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Advanced Signal Processing for Detailed Site Characterization
and Target Discrimination (Project 1669)

Interim Report: EMI Model Validation Using NRL TEMTADS Data

Peter B. Weichman
BAE Systems, Advanced Information Technologies,

6 New England Executive Park, Burlington, MA 01803

This report details basic validation of our physics-based EMI models against data collected by the
NRL TEMTADS system. The data was collected under laboratory-type conditions using artificial
spheroidal targets. The models are essentially exact for these types of targets, and enable detailed
comparison of theory and data in support of both model validation and measurement platform
characterization.

I. INTRODUCTION

This document details successful validation of our
physics-based “mean field” and “early time” approaches
to modeling of time-domain electromagnetic (TDEM) re-
sponses of compact, highly conducting targets. Specifi-
cally, we apply our methods to the analysis of laboratory-
style data collected by the NRL TEMTADS system using
artificial spheroidal targets. The models use the detailed
system parameters (transmitter and receiver coil posi-
tion, orientation, and geometry; transmitted pulse wave-
form; target position, orientation, geometry; target con-
ductivity and permeability) to generate first principles
predictions for the measured time-domain voltages. The
models are designed to be essentially exact for spheroidal
targets, and, as described in the remainder of this docu-
ment, the remarkable agreement between measurements
and predictions strongly supports this conclusion.
The outline of the remainder of this document is as

follows. Details of the EM theory underlying the models,
and their numerical implementation, will be detailed else-
where, but a basic overview is given in Sec. II. In Sec. III
the basic parameters of the NRL TEMTADS system are
detailed. In Sec. IV model predictions are compared with
TEMTADS data for spherical targets, for which an ex-
act analytic theory also exists (Sec. IVA); prolate (elon-
gated) and oblate (discus-like) spheroidal targets (Sec.
IVB). Finally, conclusions and directions for future work
are presented in Sec. V.

II. MODELING BACKGROUND

The essence of the TDEM induction measurement is
sketched in Fig. 1. The transmitter loop current pulse
generates a magnetic field in the target region. This
changing applied field, especially as the pulse terminates,
induces currents in the target, generating a scattered
magnetic field. The decaying scattered field, following
pulse termination, induces the measured voltage in the
receiver loop.

There are three different regimes that one may identify
in the voltage time traces: early, intermediate, and late

FIG. 1: Sketch of target EMI response. Left: The transmit-
ter current induces a magnetic field inside the target. Right:
The transmitter pulse termination induces screening currents
in the target that, via Lens’s law, oppose the change in the
applied field. These currents are initially confined to the tar-
get surface, but then diffuse inward, generating a decaying
scattering magnetic field that is sensed though the induced
voltage in the receiver loop.

time. At very early time, immediately following pulse
termination, the currents are confined to the immediate
surface of the target. The initial diffusion of these cur-
rents into the target interior leads to a power law decay
(1/t1/2 for nonferrous targets, 1/t3/2 for ferrous targets
[1, 2]). At intermediate time, as the currents penetrate
the deeper target interior, the power law crosses over to
a multi-exponential decay, representing the simultaneous
presence of a finite set of exponentially decaying modes.
Finally, at late time only the single, slowest decaying
mode survives.

At intermediate- to late-time our mean field algorithm
models the dynamics by computing as large a number
as possible of the modes, and determining the excitation
level of each. At early time, the power law arises from
a superposition of an essentially infinite number of ex-
ponentials, and a complementary theory, based on the
detailed dynamics of the initial very thin surface current
sheet, has been developed instead.



A. intermediate- to late-time modeling: mean field
approach

The solution to the Maxwell equations allows one to
represent the electric field following pulse termination as
a sum of exponentially decaying modes,

E(x, t) =

∞∑
n=1

Ane
(n)(x)e−λnt (2.1)

where λn are decay rates, e(n) are mode shapes, and
An are excitation coefficients. The first two are intrinsic
properties of the target, analogous to vibration modes
of a drumhead. Only the excitation amplitudes actually
depend on the measurement protocol.
As time progresses, modes with larger values of λn de-

cay more quickly, and so at any given time t the signal
will be dominated by some finite set of modes, namely
those modes with λn � 1/t. At very late time, t > 1/λ1,
only the slowest decaying mode contributes, and the sig-
nal becomes a pure exponential decay. Thus, the earlier
in time one wishes to model quantitatively, the greater
the number of modes that are required. The ultimate lim-
itation turns out to be the rate at which the excitation in
pulse is terminated. If the pulse is turned off on a time
scale tr (see Sec. III B), then only modes with λn � 1/tr
have substantial amplitudes An, and a finite set of modes
suffices for a full description of the target electrodynam-
ics. However, for large targets, this may require many
thousands, or even tens of thousands, of modes, which is
beyond current computational capability. However, the
early time power law regime may extend out to 1 ms,
or even 10’s of ms, and we will see that a few hundred
modes is more than enough to overlap this regime. The
early time (see Sec. II B) and mean field approaches may
then be combined to fully describe the target dynamics
over the full measured time range.
Using the mode orthogonality relation,∫

d3xσ(x)e(m)∗(x) · e(n)(x) = δmn, (2.2)

where σ(x) is the conductivity, the excitation amplitude
can be shown to be given by

