL source characterization 
remains to be tested.  We are certain that our technology will produce robust results in the 
laboratory experiments since the experimental errors are known and many of the factors that may 
influence the effectiveness of the technology can be controlled.  For field problems, our 
technology will be significantly superior to the current point sampling technology in terms of 
delineating 3-D hydrologic heterogeneity, which is critical in detecting DNAPLs even if 
partitioning tracer technology is not used.  
 
B.5. Field Protocol for the HT, CTT, and PTT Technology 
 
A preliminary field protocol for the technology is provided below. We emphasize that this is by 
no means comprehensive and that additional surveys may be required or other characterization 
approaches may be substituted for different geologic terrains and conditions [e.g., fractured 
rocks]. 

The major stages for implementing the technology at a particular site consists of the 
following steps. 
 

1. Planning and Phase 1 investigation 
a. Site visit and reconnaissance to assess equipment and testing needs; 
b. Collection of existing site data including topographic, geologic, and hydrologic 

maps as well as aerial photographs that may yield information on historical site 
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operation. Data on water levels, hydraulic conductivity, and information on the 
presence of DNAPLs are also gathered during this stage; 

c. Delineation of source area based on historical data and site operation records; 
d. If no data is available for potential areas for DNAPL source zones, then 

preliminary soil gas surveys or other approaches discussed in Kram et al. [2001] 
may be needed to delineate the source area; 

e. Geophysical surveys to obtain general geological structures—geostatistical 
analysis of the surveys; 

f. Preliminary numerical simulation of the tomographic tests for design of the initial 
site characterization. 

 
2. Initial Site Characterization 

a. On-site drilling; 
b. Sample collection and analysis [hydraulic conductivity, total porosity, column 

experiments, bulk density, partitioning coefficients, etc.]; 
c. Slug tests using direct push equipment during drilling or slug/single-hole tests 

using packers after drilling and well completion; 
d. Geostatisical analysis of available site data including previously collected 

geophysical survey data sets; 
e. Construction of site model that can be used to design HT tests [sampling intervals 

and frequencies]. 
 
3. Hydraulic Tomography [HT] 

a. Conduct HT test and immediately analyze the data using the inversion algorithm 
while the next HT survey is being conducted; 

b. Switch pumping location and conduct another HT survey; analyze the data 
sequentially; 

c. Conduct HT tests [the number will depend on degree in heterogeneity quantified 
by the variance of hydraulic conductivity] until no improvement in hydraulic 
heterogeneity pattern is observed from sequential inclusion of HT data into the 
inversion code. 

 
4. Conservative Tracer Tomography [CTT] 

a. Conduct simulation studies to design the optimal injection, monitoring locations 
for the conservative and partitioning tracer tomography tests as well as their 
sampling frequencies; 

b. Conduct CTT using bromide as a conservative tracer and analyze samples with 
on-site ion chromatograph; 

c. Use information gained from CTT survey to refine the hydraulic heterogeneity 
and obtain estimates of transport parameters [effective porosity and dispersivity 
and their spatial distribution]. 

 
5. Partitioning Tracer Tomography [PTT] 

a. Conduct additional tracer simulation studies to refine the design for the optimal 
injection, monitoring locations for the tracer tomography tests as well as their 
sampling frequencies; 
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b. Conduct PTT tests using partitioning tracers; 
c. Analyze partitioning tracers with an on-site Gas Chromatograph [GC] equipped 

with a Flame Ionization Detector [FID]; 
d. Analyze the resulting breakthrough curves using the inversion code; 
e. Continue with PTT survey until no improvement in the tomogram is obtained. 

 
6. Validation 

a. If validation is necessary, then a large number of samples must be obtained using 
direct push or conventional drilling technology with a split spoon sampler;  

b. In general, organic contaminants are extracted from the soil with organic solvents 
such as methylene chloride. The concentration of the VOC and SVOC present in 
the soil is then determined with a gas chromatograph. 

 
B.6. Applicability of Hydraulic and Partitioning Tracer Tomography (HPTT) technology at 
existing DoD sites. 
 

SERDP reviewers of the Draft Final Report have raised the following concern regarding this 
technology, “Final Report offers a wealth of information on groundwater hydraulic behavior and 
a potentially promising characterization technology; however, at this point in time, the DoD will 
likely be hesitant to invest in new groundwater wells for the purposes of additional 
characterization data.  A potentially significant cost effective approach entails the use of existing 
wells to conduct the key tomographic tests as well as existing data to further refine and condition 
the tomographic output.  Is such a scenario possible?” 
 
