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Executive Summary
Objective:  The original objective of this project was to demonstrate that the measurement of 
both the vector secondary EMI field and the elements of the tensor gradient using three or more 
transmitter antenna configurations, would substantially increase the probability of detection of 
UXO, improve target characterization, and provide a first attempt to differentiate multiple 
overlapping signatures from UXO targets. 

That original objective was refined as the project progressed and as foreseen and unforeseen 
elements were learned and studied.  Two particularly important topics became important. 

1. Development of computations and modeling to determine and demonstrate whether 
measurements made with physical realizable sensors could be used to adequately 
estimate true gradients and if so, to demonstrate with numerical models whether the 
gradient method provides improvements in performance when compared to conventional 
methods. 

2. Fabricate components and conduct experiments to verify computations, to demonstrate 
that useful data can be acquired with realizable hardware, and to collect demonstrative 
data in real-world situations where mitigating factors are often more complex than can be 
computed and modeled. 

Performance:  The project was originally planned in three phases:  Phase 1 was to formulate 
and perform simple model calculations and to perform simple experiments to test whether 
physically realizable sensors were capable of estimating the tensor gradient and whether those 
estimates were useful.  Phase 2 was to perform more complex computations and modeling, to 
fabricate multiple sensors and a complete data acquisition system, and to perform more extensive 
tests.   Phase  3  was  to  perform  a  full-scale  demonstration  at  one  or  more  sites  selected  by  the  
SERDP program office.  Each phase was separated by a Go/No-go decision for continuing on to 
the next phase.  Work was terminated at the end of Phase 2.   

Results:   
Early computations showed that finite difference sampling of whole fields, using pairs of whole-
field sensors, was sufficient to estimate gradients as long as the distance to the target was more 
than 2xB, where B is the baseline distance between the pairs of sensors in the gradiometer.  
Computations showed that other errors, principally signal-to-noise (SNR) considerations, 
rotation and positioning errors, and sensitivity errors, could be reasonably met with conventional 
fabrication and electronics. 

Later computations showed that, using the gradient tensor method, multiple targets could not be 
separated unless the targets are separated by a distance of 4 times their burial depth. 

The gradient method was shown to be useful for “dipole mapping,” a method used to track 
magnetic targets approximated by a magnetic dipole.  The method was shown to have significant 
applicability for surveys where it is necessary to track a target as it passes under a sensing array.  
It is not useful for static or Cued ID surveys where typically a 20-60 second observation is made 
over a target, and where non-linear computations (inversions) are made to establish the location 
and characteristics of the target. 
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Physical experiments showed that a gradient sensor array provides significant improvement in 
SNR.  Noise is reduced more than signal by the action of subtracting signals from closely spaced 
sensors, so SNR improves.  The experiments amplified the expectation that the characterization 
of  SNR  in  this  case  is  complex.   It  is  function  of  external  factors  (environmental  EM  noise),  
internal factors (balance and thermal noise generated by electronic amplifiers), and finally 
bandwidth, where bandwidth is itself a function of data acquisition parameters.  Importantly, the 
experiments showed that SNR is usually improved for wideband observations.  But the 
experiments also showed that SNR is usually not improved for narrower band observations such 
as those made in cued ID observations (long-time, static, in-place measurements, with wide-
window gating functions).   

The computations and observations showed that the tensor gradiometer methods could be useful 
for any survey where data acquisition and computation speeds are important, such as dynamic 
surveys made for target detection and mapping.  At the same time, the computations and 
observations showed that the tensor gradiometer methods are neither superior nor inferior to 
conventional methods for surveys where data acquisition and computation speed is less 
important, such as typical static Cued ID surveys made for target characterization and 
classification.   
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1 Project Objectives
Objective:  The original objective of this project was to demonstrate that the measurement of 
both the vector secondary EMI field and the elements of the tensor gradient using three or more 
transmitter antenna configurations, would substantially increase the probability of detection of 
UXO, improve target characterization, and provide a first attempt to differentiate multiple 
overlapping signatures from UXO targets. 

That original objective was refined as the project progressed and as foreseen and unforeseen 
elements were learned and studied.  Two sub-parts to the final objective became important parts 
to this project.   
Firstly, gradients must be measured or estimated by physically realizable sensors.  True gradients 
of the magnetic field cannot be measured using the sensors proposed for this project.  Gradients 
must be estimated by observing the field at two or more points where those points are separated 
by physically reasonable distances (the “baseline”) and where the measurement of the field itself 
is not exactly a point measurement but is an average of the field value over the area enclosed by 
the sensor.  To sense the magnetic field we used our previously developed and extensively tested 
small loops that are 10cm square area.  With these data we computed simple differences between 
pairs  of  sensors.   Since  estimation  of  true  gradients  is  sensitive  to  many  factors,  one  sub-
objective became the optimization and selection of a physical configuration for the hardware, 
together with the development and implementation of numerical techniques to process the data.  
A related element was to model performance in order to test whether the proposed methods and 
physical implementations were viable. 
Secondly, we knew from the outset that subtraction of two signals from a pair of sensors would 
reduce the amplitude of the signal with the consequence that it might reduce signal to noise ratio 
(SNR) and decrease maximum depth of investigation.  However, we also knew that subtraction 
of two signals also reduces noise to the extent that the noise is coherent in both, with the 
possibility that resulting SNR might actually be improved.  Therefore a second objective was to 
experimentally demonstrate that state-of-the-art sensors are sufficiently sensitive for gradient 
measurements, and that the resulting data are useful for computations.   
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2 Background
The basis for this project was the belief, on the part of its principal investigators, that there is a 
better way to make electromagnetic induction measurements for UXO than the conventional 
method being used industry wide.  The proposed method envisioned sensor pairs measuring a 
spatial difference in dB/dt instead of individual sensors that sense dB/dt fields.  Such 
measurements approximate a gradient (or difference) measurement rather than a whole field 
measurement.  The belief that this method is better is based in part on parallelism with the 
passive magnetics method wherein gradient measurements are commonly used for certain 
surveys, and in part on the belief that the signal-to-noise ratio (SNR) can be improved, rather 
than decreased, by the differencing of sensor pairs. 

This project was funded on June 27, 2006.  Work was slow to begin because the principal 
investigators had other commitments and because funding for the second year of the project was 
delayed upon request by the program office.   
The project was designed with an initial Proof-of-Concept phase with a Go/No-Go decision upon 
its completion.  The first phase constituted the first year’s funding and the first year’s work.  This 
phase consisted of both a computational phase to estimate performance and physical 
requirements for a gradient sensor, and an experimental phase to test and demonstrate that 
physical sensors performed as needed.  This phase was completed and an interim report was 
submitted  in  January  2007.   The  result  was  a  decision  to  continue  the  project  into  the  second  
phase. 

The second phase was to develop and fabricate hardware and software for a full scale system 
capable of being used for a local field test.  This local field test was to be a rather complete local 
test followed by a second Go/No-Go decision for the project.  The hardware was fabricated, 
computational methods were developed, and initial local tests were made.  But the results of 
more extensive modeling showed that the method did not provide the expected improvements in 
differentiation between multiple targets and overlapping signatures.  And results of physical 
experiments showed that the method did not improve SNR and data quality for the measurements 
typically used for Cued ID static measurements for target characterization and classification.  
Contrarily, the experiments showed that the method did improve data quality for dynamic 
surveys typically used for target detection and mapping.  Given that the most important attribute 
of a new system would be an improvement in target characterization, and that this new system 
did not offer a high pay-out in that area, a decision was made during a project review in February 
2009 to halt further work.  Thus we did not complete the complete suite of local field tests, nor 
did we plan and conduct a full scale demonstration as originally proposed. 
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3 Materials and Methods
Hardware for this project was both fabricated and borrowed from previous projects.  In 
particular, a complete data acquisition system consisting of processor and transmitter was 
available,  and  a  sufficient  number  of  3D  cube sensors were also available from the Navy’s 
Advanced Ordnance Locator (AOL) system developed previously by G&G Sciences (G&G 
Sciences Inc., 2008).  This left only the following components to be fabricated with funding on 
this project: 

1. An antenna array consisting of transmitter loops and provisions for precise placement of 
existing receiver loops:  We fabricated transmitter loops that were similar in most 
respects to those used in the AOL system.   

2. Preamplifiers and aliasing filters: Designs were optimized for flexibility in placement, for 
sensor-pair subtraction, for exceptional gain stability, and for best-possible noise 
performance. 

3.1 Antenna Assembly
Pictures of the antenna assembly during and after fabrication are shown in Figure 1.  The 

horizontal axis loops (“Y” and “X” transmitting loops) were similar but improved versions of the 
horizontal axis transmitter loops fabricated for the AOL system.  The Z (vertical axis) loop was 
fabricated  specifically  with  an  open  center.   This  was  done  to  allow  placement  of  sensors  

Figure 1:  Pictures of the antenna assembly during and after fabrication. 
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anywhere we chose within that area.  A plywood base was installed and marked for placement of 
sensors.   We  used  plywood  because  wood  has  a  small  thermal  coefficient  of  expansion,  thus  
providing good geometric stability.   

3.2 Preamps and Anti-Aliasing Filters
Given that one part of demonstrating performance of the gradient method was to demonstrate 
that it can reject noise when compared to non-gradient systems, we decided to change the 
organization of system components for this project.  In the AOL system, we placed antialiasing 
filters on the same circuit board as the preamplifiers and placed that board near the cube sensor, 
as would be normal for a preamplifier.  A block diagram of the AOL configuration is shown in 
the top part of Figure 2.  A potential problem with the AOL configuration is that signal cables 
within the long umbilical cable between sensors and data acquisition system can pick up noise 
that is not filtered before reaching the DAQ.  For this project, we implemented the method 
shown in the bottom part of Figure 2.  In this method, any out-of-band noise introduced into the 
umbilical will be filtered before the signal is digitized. 

A picture of a cube and receiver and two preamplifiers is shown in Figure 3 and a picture of the 
antialiasing filters is shown in Figure 4.  These circuits were neither fabricated for long-term 
field use nor for moisture resistance or other environmental difficulties.  They were designed to 
be just sufficient to complete local field tests. 

3.3 Integration with AOL Data Acquisition System
A picture of the AOL data acquisition system is shown in Figure 5.  The cart was used in 
essentially the same configuration as it had been used in the AOL system except for the 
placement of anti-aliasing filters as mentioned above. 

Figure  2:  Block diagram showing configuration changes in new 
system compared to configuration of AOL system. 
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Figure  3:   Cube and 
preamplifier for local tests 
phase 

Figure 4:  Anti-aliasing filters 
for local tests phase 

Figure 5:  AOL Data acquisition system. 
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4 Studies, Modeling, and Computations

4.1 Finite Difference Sampling to Estimate Gradients

4.1.1 Finite Difference Sampling of Gradients
In this section we approximate the independent components of the gradient tensor by measuring 
field differences over a finite distance (h) that we term the gradient baseline.   From  basic  
calculus, we know that in the limit as the baseline grows infinitesimally small the difference in 
the values a continuous function of an independent variable over the baseline is the derivative of 
the function  

 

lim 2 2
0

x x
f x f x

df x

xdx x
  (1) 

In the context of our study here, we wish to answer 
questions about the baseline requirement for 
gradiometer given the distance (R) from its center 
point to the target position. 
A tensor gradiometer can be constructed by placing 
tri-axial sensors at each of the four cardinal directions 
and displaced from the central location by small but 
finite  distance.   In  Figure  6,  we  illustrate  such  a  
gradiometer.  The distance of each sensor from the 
center location is h/2, half the baseline distance of h.  
In Figure 6, for reasons that will become apparent later 
in this paper, we have provided for a fifth tri-axial 
sensor  that  is  used  to  measure  the  vector  field.   With  
the  definition  of  the  baseline  (h) together with the 
radius vector (R)  directed  from  the  target  position  to  
the center of the gradiometer array, we can write a 
relation for the finite gradient tensor, one that in the 
limit of small baseline distances converges to the 
theoretical gradient tensor as written in equation A-
5(see Appendix). 

 
Figure  6:   A  simple  realization  of  a  
finite tensor gradiometer.  The cubes 
represent tri-axial field receivers.  The 
center receiver is used to measure the 
vector field.  The other receivers are 
used in pairs to measure field 
differences over a baseline distance of 
h.   
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In equation 2, we have defined the finite gradient Green’s function ( ,h ij kG ), which is the finite 

analog to equation (A-4).     We state without proof that,  in the limit  of infinitesimally small  h, 

,

lim
, 0 h ij kij k hG G .    The  extent  to  which  this  finite  gradient  tensor  represents  a  good  

approximation of its theoretical counterpart (equation A-4) determines how well the finite 
gradiometer array estimates the true gradient.  In the rest of this section, we shall try to quantify 
the errors in the gradient from a finite difference baseline.  Secondly, we will estimate the 
gradient errors that arise as a result of the imperfect realization of a device in which the theory 
presented thus far presumes perfect alignment. 

4.1.1.1 Finite Gradient Models
We have used equation 2 (together with equations A-1a and A-3) to estimate the gradient tensor 

Gradiometer Summary Plot: Finite @0.5mD Gradiometer: H60mm ND 1mL
HCompanded Scale wê 20dB tick marks relative to 100 V sL

Bzx Bzy Bzz Bz B

Byx Byy Bzy By I2

Bxx Byx Bzx Bx I1

Figure 7:  Summary plot showing finite TEM gradient profiles over a 60mm test target 
buried 1m beneath the plane of  the transmitter  coil  and receiver  coils.   The profile  ranges 
from –2.6m to + 2.6m.  The vertical tick marks represent a companded scale that 
approximates a bipolar logarithmic scale for signal levels greater than the indicated 
threshold [100 ( s)].  The green lines represent the 40dB (for each polarity) signal level.  
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from a standard 60mm target.1  The sensor array for our computations is shown in Figure 6.  In 
the context of the gradiometer sensor array shown in Figure 6, we evaluate equation 2 only for 
index values k=1 and k=2.  This is because all sensors lie in a plane (the x-y plane for example) 
and, therefore we have no way of measuring differences along the coordinate axis perpendicular 
to the plane of the sensors (i.e., k=3 or the z-axis).  Excluding the center receiver, which we have 
included to measure the vector field at the center of the array, we can measure only 6 field 
differences  (i.e.,  3  components  along  2  orthogonal  directions).   The  other  elements  of  the  
gradient tensor must be inferred using the fact that the gradient tensor must be symmetrical and 
its trace2 must be zero.   Figure 7 and Figure 8 are the summary plots corresponding to Figures 
A-1 and A-2 that were generated using the theoretical gradient relations.  We have chosen a 
baseline length of h=50cm.   This length represents half the depth to the target dipole, a figure 
generally accepted to be a practical value for the Nyquist sample interval for the magnetic field 
over a buried magnetic dipole (Reid A. , 1980).  Moreover, it approaches the practical limit on 
the spacing we can accommodate with the constraint of a 10cm cube receiver shape.3   

It is a problem to summarize errors for curve or map sets such as those shown in Figures A-1, A-
2 (See Appendix), Figure 7 and Figure 8.  Some gradient and field components are identically 0, 
while others are bipolar and have zero-crossings.  However, notice that the three invariants (I1, 
I2, and |B|) are never 0.  So we have chosen to normalize the error difference between the values 
calculated using the finite gradiometer array and those from the theoretical gradiometer array by 
the peak value of the invariant I1.  Similarly, we have normalized the differences in the field 
values by the peak of field magnitude (|B|).  These errors are expressed in units of percent.   