An = I
(n)
T NT

∫
CT

e(n)∗(x) · dl, (2.3)

in which the transmitter loop has been approximated by
an ideal 1D loop CT with NT windings, and

I
(n)
T = −

∫ 0

−∞
dteλnt∂tIT (t) (2.4)

depends on the history transmitter loop current IT (t) up
until the beginning of the measurement window, taken
here as t = 0. To gain some intuition, a single perfect
square wave pulse of amplitude I0T and duration tp, one
obtains

I
(n)
T = I0T (1 − e−λntp). (2.5)
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FIG. 2: Sketch of NRL TEMTADS array consisting of a 5×5
array of 25 independent, concentric transmitter and receiver
coils, numbered from 0 to 24 as shown. Due to rapid de-
cay of signals with target depth, precise (cm level) geometry
and placement of the coils (summarized in Table I) can have
significant effect on the overall measured voltage amplitude.

Sensor center horizontal separation 40 cm
Transmitter coil center height 4.3 cm
Transmitter diameter 35 cm
Number of transmitter coil windings NT 35
Receiver coil center height 0.4 cm
Receiver diameter 25 cm
Number of receiver coil windings NR 16

TABLE I: NRL TEMTADS array geometry. The transmitter
coil windings are 7.8 cm tall with 0.4 cm thick endcaps on top
and bottom. Height is measured from the bottom side of the
lower endcap, and the transmitters are then modeled as an
idealized 1D square loops at 0.4 + 3.9 = 4.3 cm height. The
receiver coils are vertically compact and lie at the bases of the
transmitter coils, hence are modeled as idealized 1D square
loops at 0.4 cm height.

For a mode that decays rapidly on the scale tp, one has

λntp � 1, and I
(n)
T � I0T . For a more slowly decaying

modes, I
(n)
T will have a strong dependence on tp and n.

In fact, for large targets one may actually encounter the
regime λntp � 1 [e.g., tp = 25 ms and τn = 1/λn =

O(100 ms)] where I
(n)
T will depend not only on tp, but

on previous pulses.
Finally, the measured voltage takes the form

V (t) =
∞∑
n=1

Vne
−λnt (2.6)

in which, approximating the receiver as well by an ideal
1D loop CR with NR windings, the voltage amplitudes
are given by the line integrals

Vn = AnNR

∫
CR

e(n)(x) · dl. (2.7)
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FIG. 3: Illustration of the early time evolution of the surface density depth profile from the target surface for nonmagnetic
(left) and magnetic (center) targets, beginning from a delta-function initial condition (perfect step function pulse termination).
Distance R = r/L is scaled by the target size, time τ = t/τD by the diffusion time, so that κ here corresponds κn

√
τc in (2.11),

and is essentially the permeability contrast (μ − μb)/μb. The profiles are plotted for a sequence of 26 equally spaced scaled
times 10−4 ≤ τ ≤ 0.05 (earlier times corresponding to narrower profiles). The nonmagnetic profile exhibits a pure Gaussian
spreading into the target interior, while the magnetic profile is much more complex due to the surface magnetic boundary
condition. Its maximum is pushed inwards from the boundary, and decays more rapidly with time. The right plot shows the
time trace for the current density at the surface, R = 0, and is essentially the profile H(κ

√
τ), equation (2.12), which appears

in the measured voltage (2.11). For κ = 0 (solid blue line) the τ -dependence follows an exact 1/
√
τ power law. For κ > 0 (solid

red line) the τ -dependence crosses over from the identical 1/
√
τ form at early-early time to the 1/τ 3/2 power law (dashed red

line) at late-early time [the asymptotic forms displayed in (2.12)].

Equations (2.3)–(2.7) provide all the required ingredi-
ents for generating predicted data based on a target and
measurement platform model. Our “mean field” numer-
ical code divides naturally into two parts.
The internal code solves the Maxwell equations to pro-

duce the intrinsic mode quantities λn and e(n) for a range
of expected targets. With increasing λn, the modes have
more complex spatial structure, and finite numerical pre-
cision means that only a finite set (a few hundred) of
slowest decaying modes are actually produced.
The external code uses the mode data, along with the

measurement platform data, to compute current inte-
grals (2.4), the line integrals in (2.3) and (2.7), and then
combines them to output the voltage amplitudes Vn and
hence the time series (2.6). Note that the line integral
computation requires full knowledge of the relative posi-
tion and orientation of the target and platform.
For high precision, the internal code can take anywhere

from minutes to hours to produce mode data for a single
target. However, given this data, the external code takes
at most a few seconds produce the full predictions. Pre-
computation and storage of a rapidly accessible database
of target data is therefore essential.