Response: The resolution of subsurface heterogeneity obtained will depend on the number of 
wells, monitoring locations, pumping/injection locations as well as hydrogeological conditions at 
a given DoD site. While we use wells with screened intervals at different depths (i.e., multilevel 
wells) to explain the concept of hydraulic and partitioning tracer tomography (HPTT), we must 
emphasize that these techniques are not restricted to this particular type of well facilities.  In 
cases where a field site is limited to a small number of wells (see Figure A.1, p.397, for an 
illustrative example), using wells with multi-level screened intervals would be necessary to 
realize the benefit of HPTT technology: 3-D image of hydraulic heterogeneity and DNAPL 
residual saturation.  Otherwise, the tomography is readily applicable to existing well fields which 
consist of either fully or partially screened wells.   For example, if all wells (for instance, 10 
wells) are screened over the same depths, HPTT will provide images of the heterogeneity 
distribution in the lateral direction.   In order to obtain 3-D images of heterogeneity over the well 
field in this case, installing one multi-level pumping well will be adequate to provide excitations 
at different depths.  If all the wells at the site are screened over different depths, HPTT tests can 
also be carried out to obtain images of the heterogeneity in 3-D, without drilling new wells.   
 
While existing wells can be used for the application of the technology at existing DoD sites, we 
also hope that DoD is amenable in installing additional multi-level monitoring wells at some 
sites to improve the resolution of subsurface heterogeneity images. This is because the upfront 
characterization will more than likely improve the effectiveness of various remediation 
technologies and will ultimately lead to improved remediation performance, shorter cleanup 
times, and cost savings. 
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Appendix C: Derivation of Moment Sensitivities using the Adjoint State Method 
 
Differentiating the zeroth moment equation, 
 
  0[ ( ) ] ( ) 0x x pK M Q∇ ⋅ ∇ + τ =       [C1] 
 
with respect to a parameter χ [where χ represent lnK  or lnS at any location in the spatial domain 
Ω] give 
 

  0 0( ) ( ) 0
x x x x

K M K φ
χ

∂ ∂ ∂ ∂ ∂
+ =

∂ ∂ ∂ ∂ ∂
     [C2] 

 
where 0 0Mφ χ= ∂ ∂  is called state sensitivity. Multiplying the resultant equation by an arbitrary 
function, *

0φ , and integrating the equation over the entire spatial domain, Ω,  gives 
 

 * *0 0
0 0[ ( ) ( )] 0

x x x x
MK K dφφ φ

χΩ

∂ ∂∂ ∂ ∂
+ Ω =

∂ ∂ ∂ ∂ ∂∫ .     [C3] 

 
Applying Green’s theorems to both terms of the left hand side of Eq. [C3] yields the following 
equation, 
 

* * *
* *0 0 0 0 0 0

0 0 0 0[ ( )] [ ] 0n
x x x x x x x

K M K MK d K K dφ φ φ φφ φ φ φ
χ χΩ Γ
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Applying a similar procedure to the first moment equation, 
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 we obtain 
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∫
   [C6] 

 
where *

1φ is another arbitrary function and 1 1Mφ χ= ∂ ∂ is another state sensitivity. The marginal 
sensitivity of a performance measure P is given as  
 

 0 1
0 1

( )dP G G G d
d M M

φ φ
χ χΩ

∂ ∂ ∂
= + + Ω

∂ ∂ ∂∫       [C7] 
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where G is the state function. The first term in the right side of Eq. [C7] represents direct 
dependence of the performance measure on the parameter whereas the second and third terms 
provide indirect dependence of the performance measure on the parameter through moments. 
Next, we add Eq. [C4] and Eq. [C6] into Eq. [C7], yielding 
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If we let the two arbitrary functions *

0φ  and *
1φ  satisfy the following two adjoint equations: 

 
*
1

1

( ) 0
x x
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*
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and the boundary conditions 
 

* 0 n =φ  at 1Γ           [C11] 
 

*( ) 0nnK∇ ⋅ =φ  at 2Γ    [n=0,1],       [C12] 
 
The terms associating with state sensitivities 0φ and 1φ as well as boundary terms in Eq. [C8] 
disappear. Eq. [C8] is reduced to 
 

  
* *

*0 0 1 1
1 0[ ]

x x x x
sM SMdP G K K M d

d
φ φ φ

χ χ χ χ χΩ

∂ ∂ ∂∂ ∂∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∫    [C13] 

 
If an observation of the moments is made at location, xk

( )x xn kG M= −δ
, the state function becomes 

 in which n=0, and 1, denoting the zero and the first moment, respectively. 
Now, let 1 ( )x xkG M δ= −  be the first moment at location xk, the direct dependence term, 
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G χ∂ ∂ , becomes zero. If K and Ss lnsS K∂ ∂ are uncorrelated, then the term, in Eq. [C13] is 
zero.  As a result, we have the sensitivity of 1

kM with respect to ln K : 
 

* *
0 01 1 1

ln x x x x

k MM MK K d
K

φ φ

Ω

 ∂ ∂∂ ∂ ∂
= − − Ω ∂ ∂ ∂ ∂ ∂ 

∫  



     [C14]  

 
where the superscript k denotes the observation at location xk  and the subscript  denotes the 
location of the parameter in the domain.  Similarly, the sensitivity of M1
 

 to lnS is given as 

*1
1 0ln

k
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M M S d
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.        [C15] 

 
Next, let 0 ( )x xkG M δ= −  be the zeroth moment at location xk 1G M∂ ∂, then term, , in Eq. [C9] 
is zero. As a result, the solution *