                                                
1 Refer to section A.1.2 for a discussion of the “standard 60mm target. 
2 The trace of a square matrix is defined as the sum of the elements along its main diagonal.  Under the assumptions 
we have made regarding the nature of the induced secondary field, it is a potential field. Therefore, the divergence of 
the secondary field must vanish (div Bs =0).  
3 Physically, we can configure an array with h=30cm.  However, with the edge of receiver coils within 5cm of the 
center coil there is some question about whether the small fields produced by the currents in the receivers may 
induce measurable effects in receiver loops in close proximity.  
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Using the normalization scheme outlined in the previous paragraph, we have computed errors for 
the curves and maps corresponding to theoretical and finite gradient modeling for the test case.  
These errors are summarized for the profile and map cases in Figure 9 and Figure 10 
respectively.   

Figure 8:  Summary plot showing theoretical TEM gradient maps over a 60mm test target 
buried 1m beneath the plane of  the transmitter  coil.   The maps cover  a  5.2m x 5.2m area 
centered over the target.  The color scale represents the companded values and 
approximates a bipolar logarithmic scale for signal levels greater than the indicated 
threshold [100 s].  
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The careful reader might wonder why there is a difference between the fields calculated during 
the theoretical gradient calculations and those we calculate during the finite gradient 
calculations.  If the fields were calculated using the same algorithm, there should be no 
difference.  However, in the interest of keeping the finite gradient modeling as realistic as 
possible, the modeling software accounts for variations in the secondary field over the finite area 
(i.e., 10cm x 10cm) of each of the receiver coils.  This “nuance” is not included in the algorithm 
used to calculate the theoretical gradients.  Instead, the voltages are calculated using the 
appropriate field component calculated at the center of each of the receiver coils and then scaled 
by the appropriate effective area for the coil.  It is clear from these results that even small 10cm x 
10cm receivers remain “finite” when viewed on the scale of most UXO targets of interest.4  
These errors are small (<1%) and the modeling study we have performed in the sections that 
follow (particularly Figure I-14) suggest that their effects on interpretation are second order 
compared with the effect of the finite baseline. 

                                                
4 The author of this section (Snyder) debated about whether to either exclude the curves/maps for the field 
components from the summary plots, force the differences to be 0, or show the results.  In the end, he 
decided to report these results since they emphasize the fact that even receivers as small as 10cm x 10cm 
remain observably finite in the context of UXO detection and classification. 

Figure 9:  Summary error plot showing gradient errors and field errors for the 60mm 
test model at 1m depth.  The errors, expressed as a percentage of peak value of either I1 
or |B| as appropriate have been companded using the bipolar companding formula in 
equation A-10.  The companding generates a logarithmic scale for the ordinate 
expressed in units of dB relative to the reference value (0.1% for this case).  
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Because it is difficult to quantify the errors in the color maps, Figure 9, which quantifies errors 
along a centerline profile, is the more instructive figure.  As we indicated in the Appendix while 
discussing Figure A-1, the green horizontal lines are at the 40dB level and represent 10% error 
(100*0.1%).  So the figure shows that we can expect maximum gradient errors on the order of 
10% relative  to  the  peak  anomalous  gradient  value.   Errors  in  the  field  values  are  irrelevant  to  
this discussion since they relate only to the approximation of the response of a finite loop 
receiver with point values of the secondary field.  However, they are less than 1% and therefore 
are not a significant contributor to the gradient errors summarized in the Figures.  We conclude 
from these results that high fidelity gradient measurements (e.g., errors of 1%) will require 

baselines of somewhat less than twice the minimum distance to the target. 
As a final modeling exercise, we studied the gradient error as we varied target depth directly 
beneath the sensor array.   Since the profiles of gradient components with depth for those 
components that are non-zero exhibit a monotonic attenuation of response with target depth, we 
have dispensed with showing the actual response and show here only the errors as a percentage 
of the theoretical value companded onto a logarithmic scale.  In Figure 11, we have again 
summarized the plots in the same manner as we have in the previous Figures.  However, in this 
case we have set the depth on the vertical axis while the bipolar companded error is plotted 
horizontally.  We have located vertical green lines on each plot to indicate the 40dB (10%) error 

Figure 10:  The map view of gradient and field errors corresponding to the profiles 
summarized in Figure I-4 above.    
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level for each polarity.  The horizontal red line indicates the depth of 1m, which is twice the 
length of the gradiometer baseline.   Figure I-6 confirms in a slightly different way that  we can 
expect gradient errors of approximately 10% for dipole targets at a range of twice the 
gradiometer baseline. 

 

4.1.1.2 Balance and Alignment Errors
The foregoing discussion deals only with the fact that we cannot accurately measure a magnetic 
gradient arising from a dipole source with a finite baseline gradiometer unless the source is 
located at a range of perhaps as large as four times the baseline.  Apart from the length of the 
baseline, however, the accurate measurement of field differences also depends on precise balance 
and alignment of the individual sensor cubes.  The realization of a tensor gradiometer system 
from four individual tri-axial sensors is subject to numerous sources of systematic error, the most 
important of which are (Bracken & Brown, 2006):  

1. Orthogonality Error:  The axes of the individual sensors are not precisely mutually 
orthogonal. 

Figure 11:  Error summary for finite gradient measurements as a function of target depth.  The 
vertical scale is depth, while the horizontal scale for each plot approximates a logarithmic 
(dB) scale for a bipolar signal.  The vertical green lines represent 10% error.  The horizontal 
redline is at the depth of 1m.    
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2. Sensor Position and Alignment:  The relative position and alignment of the four-sensor 
array is subject to errors in their absolute position and alignment. 

3. Sensor Sensitivity: Although designed to have identical sensitivities, each of the 12 
sensor coils comprising the four tri-axial cube receivers has a slightly different 
sensitivity.   Each  coil  will  in  fact  have  a  different  sensitivity  due  to  mechanical  and  
electronic tolerances.  Moreover, these sensitivities will change with temperature as a 
result of thermal expansion and the temperature coefficients of electronic components 
comprising the coil preamplifiers. 

4.1.2 Noise, Gradient Errors, and Interpretation
To this point, we have simply examined the difference between an ideal point gradiometer and 
one implemented by measuring finite spatial differences with small but observably finite loop 
sensors.  Using a target buried at a depth of twice the finite gradiometer baseline, we have 
determined that approximating the gradient with a divided difference of the field values along a 
directed baseline can result in errors a large as 10% of the corresponding theoretical gradient 
value.  In this section, we ask two slightly different questions.  First, we want an estimate of the 
gradient noise levels that we can tolerate in our gradient measurements while retaining the ability 
to make useful estimates, in particular, of target position.  Secondly, we want to determine the 
point at which we must abandon potentially useful (and simpler) interpretation techniques that 
involve the true gradient and return to more complicated interpretation methods that consider the 
finite geometry of the sensor array.   

4.1.2.1 Gradient Noise
The perfectly balanced and aligned 
finite gradiometer will be insensitive to 
EMI noise (i.e., infinite common mode 
rejection).  However, to the extent that 
our gradiometer is afflicted with the 
three major imperfections identified in 
section 4.1.1.2, some fraction of the 
ambient EMI noise will leak into the 
difference measurements and appear as 
(systematic) gradient noise.  However, 
we expect that the noise amplitude will 
be significantly attenuated.  For the 
purpose of this study, we will call this 
ability to attenuate the ambient EMI 
the common mode rejection ratio 
(CMRR).   We  know  from  the  
experience of others that, with care, it 
is practical to expect as much as 30dB 
(Becker, 2006). 
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Figure 12:  Predicted EMI noise level as a function of 
transient gate width.  The red curve for white noise 
falls off with a slope of –1/2.  The blue curve is for a 
colored noise model based on average curves 
published by Meloy (Meloy).  
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To study how this gradient noise can degrade interpretations, we have generated a few noisy data 
sets using the standard target and profile discussed in the Appendix.  The noise-free data are 
summarized  in  Figure  A-1.   We  first  estimate  the  level  of  ambient  EMI  noise  that  might  be  
present in our 500 s detection gate.  Based on an average spectra published by Meloy (Meloy), 
we have developed a colored noise model that we use to predict the order of magnitude of the 
ambient  EMI  noise  as  a  function  of  gate  width.   Figure  12  shows  how  the  noise  level  is  
attenuated by a simple gated average.  The red curve is for white noise and falls off at the 
predicted rate of 1/ tw where tw is the gate width.  This model shows that we can expect the EMI 
ambient noise levels to be on the order of a few microvolts or, equivalently, the integrated gate 
noise  to  be  on  the  order  of  1000  V•  s.   Noise  levels  can  be  further  reduced  by  stacking  if  
measurements can be taken under static conditions.  In any case, this noise level is consistent 
with  the  AOL  data  we  have  acquired  on  demonstrations  at  Blossom  Point  and  Indian  Head  
(Snyder & George, Deployment of a Dual-Mode (EM and Magnetic) System for Detection and 
Classification of UXO at Blossom Point, MD, 2004).   

We generated noisy gradient data by adding Gaussian random noise with a standard deviation of 
1000 V• s to the theoretical gradient data summarized in Figure A-1.  To arrive at a noise level 

Gradiometer Summary Plot: Theoretical Gradient Noise H60mm ND 1mL
HCompanded Scale wê 20dB tick marks relative to 1000H V sL

Bzx Bzy Bzz Bz B

Byx Byy Bzy By I2

Bxx Byx Bzx Bx I1

Figure  13:   Gradient  summary  plot  showing  a  centerline  profile  over  a  60mm  target  
buried at depth 1m.  Gaussian random noise having a standard deviation of 1000 s 
has  been  added  to  the  field  components.   The  gradient  noise  is  set  to  the  field  noise  
attenuated by the CMRR=10. 
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for the gradient components, we assumed a CMRR for attenuating the noise before adding it to 
the gradient data.   Thus,  a noisy model with CMRR=100 signifies that  noise of 10 V• s was 
added to the gradient components.  In Figure 13, we summarize profile data for the standard 
target model assuming that gradient measurements have a CMRR=10.   

In Figure 13, there is obvious noise in the field components.  Less obvious is the corresponding 
noise in the gradient components because of the CMRR for a pair of sensors.  Note that we have 
changed the companding reference value to 1000 V- s so that now, the horizontal green lines 
(at 40dB relative to 1000 V- s) give us an estimate of the SNR for the field values.  In this 
case, the peak SNR for the field components is 20-30dB, which is at the threshold required for 
acceptable physics-based interpretation.  We have plotted the gradients using the same noise 
threshold.  However, the noise is actually 32dB lower and hence the peak gradient SNR actually 
exceeds 40dB. 

4.1.2.2 Dipole Tracking Interpretations
The ability  to  measure  the  tensor  gradient  together  with  the  corresponding  vector  field  affords  
the opportunity for a simplified interpretation.  Termed dipole tracking by Wynn, et. al. (Wynn, 
Frahm, Carroll, Clark, Wellhoner, & Wynn, 1975), the method as we apply it here is based on 
two different relations.  As noted by Wynn, we can combine equations (A-4) and (A-5) to obtain 
the following: 
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In equation 3, we have introduced the vector M’ , called the reduced moment.  The equation 
shows that the gradient tensor, which has 5 independent elements, is a non-linear function of 5 
independent variables (i.e., 3 components of the reduced moment M’, and 2 elements of the unit 
vector n that indicates the direction to the target).  We refer the reader back to Wynn, et. al. for 
the details of the analytic solution of equation 3.  Suffice it to say here that there is an analytic 
solution to the equation that yields values for the unit vector.  There is one slight complication 
with  the  solution  proposed  by  Wynn.   It  involves  the  calculation  of  the  roots  of  a  quartic  
polynomial and therefore there are, in general, 4 unique solutions.  Simple screening for 
solutions that lie in the lower half-space are sufficient to eliminate 2 of the solutions.  However, 
there remains a “ghost” solution that is paired with the real solution that sometimes cannot easily 
be eliminated.   
Having found the direction to the target together with its reduced moment, we need only to 
calculate the range value R to obtain the complete solution.  Finding R requires an additional 
piece of information.  We get that information by measuring one or more of the components of 
the secondary magnetic field.  There are several ways to solve for R from the field vector B.  We 
use the Euler relation (Thompson, EULDPH: A new technique for making computer assisted 
depth estimates from magnetic data, 1982), a well known relationship between the gradient and 
the corresponding magnetic field that is often applied in the detection and interpretation of 
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passive magnetic anomalies.  Using the nomenclature we have introduced in this report, the 
Euler relationship relating the tensor gradient to the corresponding field can be written as 

 

(4) 
 

Each of the 3 elements in equation 4 provides a relationship between the range value R and  a  
ratio of a component of the secondary magnetic field to the corresponding directional gradient of 
that field component according to the equation 

 
(4a) 

 
The term dipole tracking as we apply it  here consists of the process of solving equation 3 and 
then using Euler’s relation (4a) together with ni and Bs to locate the dipole.  In Figure 14, we 
show the results of applying this process to the noise-free gradient profile data that we 
summarized in Figure A-1.  As one might expect, the method yields the correct solution for the 
target position at each of 27 field points along the profile.  The addition blue/red vectors that 
arise from field points in the center of the profile represent the ghost solutions arising from the 
analytic solution.  These solutions were not screened out with the simplified screening inequality 
constraints that we applied.5  
The green ellipse in the 
figure represents a distorted 
circle with a radius of 10cm.  
In this particular case, there 
are 28 solutions that fall 
within a sphere of radius 
1cm.6  

We have applied the dipole 
tracking methodology to 5 
noise-corrupted data sets 
similar to that summarized 
in Figure 13.  In these data 
sets, we have used the 
CMRR as the parameter that 
allows varying the amount 
of   noise  that  is  allowed  to  
“leak” into the gradient 

                                                
5  A more sophisticated screening process that “tracks” the movement of the target relative to corresponding 
movements in the antenna platform will easily separate the “ghosts” from the actual target. 
6 At the field point directly above the target, the true solution and its “ghost” are indistinguishable.  To within 
numerical round-off errors, they in fact represent a 2nd order root of equation 12. 
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Figure 14:  Dipole tracking plot showing feasible target 
position solutions along a 27-pt profile.  The data used 
were calculated for from theoretical gradient and field 
relations with no noise added.  The blue and red vectors 
where arising from a common field point represent the 
actual and “ghost” solution provided from the analytic 
solution of equation 3.   
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components from a constant noise source (1000 V s integrated gate noise for a 500 s gate 
width).   Figure  15,  corresponding  to  a  CMRR  =  50,  is  typical  of  these  results.   The  results  of  
these calculations show that the target position is correctly estimated to lie within the 10cm 
sphere at only 10 of the interior points.  This is to be expected since the SNR is well below the 
minimum necessary for reliable 
physics-based modeling at 
horizontal distances greater than 
1m from the target center (see 
Figure 13).  
The  results  from  Figure  14  and  
Figure 15 together with similar 
calculations made for other values 
of gradient CMRR are summarized 
in Figure 16.  Here, we have 
plotted the number of correct 
position  estimates  as  a  function  of  
the error radius (i.e., the size of the 
green sphere).  There are no real 
surprises  here.   The  results  show  
that for reasonable noise values, 
we can expect good solutions for 
position only for field points lying 
within a short horizontal radius 
(<1m) of the target position.  
Naturally, these are the points 
where the SNR is the highest.  
Naturally, the quality of position 
estimates (and hence other target 
properties) will obviously improve 
by considering estimation and 
parameterization using as many of 
the interior points as possible.  
However, this analysis 
demonstrates that tracking or 
mapping a single target in real time 
from measurements at a single 
field point is practical.  