B. Complementary early time modeling

For a rapidly terminated transmitter pulse, the exter-
nal electric field, and induced voltage, display an early
time power law divergence [1, 2] (saturating at very early
time only on the scale of the off-ramp time tr [4]). The
boundary between the intermediate (multi-exponential)
and late time (mono-exponential) regime occurs at the

diffusion time scale

τD = L2/D (2.8)

where L is the characteristic target radius, and D =
c2/4πμσ is the EM diffusion constant—this is the time
scale required for the initial surface currents to diffuse
into the center of the target. The early time regime cor-
responds to times t � τD (say, t < τD/100), beginning
deep into the multi-exponential regime where many (e.g.,
hundreds of) modes are excited. In this regime, for non-
permeable, or weakly permeable targets (μ � μb), one
obtains the simple power law prediction prediction [1]

V (t) = Ve/t
1/2, t � τD, (2.9)

with all of the target and measurement parameters en-
compassed by the single amplitude Ve, whose computa-
tion requires the solution of a certain Neumann problem
for the Laplace equation in the space external to the tar-
get.
For permeable targets, a new magnetic time scale

τmag = τD(μb/μ)
2 (2.10)

emerges. For ferrous targets, μ/μb = O(100), and
τmag/τc = O(10−4) is tiny, and the early time voltage
has a more complex magnetic surface mode structure,

V (t) =

∞∑
n=1

V e
nH(κn

√
t) (2.11)

where the κn are surface mode eigenvalues, and the mode
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FIG. 4: Contour plots for the first few magnetic surface modes
eigenfunctions for an aspect ratio 4 prolate spheroid. Plotted
is the stream function ψn associated with each mode: red
corresponds to positive ψn, blue to negative ψn, and green
to near zero values (node lines). The level curves of ψn are
the stream lines of the surface current. Higher order eigen-
functions clearly have more complex structure with patterns
of multiple, oppositely oriented current vortices (which cir-
culate clockwise around blue patches, and counter clockwise
around red patches).

time trace profile

H(s) =
1√
πs

− es
2

erfc(s)

≈
{

1√
πs
, s � 1

1
2
√
πs3

, s � 1,
(2.12)

where erfc(s) is the complementary error function, inter-
polates between a 1/t1/2 power law at early-early time,
t � τmag, and a 1/t3/2 power law at late-early time,
τmag � t � τD. For large ferrous targets, this latter in-
terval is very large, and may, in fact, accurately represent
the signal over nearly the entire measurement interval
(see Sec. IV).

Figure 3 illustrates the important features of the early
time modeling, including the complex evolution of the
surface current depth profile [which extends H(s) to a
function of both time and space [2]] that ultimately gives
rise to the externally measured voltage (2.11).

The surface modes are special surface current profiles
(see Fig. 4) that, instead of decaying exponentially, evolve
according to the universal function H(s). They and the
κn are solutions to an eigenvalue problem defined on the
surface of the target [2]. They may be determined ana-
lytically only for spherical targets, where one finds

κl = l/
√
τmag, l = 1, 2, 3, . . . , (2.13)

each (2l + 1)-degenerate, with τmag = 4πσμ2
ba

2/μc2,
where a is the radius. The amplitudes V e

n again require
a solution to an external Laplace-Neumann problem.

Unlike the bulk, exponential modes, under most con-
ditions, only a very few surface modes are excited. The
initial surface current pattern more-or-less follows the
shape of the magnetic field generated by the transmit-
ter coil. Unless the target is close to the coil, this field
is fairly uniform, and the corresponding surface current
density is fairly uniform as well, and can then be rep-
resented by the first few (two or three) modes. There
is a very heavy numerical overhead in computing these
modes and their excitation amplitudes, all in pursuit of
predicting the rather limited information content of just
a few coefficients. Given the success of extending the
mean field predictions into the intermediate-early time
regime, we have therefore found that it is much more ef-
ficient to extend the voltage curve by fitting the data at
intermediate times to a one or two term series of the form
(2.11), estimating κn ≈ 1/

√
τmag for the first few modes.

Although this precludes quantitative predictions at early-
early time, it provides an enormously useful qualitative
confirmation that the functional form H(s) accurately
describes the data.
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FIG. 5: TEMTADS transmitter current bipolar pulse wave-
form. Top: multiple periods. Bottom: single 100 ms period.

III. TEMTADS PLATFORM

A. Platform geometry

The 5× 5 NRL TEMTADS sensor array is sketched in
Fig. 2, and its geometrical parameters are summarized in
Table I. The loops CT and CR are all modeled as per-
fect squares with 35 cm and 25 cm edges, respectively.