1φ of adjoint equation [C9] is zero everywhere. The adjoint 
equation [C10] therefore is reduced to 
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and Eq. [C13] becomes 
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The sensitivity of M0
 

 to lnK is then given as 
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Appendix D. Partitioning coefficients for PCE and selected tracers 
 Four alcohols were chosen to be used as partitioning tracers for this study.  The alcohols, 
our measured dimensionless KNW 

≥

values, and values reported by previous researchers are listed 
in Table D.1. The NAPL-phase used in this study was tetrachloroethene [PCE]. The purities of 
the alcohols and PCE purchased from Sigma-Aldrich and Fluka are as follows:  PCE > 99.9%;  
IPA > 99.5%;  2M1B > 99%;  4M2P> 98%;  2, 4DM3P = 99%; and 1- Hex  99.9%.   
 Nine sets of batch tests were conducted to determine NAPL – water partition coefficients 
for each tracer in water-tracer-NAPL solutions as well as to examine the effects of the presence 
two or more tracers, simultaneously, 

 Purified water [Barnstead Nanopure, Diamond] was used to dilute the aqueous tracer 
stock solutions to the five different concentrations: 50, 100, 200, 400, and 800 mg/L.  The 5 
different levels were prepared in pre-cleaned 20mL EPA/ VOA glass vials with Teflon-lined 
septa from EnviroTech. 

on partition coefficient estimation.  The batch test were 
designed to estimate one alcohol/PCE partitioning coefficient, then duos of alcohols and PCE 
and finally three alcohols and PCE. Per each test regardless the alcohols involved, five 
partitioning-tracer stock solutions were prepared volumetrically with Hamilton gas-tight syringes 
in 250-mL volumetric flasks.  The levels ranged from 50 mg/L to 800 mg/L.  

 The batch tests to determine NAPL-water partition coefficients for each tracer contained 
five sample groups.  The batch tests were prepared in pre-cleaned 22.5mL EPA/ VOA glass vials 
with Teflon-lined septa from EnviroTech.  Each sample set consisted of triplicate vials 
containing TCE and the aqueous tracer solution and a control group of triplicate vials containing 
aqueous tracer solution only [initial concentration].  20 mL of aqueous tracer solution was 
dispensed into each vial using a 10 mL pipette followed by 2.5 mL injection of TCE with a gas-
tight syringe. The vials were immediately capped to avoid losses to the atmosphere. 
 
Table D.1: PCE-Equilibrium Partitioning Coefficient KNW

Alcohol [s] 

, based on single, dual and multiple 
tracers batch tests. 

KNW  Statistics  [] 
4M2P and  1-Hex 4.56 Mean St. Dev 
4M2P and 24DM3P 4.22 4.517 0.328 
4M2P_24DM3P and  1-Hex 4.328     
4M2P 4.96     
1-Hex and 24DM3P 7.877 Mean St. Dev 
1-Hex and 4M2P 7.72 7.598 0.544 
1-Hex, 4M2P and 24DM3P 7.996     
1-Hex 6.8     
24DM3P and 1-Hex 28.77 Mean St. Dev 
24DM3P and 4M2P 28.164 28.594 0.804 
24DM3P,_4M2P and 1-Hex 29.64     
24DM3P 27.8     
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 The 22.5mL vials were allowed to equilibrate on a platform shaker [Innova 2000] at 150 
rpm and room temperature [22.2°C] for 24 hours, which is sufficient to obtain equilibrium 
[McCray and Dugan, 2002]. 1.5 mL aliquots of the aqueous phase were withdrawn from the 
25mL vials with minimal disturbance using a gas-tight syringe and transferred to 1.5 mL glass 
GC auto sampler vials with Teflon septa. 
 Partitioning tracer concentrations were determined using a gas chromatograph [Shimadzu 
GC 2010] with auto sampler [AOC-20i auto injector] equipped with a flame ionization detector 
[FID].  The GC/FID method consisted of a Restek Stabilwax® capillary column [30m, 0.32 mm 
ID, with film thickness of 1µm], helium as the carrier gas, zero-grade air, an injection volume of 
1 µL, and injector and FID temperatures of 250°C.  A different temperature program was used 
for each alcohol.  This provided a faster and more efficient means of collecting sample 
concentration estimates.  Table D.2 lists the 5 different temperature gradient programs used. 
   
Table D.2: Temperature gradient programs used for each alcohol tracer in GC-FID. 