4.1.2.3 Gradient Errors
The preceding study suggests that, 
provided our gradiometer has a 
sufficiently small baseline so that 
the resulting field differences are 
“good” estimates of the gradient field, we can derive useful interpretive information by treating 
the differences as gradients and thereby benefit to a certain degree by the resulting simplification 
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Figure 15:  Dipole tracking plot showing feasible target 
position solutions along a 27-pt profile.  The Gaussian 
distributed noise with a standard deviation of 1000 

s has been added to the secondary magnetic field.  
The same noise but attenuated by the CMRR (50) is 
added to the gradient components.  
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Figure 16:  Dipole tracking solution efficacy as a 
function of allowable position error shown 
parametrically as a function of gradient errors.  The 
noise-free case (top trace) is shown for reference. 
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of the problem.  We learned, however, in section 4.1.1.1 that for the standard test object at a 
depth  of  1m we can  expect  errors  in  the  gradient  estimates  on  the  order  of  10% when using  a  
gradiometer baseline distance of 0.5m.  We can, of course, decrease the baseline moderately and 
expect a commensurate improvement in the quality of the gradient estimates.  However, we must 
keep in mind that a smaller gradient baseline while insuring better approximations of the gradient 
field from proximate targets also increases the level of gradient noise since the real gradient 
noise is proportional to the ratio of voltage difference noise to gradient baseline. 
We can study the effect of the gradient errors on interpretation, in the same way that we studied 
the effect of noise.  We calculated 5 profile data sets using the gradient baseline distance as a 
parameter.  No noise has been added to the field data and therefore, to the extent that the quality 
of the dipole mapping solutions varies from that shown in Figure 14 and Figure 16 (Noise = 0, 
CMRR = ), the difference in the quality of the position estimates must be attributed to the 
gradient errors as they become significant in the region near the target.  Figure 17 and Figure 18 
show the results of applying the dipole tracking algorithm to finite gradient data calculated for 
baselines of 0.25m and 0.5m, respectively.  With a baseline of 0.25m, ¼ the depth of the target, 
the results  in Figure 17 are very similar to those for theoretical  gradients with no noise (Figure 
14).  That is, the estimates of target position fall within an acceptable radius of the true target 
position at nearly all of the 27 field points examined. 
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Figure 17:  Application of dipole tracking algorithm to target 
location using synthetic finite gradient data.  The data represent 
calculations over a baseline of 0.25m, representing ¼ of the depth 
to the target.     
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The results in Figure 18                                                                                                                             
summarize the analysis of data for a 
finite gradiometer with a baseline of 
0.5m.  It is interesting to note that 
target position estimates are better for 
field  points  where  |y|  >  1.   The  
estimates from field points in the range 
–1<  y  <  1,  where  the  ratio  of  the  
distance to the target (R) to the length 
of  the  gradient  baseline  (l) lies in the 
range 2  R/h  2.8, predict that the 
target lies rather uniformly too deep.  
Likewise, the horizontal range to the 
target is systematically underestimated. 

We summarize the results derived from 
Figure 17 and Figure 18 together with 
similar results for 3 additional baseline 
lengths (0.30m, 0.35m, 0.40m) in 
Figure 19.  For reference, we have 
reproduced the results for the theoretical gradient (no noise) and labeled it with the parameter 
“TG”. 

4.1.2.4 Remarks

The finite baseline experiment 
clearly demonstrates that 
approximations to the gradient 
tensor from a finite baseline 
gradiometer will be most useful for 
interpretation at ranges that are 
greater than 3 times the baseline 
length (R/h  > 3).   When this  rule  is  
violated, the quality of the position 
estimates (and also estimates of 
moments) degrades significantly.  
Nevertheless, the results show that 
the algorithms we employed (i.e., 
dipole tracking) continue to produce 
useful estimates of target 
information even when R/h < 3.  
Because of its numerical efficiency, 
it is feasible to employ the dipole 
tracking algorithm  in  real  time  as  a  
means for target location and to 
provide preliminary 
parameterization.  The results we 
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Figure 18:  Application of dipole tracking algorithm 
to target location using synthetic finite gradient data 
with a 0.5m baseline  or ½ of the depth to the target. 
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have presented here confirm the contention we made in our proposal for this project that dipole 
tracking can play an important role as a means of target parameter extraction, particularly as the 
process of UXO target detection and characterization evolves in an attempt to reduce the need 
for costly target reacquisition following post acquisition analysis of compiled map data.     

As we have shown earlier, gradient noise caused by leaking of common-mode EMI noise into the 
difference data from sensor imbalance and alignment errors, reduces the SNR at long range to 
the point where neither the field data nor the gradient data are useful for interpretation.  Based on 
the experiments with theoretical gradients plus noise as well as our own practical experience 
with the AOL system and other EM systems, the area over which the SNR of the EM anomalies 
for most buried UXO is sufficiently high for useful quantitative interpretation typically lies 
within a circle of radius 1m centered on the target location.  Within this same area, gradient 
errors from the difference approximation degrade the solution for target position when the target 
range to baseline distance ratio (R/h) is less than 3.  Therefore, precise estimates of target 
parameters will require the application of traditional inversion methods involving the analysis of 
static data from multiple data points using a forward modeling algorithm that considers the finite 
dimensions of the antenna array.   

4.1.3 The Realization of Practical Finite Gradiometer
The preceding sections provide general guidelines that we must apply to the realization of a 
finite gradiometer:   

1. Baseline:  Direct interpretation of gradient data provides accurate estimates of the 
parameters from isolated targets provided the range-to-baseline ratio (R/h) is greater than 
3.  Interpretations for R/h < 3 degrade significantly.  However, for 2 < R/h < 3 we have 
established that gradient estimates using finite differences can yield rapid semi-
quantitative estimates of target parameters.  In this range the estimates of the gradient 
depart from theoretical values by as much as 10%. 

2. Noise:  As with conventional systems, random EMI noise arising from distant sources 
shortens the effective range of the gradiometer.  Using a realistic value for random EMI 
receiver voltage noise (O[2 V] = 20 nT/s), and assuming a common mode rejection ratio 
(CMRR)  of  50,  the  results  in  Figure  15  show  that  the  useful  lateral  range  of  the  
gradiometer is approximately 1m from the target center.  The SNR of the 60mm target at 
these noise levels is approximately 30dB.  We conclude, therefore, that the CMRR of the 
gradient coil pairs must be in the range of 50-100.7 

3. Systematic Errors:  The errors that arise in using a finite difference approximation for 
the actual gradient are systematic errors.  As we alluded in number 1. above, these errors 
can be as high as 10% (when R/h = 2) and still provide a useful semi-quantitative 
interpretation.  Other systematic errors are produced by imperfect geometry and coil 
sensitivity (balance).  A useful design specification therefore is to keep systematic errors 
for  these  sources  to  <  1%  of  the  theoretical  anomaly  (i.e.  <<  maximum  error  from  the  
finite baseline). 

                                                
7 A CMRR in the range of 50-100 is consistent with that achieved in the LBL BUD system (Alex Becker, personal 
communication). 
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In the remainder of this section, we will try to translate the last guideline (i.e., systematic errors < 
1% of theoretical anomaly).  To do this, we have modeled a realization of a finite gradiometer 
system  such  as  illustrated  in  Figure  6  that  includes  the  3  main  sources  of  mechanical  and  
electronic error (Bracken & Brown, 2006).  In section 4.1.1.2, we enumerated these sources.  
Here, we attach a realistic value to the specification and calculate the noise levels that arise from 
this hypothetical gradiometer.  The specifications are: 

1. Orthogonality Error:  < ±0.5º 
2. Positioning Error: < ±1mm 
3. Sensitivity Error:  < ±1% 

These three specifications can be met, we believe, with available materials and electronic 
components provided that reasonable care is exercised in machining and fabrication so that the 
specifications are not compromised.  If we accept that these specifications can be met, we now 
seek to determine whether the systematic gradient errors and the noise errors that will arise in a 
gradient system that meets these specifications are significantly less than the gradient errors 
arising from using a finite baseline.  In that context, we have noted that even gradient errors as 
high as 10%, as occur with a 0.5m baseline gradiometer in the presence of a target at depth 1m, 
we are still able to do rough quantitative work using gradients.  Therefore, we assert here that a 
reasonable threshold for these other errors would be 1% of the peak anomaly for our standard 
target.  That would require that the errors from these 3 major sources of gradiometer error to be 
1/10th those arising from the finite baseline itself.   

We used the specifications given above as the standard deviations for randomizing the 3 types of 
errors that are common to gradiometers.  Then, we calculated the gradiometer output for two 
types of inputs: 

1. Standard Target (i.e., 60mm target at 1m depth) 
2. Uniform Gaussian field noise of 1000 V- s (equivalently 2 V, or 20nT/s). 

The results of the first experiment are summarized in Figure 20.  Here, we have plotted the 
gradient and field errors as a percentage of the corresponding theoretical values for the standard 
target (Figure A-1).  As in previous figures we have companded the profiles in order to 
emphasize low-level errors.  Here, we use a companding threshold value of 0.01%.  The green 
horizontal lines represent the 40dB amplitude level for each polarity of the error.  We can see 
from  the  plot  that  systematic  gradient  errors  are  less  than  or  equal  to  1%  of  the  maximum  I1  
gradient.  Thus, systematic errors are indeed much smaller than the errors from a finite baseline.  

The  results  of  our  second  experiment  are  shown  in  Figure  21.   In  the  Figure,  we  report  the  
random noise arising in the gradiometer from sensitivity imbalance and orthogonality errors 
along the standard profile without the presence of a target.  In effect, we are assuming that the 
random noise process is ergodic so that as we move from one station to the next, we get a new 
noise sample.   The statistics of the profile thus represent the statistics of the noise process.   As 
before, we have normalized the results by the theoretical gradients and fields for the target 
involved (Figure A-1) and reported the results on a companded scale.  This result shows that the 
level of random noise that leaks into the gradient components is about 0.1%.   
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4.2 Target Resolution with EM Gradient Measurements
Improved resolution of magnetic sources is often listed as one of the main advantages of 
measuring passive magnetic gradients for shallow subsurface mapping (Schmnidt & Clark, 2006) 
(Slack, Lynch, & Langan, 1967).  Because the theory for calculating the EMI response of UXO 

Figure  20:   Systematic  errors  arising  from  a  realistic  implementation  of  a  5-sensor  finite  
gradiometer having a specification of ±0.5º Orthogonality, ±1mm Positioning, and ±1% 
sensitivity balance.  Errors are reported as a percentage of the anomaly peaks, respectively of 
I1 and |B|  for  the theoretical  curves for  a  point  gradiometer.   The figure is  based on a  ½-m 

Gradiometer Summary Plot: Gradient Errors HFGe - FGL: H60mm ND ž 1mL
HCompanded Scale wê 20dB tick marks relative to 0.01%L

Bzx Bzy Bzz Bz B

Byx Byy Bzy By I2

Bxx Byx Bzx Bx I1

Figure 21:  Random gradient noise from a finite gradiometer with ±0.5º Orthogonality, 
±1mm Positioning, and ±1% sensitivity balance.  Errors in dB relative to the theoretical peak 
values of I1 (gradient) and |B| (field) are scaled in dB relative to 0.01% for each polarity.  
The green lines represent the 1% error threshold.  The standard deviation of the noise for this 
experiment was 1000 V· s. 

Gradiometer Summary Plot: Gradient NSR relative to TG H60mm ND ž 1mL
HCompanded Scale wê 20dB tick marks relative to 0.01%L
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is closely related to calculating the passive magnetic anomalies of small objects (Das, McFee, 
Toews, & Gregory, 1990), we quite naturally listed “improved” target resolution as a likely 
advantage of measuring the gradient of the induced secondary EM field arising from buried 
conductors such as UXO.   

In this section, we present the results of numerical experiments that we conducted in an effort to 
demonstrate that our proposed gradiometer will indeed provide improved resolution and thus 
help  to  identify  and/or  clarify  situations  where  it  is  difficult  to  determine  whether  an  anomaly  
arises from a single source or is the result of 2 or more interfering sources. 

4.2.1 The Standard Target Object
We used the polarizability response of a prolate spheroid with a diameter of 60mm and a length 
of 180mm (3:1 aspect ratio) as our target object.  The conductivity of the spheroid was set at 107 
S/m and its relative magnetic permeability was set to 180 (typical for common carbon steel). The 
principal polarizability transients for the target are shown in Figure 22.  Since we are interested 
only in the shape of the resulting spatial anomalies, our models use polarizability values 
representing the average values over a 500 µs time gate from 400 900 µs.  This gate is similar 
to that of an EM61 MkII (3rd standard time gate centered at 660 µs).  

4.2.2 Target Resolution: Single Targets
When dealing with single targets, resolution is usually measured by the size of the anomaly 
footprint when dealing with maps.  When dealing with a profile, the anomaly size is usually 
measured either by the anomaly width at half its maximum (FWHM) or, alternatively, the 
anomaly width at the two points of inflexion8 on the sides 
of the main anomaly lobe (Pedersen & Rasmussen, 1990).  
Here, we will use the point of inflexion rule to compute 
anomaly width.   

4.2.3 On Tensor Invariants
The invariants of a vector (a tensor of rank 1 – e.g., Bs) or 
a tensor of rank 2 (e.g., sB ) are of interest because they 
are scalars that are independent of the coordinate system in 
which their corresponding tensor is expressed.  Here, we 
adopt the notation used in Pederson (Pedersen & 
Rasmussen, 1990) identify three invariants that we 
calculate from the magnetic field and its gradient: 

                                                

8 A function f(x) has a point of inflexion where the second derivative the function 
2

2 0
df x

dx
 

 
Figure 22:  Principal polarizability 
transients for a standard 60mm 
spheroidal target.  The EMI 
response of the target is similar to 
that of a 60mm mortar. 
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Note that the gradient tensor is symmetric and its trace is zero. 

In the plots that follow, we have taken the square root of I1 and the cube root of I2 in order that 
the invariants have the same units as their associated tensor elements.  Moreover, in the maps we 
have companded the data to provide logarithmic-like compression of the dynamic range.  The 
companding algorithm can handle bipolar data and is scaled so that the output approximates the 
data amplitude scaled in dB relative to an arbitrary threshold.  The data companding is useful for 
plotting.   However,  it  distorts the profile and the color pattern in a way that  tends to obscure a 
subjective determination of target resolution relative to other possible mapping components.  
Therefore, to determine resolution we must use (and plot) the relevant data on a linear scale. 

Pedersen (Pedersen & Rasmussen, 1990) notes that the invariant I2 provides better anomaly 
resolution than I1 and, for dipole fields induced by a uniform field, the resolution improvement 
when using I2 relative  to  using  Bz is approximately 50%.  Thus, in graphics where we do not 
display every gradient and field component, we have chosen to display Bzz, Bz, and I2.  These 
components all exhibit a peak response for field points located directly over the target. 