The origin is taken to be at the base of the lower endcap
for sensor 12, the positive x-axis towards sensor 13, the
positive y-axis towards sensor 7, and the positive z-axis
vertically upwards. The transmitter and receiver loop
centers then all have x- and y-coordinates that are mul-
tiples of 40 cm. The transmitters are all at z = 4.3 cm,
and receivers are all at z = 0.4 cm. Target positions and
orientations quoted in later sections are all in this frame
of reference [3].

The precise overall voltage amplitudes, required at
least for initial verification of the instrument calibration,
turn out to be surprisingly sensitive to small changes in
these numbers. The scattered fields may be thought of
as approximately dipolar, and the voltage therefore de-
creases roughly as 1/d6 with depth d. For example, there-
fore, a 1 cm error for a 30 cm deep target then leads to
a 20% error in the voltage amplitude. A consistent sys-
tematic error of this magnitude, in fact, is what led us to
uncovering the existence of the endcaps, and the vertical
offset between the transmitter and receiver loops!

B. Transmitter waveform

The TEMTADS pulse sequence is shown in Fig. 5,
and its parameters are summarized in Table II. The se-
quence is bipolar, meaning that the pulses alternate in
sign. Each pulse is 25 ms long, followed by a 25 ms mea-
surement window (“50% duty cycle”). Although square-
wave-like, the pulses have a much more rapid termination
time tr = 10 μs than onset time (a few ms)—see Fig. 6. It
is important to understand which details of the waveform
actually impact on the measurement prediction.

More quantitatively, ignoring various small spike-like
features, the pulse waveform is described by the following
sequence of functional forms (dashed lines in Fig. 6):

I(t) =

⎧⎪⎪⎨
⎪⎪⎩

I1(1 − e−t/τ1), 0 < t ≤ t1
I(t1) + I2[(1− α)(1 − e(t−t1)/τ2) + α(1− e−(t−t1)/τ3)], t1 < t ≤ tp
Imax[1− (t− t2)/tr], t2 < t ≤ tp + tr
0, tp + tr < t ≤ 2tp,

(3.1)

with individual pulse length tp = 25 ms; very rapid ex-
ponential time constant τ1 = 2.5 μs over the interval
0 < t ≤ t1 = 10 μs; superposition of much slower expo-
nential time constants τ2 = 0.33 ms, τ3 = 4 ms over the
interval t1 < t ≤ tp; and linear off-ramp time tr = 10 μs.
The second half of the full bipolar pulse, beginning at
t = 2tp, is the same as the one above, but inverted. The
current amplitudes are I1 � I(t1) � 2.3 a, I2 � 3.7 a,
and Imax = I(tp) � I1 + I2 � 6 a. The mixing co-
efficient α = 0.01–0.02 is small, and varies substantially
from pulse to pulse. However, it dominates the last 1–2%
of the relaxation after the first couple of ms (see upper

and lower left panels in Fig. 6).

The functional forms in (3.1) are simple enough that
analytic forms for the current coefficients (2.4) may
be computed straightforwardly (though somewhat te-
diously). If one were interested in quantitatively describ-
ing the target dynamics through the entire pulse inter-
val, as well as the measurement interval, all of this de-
tail would indeed be important. However, as we will now
show, the separation of time scales t1 � τ2 � τ3 � tp al-
lows one (purely for convenience) to ignore most of these
details without affecting the model fidelity in the mea-
surement interval—it is really only the current amplitude
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FIG. 6: Pulse waveform details, together with model fits, as described in the text, over various time intervals. The upper three
plots show the positive pulse, and the lower three plots show the following negative pulse. As detailed in the text, different
aspects of the shape of the pulse impact the measured (and predicted) response to differing degrees.

Transmitter current amplitude Imax = 5.7± 0.3 a
Full, bipolar pulse period Tp = 100 ms
Individual pulse lengths tp = 25 ms (50% “duty cycle”)
Exponential onset time constants τ1 = 2.5 μs, 0 ≤ t < t1 = 10 μs

τ2 = 0.33 ms, τ3 = 4 ms, t1 ≤ t < tp
Pulse termination linear off-ramp width tr = 10 μs tp ≤ t < tp + tr

TABLE II: NRL TEMTADS pulse waveform parameters associated with the time traces in Fig. 6). The transmitter current
amplitude varies by about 10% between pulse sequences. The pulse onset is quite complex, turning on rapidly from zero to 2.5
a over a 10 μs interval (with functional form given by an exponential with a 2.5 μs time constant), followed by a superposition
of exponentials with 0.33 and 4 ms time constants, saturating at about 6 a. The pulse terminates with a 10 μs linear ramp.
See equation (3.1) for precise analytic forms. Although not essential, for simplicity, the numerical model keeps only the 0.33
ms exponential onset, and the linear off-ramp.