Alcohol Tracer [s] Rate [°C/min] Temp [°C] Hold 
[min] 

Total Run 
[min] 

2M1B 0 50 1 7.71 
  100 120 0   
  20 220 1   
4M2B 0 50 1 6.72 
4M2B/24DM3P 100 110 0   
  15 180 0   
  100 225 0   
1-Hex 0 50 1 9.06 
1-Hex/4M2P 100 110 0   
1-Hex/24DM3P 10 180 0   
  100 225 0   
24DM3P 0 50 1 6.72 
  100 110 0   
  15 180 0   
  100 225 0   
24DM3P/1-Hex 0 50 1 9.06 
  100 110 0   
  10 180 0   
  100 225 0   
3 Tracer suite 0 50 1 9.06 
[24DM3P/1-
Hex/4M2P]  100 110 0   
  10 180 0   
  100 225 0   
 
Four external calibration standards [please find at the end of this appendix an example of 

the computation and procedure followed] were prepared for each tracer in purified water at levels 
of 1, 10, 100, and 1000 mg/L. The calibration plots were linear [R2 > 0.99]. Concentrations of the 
partitioning tracers in the NAPL phase were determined by calculating the difference between 
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initial and equilibrium tracer concentration in the aqueous phase along with the measured 
amounts of water and NAPL in the sample vials.  Figure D.1 shows the results from a batch test 
with 2, 4DM3P.  The slope of the line is equal to the NAPL-water partitioning coefficient, K
 The data on Table D.1 reveals that the partitioning coefficient fluctuates. These variations 
are acceptable based on the findings of the single dual and multiple batch tests, also the range 
obtained in the experiments is similar to the range of the values reported in the literature. By 
inspecting the plot and the values listed on Table D.1 it is suggested that the influence of the 
possible tracer interaction is not significant. However, these conclusions are still preliminary and 
additional studies are needed. 

NW. 

 Figure D.1 is a plot of multiple batch test results for 1-Hex. The coefficients vary slightly 
more than the ones of the lower partitioning tracer [4M2P], however the variations are 
acceptable based on the single dual and multiple batch tests and also the range of these 
experimental values is smaller than the values found in the literature. 
 
 

 
Figure D.1: Equilibrium partitioning of 1-Hex for single, dual, and multiple tracers and PCE. 
 
 Figure D.2 is a plot of multiple batch test results for 24DM3P which is the partitioning 
tracer with the highest partitioning coefficient considered here. The variations of the results 
appear to be even smaller than those for 1-Hex. This study suggests that the tracer interaction 
may not be a significant issue for the partitioning tracer and PCE tested as reported in the 
literature.  A more important issue may be the nonequilibrium partitioning effect. 
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Figure D.2: Equilibrium partitioning of 24DM3P for single, dual and multiple tracers and PCE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y =  27.788x - 136.53

R 2 =  0.9966

y = 28.164x - 103.93

R 2 =  0.9983

y = 28.778x - 135.09

R 2 =  0.999

y = 29.641x - 117.36

R 2 =  0.9993

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160 180 200

C n

C
w

24DM3P 24DM3P  in 4M2P _24DM3P
24DM3P  in 24DM3P _1-Hex 24DM3P  in 4M2P _24DM3P _1-Hex
L inear (24DM3P ) L inear (24DM3P  in 4M2P _24DM3P )
L inear (24DM3P  in 24DM3P _1-Hex) L inear (24DM3P  in 4M2P _24DM3P _1-Hex)



415 
 

Appendix E: List of publications 
 
Journal articles resulting from ER-1365 that are published, in press, submitted or are 
under preparation. 
 
Berg, S. J. and W. A. Illman [2011], Capturing heterogeneity in groundwater flow parameters: 
Comparison of approaches through controlled sandbox experiments, Water Resources Research, 
in revision. 
 
Berg S. J. and W. A. Illman [2011], Flow to a partially penetrating well in a heterogeneous 
unconfined aquifer: Insights from intermediate scale sandbox experiments, Water Resources 
Research, in revision 
 
Hao, Y., T.-C. J. Yeh, W. A. Illman, K. Ando, K.-C. Hsu [2008], Hydraulic tomography for 
detecting fracture connectivity, Ground Water, 46[2], 183-192.  
 
Kuhlman, K. L., A. C. Hinnell, P. K. Mishra, and T.-C. J. Yeh [2008], Basin-scale transmissivity 
and storativity estimation using hydraulic tomography, Ground Water, 46[5], 706-715. 
 
Illman, W. A., X. Liu, and A. Craig [2007], Steady-state hydraulic tomography in a laboratory 
aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic 
conductivity tomograms, Journal of Hydrology, 341[3-4], 222-234. 
 
Illman, W. A., X. Liu, S. Takeuchi, T. J. Yeh, K. Ando, and H. Saegusa [2009], Hydraulic 
tomography in fractured granite: Mizunami Underground Research site, Japan, Water Resour. 
Res., 45, W01406, doi:10.1029/2007WR006715. 
 
Illman, W. A., J. Zhu, A. J. Craig, and D. Yin [2010a], Comparison of aquifer characterization 
approaches through steady state groundwater model validation: A controlled laboratory sandbox 
study, Water Resour. Res., 46, W04502, doi:10.1029/2009WR007745. 
 
Illman, W. A., S. J. Berg, X. Liu, A. J. Craig and A. Massi [2010b], Hydraulic/partitioning tracer 
tomography for trichloroethene source zone characterization: Small-scale sandbox experiments, 
Environ. Sci. Technol., 44[22], pp. 8609-8614, doi: 10.1021/es101654j. 
 