4.2.3.1 Excitation: Finite (horizontal) loop versus uniform field

The theory for computing the EMI response of buried conductive and permeable targets is based 
magnetostatic principles wherein the effect of the (usually) low conductivity of the host is 
ignored and the totality of the eddy currents that have been induced in the highly conductive 
target can be approximated by a point dipole.  Although there are exceptions, the approximations 
are valid for conductive and permeable targets that are small relative to the distance from the 
transmitter and receiver antennae, and the conductivity of the host is less than 1 S/m (Baum, 
1999) (Pasion, 2007). 
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For the purposes of this discussion, we can ignore the fact that the secondary magnetic fields we 
measure arise from decaying eddy currents rather than the polarization of magnetic particles.  
Thus, the main difference between the spatial behavior of target anomalies measured with a 
magnetometer and those we measured with an EM system is in the nature of the primary field.  
With passive magnetic measurements as well is with EM detection methods such as sub-audio 
magnetic (SAM) the stimulating magnetic field is uniform in space and therefore the target 
properties (i.e., the magnetic moment) has a constant direction and magnitude.  In general,  on 
“metal detection” EM instruments such as the EM61 the stimulating magnetic field at the target 
varies both in direction and magnitude as the instrument passes over the target (Figure 23). 
To  study  differences  in  resolution  as  it  pertains  to  passive  magnetic  surveys  (and  often  by  
inference to EM surveys), we have modeled the response of our standard 60mm target to a 
primary field generated by a 1m x 1m horizontal transmitter loop (EM61) and to a uniform 
(vertical) field.9   

Figure 24 below shows maps of each of the 9 components of the secondary gradient tensor ( sB
), the 3 components of the secondary fields (Bs), and three tensor invariants.  The two panels (A 
& B) relate to the attitude of the target.  The horizontal target (top panel) is oriented so that the 
target axis is parallel with the y (vertical) axis of the maps.  Note the obvious elongation of the 
anomaly foot print in the direction of horizontal heading of the target.  When we deal with a 
vertically oriented target, Figure 24B, the anomaly footprint is no longer elongated in the y-
direction.  And finally, note that in both cases 
(horizontal and vertical attitudes) the footprint of 
the gradient maps is perceptibly smaller than those 
of the field maps (compare Bzz with Bz).  Thus, 
these maps certainly provide qualitative evidence 
of improved resolution. 
Figure 25 show results of target stimulation with a 
uniform vertical field.  The target is the same 
(60mm target at 60cm depth, horizontal/vertical 
attitudes).  In this case, the anomaly footprint over 
the horizontal target is no longer elongated 
because  the  target  is  always  polarized  with  a  
vertical field.  Comparing Figure 24 and Figure 
25, it appears that the spatial resolution with uniform field polarization is better than that what 
we see for stimulation with the 1m x 1m loop transmitter.   
 Finally, in Figure 26 we have plotted center-line profiles in the y-direction over the same 60mm 
targets.  To simplify the figure, we show only the vertical gradient (Bzz), the vertical field (Bz), 
and  the  I2 invariant  of  the  tensor  gradient  field.   In  each  of  the  panels,  there  are  two  profiles  
corresponding to stimulation with the finite loop and the uniform field, respectively.  Note that 
the Bz profile with finite loop stimulation (Figure 26B) displays the double hump anomaly 
pattern that is characteristic of EM anomalies over elongate targets with a horizontal attitude.  
The profiles also show the extended width of the anomaly in the direction of the target heading 
                                                
9  A uniform field is approximated by using a very large (1000m on a side) horizontal transmitter loop.  The 
amplitudes of the transmitter fields have been normalized so that the fields at the target when the 1m x 1m loop is 
centered over the target are the same.   

 
Figure 23:  Figure illustrating the 
change in amplitude and direction 
of the stimulating field at the target 
as the antenna array passes over it. 
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for the horizontal target attitude when the stimulated by the finite loop source.  However, there is 
no significant difference in anomaly width for the different types of stimulation for a target with 
a vertical attitude Figure 26D, Figure 26E, and Figure 26F.  Finally, there is a clear difference in 
resolution when we compare the vertical gradient curves (Bzz –Figure 26A and Figure 26D; I2 –
Figure 26C and Figure 26F ) with the vertical field profiles Figure 26B and Figure 26E).  We 
have quantified that difference for the finite loop transmitter case in Figure 27.   These figures 
show a quaisi-linear relationship between target depth and anomaly width for both the horizontal 
and vertical targets.  Roughly speaking, the ratio of anomaly width between Bzz and Bz is 
approximately 0.75 for a target at a depth of 0.6m.  Thus, Bzz has about 25% better resolution 
than Bz for targets at that depth.  Regardless of target orientation, the resolution ratios (width 
Bzz/width Bz, width I2/width Bz) remain relatively uniform over the depth interval we studied 
with mean values of (approximately) 0.8 and 0.65, respectively, for Bzz and I2.  In general terms 
therefore we can say that the resolution of targets is improved by about 20% when we use Bzz as 
a mapping parameter and 35% when we use I2 as a mapping parameter.  
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Figure 24:  Summary plot showing false color images of the gradient tensor elements (cols 1-3), 
the fields (col 4), and the field invariants (col 5) calculated for a 60mm target located at a depth 
of 60cm beneath the plane of the transmitter.  The two figures correspond to target attitudes of 
horizontal (A) and vertical (B). 
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Figure 25:  Summary plot showing false color images of the gradient tensor elements (cols 1-
3), the fields (col 4), and the field invariants (col 5) calculated for a 60mm target located at a 
depth  of  60cm  beneath  the  sensor.   The  primary  field  is  a  uniform  vertical  field.   The  two  
figures correspond to target attitudes of horizontal (A) and vertical (B). 
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4.2.4 Target Resolution: Multiple Targets
Identifying  anomalies  that  result  from two or  more  closely  spaced  targets  is  often  important  in  
UXO characterization.  We know, for example, that it is difficult or impossible to determine that 
an anomaly is the result of two interfering targets when their lateral separation is less than their 
depth.   In  this  section,  we  study  the  behavior  of  fields  and  their  gradients  for  a  pair  of  60mm  

 
Figure 26:  Profiles of the vertical gradient (Bzz- A,C) and the vertical field (Bz-B,D) over a 
60mm target buried 60mm deep.  The parametric curves relate to the nature of the primary 
field (uniform or 1m x 1m loop). 

 
Figure 27:  Figures plotting anomaly width versus target depth for a horizontal target (A) and 
a vertical target (B).  The results are for finite loop transmitter stimulation.  The curve 
parameters are Bzz (vertical gradient), Bz (vertical field), and I2 (an invariant of the gradient 
tensor), respectively.  The widths are defined as the distance between the points of inflexion 
on the main anomaly lobe. 
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targets with identical attitudes (horizontal and vertical) and located at the same depth.  Summary 
plots and profiles for various cases are shown below in Figure 28 through Figure 30.   

Figure 28 shows the summary plots for horizontal targets oriented in the y-direction.  The targets 
are 0.6m below the antenna array.  Each successive summary plot represents a different 
horizontal separation between the targets ranging from 0.3m (1/2 the target depth) to 2.4m (4x 

target depth).  There is no visual cue that the anomalies result from 2 targets when they are 
separated by 0.3m (Figure 28A).  At a separation of 0.6m (Figure 28B) there is a subtle clue that 
there are two targets in the pattern of By, which is strangely elongated.  However, the other 
components have a normal behavior so it would be difficult to identify the anomalies as resulting 
from two targets without examining the profiles (e.g., Figure 30).  Finally at a separation 
distance of 1.2m (Figure 28C), it becomes obvious that there are two targets involved.  The 
corresponding plots for two vertically oriented 60mm targets are shown in Figure 29.  And 
because we do not have to deal with elongated anomalies that are characteristic of horizontal 
targets, there are indications of multiple target sources in By, Bz, Bzy, and Bzz. 

 
Figure  28:   Summary  plots  of  the  tensor  gradient  components  (B??), the secondary 
magnetic induction field components (B?), and their associated invariants (I1,I2,|B|).  
These maps represent the response of 2 horizontal 60mm standard targets with a heading 
parallel to the y (vertical) axis at a depth of 0.6m below a 1m x 1m finite loop transmitter.  
The separation of the targets ranges from 0.3m (A) to 2.4m (D). 
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The detailed characteristics of these complex anomalies are best seen in the profiles shown in 
Figure 30.  In the Figure, we have plotted the vertical gradient (Bzz) in the left hand column and 
the  vertical  field  (Bz)  in  the  right  hand  column  for  horizontal  targets  (top  row)  and  vertical  
targets (bottom row).  For this figure, the targets are separated (in the y-direction) by 0.6m.  The 
following anomaly characteristics are noted: 

 Width – The anomaly widths suggest a target located at a depth as much as twice as deep 
as the actual depth. 

 Side-Lobe Distortion(horizontal targets) – At this “threshold” target separation, the 
side-lobe distortion “shouldering” on horizontal targets is very subtle and might be 
missed when the data are noisy. 

 Double Peak Anomaly in Bz – When looking at the profiles for two vertical targets, they 
interfere in a way that results in a classical double peak anomaly that might easily be 
mistaken for a single horizontal target at a much greater depth.   

 Double Peak Anomaly in Bzz and I2 (vertical targets)– The Bzz profiles for the 
vertical targets also form subtle double peaks for the deeper targets.  However, unlike the 
double peaks in Bz, the Bzz and I2 double peaks are much too widely spaced to be 
confused with their respective anomalies from a single horizontal target (see Figure 30A).   

 
Figure 29:  Summary plots of the tensor gradient components (B??), the secondary magnetic 

induction field components (B?), and their associated invariants (I1,I2,|B|).  These maps 
represent the response of 2 vertical 60mm standard targets at a depth of 0.6m below a 1m x 
1m finite loop transmitter.  The separation of the targets ranges from 0.3m (A) to 2.4m (D). 
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4.2.5 Conclusions Target Resolution with EMI Metal Detection
Measuring and mapping gradient rather than field components of the secondary magnetic fields 
arising from induced eddy currents provides marginal improvements in resolution over both 
single and multiple targets (25% to 35%).  The best resolution improvement is realized by using 
the gradient tensor invariant I2.  Similar to the widths of passive magnetic anomalies, crude depth 
estimates  can  be  made  by  scaling  the  widths  from EMI target  anomalies.   This  possibility  was  
originally noted by Das (Das, McFee, Toews, & Gregory, 1990) and this work simply 
corroborates that original work.  It is clear from this work that for non-vertical targets, the 
anomaly width will be highly dependent on the profile heading relative to the target heading, 
with  the  smaller  width  being  observed  along  profiles  normal  to  the  target  heading  while  the  
larger width will  be observed along profiles with the same heading as the target.   One must be 
circumspect when applying a width to depth conversion. 

We have noted that the resolution of target anomalies from an EMI metal detector is not as good 
as that  observed over targets that  are illuminated by a constant uniform field.   In our modeling 
with a uniform field we normalized the inducing fields at the target so that anomaly amplitude at 
a point directly over the target was the same for both systems.  The difference in resolution must 
be attributable, therefore, to the fact that the target polarization direction and amplitude changes 
at each field point.  This result has important ramifications since it suggests that passive 
magnetic surveys (fields and gradients) are better suited to detecting multiple interfering targets 
than is an EMI survey instrument (with finite loop transmitter) even when the EMI detectors 
include gradiometer or difference measurements.10  Along the same lines, we can also state that 

                                                
10 We assume here that the targets are ferromagnetic so they have associated passive magnetic anomalies. 

 
Figure 30:  Center-line profiles (in y-direction) over a pair of 60mm targets at 0.6m depth 
separated by a distance of 0.6m.  The profiles in the top row are those for horizontal targets 
oriented in the y-direction.  The bottom row represents profiles when the targets are vertical. 
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an EMI system consisting of a large fixed loop transmitter (similar to the SAM system) would 
perform better both in detection and in target resolution.  

All those who interpret EMI metal detector data are aware that elongate targets oriented with a 
horizontal attitude will generate double-peaked anomalies.  This model study has shown that two 
60mm targets oriented vertically and spaced at a distance equal to the depth of burial (see Figure 
29B and Figure 30D - Figure 30F) can likewise generate double-peaked response curves that are, 
at least superficially, indistinguishable from those of a single target oriented horizontally Figure 
24A Figure 26D - Figure 26F.  Thus, when presented with double-peaked anomalies it is well to 
examine other features.  With systems such as the MetalMapper system that can measure the 
horizontal field components (Bx and By) we have noted that the behavior of the horizontal field 
component in the direction of cart movement provides an early indication of the presence of 
multiple targets by exhibiting multiple zero crossings.  Gradient components such as Byz also 
exhibit such multiple zero crossing.  When they are available, these horizontal components are 
an invaluable aid in detecting multiple interfering targets.  Even so, we conclude that it is very 
difficult to detect multiple targets when they are separated by a distance less than or equal to 
their depth of burial.   Targets anomalies only become clearly separated (without significant 
interference, one to another) when they are separated by a distance of 4x their burial depth (See 
Figure 28D and Figure 29D).  

4.3 Dipole Mapping Using Tensor EM Gradiometer

4.3.1 Background
The terms dipole mapping, dipole tracking, and dipole localization originate from efforts of the 
U.S. Navy to detect and track submarines.  Efforts to exploit measurements of the magnetic 
gradient tensor appeared in public literature as early as 1975 (Wynn, Frahm, Carroll, Clark, 
Wellhoner, & Wynn, 1975) and cite reports from Naval Ship Research and Development Center 
(Wynn W. , 1972) and the Naval Coastal Systems Laboratory (Frahm, 1972) that date the idea of 
locating and characterizing dipoles using the gradient tensor to 1972.  The basic theory for so-
called dipole mapping has been established for nearly 40 years and since that time, the major 
effort has been focused on developing a useful tensor magnetic gradiometer with sufficient 
portability, stability, and sensitivity for applications to various problems of interest not only for 
naval applications but also for environmental applications such as UXO detection.  With regard 
to environmental and UXO applications, current efforts include the development of tensor 
magnetic gradiometers based on triaxial fluxgate technology by the USGS (Snyder & Bracken, 
Development and Testing of a Tensor Magnetic Gradiometer, 1995) (Smith & Bracken, 2004) 
and by the Naval Surface Warfare Center (Panama City, FL) (Wiegert & Oeschger, 2005).  The 
aforementioned efforts have been funded in part by ESTCP and SERDP. 

Dipole mapping is of particular interest for applications wherein real-time estimates of target 
location and dipole moment are important because implementations of the dipole mapping 
algorithms can perform the necessary calculations in a fraction of a second with portable 
computing devices.  In this section, we will briefly outline a theory for dipole mapping using 
estimates of the tensor gradients.  Then we will apply the theory to model data simulating a TEM 
gradiometer sensor and to experimental data acquired with a realization of such a TEM 
gradiometer. 
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4.3.1.1 Dipole Mapping with Gradiometer Theory

The basic theory for dipole mapping is outlined in (Wynn, Frahm, Carroll, Clark, Wellhoner, & 
Wynn, 1975) and more details can be found in the reports that are cited in that paper (Wynn W. , 
1972) (Frahm, 1972).  For completeness, we outline the theory here so that the reader may be 
able to understand the process without the need to refer to the references.  The development here 
relies heavily on the original report of Frahm (Frahm, 1972) and the paper (Wynn, Frahm, 
Carroll, Clark, Wellhoner, & Wynn, 1975). 

Refer to Figure 31 where we show a Cartesian coordinate system defined by coordinate axes 
(x=x1,y=x2,z=x3).  We have located a dipole with a moment M at the origin and our observation 
point is at P.  The radius vector R extends from the origin to P and we have further defined a unit 
vector n in the direction of R and the distance R=|R| so that R = R n.  Using this notation, we can 
define the magnetic field H and its gradient as shown below. 

3 3

ˆ ˆ
3

R R

M n n MH                                 (6a) 

4

3 ˆ ˆ ˆ ˆ ˆ5
R

H M n n n I M n n M                                      

(6b) 
In equation 6b, I is the identity matrix and the operator 

represent the Kronecker (tensor) product of two 
vectors (Davis, 1994). 
In our subsequent equations, we replace the vectors 
with their corresponding Cartesian components and we 
introduce the Einstein summation convention wherein 
the product of elements with the identical letter indices 

implies a sum over the range of those indices ( ) 
Using this indicial or tensor notation, equation 6 can be rewritten as 

3 3j
i i j ij

M
H n n

R
                                                          (7) 

In equation 6a, the symbol ij is the kronecker delta ( ij=1 if i=j else ij=0). 