Imax, the pulse length tp, and the off-ramp time tr that
matter.

To see this, note that for modes that decay rapidly
enough that λnτ3 � 1, the eλnt factor makes the inte-
gral (2.4) insensitive to times prior to the pulse offset for
which IT (t) differs measurably from Imax (i.e., times Δt

such that Δt/τ3 � 1 as well). In this case I
(n)
T /Imax can

depend only on the details of the off-ramp. If, in addition,
λntr � 1 (which will be true for all modes computable
using the mean field code unless the target is very small,
perhaps a fraction of a cm or less in diameter), one will

have I
(n)
T /Imax � 1.

On the other hand, for modes that decay slowly enough
that λnτ2 � 1, the portion of the integral (2.4) arising
from the pulse onset will be insensitive to the details of

this onset. The factor eλnt � e−λntp will be essentially
constant over a time interval Δt which is up to several
times τ2 in length. One may then approximate the inte-
gral over this interval by e−λntpI(−tp+Δt). Using (3.1),
I(−tp + Δt) may be expressed entirely in terms of the
τ3 decay quantities, and may simply be approximated as
Imax if one neglects α as well. Note that if, in addition,

λtp � 1, then I
(n)
T will be sensitive to multiple pulses.

This condition is satisfied for the slowest decaying modes
for large enough targets (e.g., 10 cm or more diameter
steel targets).

Since the two inequalities have an overlapping range,
1/τ3 � λn � 1/τ2, this confirms the claimed insensitiv-
ity to the onset details for all modes. In light of this, our
model neglects the small parameter α, and keeps only the
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FIG. 7: Data and theory for a 15 cm diameter aluminum sphere with center lying 16.5 cm below the center of sensor 12 (see
Fig. 2), which is also the only active sensor. The two plots differ only in the log vs. linear time scale. The solid red line is the
data, the dashed red line the prediction from the exact analytic solution for the sphere, the dotted red line is the mean field
prediction (based on 232 modes), and the dashed black line is the early time 1/

√
t power law. The 1.03 overall multiplier listed

in the legend has been applied to the data to optimize the fit, and is well within the expected 10% fluctuation in the current
amplitude. The vertical dashed line marks the rough division between the early time and multi-exponential (� 100 modes)
regimes, and it is seen that the mean field prediction pushes well into the early time regime. The slight deviation of the data
from the analytic prediction at very early time, t < 0.1 ms, is likely an instrument saturation effect (seen much more clearly in
Fig. 8, beginning roughly at the same voltage level).
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t−1/2 power law

t−3/2 power law
Early time prediction (l = 1,2)
Early time prediction (l

eff
 = 1.2)

16.5 cm data (×1.3)
16.5 cm analytic prediction
16.5 cm mean field prediction

t−1/2 power law

t−3/2 power law
Early time prediction (l = 1,2)
Early time prediction (l

eff
 = 1.2)

16.5 cm data (×1.3)
16.5 cm analytic prediction
16.5 cm mean field prediction

FIG. 8: Data and theory for a 15 cm diameter steel sphere with center lying 16.5 cm below the center of sensor 12 (see Fig.
2), which is also the only active sensor. The two plots differ only in the log vs. linear time scale. The solid red line is the data,
the dashed red line the prediction from the exact analytic theory solution for the sphere, the dotted red line is the mean field
prediction (based on 232 modes). The dashed black line is a two term fit to the early time form (2.11) using the known values
(2.13), and the dotted black line is a single term fit using κ1 as a fit parameter. The vertical dashed line marks the rough
division between the early time and multi-exponential (� 100 modes) regimes, and is much later here than in Fig. 7 because
the EM time scale is proportional to the product σμ, which is an order of magnitude larger here. For reasons described in
the text, the mean field prediction has a more complex structure for ferrous targets, and penetrates only to the edge of the
early time regime (it is the fact that it is accurate beyond about 20 ms that is the real figure of merit here, as would be more
evident if the data extended to later time). The 1.3 multiplier listed in the legend is that applied to the data to optimize the fit,
and lies outside the expected 10% fluctuation in the current amplitude. The difference is likely the result of small positioning
errors. Sensor saturation is apparent below about 0.5 ms. The late-early time 1/t3/2 power law is evident in the data, but full
convergence to the 1/

√
t early-early time power law is incomplete, and not expected until about 10 μs.



τ2 decay, leading to the much simpler pulse waveform

I(t) = Imax(1 − e−t/τ2), 0 < t ≤ tp, (3.2)

plus the identical linear off-ramp for tp < t ≤ tp + tr. As
shown, the separation of time scales built into the pulse
waveform ensures that this simplification produces only
negligible errors in the data predictions.