Illman, W. A., S. J. Berg, and T.-C. J. Yeh [2011], Comparison of heterogeneity characterization 
methods for improved predictions of solute transport: Laboratory sandbox experiments, Ground 
Water, in revision  
 
Liu, X., W. A. Illman, A. J. Craig, J. Zhu, and T.-C. J. Yeh [2007], Laboratory sandbox 
validation of transient hydraulic tomography, Water Resour. Res., 43, W05404, 
doi:10.1029/2006WR005144. 
 
Mao, D., L. Wan, T.-C. J. Yeh, C.-H. Lee, K.-C. Hsu, and J.-C. Wen [2011], A revisit of 
drawdown behavior during pumping in unconfined aquifers, Water Resour. Res., 47, W05502, 
doi:10.1029/2010WR009326. 



416 
 

 
Straface, S., T.-C. J. Yeh, J. Zhu, S. Troisi, and C. H. Lee [2007], Sequential aquifer tests at a 
well field, Montalto Uffugo Scalo, Italy, Water Resour. Res., 43, W07432, 
doi:10.1029/2006WR005287. 
 
Wu, C.-M., T.-C. J. Yeh, J. Zhu, T. H. Lee, N.-S. Hsu, C.-H. Chen, and A. F. Sancho [2005], 
Traditional analysis of aquifer tests: Comparing apples to oranges?, Water Resour. Res., 41, 
W09402, doi:10.1029/2004WR003717. 
 
Xiang, J., T.-C. J. Yeh, C.-H. Lee, K.-C. Hsu, and J.-C. Wen [2009], A simultaneous successive 
linear estimator and a guide for hydraulic tomography analysis, Water Resour. Res., 45, 
W02432, doi:10.1029/2008WR007180. 
   
Yeh, T.-C. J., and J. Zhu [2007], Hydraulic/partitioning tracer tomography for characterization of 
dense nonaqueous phase liquid source zones, Water Resour. Res., 43, W06435, 
doi:10.1029/2006WR004877. 
 
Yeh T.-C. J., C.-H. Lee [2007], Time to change the way we collect and analyze data for aquifer 
characterization. Ground Water 45[2]: 116-118. 
 
Yeh, T.-C. J., C. H. Lee, K-C Hsu, and Y-C Tan [2007], Fusion of Active and Passive 
Hydrologic and Geophysical Tomographic Surveys: The Future of Subsurface Characterization, 
in Data Integration in Subsurface Hydrology Edited by D. W. Hyndman, F. D. Day-Lewis, and 
K. Singha, AGU geophysical monograph 171. 
 
Yeh, T.-C. J., C. H. Lee, K. C. Hsu, W. A. Illman, W. Barrash, X. Cai, J. Daniels, E. Sudicky, L. 
Wan, G. Li, and C. L. Winter [2008], A view towards the future of subsurface characterization: 
CAT scanning groundwater basins, Water Resour. Res., 44, W03301, doi: 
10.1029/2007WR006375. 
  
Zhu, J., and T.-C. J. Yeh [2005], Characterization of aquifer heterogeneity using transient 
hydraulic tomography, Water Resour. Res., 41, W07028, doi:10.1029/2004WR003790. 
 
Zhu, J., and T.-C. J. Yeh [2006], Analysis of hydraulic tomography using temporal moments of 
drawdown recovery data, Water Resour. Res., 42, W02403, doi:10.1029/2005WR004309. 
 
Zhu, J., X. Cai, and T.-C. J. Yeh [2009], Analysis of tracer tomography using temporal moments 
of tracer breakthrough curves, Adv. Water Resour., 32, 391-400. 
 
Technical reports [in print, accepted for publication, or submitted for publication] 
 

• None 
 
Conference/Symposium Proceedings Papers [other than Abstracts] that are scientifically 
recognizable and referenced 
 



417 
 

Illman, W. A., Hydraulic tomography for accurate characterization of subsurface hydraulic 
heterogeneity, Water in Mining conference proceedings, 2nd International Congress on Water 
Management in the Mining Industry, June 9 - 11, 2010, Santiago, Chile. 
 
Illman, W. A., Imaging of subsurface heterogeneity with hydraulic tomography: Laboratory 
sandbox investigations, ModelCARE 2007 Conference Proceedings, Copenhagen, Denmark, 
2007. 
 
Published Technical Abstracts [e.g., SERDP’s Annual Symposium] 
 
Illman, W. A.*, S. J. Berg, T.-C. Jim Yeh, and D. Mao, DNAPL source zone characterization by 
the fusion of hydraulic and tracer tomography tests, SERDP & ESTCP -Partners in 
Environmental Technology Technical Symposium & Workshop, November 29 – December 2, 
2010, Washington DC [poster presentation].  
 
Illman, W. A.* and S. J. Berg [2010], Comparison of aquifer characterization approaches 
through transient groundwater model validation: A controlled laboratory sandbox study, 
American Geophysical Union Western Pacific geophysical Meeting, Taipei, Taiwan, June 22 - 
26, 2010 [invited oral presentation].  
 