We now introduce a short-hand notation for differentiation ( , ).  Using this notation, we 

can define the gradient of the magnetic field ( ,i kH ) 

, 4

4

3
5

3
; 5

j
i k i j k ij k ik j i jk j ijk

j
j ijk i j k ij k ik j i jk

M
H n n n n n n M N

R
M

M N n n n n n n
R

                                       (8)  

 
Figure 31:  Observation coordinate 
system and definitions for formulation 
of dipole mapping problem. 
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In equation 8, we have introduced a new vector jM that we can call the “reduced moment”, and a 
3rd rank tensor ijkN  that is a function only of the elements of the unit vector n.  In general, there 

are 3 independent elements in jM , but because of the constraint |n|=1, there are only two 
independent components for n.   That  is,  if  we  know any  two components  of  n, we can always 
calculate the value of the third using the constraint.  Therefore, in terms of the components of the 
“reduced moment” ( jM )  and  the  unit  vector  (ni) equation 8 shows that the magnetic gradient 
tensor can be expressed in terms of 5 unknowns, 3 unknown components of the reduced moment 
plus two (independent) unknown components of the unit vector n.   

Also notice that the third rank tensor ijkN  has the property of symmetry with the interchange of 
any two of the three indices.  Secondly, its trace for any two indices, and by extension therefore 
all three indices is always 0. 
We define a second 3rd rank tensor  

3 1
2 2ijk i j k ik j jk iN n n n n n                                                      (9) 

Like its counterpart ijkN  this  new  tensor  is  symmetric  about  pair  of  indices.   Moreover,  the  
coefficients (i.e., 3/2 and ½) were selected so that  

ijk jkl ilN N .                                                                                (10) 

In a sense, the third rank tensor ijkN behaves as the inverse of ijkN .   

Multiplying equation 8 from the right by ijkN and using the symmetry properties of ijkN together 

with equation (10), we can solve for the 3 elements of the reduced moment ( jM ) in terms of the 

elements of the magnetic gradient tensor and the third rank tensor ijkN  

 ,j i k ikjM H N                                                                            (11) 

Equation (11) expresses the 3 components of the unknown reduced moment in terms of the (as 
yet) unknown unit vector n that defines the direction between the source location and the 
observation point P. 

Finally, we can insert equation 11 above into equation 8 to obtain a relation that only involves 
the unknown elements ni and the observed gradient elements ,i kH  

, ,i k j jik l m lmj jikH M N H N N                                                                (12) 

Since the gradient tensor is symmetric, at any particular observation point there exists a 
coordinate system in which the tensor consists only of diagonal elements.  The value of these 
elements and the orthogonal transformation (a rotation of coordinates) that will transform the 
tensors and vectors into this principal coordinate system can be found by performing an eigen 
analysis.of the gradient tensor expressed in its observation coordinate system.  We suppose that 
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this has been done with the result that an orthogonal transformation operator ijT has been found 
such that we can write the following relations: 

, , ,  (no sum on index )i j ij il l m j mi

i ij j

H T H T i

n T n
                                                  (13) 

In equation 13, , and i j iH n represent the expression of the gradient tensor ( H ) and the unit 

vector ( n̂ ) in the principal coordinate system.  The values i represent eigenvalues.11  Although 
in general there are 3 eigenvalues for the problem, in the case of a potential field, the trace of the 
gradient  tensor  is  always  0  (i.e.  1 2 3 0 ) so there can only be two independent 
eigenvalues.  

Expressing equation 11 in the principal axis coordinate system and using equation 13 to simplify 
yields a tensor equation for the reduced moment  

2
( )

3 ; (No sum on j)
2j j j k kM n n                                     (14) 

We insert equation 14 into equation 12 expressed in the principal coordinate system to get 

( ) ( ) ( )

2

2 2l lm j j l m lm j jl j jm l m

j j

n n n n

n
                          (15) 

The left hand side is a diagonal tensor and the right-hand side is obviously symmetric in the two 
free indices (l,m).  Therefore, we can write three independent equations for the unknown 
components ni’ (unit vector along R expressed in the principal coordinate system) for the off-
diagonal tensor elements.  Those equations are: 

1 2 1 22 0j j                                                         (16a) 

2 3 2 32 0j j                                                         (16b) 

1 3 1 32 0j j                                                          (16c) 

There are only two equations for the diagonal elements since 1 2 3 0 .  These equations 
are 

2
1 1 2 1 22 0a b b a b a b                                         (17a) 

2
1 2 2 1 22 0a b a a b b a                                         (17b) 

where 

1 22a                                                                 (18a) 
                                                
11 We enclose a repeated index in parentheses to indicate that we have suspended the implicit summation over the 
index values. 
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1 22b                                                                 (18b) 
In writing equations 17d and 17e, we have used the relations 

3 2 31 ,                                                              (19a) 
and 

3 1 2 .                                                            (19b) 

Equations 19a and 19b are a consequence of the fact that |n|=1 and 1 2 3 0  . 

There are 6 solutions to equations 16, the equations for the off-diagonal terms of the gradient 
tensor expressed in the principal coordinates: 

1 2 30; 0; 1                                                      (20a) 

1 2 30; 1; 0                                                     (20b) 

1 2 31; 0; 0                                                     (20c) 

1 2 30; ;  ( 0)b a a b
b b

                                            (20d) 

1 2 3; 0;  ( 0)a b b a
a a

                                            (20e) 

1 2 3; ; 0   ( )a b a b
a b a b

                                        (20f) 

Except for trivial cases, we can eliminate the first three solutions (20a-20c) because, in general, 
they do not satisfy equations 17. So we must look to the last 3 solutions (20d-20f) as 
possibilities.   
We use eigen analysis to determine the (eigenvalue) gradients in the principal coordinate system.  
And from the corresponding eigenvectors we are able to construct the transformation tensor ijT
(see equation 13) that allows us to transform between the principal coordinate system and the 
observation coordinate system.  However, there is an ambiguity between the two systems that 
depends on the ordering of the three eigenvalues.  This ambiguity can be eliminated by ordering 
the eigenvalues such that 

1 2 0  ,                                                                                (21a) 
and  

1 2                                                                                 (21b) 

The ability to always order the eigenvalues consistent with equations 21 is a consequence of the 
traceless  nature  of  the  gradient  tensor  which  demands  that,  in  general,  two  of  the  eigenvalues  
must have the same sign and be opposite in sign from the third.  The only other possibility is that 
one of the eigenvalues is zero and the other two are equal but have opposite signs.  As a 
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consequence of ordering of the eigenvalues in this way, a and b defined in equation 18, will 
satisfy 

                  0ab  ,                               (22a) 
and 

                  a b .                                 (22b) 

With the qualifications implicit in equations 22, it follows that only solution 20e satisfies both 
equations 16 and 17.  

4.3.1.2 Solution for the Direction from the Source Point

Equation 20e provides the solution for the squares ( 2 2
1 1 2 2;n n ) of the 2 components of the 

unit vector n from the source point (origin in Figure 31) to the observation point P (Figure 31).  
However, since we desire the components themselves, we are obliged to take the square root of 
these  positive  real  values.   Thus,  from  equation  20e,  we  
get the relations 

1
a bn

a
                (23a) 

2 0n                      (23b) 

1
bn
a

                  (23c) 

The consequence of the sign ambiguity that is introduced 
by the need to take the square root of these positive 
solutions is that there, in general, four solutions to the 
bearing vector as shown in Figure 33.  We have labeled 
the solutions a-d according to the quadrant indicated by 
the choice of signs.  Once the solutions have been transformed back into the observation 
coordinate system, it is easy to eliminate two of them since, for all geophysical problems the 
target must lie beneath the observation plane.  However, that still leaves a “ghost” solution that 
must be distinguished from the real solution in order to “track” the correct solution. 

4.3.1.3 Solution of the Reduced Moment

Using equations 20e and 23 together with equation 14, we find that there are also 4 moments that 
have a one-to-one correspondence with the 4 solutions to the bearing vector.  After some algebra, 
these moments may be written in terms of the two parameters a and b 

 

 1
1 5
3

a bM b a
a

                                                                 (24a) 

2 0M                                                                                          (24b) 

 
Figure 32:  The 1-3 plane of the 
principal coordinate system showing 
the 4 possible solutions of the dipole 
mapping problem. 



EM Tensor Gradiometer SERDP MM-1532 

39 

3
1 5 4
3

bM b a
a

                                                                     (24c) 

In  Figure  33,  we  depict  the  vector  solutions  together.   Although  there  is  a  one-to-one  
correspondence between each bearing vector n and a reduced moment vector M, they do not 
necessarily  lie  in  the  same quadrants.   In  Figure  33,  we  have  arbitrarily  drawn them that  way.   
But the actual quadrant to which a particular moment vector lies depends on the sign of the terms 
(5b-a)  and  (5b-4a) in equations 24a and 24c.  The ordering of the eigenvalues according to 
equations 21 does not guarantee the sign of these terms.  
Thus,  all  we  can  say  is  that  for  any  particular  solution  
for n, there corresponds a unique reduced moment.   

4.3.1.4 Computing Distance (R)

The magnetic gradient tensor is symmetric and its trace 
is always zero.  Thus, it contains only 5 independent 
pieces of data.  In developing this theory for dipole 
mapping, we have been able to solve the resulting 
equations by reducing the number of unknown 
parameters  for  the  gradient  tensor  from  6  to  5.   We  
combined the moment vector with all references to the 
unknown distance from the source point to the 
observation point calling the resulting vector ( M ) the reduced moment so called because it 
implicitly contains the 6th unknown (R).  How then do we now calculate the last unknown?  
There are many ways to accomplish this.  All require the observation of at least one more 
independent piece of data.  Here, we will assume that we have estimates of the vector magnetic 
field H produced by the unknown dipole.  The vector magnetic field actually contains 3 
independent pieces of data (Hx , Hy , and Hz).   

 We suppose that we have observed the gradient tensor H and the corresponding vector 
magnetic field H at  the  field  point.   And  from  our  analysis  of  the  gradient  tensor,  we  have  
calculated values for the bearing vector n and the reduced moment M .  We have expressed these 
vectors in the observation coordinate system by transforming their values as determined in the 
principal coordinate to the observation coordinates using the coordinate transformation we can 
derive from the results of the eigen analysis of the observed gradient tensor. 
Euler’s Theorem: One can relate any homogeneous function to its derivative using Euler’s 
theorem for homogenous functions (http://en.wikipedia.org/wiki/Homogeneous_function).  The 
Euler theorem has been used for decades by geophysicists as an aid for determining the depth of 
source when interpreting passive magnetic and gravity fields (Thompson, EULDPH: A new 
technique for making computer assisted depth estimates from magnetic data, 1982) (Reid, 
Allsop, Granser, Millett, & Somerton, 1990).  Potential fields are comprised of homogeneous 
polynomials  and  therefore  Euler’s  theorem  applies  to  all  potential  fields.   As  it  applies  to  an  
arbitrary anomalous magnetic field H, we can write a general Euler’s relation 

kR H H                                                              (25) 
 

 
Figure 33:  Dipole mapping solutions 
showing the 4 solution vector pairs 
(bearing vector n and the magnetic 
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where k is called the degree of homogeneity in mathematical terminology and the structural 
index in  its  application  to  geophysical  problems.   For  a  magnetic  dipole  the  structural  index  is  
k=3. 
If we write R =Rn and substitute into equation 15, we can get three equations that can be 
independently solved for the scalar value R for the distance to the target 

 

,

3 or, 

3 ( 1,2,3)k

i i k

R
HR k

n H

n H H
                                                               (26) 

4.3.1.5 Dipole Mapping Algorithm- Computation Steps

Here, we summarize the steps involved in the dipole mapping algorithm. 

1. Using the observed magnetic gradient tensor, perform an eigen analysis to find the 3 
eigenvalues plus the eigenvectors. 

2. Determine the order of the eigenvalues ( i) according to equations 21.  Then using the 
eigenvectors, determine the transformation tensor Tij that will transform vectors from the 
observation coordinate system to the principal coordinate system and vice versa. 

3. Calculate the components of the bearing vectors n in  the  principal  coordinate  system  
using equation 23.  This results in 4 separate solutions. 

4. Calculate the components of the reduced moment vector ( M ) expressed in the principal 
coordinate system.  There will be 4 such moment vectors that pair with each of the 4 
bearing vectors calculated in step 3. 

5. Transform the bearing vector/reduced moment vector pairs back to the observation 
coordinate system.  Eliminate 2 of the bearing vectors based on the constraint that a valid 
solution must have a bearing vector that points down (rather than up).  This leaves two 
feasible solutions, one of which is the ghost. 

6. Use the Euler relation (equation 26) together with the measurement of one or more 
components of H to determine the range scalar R. 

7. Perform  other  tests  to  decide  which  of  the  two  remaining  solutions  is  the  real  one  and  
which is the ghost. 

4.3.2 Experimental Demonstration
We have implemented the dipole mapping algorithm described above using high-level 
Mathematica code and we tested the code with synthetic data.  Results of synthetic tests to study 
the effects of using a finite gradiometer together with various physical and electronic 
imperfections were presented in the White Paper (George & Snyder, A Study of the Feasibility 
of a Tensor TEM Gradiometer for UXO Detection and Characterization, 2007) we submitted 
early in this project.  Here, we present results from two synthetic models and two experimental 
models.   Our  model  is  the  same  60mm  prolate  spheroid  that  we  used  earlier  in  this  report  
(Section 4.2) to study resolution.   

4.3.2.1 Synthetic Models Using Theoretical Magnetic Gradient
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As in our earlier resolution study (Section 4.2), we calculated the theoretical fields and gradient 
tensor over a 60mm prolate spheroid with a 3:1 aspect ratio (length = 180mm).  We computed 
fields and gradients along a centerline profile directed along the y-axis.  We processed synthetic 
data for two target attitudes, horizontal and inline with the profile, and vertical. The results are 
displayed, respectively, as Figure 34 and Figure 35.  The results from these calculations confirm 
that the algorithm is operating correctly.  In both cases, the algorithm correctly predicts the target 
position and moment.  The vectors illustrate the strong anisotropic polarizability of the target 
wherein we see that the induced moment from the horizontal target (Figure 34) remains largely 
horizontal until the target point is inside the transmitter loop (|y|<0.5m).  In contrast, the induced 
moment for a vertical target (Figure 35) remains mostly vertical until target is noticeably outside 
the footprint of the transmitter loop (|y|>0.5m). 

4.3.2.2 Dipole Mapping Results Experimental Data

We acquired a number of data sets with the finite gradiometer antenna array described earlier in 
this report.  The array consists 4 tri-axial receiver cubes arranged in a cruciform pattern with an 
effective differencing baseline of 20cm.  Targets were moved dynamically beneath the antenna 
array while the associated induced fields were sampled continuously at a rate of 10 samples/sec.  
The resulting data were post-processed to remove the background and estimate the independent 
elements of the gradient tensor at each field point.  The resulting data were then input into our 
dipole mapping algorithm.  Results for two different targets are shown in Figure 36 and Figure 
37. 

Figure 36 shows dipole mapping results where the target was a 100mm steel sphere.  The sphere 
was moved along a plane (ground surface) that was approximately 70 cm below the plane of the 
antenna array.  The figure shows that the dipole mapping algorithm is able to correctly estimate 
the position and moment over an interval of approximately 1 m centered on the position of the 
antenna array. 
Figure 37 shows results for a similar experiment conducted using a 60mm mortar round as the 
target.   The  mortar  was  placed  at  a  pitch  angle  of  -45 .   As  with  the  previous  example,  dipole  
mapping is able to correctly estimate the targets position and moment over an interval of more 
than 1m.  In this case, notice the asymmetry in the dipole mapping results (Figure 37 lower 
right).  The dipole moments seem to remain stronger and are more vertical for values of y>0 as 
compared with values on the negative end of the profile.  This behavior is consistent with the fact 
that with a 45º pitch angle, the target will be illuminated along its long axis by the primary 
magnetic field longer on one side than the other.  This behavior is hardly noticeable when 
viewing the profiles (left side Figure 37). 