IV. DATA COMPARISONS

A. Spherical targets

Having described the electromagnetic model, and the
platform model required to implement it, we now turn to
its validation with real data. We will begin with spher-
ical targets, for which exact analytic solutions exist in
both the early time [1, 2] and multi-exponential regimes
[5]. This allows one to validate the sensor model under
conditions where the target model is fully specified.
Figure 7 shows results for a 15 cm diameter alu-

minum sphere, plotted on both linear and log time
scales—the latter much more clearly verifies the asymp-
totic 1/

√
t early time power law. The agreement is

quite remarkable—note that the vertical scale is in mil-
livolts, not some arbitrary scaled unit. The only real fit-
ting parameter is the conductivity, and the chosen value
σ = 3 × 107 S/m is well within the range expected for
aluminum. As discussed in Sec. III, the overall pulse-to-
pulse transmitter current amplitude is stable only at the
10% level. This leads to an identical uncertainty in the
overall voltage amplitude. In the figure, an overall factor
of 1.03 has been applied to the data to obtain an optimal
fit, well within this uncertainty. The slowest decaying
mode for this target is τ1 = 21.5 ms, so the measurement
window here barely enters the late time regime t � τ1.
The mean field prediction, based on an approximate cal-
culation of the first 232 modes, is seen to accurately de-
scribe the data well into the early time regime.
Figure 8 shows results for a 15 cm diameter steel

sphere, again plotted on both linear and log time scales.
The only real fitting parameters are the conductivity and
relative permeability, and the chosen values σ = 5 × 106

S/m and μ = 100 are well within the ranges expected for
steel. The overall 1.3 multiplier applied to the data lies
well outside that expected based on current amplitude
fluctuations alone. Fine tuning of σ and μ might account
for some of this error, but, as alluded to in Sec. III A, the
likely culprit is small (0.5 cm level) target positioning
errors.
The mean field prediction has much more interesting

structure for ferrous targets. Due to the nature of the
EM boundary conditions in the large permeability con-
trast limit, rather than computing only the slowest de-
caying modes, two distinct sets of slow (169 modes in this
case, with time constants larger than 3.01 ms) and fast
(63 modes in this case, with time constants smaller than

0.74 ms) decaying modes are produced, with large gap be-
tween that would only be filled if one pushed the compu-
tation to higher order. This is the source of the S-curve-
like structure seen in the right panel of Fig. 8. The reduc-
tion in the number of slowly decaying modes reduces the
accuracy of the theory near the early–intermediate time
boundary (as compared to the nonmagnetic case shown
in Fig. 7), but the presence of the more rapidly decaying
modes at least provides an improved trend at very early
time. The slowest decaying mode for this target has a
time constant τ1 = 180 ms, indicating a late time regime
an order of magnitude beyond the measurement.
The early time prediction, which follows both the ex-

act solution and the data over a significant fraction of the
time interval, deserves some comment. As described in
Sec. II B, to obtain the solid black lines in Fig. 7) we use
the known eigenvalues (2.13), but determine the ampli-
tudes V e

n in (2.11) by fitting to the data. We keep only
two terms

V (t) = V0

[
(1− α)H

(√
t/tmag

)
+ αH

(
2
√
t/tmag

)]
(4.1)

with the known value tmag = 0.35 ms, and fit the ampli-
tude V0 = 83 V, and mixing parameter α = 0.4. The one
term series V0 = 60 V, α = 0 provides an adequate, but
worse fit.
However, a better fit than both of these is provided by

a single term series in which one allows the eigenvalue κ1

to be adjusted. The dotted black lines in Fig. 7) shows
the result obtained using κ1 = leff/

√
tmag with leff =

1.2, along with amplitude V e
1 = 80 V. This will be our

fitting method of choice for non-spherical targets, where
the eigenvalues κn have not yet been computed.
It is worth emphasizing the importance of the fact that

analytic functional forms of the type (4.1) fit the data so
well. The log-time plot demonstrates that the data span
the full range over which the argument s in (2.12) inter-
polates between the two power laws [6]. The data there-
fore has significant structure through this time range,
but this does not reflect any deep structure of the target
(beyond the fact that it is ferrous). Quite the contrary:
as illustrated in Fig. 3 it represents the dynamics of a
laterally very smooth surface current sheet as it begins
to penetrate the first centimeter or so into target. The
complexity arises strictly from the interplay between the
electric and magnetic field boundary conditions at the
surface. This serves to confirm that the early time regime
provides limited target discrimination ability (again, be-
yond the fact that it is ferrous).
Figures 9 and 10 show consolidated plots of data and

theory for 10 cm and 15 cm diameter spheres at various
depths centered below sensor 12. Agreement continues
to be excellent. The instrument noise floor is evident for
deeper targets. Further discussion may be found in the
captions. All of the data curves display a tendency to
flatten out at very early time, t � 0.1 ms, even for curves
well below the obvious saturation regime. There is likely
some more subtle instrument effect at work here.
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Tx12, Rx12: 15, 10 cm diameter Al spheres under Tx/Rx12 at various depths−to−center: data and predictions