Illman, W.*, [2009], Hydraulic tomography for accurate characterization of subsurface hydraulic 
heterogeneity, Water in Mining II International Congress on Water Management in the Mining 
Industry, June 9 -11, 2010, Santiago, Chile [oral presentation]. 
 
Illman, W. A.*, S. J. Berg, T.-C. Jim Yeh, D. Mao, A. Craig, and J. Zhu, DNAPL source zone 
characterization by the fusion of hydraulic and tracer tomography tests, SERDP & ESTCP -
Partners in Environmental Technology Technical Symposium & Workshop, December 1 - 3, 
2009, Washington DC [poster presentation]. 
  
Illman, W. A.*, K. Lorenzetti, S. J. Berg, M. Alexander, T.-C. Jim Yeh, J. Zhu, and A. Craig, 
DNAPL source zone characterization by the fusion of hydraulic and tracer tomography tests, 
SERDP & ESTCP -Partners in Environmental Technology Technical Symposium & Workshop, 
December 2 - 4, 2008, Washington DC [poster presentation]. 
  
Illman, W. A.*, J. Zhu, A. Craig, and D. Yin, Can a groundwater flow model be validated? 
Encouraging, positive evidence from laboratory hydraulic tomography experiments, Eos Trans. 
AGU, 89[53], Fall Meet. Suppl., Abstract H33H-04.  
 
Illman, W. A.*, DNAPL source zone characterization by the fusion of hydraulic and tracer 
tomography tests, American Society of Civil Engineers, World Environmental & Water 
Resources Congress, May 13-16, 2008, Honolulu, Hawaii [invited oral presentation]. 



418 
 

 
Illman, W. A.*, X. Liu, T.-C. J. Yeh, K. Ando, S. Takeuchi and H. Saegusa, Hydraulic 
Tomography in Fractured Granite: The Mizunami Underground Research Laboratory Site, Japan, 
American Geophysical Union 2007 Fall meeting [invited oral presentation]. 
 
Illman, W. A.*, T.-C. Jim Yeh, A. Craig, A. Massi, X. Liu, D. Yin, and J. Zhu, Modeling and 
experimental studies for DNAPL source zone characterization by the fusion of hydraulic and 
tracer tomography tests, Groundwater Resources Association of California, DNAPL-2 
Symposium: Source Zone Characterization & Remediation, November 14-15, 2007 [oral 
presentation]. 
 
Illman, W. A.*, Evaluation of transient hydraulic tomography and common hydraulic 
characterization approaches through laboratory sandbox experiments, National Kaohsiung 
University, Taiwan, 11/22/2007 [invited oral presentation]. 
 
Illman, W. A.*, Imaging of subsurface heterogeneity with hydraulic tomography: Laboratory 
sandbox investigations, ModelCARE 2007, Copenhagen, Denmark, 2007 [oral presentation]. 
 
Illman, W. A.*, A. Craig, X. Liu, A. Massi, T.-C. J. Yeh, D. Yin, and J. Zhu, A new paradigm in 
DNAPL source zone characterization: 3D imaging of contaminant distributions through 
hydraulic and tracer tomography, Spring AGU meeting, Acapulco, Mexico, 2007 [invited oral 
presentation].  
 
X. Liu*, W. A. Illman, A. J. Craig, and A. Massi, Hydraulic and tracer tomography for the 
characterization of DNAPL source zones: A laboratory sandbox investigation, Spring AGU 
meeting, Acapulco, Mexico, 2007 [oral presentation]. 
 
Yin*, D., W. A. Illman, X. Liu, and A. J. Craig, Hydraulic tomography using temporal moments 
of drawdown-recovery data: Laboratory sandbox study, Spring AGU meeting, Acapulco, 
Mexico, 2007 [oral presentation]. 
 
Illman, W. A.*, X. Liu, and A. Craig, Steady-state hydraulic tomography: the role of signal-to-
noise ratio and conditioning on hydraulic conductivity tomograms, EGU spring meeting, Vienna, 
Austria, Geophysical Research Abstracts, Vol. 9, 11187, 2007 [oral presentation]. 
 
Illman, W. A.*, X. Liu, D. Yin, A. Craig, Multi-method and multiscale validation of hydraulic 
tomography in a laboratory aquifer with deterministic heterogeneity, Society for Industrial and 
Applied Mathematics [SIAM] Conference on Mathematical & Computational Issues in 
Geoscience, March 19-22, 2007, Santa Fe, NM [invited oral presentation]. 
 



419 
 

Illman, W. A.*, A.J. Craig, A. Massi, X. Liu, T.-C. J. Yeh, J. Zhu, DNAPL source zone 
characterization by the fusion of hydraulic and tracer tomography : Experimental and modeling 
studies, SERDP & ESTCP -Partners in Environmental Technology Technical Symposium & 
Workshop, November 28 - 30, 2006, Washington DC [poster presentation]. 
 