4.3.3 Dipole Mapping Summary Remarks
Dipole mapping is a powerful tool for locating and characterizing a dipole source field.  The 
algorithm we describe is relatively simple to implement.  The calculations involved take less 
than 1ms/data point (2.8GHz Intel Xeon processor).  The algorithm produces accurate estimates 
of target depth and moment from dynamic data when the target is sufficiently near that the 
signal-to-noise ratio is good (>10).  Typically, this places the target within a horizontal radius of 
approximately 0.7m and at a depth that is less than 11 times its diameter (11x rule).  The 
experimental results demonstrate that we can generate good estimates of the gradient tensor from 
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an array of induction sensors with a small baseline (20cm). Assuming, that the antenna array is 
raised 15-20cm above the ground surface, the gradients estimates will be reasonable for targets at 
depths |z|>0.25m (approximately 2x the 20cm baseline).  Although we have not done so either in 
our numerical model studies or in the processing of our experimental data, the estimation of the 
polarizability tensor is straight forward when we are given estimates of the position of the source 
and the corresponding dipole moment.  Such calculations would require that we buffer a number 
of sequential dipole mapping solutions for a particular target as we traverse across it.  And even 
so, the polarizability tensor would be imperfectly resolved since the linear motion along a profile 
would not guarantee that the target would be adequately illuminated by the primary field along 
all 3 principal axes. 

Dipole tracking is clearly not appropriate for static “cued ID”.  When it takes 10-20sec to stack 
data, it is not of particular concern if the subsequent inversion takes another 10-20 sec.  
Consequently, conventional non-linear inversion methods that can be applied to one or more 
spatial data points provide very robust solutions of the target characteristics.  However, the speed 
with which the dipole tracking solutions can be obtained makes the algorithm ideal for use in 
situations requiring real time reporting.  The time it required to process each data point (i.,e., 
subtract background, perform differencing calculations, calculate dipole mapping solution, and 
ultimately display the results) will no doubt be on the order of 10ms. Our data acquisition 
computer can easily maintain an acquisition sample rate of 10 samples/sec while it is continually 
updating  a  display  that  shows  the  target  position,  depth,  and  an  estimate  of  its  RMS  
polarizability.    
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Figure 34:  Dipole mapping results for synthetic data.  The target is a 60mm prolate spheroid with a 
horizontal axis along the y-axis and a depth of -0.6m.  The synthetic data are shown in the panels to 
the left.  The dipole mapping results are on the right.  The cross-section (lower right) displays the 
resulting moments with the tail of the vector plotted at the predicted depth.  Note how the moment 
vectors transition from mainly horizontal for |y| 0.5m (outside the transmitter loop) to mainly vertical 
for |y|<0.5m (inside the loop). 
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Figure 35:  Dipole mapping results for synthetic data.  The target is a 60mm prolate spheroid with 
vertical  axis  at  a  depth of  -0.6m.  The synthetic  data  are  shown in the panels  to  the left.   The dipole 
mapping results are on the right.  The cross-section (lower right) displays the resulting moments with 
the tail of the vector plotted at the predicted depth.  Note that the moment vectors continue to have a 
strong vertical component in the region immediately outside the transmitter loop (|y| 0.5m).  Compare 
with the behavior of the horizontal loop in Figure 34. 
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Figure 36:  Dipole mapping results from experimental data.  The target is a 100mm diam. Steel sphere 
at a depth of approximately 65cm.  The target was moved continuously while recording data.  Note the 
symmetry of the moment vectors  and the approximate uniform depth estimates over the interval -
0.6 0.6m. 
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Figure 37:  Dipole mapping results from experimental data.  The target is a 60mm mortar at a depth of 
approximately 65cm.  The target was moved continuously while recording data.  Note the distinct 
assymmetry of the moment vectors which are the result of the 45  pitch of the target.  Also note the 
systematic (almost sinusoidal) undulations in the depth estimates over the interval -0.4 0.6m.  
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5 Physical Experiments and Measurements

5.1 Proof-of-Concept Experiment
The objective of the Proof-of-Concept work was to experimentally investigate whether a spatial 
difference  of  a  TEM signal  can  be  reliably  observed.   The  answer  to  this  question,  along  with  
results of the numerical modeling study was a Go-NoGo milestone for this project.  Raising the 
question of whether a reliable observation can be made is justified because TEM signals are 
typically small, and the difference between two such signals further decreases the signal 
amplitude.   
Given that it is fundamental that signal amplitude is reduced in a difference signal compared to 
either signal alone, it is reasonable to ask if noise is a severe limitation in the proposed method.  
It is well-known that noise limits the sensitivity and accuracy of the TEM method, and taking a 
difference signal would seem to only exacerbate the problem.  We submit, however, that the 
proposed method might actually mitigate the noise problem because the differencing can 
significantly reduce the noise and possibly increase the signal-to- noise ratio (SNR).  Often the 
noise observed in a TEM measurement is a result of environmental electromagnetic noise 
(George & Snyder, Noise in Time Domain EM Systems, 2005).  Such noise is produced by 
power lines, radio stations, natural sources (principally thunderstorms), movements of the TEM 
loop antennas in the earth’s magnetic field, and other sources.  If the interfering source is some 
distance away from two receiving sensors, the noise field will be spatially uniform across the 
antenna array. Under such conditions, the noise will theoretically be eliminated when the signals 
from  two  (identical)  sensors  are  subtracted.   Although  the  signal  amplitude  will  decrease  as  a  
result of differencing, there may actually be an improvement in SNR because the noise may be 
decreased even more.   

Therefore,  the  main  focus  of  this  work  was  to  evaluate  SNR  for  both  a  ‘straight’  signal  and  a  
‘difference’ signal.  Since SNR has no accepted standards for TEM measurements, and since 
SNR is a function of time along a decay curve as well as other factors, we had no simple test to 
use.  Instead, we observed typical signals and evaluated their SNR by the “eyeball” method.  We 
fabricated two receivers and a circuit to produce a signal that is the difference between the 
outputs of the two receivers.  We tested these receivers using the transmitter and data acquisition 
system from the Navy’s AOL system (G&G Sciences Inc., 2008).   
The brief tests presented here unquestionably confirm our postulate that noise is decreased by 
differencing.  Yet the amount of the noise reduction is a complicated function of many factors 
and parameters.  In none of the cases we observed did SNR decrease when comparing the 
difference signal to either of the signals alone.  But in one case, where a symmetrical target was 
symmetrically located so that the difference signal is theoretically zero, we did observe a poorer 
SNR in the difference signal.   
The reduction in noise is a complicated function of site-specific conditions, particularly 
environmental noise characteristics at the time of the measurement, and, importantly, the choice 
of signal parameters such as base frequency, stacking, and gating (George & Snyder, Noise in 
Time Domain EM Systems, 2005).  So, these variables when combined with a nearly unlimited 
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set of geometries for transmitter, receiver, and target, complicates the answer to our postulated 
question. 

5.1.1 Experimental Setup
To complete the needed measurements, we used two of our standard 10 cm tri-axial receiver 
cubes, an experimental transmitter loop that we had on-hand from earlier development of the 
AOL system,  and  the  data  acquisitions  system and  transmitter  from the  AOL system.   Our tri-
axial cube contains three loops arranged in an X,Y,Z configuration.  The three loops were 
connected to an experimental preamplifier circuit that contained three individual amplifier 
circuits, one for each loop.  We modified one preamplifier circuit board so that two of the 
circuits receive the signals from identical windings on two separate cubes while the third circuit 
electronically subtracts the signals from the other two circuits.   

A block diagram of the hardware and the experimental setup is shown in Figure 38.  We used the 
vertical Z loop of each cube.  In the data presented, the signal from the first cube is identified as 
channel “0Y” while the signal from the second cube is identified as channel “0X.”  The 
difference channel is identified as channel “0Z.”  Note that In the amplifiers we took no special 
precautions  to  match  gains  from  each  of  two  loops  within  any  of  the  amplifiers.   We  used  

component electronic components with 5% tolerance, so we expected gains of each channel to 
the same to within and error of ± 5% of each other.  Therefore, the results represent the minimum 
performance gains we expected to gain from differencing.  Later, in the second phase, when we 

 
Figure 38:  Block diagram of sensors and amplifiers used for Proof of Concept 
experiments. 
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constructed the antenna array, we used 1% components and provided trimming capabilities so 
that gains could be matched precisely.  In the data for the Proof-of-Concept phase, 5% 
components were sufficient to demonstrate our contention that we could decrease noise and 
increase SNR.  

A block diagram of the experimental setup was shown Figure 38.  A picture of the loops and of 
the two cubes positioned for these measurements is shown in Figure 39.  To eliminate responses 
from objects in the ground, we placed all components on a platform elevated about five feet 
above the ground.    The transmitting loop is a 1-meter square loop from the original AOL 
system consisted of two sections of eight turns each.  The photo also shows a 10 cm steel  ball  
used for some of the measurements. 

For these measurements, one cube was 
placed at the center of the transmitter 
loop and the other cube was placed 20 
cm  in  one  ordinal  direction.   In  the  
data, the dBz/dt field for the center 
cube appears in channel 0Z, the dBz/dt 
field for the off-center cube appears in 
channel 0Y, the hardware difference 
between the two appears in channel 
0X, and the software difference 
between the two appears in channel 1Z. 
The cubes were oriented 
asymmetrically as shown rather than 
symmetrically across a baseline.  This 
was done because a target located 
symmetrically under the transmitter 
coil  and  symmetrically  under  a  pair  of  
receiver coils would generate a zero 
difference signal.   
In these tests we used two targets.  The 
first target was a 10 cm steel sphere 
positioned directly below the center 
cube  at  a  distance  of  69  cm below the  
transmitting loop and 72 cm below the 
plane  of  the  two receiving  loops.   The  
second  target  was  a  small  aluminum  
ring: 2-in outside diameter by 0.25 in wide by 0.0625 in thick.  The ring was placed 38 cm 
directly below the “X” (offset) receiver cube.     

5.1.2 Observations
We began our experiments with observations of raw background signal with no target and 
proceeded to observations of stacked and decimated transients from targets.  The objective of 
these observations was to tabulate improvements or degradations in the SNR for a few sample 
tests as differentiated from statistically evaluating the overall efficacy of the method. 

 
Figure 39:  Picture of experimental setup.  The near 
cube  is  located  at  the  center  of  the  transmitter  loop.   
The  far  cube  offset  by  20  cm.   The  Z  coils  (vertical  
axis) were used on each cube. 
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5.1.2.1 Noise Reduction Raw Signals
Typical time signals from the two sensors and their difference are shown in Figure 40.  The 
signals from the two sensors appear almost identical.  The large peaks occur 8.33 ms apart, 
which identifies them as noise spikes from a power line.  Although the signals appear identical at 
this scale, there are differences that can be 
seen when one looks closer.  The difference 
signal is shown in the lower part of the 
figure.  This signal is impressive -- it 
appears to have eliminated all of the power 
line spikes.   
This example indicates our best 
expectations.  We would expect that the 
signals from each of the sensors would have 
at least two components:  a received and 
perfectly correlated component that is 
uniform environmental noise, and an 
internal and perfectly uncorrelated 
component that is thermal noise.  The 
correlated components should subtract and 
the uncorrelated components should add.  
The difference signal in Figure 40 is 
significantly less than 10 times either of the 
other signals and its appearance is consistent 
with our preconceptions. While the sensor 
signals appear to be dominated by 60Hz 
environmental noise, that noise is effectively 
eliminated in the difference, and it appears 
to be dominated by wideband electronic 
(thermal)  noise.   This  is  what  we  want  
because thermal noise should be the 
limiting noise, presuming that we have kept 
thermal noise to a low level. 

These signals are further investigated in 
Figure 41.  This figure is the Fourier 
Transform  of  the  same  signals,  although  
over longer blocks (i.e., a longer time 
period).  These spectra are a stack of 300 
spectra, each from a 0.3 sec time block of 
data.  In these spectra, the spectral peaks are 
from repetitive signals,  such as power lines,  
while the baseline is random noise, either 
environmental random noise or electronic 
noise.  The blue and green traces 
(overlaying one another) show many spikes 
while most of the spikes have been 

 

 

 
Figure 40:   Background signals  observed.   Rx Y is  
signal from one sensor.  RxX is signal from the 
other  sensor.   RxZ  is  the  difference  signal  with  a  
gain x10 more than the others.  No stacking or 
averaging was done to these signals.  The ordinate is 
microvolts multiplied by 103, or equivalently, 
millivolts. 
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eliminated in the red trace.  In 
particular, the swarm of noise 
spikes representing power-line 
signals below about 20 KHz has 
been substantially attenuated. 12  
Note that the baseline, representing 
random noise for the difference 
signal,  is  roughly 2 times the sum 
of  the  other  two  baselines  (after  
considering the x10 gain 
difference), which confirms our 
claim  that  the  baseline  is  due  to  
thermal noise.  If the baseline were 
due to random environmental noise, 
such as lightning, that noise would 
also subtract in the difference 
signal.   There  is,  perhaps,  some  
reduction in the baseline level 
below 60 KHz, where we expect 
random environmental noise to be 
largest.  But since the receiver 
loops were measuring vertical field, 
they are insensitive to propagating EM noise from lightning.  Receiver loops that measure 
horizontal  fields are more sensitive to propagating EM noise.   The shape of the baseline above 
150 KHz is produced by the anti-aliasing filter in the data acquisition system.  The fact that the 
two baselines converge at high frequencies identifies high frequency noise in the blue and green 
traces as data acquisition noise, probably digitization noise. 

The random noise, thermal noise here but probably lightning noise in seasons and times of day 
when noise is higher (Chrissan & Fraser-Smith, 1996), (Maxwell & Stone, 1963), is the limiting 
factor in any of these measurements.  We note that the baseline noise in a single amplifier is 
about 1 V rms for either sensor alone and about 15 V rms for their difference.  Given that the 
sensor preamplifiers have a gain of 100, the difference amplifier has a gain of 1000, and the bin 
width for this spectrum is 6.1 Hz, we can compute the noise level at the input to the preamp.  
That noise level is 40 nV/ Hz, which is equivalent to the thermal noise produced by a 1.0 Kohm 
resistor.  This level of noise performance is reasonable and consistent with the design of our 
preamplifier.  We believe that thermal noise could be reduced by 10 dB or so (to an equivalent 
resistance level of 100 ohm) with additional development of receiver loop and preamp designs.  
But this 10 dB is the most we could expect to gain with additional work.  Since 10 dB is often 
inconsequential in TEM measurements that have dynamic ranges of many 10’s of dB’s, we 
believe the existing performance was adequate for this project. 

5.1.2.2 Noise Reduction Stacked and Decimated Signals

                                                
12 The large spike at 280 KHz is from a power supply in our transmitter.   Following these tests,  we identified that 
source of noise and reduced it to an inconsequential level. 

Figure 41:  Frequency spectra of signals similar to those in 
Figure 40.   Note  that  the  difference  signal  (red  trace)  was  
amplified by x10 compared to the others.  
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The discussions above have been based on 
the raw signal and noise that is received.  It 
is more important to compare noise that 
would actually be observed in a TEM 
measurement.  Typically, we stack a 
minimum of several cycles of a waveform 
and we then decimate (i.e. sum discrete 
samples into time gates).  The objective of 
this stacking and decimation is to reduce 
observed noise.  The resultant decay curve 
has an effective noise sensitivity function 
that is a function of frequency (George & 
Snyder,  Noise  in  Time  Domain  EM  
Systems, 2005) and is controlled by the 
selection of stacking and decimation 
parameters.  Stacking at an appropriate 
base frequency effectively reduces 60 Hz 
components and harmonics.  Decimating 
effectively reduces wideband noise at 
higher frequencies.   