 

 

σ = 3.0 × 107 S/m
μ

rel
 = 1

t−1/2 power law
16.5 cm (×1.03)
16.5 cm prediction
22.5 cm (×1.28)
22.5 cm prediction

30 cm, 0o (×1.06)

30 cm, 30o (×1.06)

30 cm, 60o (×1.06)

30 cm, 90o (×1.06)
30 cm prediction
31.5 cm (×0.87)
31.5 cm prediction
45 cm (×1.1)
45 cm prediction
49.5 cm (×1)
49.5 cm prediction
74.5 cm (×0.9)
74.5 cm prediction
10 cm sphere, 22 cm (×1.3)
10 cm sphere, 22 cm prediction

FIG. 9: Consolidated plots showing data (thin solid and dashed lines) and theory (thick dashed lines) for 10 cm and 15 cm
diameter aluminum spheres at various depths centered below sensor 12. The upper curves (16.5 cm depth) are repeated from
Fig. 7. The legend shows the multipliers used to scale the data curves for optimal fit. In most cases these lie within the 10%
error expected from the variability of the transmitter current. Larger deviations are again likely due to small positioning errors.
The four 30 cm depth curves demonstrate the expected invariance of the signal with sphere orientation (“north pole” of the
sphere tilted by the indicated angles towards the center of sensor 11). The single pair of 10 cm sphere traces demonstrate the
impact of target size on the late-time regime, displaying a distinctly earlier downturn.

B. Prolate and oblate spheroidal targets

Having verified instrument calibration and several
other quantitative details under conditions where an ex-
act solution exists, we now move on to spheroidal targets.
Figure 11 shows a consolidated plot of data and theory

for various prolate (elongated) spheroidal aluminum tar-
gets at various depths and orientations. Spheroid aspect
ratios az/axy vary between 2 and 5.
The theoretical plots (thick dashed lines) are the mean

field predictions based on the first 232 modes. It is evi-
dent from the plots that this large a number of modes en-

ables one to push the mean field predictions well into the
early time regime. For smaller targets (e.g., the 4×4×20
cm and 5×5×20 cm spheroids) this can cover nearly the
entire measurement window. The multi-exponential time
series eventually saturates and falls below the data, but
not before the 1/

√
t power law begins to be established.

Interpolating between the mean field prediction and this
power law clearly enables one to accurately match the
data over the full range.

Most of the target discrimination information occurs at
intermediate to late time. The traces are all more-or-less
parallel at early time, and variations in the overall ampli-
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Tx12, Rx12: 15, 10 cm diameter steel spheres under Tx/Rx12 at various depths−to−center: data and predictions

 

 

σ = 5 ×106 S/m

μ
rel

 =  100

t−1/2 power law

t−3/2 power law
Early time prediction (l=1,2)
16.5 cm (×1.3)
16.5 cm prediction
22.5 cm (×1.4)
22.5 cm prediction

30 cm, 0o (×1.02)

30 cm, 30o (×1.02)

30 cm, 60o (×1.02)

30 cm, 90o (×1.02)
30 cm prediction
45 cm (×1)
45 cm prediction
51.5 cm (×1)
51.5 cm prediction
74.5 cm (×1)
74.5 cm prediction
10 cm sphere, 29.5 cm (×1)
10 cm, 29.5 cm prediction

FIG. 10: Consolidated plots showing continuing quantitative agreement between data and theory for the 10 cm and 15 cm
diameter steel spheres at various depths centered below sensor 12. The upper curves (16.5 cm depth) are repeated from Fig.
8. The legend shows the multipliers used to scale the data curves for optimal fit. In most cases these lie within the 10% error
expected from the variability of the transmitter current. Larger deviations are again likely due to small positioning errors. The
four 30 cm depth curves demonstrate the expected invariance of the signal with sphere orientation (“north pole” of the sphere
tilted by the indicated angles towards the center of sensor 11). This invariance is not completely obvious for ferrous spheres,
since a small remnant magnetization could break the symmetry. The single pair of 10 cm sphere traces demonstrate a much
more subtle impact of target size since the data never enter the late-time regime.

tude could equally well come from variation in depth or
size of the target. On the other hand, at later time, the
traces for smaller targets (e.g., again, the 4 × 4 × 20 cm
and 5× 5× 20 cm spheroids) drop off much more quickly
than those of larger targets.

There are also interesting dependencies on target ori-
entation in this regime (green, red, magenta, and cyan
curves for the 10× 10× 20 cm spheroid [7]). For a verti-
cal target, the excited modes are dominated by currents
the circulate around the symmetry axis, while for a hori-
zontal target the currents tend to circulate along it. The
horizontal target mode has a slower decay rate (time con-

stant τh = 13.7 ms vs. τv = 12.0 ms), and couples differ-
ently to the transmitted field, and this is visible in the
later-time traces.