Yin, D.*, W. A. Illman, X. Liu, and A. J. Craig, Laboratory sandbox validation of hydraulic 
tomography using temporal moments of drawdown recovery data, AGU Western Pacific 
Geophysical Meeting, Beijing, China, 2006 [oral presentation]. 
 
Liu, X.*, W. A. Illman, T.-C. Jim Yeh, K. Ando, and S. Takeuchi, Two- and three-dimensional 
modeling studies of cross-hole hydraulic tests in fractured granite at Mizunami, Japan, AGU 
Western Pacific Geophysical Meeting, Beijing, China, 2006 [poster presentation]. 
  
Liu, X.*, W. A. Illman, and A. J. Craig, Transient hydraulic tomography in a sandbox with 
deterministic heterogeneity: Multi-method and multi-scale validation of hydraulic conductivity 
and specific storage tomograms, AGU Western Pacific Geophysical Meeting, Beijing, China, 
2006 [oral presentation]. 
 
Illman, W. A.* and T.-C. Jim Yeh, DNAPL source zone characterization by the fusion of 
hydraulic and tracer tomography tests, AGU Western Pacific Geophysical Meeting, Beijing, 
China, 2006 [invited oral presentation]. 
 
Tartakovsky D. M. and W. A. Illman*, Lessons from the asymptotic analysis of three-
dimensional pressure interference tests in fractured granite, AGU Western Pacific Geophysical 
Meeting, Beijing, China, 2006 [invited oral presentation]. 
  
Illman, W. A.* and T.-C. Jim Yeh, Fusion of tomography tests to characterize DNAPL source 
zones: conceptual framework and preliminary results from theoretical, computational, and 
experimental studies ModelCARE2005, 5th

 

 International Conference on Calibration and 
Reliability in Groundwater Modeling: From Uncertainty to Decision Making, The Hague 
[Scheveningen], The Netherlands, 6-9 June 2005 [oral presentation]. 

Illman, W. A.* and D. M. Tartakovsky, Asymptotic analysis of three-dimensional pressure 
interference tests, European Geophysical Society Annual Meeting, Vienna, Austria, 2005, in 
Geophysical Research Abstracts, Vol. 7, 02922, 2005 [oral presentation]. 
 
Liu, X.*, W. A. Illman, and A. J. Craig, Transient hydraulic tomography in a sandbox with 
deterministic heterogeneity: Validation of hydraulic conductivity and specific storage 
tomograms, American Geophysical Union 2005 Fall meeting [poster presentation; winner of 
AGU Hydrology section Outstanding Student Presentation Award]. 
 



420 
 

Illman, W. A.*, X. Liu, T.-C. J. Yeh, K. Ando, S. Takeuchi and H. Saegusa, Hydraulic 
Tomography in Fractured Granite: The Mizunami Underground Research Laboratory Site, Japan, 
American Geophysical Union 2007 Fall meeting [invited oral presentation]. 
  
Illman, W. A.*, T.-C. Jim Yeh, A. Craig, A. Massi, X. Liu, D. Yin, and J. Zhu, Modeling and 
experimental studies for DNAPL source zone characterization by the fusion of hydraulic and 
tracer tomography tests, SERDP & ESTCP -Partners in Environmental Technology Technical 
Symposium & Workshop, December 4 - 6, 2007, Washington DC [poster presentation]. 
 
Illman, W. A.*, T.-C. Jim Yeh, A. Craig, A. Massi, X. Liu, D. Yin, and J. Zhu, Modeling and 
experimental studies for DNAPL source zone characterization by the fusion of hydraulic and 
tracer tomography tests, Groundwater Resources Association of California, DNAPL-2 
Symposium: Source Zone Characterization & Remediation, November 14-15, 2007 [oral 
presentation]. 
 
Illman, W. A.*, X. Liu, D. Yin, A. Craig, Multi-method and multiscale validation of hydraulic 
tomography in a laboratory aquifer with deterministic heterogeneity, Society for Industrial and 
Applied Mathematics [SIAM] Conference on Mathematical & Computational Issues in 
Geoscience, March 19-22, 2007, Santa Fe, NM [invited oral presentation]. 
 
Illman, W. A.*, A.J. Craig, A. Massi, X. Liu, T.-C. J. Yeh, J. Zhu, DNAPL source zone 
characterization by the fusion of hydraulic and tracer tomography : Experimental and modeling 
studies, SERDP & ESTCP -Partners in Environmental Technology Technical Symposium & 
Workshop, November 28 - 30, 2006, Washington DC [poster presentation]. 
 
Yeh, T.-C. J.*, W. A. Illman, A. Kruger, E. Sudicky, and J. Daniels,  New technology to improve 
the understanding of contaminant migration in fractured geological settings, The Geological 
Society of America, 2006 Philadelphia Annual Meeting, 22-25 October, 2006 [invited oral 
presentation]. 
 
Craig, A. J.*, W. A. Illman, and X. Liu, A Cyclic Sediment Transport Approach to Create a 
Synthetic Aquifer with Multiscale Heterogeneity, American Geophysical Union 2005 Fall 
meeting [poster presentation]. 
 