To demonstrate, we show the responses 
that are observed from the 10cm steel 
sphere  target  located  67  cm  below  the  
center cube.  Figure 42 shows the 
responses that are observed with the 
simplest possible stacking, that is the stack 
of a single cycle.  The early time response 
up to about 70 s is receiver overload 
caused by direct coupling of the transmitter 
primary  signal  into  the  receivers.   The  
decay from about 70 s to about 800 s is  
the signal from the steel sphere.  The signal 
at later times is the stacked noise  that  is  
still present after the signal has died away.  
In  this  case  the  noise  still  shows  some  
remnants of 60 Hz spikes.  We know from 
observation that these spikes are 
effectively reduced by stacking more 
cycles as we typically do. 
The difference signal in the lower section Figure 42 of appears to  be  noisier  than  the  sensor  
signals in that the difference transient disappears into the noise at an earlier time.  In this case 
however, the difference transient has a faster decay rate than both of the direct transients and, in 
one respect, it has a better SNR.  The difference transient is observable over about a full decade 
in magnitude while direct transients are observable over something less than a decade.   

 
Figure 42:  Simply stacked response from a 10 
cm sphere.  Top two graphs are individual 
sensors, and bottom graph is the difference. 
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As mentioned earlier, final results 
should be based on signals that are 
both stacked and decimated.  
Stacked and decimated results are 
shown in Figure 43.  In this figure, 
signals from both sensors and the 
difference signal are displayed in the 
same plot.   The signals shown are a 
simple  stack  of  a  single  cycle  of  
signal (one positive and one 
negative decay), like the signals in 
Figure 42, followed by decimation 
into time gates that are so-called 5% 
time  gates.   A  5%  gate  is  a  gate  
whose width is 5% of the time delay 
at which it occurs.   

Two cases are shown in Figure 43.  
The top half shows a signal from the 
steel sphere corresponding to Figure 
42.  For comparison, the bottom half 
is for the small aluminum ring target 
that was located at 38 cm below the 
offset (X) receiver cube.  This last 
one is a good example of a decay 
curve that is somewhat noisy for 
each of the two individual sensors, 
but has much better SNR for the 
difference signal.  

5.1.2.3 Hardware versus

Software Differencing

A  secondary  objective  of  this  work  was  to  compare  two  methods  of  signal  differencing:  
hardware and software.  An advantage of hardware subtraction is that fewer channels are 
required if only the difference signal is digitized; but that becomes a disadvantage when both the 
individual signals and their difference signal are desired.  An advantage of software subtraction 
is that fewer channels are required in order to acquire both the difference signal and the 
individual sensor signals. But the dynamic range of software subtraction is limited by the bit-
resolution of the analog-to-digital converters used to digitize the signals and represents the case 
where any errors between two channels would be maximum.  On the other hand, software 
subtraction provides the ability to routinely compare the signals from each of the sensors and to 
compensate for gain differences and changes in the two channels.  
We made several comparisons of the hardware and software methods of obtaining the difference 
signal but every comparison resulted in the same conclusion:  hardware subtraction did not offer 
significant improvement over software subtraction.  In fact, in every test we did, hardware 
subtraction and software subtraction offered virtually identical signals.  An example is shown in 

 
Figure 43:  Responses using decimated time gates:  
Top response is one stack from a 10 cm steel sphere 
and  bottom  response  is  10  stacks  from  a  small  
Aluminum Ring.  Rx0Z is the difference signal. 
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Figure 44.  The two signals are virtually identical.  Since we believe it advantageous to have both 
signals as well as the difference signal, and since software subtraction involves less hardware, we 
used software subtraction for the following stages of work on this project. 
In all of these comparisons, we took no extraordinary precautions to match hardware components 
or to measure differences in gains before making software subtractions.  The data we have 
presented represents the minimum improvement we expect to gain by using pair of sensors.  
With additional time and effort, we believe we could make the advantages offered by sensor-pair 
subtraction even better. 

5.1.2.4 Coupling Between Tx Loops and Rx Sensors

During later tests we observed that there is significant coupling between the large transmitter 
loops and the receiver sensors.  The Rx sensors are usually located near the lower sides of X and 
Y (horizontal axis) transmitting loops.  The Tx loops are mounted on the array such that their 
lower sides cross just above the center of the Rx array.  This geometry is even more important 
for a gradient receiver array because it would likely be centered directly beneath the point where 
the X and Y transmitter loops cross.  Coupling between loops of any kind is a strong function of 
the spacing between the loops. Therefore, an Rx sensors in close proximity to a segment of a Tx 
loop will be susceptible to coupling between them.  This is important because the Tx loops are 
large compared to the Rx loops and thus collect relatively larger signals.   
Although it is often assumed that the transmitter loop is an open circuit when the transmitter is 
off, such is not the case.  The transmitter loop has internal capacitance and it must be terminated 

 
Figure 44:  Comparison of hardware and software subtraction.  The red curve (Rx1Z) 
was generated using software subtraction. 
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by  a  damping  resistor.   This  combination  allows  some  small  current  to  flow  in  the  transmitter  
winding.  Any current at all in that winding is likely to produce an observable signal in the 
receiver loop if the loops are well coupled.   
The signal induced into any loop is stronger at higher frequencies.  This makes higher frequency 
environmental EM noise particularly important.  Signals such as Very Low Frequency (VLF), 
Low Frequency (LF) radio transmissions, as well as atmospheric noise produced by lightning are 
ubiquitous.  Propagating signals in the VLF frequency range, 10–30 KHz, are characterized by a 
nearly horizontal magnetic field so they induce currents into one or both of the horizontal-axis 
Tx loops.  These currents can couple a signal into one or more of the nearby Rx sensors, 
depending on the placement of the sensor with respect to the transmitter.  Both the orientation of 
the Tx loops with respect the arriving fields, and the coupling between these Tx loops and the Rx 
loops is important.   

To demonstrate the effect, four 3D-cube 
receivers were placed in a box pattern 
arrangement shown in Figure 45. A snapshot of 
background noise is shown in Figure 46. Each 
row in Figure 46 shows the Z, Y, and X signals 
from  left  to  right.   The  top  row  shows  the  raw  
signals from the four sensors.  The bottom row 
shows the difference signals between the six 
possible combinations of the four sensors.   
The sinusoidal signal in the Y and X 
components for the four sensors individually is 
the propagating LF signal from WWVB at 60 
KHz.  WWVB is located just 300 km from our 
measurement site in Grand Junction, CO. Since 
it is propagating, its magnetic field component 
is horizontal and thus induces currents in the 
two  horizontal  transmitting  loops  as  well  as  
directly in the receiver Y and X components.  
The top row in Figure 46 confirms that the 
horizontal components of the WWV signal are 
significantly stronger than the vertical components and that a reasonably strong signal appears in 
each of the horizontal receiver loops as a consequence of direct reception.  These signals are 
expected and they do not indicate that there is coupling between the Tx loops and the Rx loops.  
Because the WWVB signal is a plane wave, we expect the common components of each sensor, 
for example the X components, to be similar if not identical in all four sensors.  Thus we expect 
to substantially reduce the WWVB signal when common components are subtracted.  And 
subtraction  does  so  for  the  Y  and  X  components.   However,  it  does  not  do  so  for  the  Z  
component – in fact it in the Z-Z difference the WWVB signal level increases.  Using the right 
hand rule to determine the field directions for currents flowing in the transmitter winding shows 
that a current induced into the Tx loop by the WWVB signal will additively couple into the Z-Z 
difference signal from pairs of sensors.  The additive coupling from the large vertical transmitter 
loops  is  demonstrated  in  the  lower  left  traces  in  the  figure.   This  experiment  shows  that  it  is  
important to attempt to place gradient receiver cubes away from the transmitter windings 

Figure 45:  Arrange of transmitter loops and 
receive cubes for demonstration of coupling 
effects. 



EM Tensor Gradiometer SERDP MM-1532 

56 

because coupling is strongly dependent on spacing, especially for small spacings.  The coupling 
will reduce the quality of the gradient signal.   

Figure  46:   Signals showing strong coupling between horizontal axis transmitting loops and receiver 
sensors.  Z components are on the left, Y components are center, and X components on the right.  The 
upper  traces  are  raw data  from each  of  four  sensors  arranged  in  a  box  pattern.   The  lower  traces  are  
traces from each of the six possible combinations of two sensors, component by component. 
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5.1.2.5 Improvement in Profile using Gradient Array

A sample of a profile that would be observed if making a continuous profile, as in a dynamic 
survey, is shown in Figure 47.  In this profile, four cube sensors were arranged in a 20cm 
cruciform  pattern  in  the  center  of  a  Z-only  transmitting  loop.   The  X  and  Y  transmitter  loops  
were removed.  A 60cm mortar was dragged at 11X depth in a 45 degree nose-down attitude 
under the array.  The whole field results in the upper half of Figure 47 show the expected offsets 
in responses as individual sensors pass over the target.  The figure shows the individual 
responses  as  well  as  the  magnitude  of  the  response  from  each  3D  cube  sensor.   The  slight  
imbalance in magnitudes is a result of the mortar being at a 45 degree nose-down attitude.   

The  gradient  results  from  the  same  data  set  are  plotted  in  the  bottom  half  of  Figure  47.   It  is  
apparent that the gradient results exhibit a nice improvement when compared to the conventional 
results.  There is substantially less noise and the profiles are symmetric.   

Figure 47:  Comparison of profiles observed with conventional sensors and gradiometer 
sensors 
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We would expect these results to be better in the case of a real-life survey because in this 
demonstration, there was no motion noise in the Rx sensors.  A comparison of profiles in a usual 
survey would likely show even more improvement in the gradient profiles.  This demonstration 
was not a planned part of the results in this project so no further work was done.  However, the 
result will be kept in mind for future applications. 
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6 Conclusions and Implications for Future Research
We make the following conclusions from our numerical study of finite gradients: 

 Finite differences provide useful estimates of the true gradient provided that the range (R) 
to the target is greater than twice the gradient baseline distance (R/h >2).  At a range of 
twice the baseline distance, the error in the gradient anomaly is approximately 10% of the 
peak anomaly value. 

 Our study of dipole tracking, which is based on the use of the gradient tensor, as a 
method for rapid location of the target demonstrates that it can provide useful estimates 
of target position provided R/h >2.  At the shorter ranges (2<R/h<3), however, estimates 
of position will be semi-quantitative.  Clearly, it is important to assemble our gradiometer 
with  the  smallest  practical  baseline  distance.   Given  the  dimension  of  our  sensor  cubes  
(10 cm), a baseline as small as 30cm – 35cm is possible.13     

 The restriction on range when using differences as approximations for the gradient field 
means that precise extraction of target parameters must continue to be affected using 
conventional non-linear inversion techniques because these methods can take into 
account the finite dimensions of the receiver array.  Clearly, however, dipole tracking 
remains an attractive method for real-time target detection and location.   

 This numerical study was carried out 
using  a  cruciform  array  of  5  sensors.   
With  this  array  it  is  easy  to  implement  
the form of electronic differencing 
discussed in Section 4 of this report.  As 
a result of the study presented in Section 
4, it appears that numerical differencing 
does as well as electronic differencing.  
If the gradiometer is implemented with 
numerical differencing of the signals, we 
are free to consider higher order 
differencing formulas.  In particular, we 
note that the AOL data acquisition 
system  that  was  used  in  this  project  is  
capable of supporting acquisition with 9 
cubes.  Therefore by using a gradiometer 
array  consisting  of  9  co-planar  cubes  
distributed in an array such as shown in 
Figure 48, it may be possible to improve 

                                                
13 Because of a desire to include a sensor at the center of the array, a gradiometer with a 30cm baseline would mean 
that there is only 5cm clearance between adjacent cubes.  At this distance there may be cross-talk between receiver 
cubes.  Some experimentation may be required to determine the minimum acceptable clearance between sensors.  
This problem disappears if we remove the center cube.   
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Figure 48:  A 9-cube finite tensor gradiometer 
configuration that can be realized using 
numerical differencing.  Such a configuration 
may reduce the gradient errors arising from the 
difference approximation. 
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gradient estimates and thereby mitigate the range R/h >2 restriction.  Additional 
modeling using this array would be required before we would be in a position to modify 
our guidelines.  

 The modeling with noise suggests that the signal-to-noise ratio (SNR) for gradient 
signals, notwithstanding the more rapid attenuation of gradients with distance, actually 
improves  –  at  least  for  the  standard  target  we  used  in  our  study.   This  improvement  is  
predicated on the assumption that we can reduce common-mode noise by 30-40dB.  The 
results obtained in Section 4 suggest that we are nearly there without taking 
“…extraordinary precautions to match hardware components or to measure differences 
in gains before making software subtractions.”   This is very encouraging. 

 We have established that systematic gradient errors caused by sensor imbalance or sensor 
orthogonality/positioning errors are second order errors when compared with the gradient 
errors that arise when using a finite baseline approximation at close range.  This of course 
assumes that reasonable care is taken in the construction of the sensor array. 

We make the following conclusions from experimental measurements relative to improvement of 
signal to noise ratio.   

 Differencing  of  signals  from  two  identical  sensors  substantially  reduces  noise  that  is  
produced by sources that are distant enough to produce a noise field that is effectively 
uniform at the sensors. 

 Differencing of signals from two sensors will sometimes, if not often, improve the SNR 
that is effective in making computations that use those signals. 

 Sensor differences give good SNR improvement (~20 dB) for raw signal (no stacking, no 
windowing 

 But sensor differences give less improvement for well-stacked and gated signals (e.g. 20 
sec 60Hz synchronous stacking, broad windows, 8 ms decay 

 Differencing of signals in this method can be done with relatively simple methods.  The 
antennas we have already developed and the electronics that amplifies the signals are 
adequate to produce usable differences. 

 Difference signals can be reliably produced with software, thus allowing use and storage 
of both the dB/dt field signals and the difference signals. 

 A gradiometer sensor provides better results for dynamic profiles  
These conclusions are amplified in the following table.  It shows the types of noise we conclude 
are significantly reduced by use of a gradiometer-type sensor.   

Table 1  Types of noise reduced (or not) by a gradiometer receiver 

Environmental EM Noise for un-stacked, un-gated 
signals 

Significant 

Environmental EM Noise for static, well-stacked and 
gated signals 

Insignificant 

Constant (‘mysterious’) background signals Significant 

Non-60Hz synchronous interference (e.g. mechanical 
vibrations from a tractor) 

Significant 
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Dynamic motion noise Significant 

Target/sensor geometry motion noise Insignificant 

 
Overall we make the following simplified conclusions and implications for future research. 

 A reasonable array for gradient observations is a 20 cm, horizontal cruciform array (six 
gradient observations).  A fifth central sensor could be needed to improve depth estimates 

 The horizontal cruciform array is best used for mapping surveys with a Z-only transmitter 
loop   

 For characterization of targets using 3D Transmitter loops: 
o A cruciform array must be physically separated from Tx loops.  Therefore array 

design for AOL/MM/BUD 3D-Tx arrays is problematic 
o The gradient sensors do not significantly improve static measurements that are 

well-stacked and well-windowed. 
o The gradient sensors do not improve our ability to distinguish multiple targets 

with overlapping signatures 

 Dipole tracking works 
 Altogether, gradient sensors would likely improve dynamic mapping surveys but do not 

provide significant advantages for static characterization. 
 Our experiments have established the need to separate a gradient array from close 

coupling to a horizontal-axis Tx loops in order to avoid coupling unwanted noise into the 
received signal. Moreover, this study has also established that the advantages of gradient 
methods accrue primarily to dynamic-mode target-detection surveys and not to static-
mode Cued-ID surveys. Thus we observe and make a “note-to-self,” that a good target 
detection array would consist of one or more, perhaps even four, cruciform receiver 
arrays arranged inside a Z-only transmitter loop.  
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Appendix A: The TEM Gradient Field
In this section, we look at the response of an ideal point gradiometer to dipolar fields 
produced by eddy currents induced in small targets by a primary field generated by 
passing a current through a multi-turn loop.  For ground surveys, the transmitter coil 
typically  has  dimensions  of  1m  x  1m  with  10-30  turns  of  copper  or  aluminum  wire.   
Current  levels  are  typically  on  the  order  of  10  A.14 The  dipole  theory  for  modeling  the  
EM response of small highly conductive and permeable target such as a UXO has been 
published by a number of authors (Barrow & Nelson, 2001), (MacInnes, Snyder, George, 
& Zonge, 2002), (Smith J. T., 2004), (Baum, 1999), so we only outline that theory here in 
order to define our notation and to show how it can be easily extended in order to 
calculate the tensor gradient of the induced secondary field.  The reader is referred to the 
papers we cite for a more detailed explanation. 

The EMI response of a small isolated target characterized by very high conductivity and, 
perhaps, high permeability is well approximated by a point dipole whose moment M is 
determined by the amplitude and direction of the transmitter field Hp at the location of 
the dipole (assumed to be approximately at the geometric centroid of the target body).  
The target properties are embodied in a time-varying 15  polarizability tensor P(t).  
Mathematically, the theory is summarized by the equations 

=                                                                  (A-1) 

=                                                                  (A-2) 

 
where in equation A-2, Bs is the secondary magnetic induction field generated by a point 
dipole with magnetic moment M which is related to the transmitter field at the target (Hp) 
by means of the polarizability tensor P using equation A-1.  The factor G, in equation A-
2 is another tensor called the dipole Green’s function.  EMI measurements are sensitive 
either to the time rate of change of the secondary magnetic induction field (Bs) in the time 
domain,  or  to  its  equivalent  Fourier  transform  in  the  frequency  domain.   The  dipole  
Green’s function is a simple function of position coordinates and simply describes the 
behavior of the dipole field at any point in space.  

A.1 Indicial Notation

                                                
14 The NAVEODTECHDIV AOL system uses 16T with 10A.   The Z transmitter loop on the LBL system 
has a split transmitter loop with 22T on each loop (44T total).  The transmitter loop is driven with a 
resonance transmitter that generates a half-sine current waveform with a peak current of approximately 
15A. 
15 We choose a variation in polarizability with time because we work in the time domain.  Equally valid 
would be a complex-valued polarizability tensor that is a function of frequency, which is appropriate for 
those who work in the frequency domain. 
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The vectors in equations A-1 and A-2 can each be expressed by their 3 components in a 
particular spatial coordinate system.  Likewise, the tensors (i.e., P and G) are of second 
rank and can be expressed as a symmetric 3x3 table of components (a matrix if you will).  
It is convenient to rewrite equations A-1 and A-2 in terms of their indexed components as 
we show below.  In this case, we adopt the usual summation convention (i.e., duplicated 
indices indicate an implicit summation over the range of the index).  In rewriting 
equations A-1 and A-2 in indicial notation, we have also taken the time derivative of the 
fields so that equation A-2a is directly related to the voltage we see at the receiver. 

; where and ijp i
i ij j i ij

dPdMM P H M P
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                               (A-1a) 
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                                                 (A-2a) 

The receiver point P coordinates are given by the 3 values xi and the dipole is located at 
position Q defined by the 3 values ui. The elements of the dipole tensor Gij are given by 
the relation 
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Upon taking the derivatives of the Green’s function (equation A-3) with respect to the 
receiver coordinates xk we can write its gradient, a tensor of rank 3, as 
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(A-4)  
In equation A-2a, the components of the dipole moment Mj (and its time derivative) are 
functions of the primary field and hence the coordinates of the transmitter location.  
Therefore, to find the gradient of the secondary field, we need only know the gradient of 
the dipole Green’s function, which we have written in equation A-4.  The theoretical 
gradient field due to the induced dipole located at point Q with coordinates ui is given by  
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, 0 ,
s
i k ij k jB G M                                                                                    (A-5) 

where the elements of the 3rd rank tensor Gij,k are given in equation A-4. 

We can combine equations A-5 and A-1a to get the final modeling equation that relates 
the gradient of secondary field at the receiver point (P) to the target parameters embodied 
in the notion of a time variation of a polarizability tensor characterizing the target (Pij and 
its time derivative), and the amplitude and direction of the primary field which induces 
eddy  currents  in  the  target  (Hp

i). The 3rd rank Green’s function tensor (equation A-4) 
governs the spatial behavior of the resulting tensor gradient field. 

, 0 ,
s p
i k ij k jl lB G P H                                                                              (A-6) 

In this explanation, we have omitted for brevity the relation for the primary field (Hp) at 
the target location.  This can take many forms depending on the exact shape of the 
transmitter.  In any case, it is the same relation whether we choose to measure fields with 
an induction loop or gradients with either an ideal gradiometer receiver or an array of 
induction fields that approximate differences proportional to the required spatial 
derivatives.  In the next section and in subsequent sections where we compare finite 
gradients with theoretical gradients, we have used equations A-4 and A-6 together with 
an appropriate relation for computing Hp from a finite current loop to calculate the 
theoretical gradient. 

A.2 Target Polarizability
The polarizability tensor Pij introduced in equations A-1 and A-1a provides a linear 
constitutive relationship between intrinsic properties of the target and the magnetic 
polarization, which we can measure indirectly through the magnetic induction field that it 
generates.  In the time domain, polarizability is a real symmetric tensor.  In general, 
therefore, it is characterized by six independent elements, the other three being dictated 
by  the  tensor’s  symmetry  property.    Because  it  is  real  and  symmetric,  there  exists  a  
coordinate system that we call the principal coordinate system in which the polarizability 
tensor is expressed as a diagonal tensor.  In the principal coordinate system, therefore, the 
polarizability tensor is defined by three time-varying functions that are the diagonal 
elements of tensor and are in fact the tensor’s eigenvalues.  Mathematically, the elements 
of the polarization tensor in its principal system can therefore be expressed by  
 

1

2

3

0 0
( ) 0 0
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ij

p t
P t p t

p t
  .                                                   (A-7) 

In coordinate systems other than the principal coordinate system, the polarizability tensor 
can be expressed in terms of its three elements in the principal system through an 
orthonormal coordinate transformation U( ), where the three angles (  are often 
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termed the Euler Angles.  The transformation relation between the tensor in it principal 
coordinate system to its expression in any other coordinate system is 

 

 ; where  denotes matrix transposeT TP U P U U   .                           (A-8) 

 

Using indicial notation (with implied summation over repeated indices), equation A-8 is 
equivalent to the equation 

 

ij ki kl ljP U P U  .                                                            (A-8a) 

 

In using the polarizability concept, the properties of the target are totally expressed by its 
three principal polarizability components pi(t).   The  Euler  angles  ( describe the 
attitude of the principal coordinate system with respect to the measurement system and 
therefore are not properly considered to be target parameters. 
For the purpose of the 
numerical experiments and 
examples,  we  will  use  an  
approximation to the 
polarizability of a conductive 
and permeable prolate spheroid 
having a diameter of 60mm and 
a length of 180mm (3:1 aspect 
ratio).  The approximation is 
based on work published by 
Smith, et. al. (Smith & 
Morrison, Approximating 
Spheroid Inductive Responses 
Using Spheres, 2002) that 
establishes a basis for 
approximating the response of 
moderate oblate or prolate 
spheroidal conductive and 
permeable shapes based on the 
response of conductive permeable spheres.  Using the parametric relationship for the 
polarizability transient of a sphere (Smith, Morrison, & Becker, Parametric Forms and 
the Inductive Response of a Permeable Sphere, 2004), which is reproduced below, the 3 
polarizability transients of the 60mm baseline target model are given in Table A-1.  The 
parametric relationship for the transients is 

Table  A-2:   Parameters  for  the  principal  
polarizability transients approximating a 
conductive permeable prolate spheroid target 
diameter 60mm and length 180mm.  The relative 
permeability of the body is 180 and its conductivity 
is 108 S/m.  

Axis Index cm^3 s s

1 3349.21 776.11 1.337 7.33E-07
2 1363.97 86.23 1.337 6.60E-06
3 1363.97 86.23 1.337 6.60E-06

Polarizability
1 973 400 900
2 247 400 900
3 247 400 900

Time Gate ( s) 
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 .                                       (A-9) 

The objective of our modeling here is to determine the specifications for a gradiometer 
that will provide information that is useful for the UXO problem.  Therefore, rather than 
model the full time variations in the gradient field, we have selected a time window that 
is typical of that used in commercially available TEM systems such as the Geonics EM-
61 (e.g., 400-900 us).  Using the parameters in Table A-1 and integrating equation A-9 
over the gate interval yields the three principal polarizability constants for the target gate.  
These numbers correspond to the “3 beta values” mentioned by Nelson et. al. (Nelson, 
Bell, McDonald, & Barrow, 2003).  At the bottom of Table A-1, we have tabulated the 3 
values of polarizability for our spheroid test target corresponding to a standard EM61 
time gate.  

A.3 Units
Equation A-6 is the basic response equation that relates the gradient of the secondary 
induction field (Bs) to the primary field at the target (Hp), and the polarizability rate 
tensor  dP/dt.   From  an  analysis  of  the  dimensions  involved  in  equation  A-6,  we  can  
determine that when induction field is measured in units of Teslas (T), the polarizability 
tensor must have dimensions of m3/s in order that the units in equation A-6 balance on 
each side.16  But our EM instruments do not directly measure the induction field or its 
rate.  Instead, they measure voltages or, perhaps, voltage differences with the voltage 
proportional to the time rate of change of flux which has units of T-m2/s = Volts.  Thus, 
in order to change the values of secondary induction field gradient into an equivalent 
voltage gradient, we need to calculate the time rate of change of flux ( /dt) through 
each receiver coil.  For sufficiently small receivers, we can assume the induction field is 
approximately constant over the area of the receiver and hence, to the extent that this is a 
good assumption, the voltage measured by a particular receiver is simply the product of 
the receiver’s  effective area (Ae) of the receiver (turns x area x gain) times the time rate 
of  change  of  the  component  of  the  field  normal  to  the  plane  of  the  receiver  

ˆ( )s e sV A n B .  Therefore, we can turn our calculated field gradients into measured 
voltage gradients simply by multiplying the theoretical gradients by the effective area of 
the receiver(s) m2.  We report the voltage gradients we calculate in units of ( V- s) /m 
by assuming an effective area of 100 m2, the effective area of the 3 loops on the AOL 
receiver cubes, as the area of gradiometer receiver loops.  The strange unit of (V s) arises 
because we have defined and used polarizability values (see bottom of Table A-1) that 
are the integration of the polarizability rate curve defined by equation A-9 over a 
500 s time gate.     

                                                
16 In table A-1, we have provided polarizability parameters in units of cm3 and s.  Note that 1 cm3/ s = 1 
m3/ s.  
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A.4 Synthetic Profiles and Maps

As we mentioned in section A.1.2 above, the gradient tensor of the secondary magnetic 
induction field (equation A-6), is a second rank symmetric tensor.  Therefore, in general 
it has 6 independent elements.  In order to summarize the spatial behavior of these 
elements we have developed a summary plot containing 15 separate plots.  Figure A-1 is 
an example of the summary plot for a short profile (x = 0; -2.6<y<2.6; z = 0) computed 
over our standard target when it is buried at a depth of 1m.  The vertical scale on the plots 
has been companded (i.e., compressed) using the algorithm  
 

1
10

0

20 sinh ,  
2c
VV Log e
V                                       (A-10) 

where Vc = companded result, V = input value, and V0 = reference value. 

The green lines in Figure A-1 represent a signal level that is 40dB above (below) the 
indicated threshold value.  Signals with peak amplitudes of 30dB or more above the 
noise-level are generally regarded as “interpretable” using physics-based modeling 
methods.  Therefore, at noise-levels on the order of 100 s or less, our physics-based 
interpretation methods should work well.   

Gradiometer Summary Plot: Theoretical Gradient H60mm ND 1mL
HCompanded Scale wê 20dB tick marks relative to 100H V sL

Bzx Bzy Bzz Bz B

Byx Byy Bzy By I2

Bxx Byx Bzx Bx I1

Figure A-1:  Summary plot showing theoretical TEM gradient profiles over a 60mm test target 
buried 1m beneath the plane of the transmitter coil.  The profile ranges from –2.6m to + 2.6m.  
The vertical tick marks represent a companded scale that approximates a bipolar logarithmic 
scale for signal levels greater than the indicated threshold [100 (µV )]. The green lines are 
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Figure A-1 also identifies 3 column groups:   
1. Gradients – This group represents the 9 gradients of the secondary field gradient 

tensor.   As  we mentioned  previously,  the  tensor  is  symmetric  and  plot  elements  
show that symmetry.  Note also that the elements along the main diagonal sum to 
0.  

2. Fields – These 3 profiles represent the components of the vector field along the 
simulated profile.  

3. Invariants – Vectors and tensors have invariant properties -- scalars values that 
are independent of the coordinate system in which the vector or tensor is 
expressed.  The amplitude of a vector field, for example, is invariant under 
coordinate transformations.  Likewise, a tensor of the second rank has 3 
invariants.  In the case of the gradient field, only two of the invariants are useful.17  
The 3 invariants, I1,  I2,  and  |B| (column 5 in Figure A-1) are derived from the 
gradient tensor and the vector field (Pedersen & Rasmussen, 1990).  The 
definitions  of  the  invariants  in  terms  of  elements  of  the  gradient  tensor  (dBij/dt) 
and vector field components (dBi/dt) are shown in equation A-11 below: 
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 (A-11) 

In equation A-11 we have taken the square root and cube root in the expressions for I1 
and I2,  respectively,  so that  the units of the invariant quantities will  remain the same as 
the elements of the gradient tensor (i.e., (µV-µs) /m ). 

The summary maps have a layout that is identical to that of the profile summary display 
with the profiles replaced with the corresponding color map display.  In all of our model 
computations, we have defined a standard display area encompassing the x and y 
coordinate ranges -2.6<x<2.6, and -2.6<y<2.6 with coordinate values in meters.  As in 
the profile summary plots, we again plot companded data in order to provide a better 
indication of the dynamic range of the anomalous values.   Figure A-2 is  an example of 
the standard map display, and it corresponds to the same model shown in Figure A-1.  

 

                                                
17 We have already noted that the trace of the gradient tensor (i.e., the sum of its diagonal elements) always 
sums to 0.  This is a property of all potential fields and arises from the fact that potential fields are 
irrotational (i.e., 0

s
B ).  The trace of the gradient tensor is one of the invariants. 
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A.5 Comments
Although we have yet to address the practical issues of approximating gradients by 
measuring the differences in the field components over finite spatial distances, the model 
data in Figures A-1 and A-2 provide us with an order of magnitude for the sensitivity 
required not only to detect targets of interest but also to characterize or otherwise identify 
these targets.   The standard target, whose parameters we tabulated in Table A-1, 
approximates a 60mm mortar.  Generally speaking, when buried at a depth of 1m (say, 
75cm below ground level) a 60mm mortar is near the threshold of detection for most EM 
systems.  Therefore, the results from the theoretical gradient models for this target 
indicate that gradient signal levels that are on the order of ±1000 V- s/m, or 
equivalently order ±2 V/m in terms of average voltage at the gate center instead of an 
integrated gate value should be interpretable.18   

                                                
18 The reader can easily convert this threshold to a simple voltage gradient by recalling that the responses 
used to plot our curves arise from integrating along the received dB/dt voltage transients over a time 
window of 500 s that is centered at a time delay after current shut-off of 650 s.  Thus if we divide (  
s)/m by 500, we end up with V/m, the average receiver voltage at 650 s.    

Figure  A-2:  Summary  plot  showing  theoretical  TEM  gradient  maps  over  a  60mm  test  target  buried  1m  
beneath the plane of the transmitter coil.  The maps cover a 5.2m x 5.2m area centered over the target.  The 
color scale represents the companded values and approximates a bipolar logarithmic scale for signal levels 
greater than the indicated threshold [100 s].  