Daniels, J. J.*, W. A. Illman, T.-C. J. Yeh, M. Parashar, S. A. Hariri, A. Kruger, Fusion of 
Multiple Levels of Subsurface Information for Imaging and Hydrologic Analysis, American 
Geophysical Union 2005 Fall meeting [oral presentation]. 
 
Kruger, A.*, W. A. Illman, and S. Yang, A Real-Time, Remote-Controlled Experimental 
Electrical Resistivity Tomography, American Geophysical Union 2005 Fall meeting [oral 
presentation]. 



421 
 

 
Illman, W. A.*, X. Liu, and A. J. Craig, Steady-state hydraulic tomography in a laboratory 
aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic 
conductivity tomograms, American Geophysical Union 2005 Fall meeting [invited oral 
presentation]. 
 
Illman, W. A.*, T.-C. Jim Yeh, J. Zhu, A. Craig, Stochastic fusion of information to characterize 
DNAPL source zones: conceptual framework and preliminary results from theoretical, 
computational, and experimental studies, Eos Trans. AGU, 85[47], Fall Meet. Suppl., Abstract 
H43H-02, 2004 [oral presentation]. 
 
Craig, A.* and W. A. Illman, Comparison of hydraulic parameters measured at multiple scales in 
a synthetic heterogeneous aquifer, Eos Trans. AGU, 85[47], Fall Meet. Suppl., Abstract H21E-
1050, 2004 [poster presentation]. 
 
Illman, W. A.*, T.-C. Jim Yeh, Characterization of DNAPL source zones by fusion of hydraulic 
and tracer tomography test data: theoretical and experimental studies SERDP & ESTCP -
Partners in Environmental Technology Technical Symposium & Workshop November 30 - 
December 1, 2004, Washington DC [invited poster presentation]. 
 
Craig, A. and W. A. Illman*, Measurement of hydraulic parameters at multiple scales in a 
synthetic heterogeneous aquifer constructed in the laboratory, SERDP & ESTCP -Partners in 
Environmental Technology Technical Symposium & Workshop November 30 - December 1, 
2004, Washington DC [poster presentation]. 
 
Illman, W.A.* and T.-C. J. Yeh, DNAPL Source Zone Characterization by the Stochastic Fusion 
of Information: Blueprint and Preliminary Results, SERDP & ESTCP -Partners in 
Environmental Technology Technical Symposium & Workshop December 2-4, 2003, Washington 
DC [poster presentation]. 
 
Illman, W. A.* and T.-C. J. Yeh, Fusion of Tomography Tests for DNAPL Source Zone 
Characterization: Technology Development and Validation, Strategic Environmental Research & 
Development Program, Presentation to the Scientific Advisory Board, June 11, 2003 [invited 
oral presentation]. 
 
Published Text Books or Book Chapters 
 

1. Alvarez, P. and W. A. Illman, Bioremediation and Natural Attenuation: Process 
Fundamentals and Mathematical Models, John Wiley & Sons, 2006. 

 
 
 


	9. Practical issues in imaging hydraulic conductivity through hydraulic tomography
	10. Laboratory Sandbox Validation of Transient Hydraulic Tomography
	10.1 Introduction
	10.2 Methods for Characterization of the Sandbox
	10.3 Inverse Model Description
	10.4 Inverse Model Parameters
	The variances and correlation scales of the K and SRsR fields are also required inputs to the inverse model. However, estimation of variance always involves uncertainty. A previous numerical study conducted by Yeh and Liu [2000] has shown that the var...
	10.5 Results from Transient Hydraulic Tomography
	Despite of the lack of resolution near the bottom, the results collectively show that the inversion algorithm is capable of capturing the pattern of the K distribution, which is critical for an analysis of contaminant migration. Another interesting ob...
	10.6 Comparisons of K and SRsR Fields from Different Tests and Analyses
	10.6.1 Visual Comparisons of Patterns of Heterogeneity of Different Tests and       Analyses
	Figure 10.3a shows the contour map of the K values estimated from the 48 core samples.  The map as expected outlines the distribution of the blocks of low conductivity values, indicating the distribution of these core measurements.  Similarly, the con...
	Next, we plot in Figure 10.3d the spatial distribution of the estimated SRsR values from the cross-hole tests using port 28 as the pumping well.  It is interesting to observe that this spatial distribution is in some agreement with that resulting fro...
	According to the above visual comparisons, we may conclude that the measurements using core samples and slug tests can satisfactorily map the heterogeneity pattern, but not the actual values of K, in the sand box if the number of tests or samples is ...
	/
	10.6.2 Comparison of Statistical Moments
	10.6.3 Comparison of Local Values
	10.6.4. Comparison of K Tomogram obtained from Steady State Hydraulic Tomography
	/
	10.7 Validation of K and SRsR Tomograms
	Despite the lack of resolution, the results show that the HT-m algorithm is capable of capturing the pattern of the K distribution. We also visually compared the K tomogram resulting from HT-m to that obtained from THT [figure 10.2g] by Liu et al. [20...