Identical conclusions are evident from the data on
oblate (discus-like) spheroidal aluminum targets (aspect
ratios α = 0.2, 0.4) shown in Fig. 12. Here we have
overlayed segments of 1/

√
t power law on each curve,

explicitly demonstrating successful interpolation (with,
perhaps, 5–10% errors in the overlap regime).

The dependence on orientation is much stronger for
oblate spheroids (green, red, magenta, and cyan curves
for the 20 × 20 × 8 cm spheroid [7]). Because it is be-
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Tx12, Rx12: Al spheroids under Tx/Rx12 at various depths−to−center and orientations: data and predictions

 

 

σ = 3.0 × 107 S/m

μ
rel

 = 1

t−1/2 power law

10×10×20, 27 cm depth, 90o (×1.1)
27 cm prediction

6×6×30, 29 cm depth, 90o (×1.1)
29 cm prediction

6.67×6.67×20, 28.67 cm depth, 90o (×1.05)
28.67 cm prediction

5×5×20, 24.5 cm depth, 90o (×1.25)
24.5 cm prediction

4×4×20, 25 cm depth, 90o (×1.2)
25 cm prediction

10×10×20, 21 cm depth, 0o (×1.15)
21 cm prediction

10×10×20, 22 cm depth, 30o (×1.1)
22 cm prediction

10×10×20, 24.4 cm depth, 60o (×1.1)
24.4 cm prediction

10×10×20, 26 cm depth, 90o (×1.1)
26 cm prediction

FIG. 11: Consolidated plot of data and theory for a range of artificial aluminum prolate spheroidal targets. The dimensions
listed in the legend are diameters. Orientation angles indicate symmetry axis declination (toward the center of sensor 11),
so that 0◦ corresponds to vertical and 90◦ to horizontal. The multipliers are again the overall factors applied to the data to
obtain optimal agreement with the prediction. The thick dashed lines are the mean field predictions, which show remarkable
agreement well into the early time regime, where the onset of the 1/

√
t power law is evident.

ing “squeezed” vertically, the horizontal target (discus on
edge) mode now has significantly faster decay rate than
vertical target (discus lying flat) mode (time constant
τh = 13.0 ms vs. τv = 23.9 ms). Because the the latter
mode is not excited at all when the target is horizontal,
the 90◦ (cyan) curve in Fig. 12 dies much more quickly
at late time than the other curves.

In both Figs. 11 and 12 the multipliers used to scale
the data for optimal fit appear to have a small (∼ 10%)
systematic bias that cannot be explained by random vari-
ation in the transmitter loop current. A combination of
small conductivity and positioning errors is the likely ex-
planation.

Figures 13 and 14 show data and theory for steel pro-
late and oblate spheroidal targets. As for spherical tar-
gets (Figs. 8) and 10), the early time regime dominates,
and the mean field results (dotted curves; with S-curve

behavior excised in this case so as not to busy up the
plots too much) are valid only over a small part of the
time interval where the data is already becoming quite
noisy. In most cases, however, the fact that the data is
dropping below the early time curve is evident, pointing
to the necessity of a multi-exponential description. As
before, these predictions actually push quite deeply into
the early time regime, but the measurement window, and
instrument dynamic range, are such as to strongly limit
the information content of the multi-exponential part of
the signal.

V. SUMMARY AND CONCLUSIONS

The results presented in this document demonstrate
the unprecedented accuracy available from our first prin-



10
−1

10
0

10
1

10
−2

10
−1

10
0

Time (ms)

E
M

I v
ol

ta
ge

 (
m

V
)

Tx12, Rx12: Al spheroids under Tx/Rx12 at various depths−to−center and orientations: data and predictions
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t−1/2 power laws

20×20×4, 30 cm depth, 0o (×1.1)
30 cm prediction

20×20×8, 28 cm depth, 0o (×1.1)
28 cm prediction

20×20×8, 27 cm depth, 0o (×1.08)
27 cm prediction

20×20×8, 24.9 cm depth, 30o (×1.1)
24.9 cm prediction

20×20×8, 22.1 cm depth, 60o (×1.12)
22.1 cm prediction

20×20×8, 21 cm depth, 90o (×1.2)
21 cm prediction

FIG. 12: Consolidated plot of data and theory for a range of artificial aluminum oblate spheroidal targets. The dimensions
listed in the legend are diameters. Orientation angles indicate symmetry axis inclination (toward the center of sensor 11),
so that 0◦ corresponds to horizontal and 90◦ to vertical. The multipliers are again the overall factors applied to the data to
obtain optimal agreement with the prediction. The thick dashed lines are the mean field predictions, which show remarkable
agreement well into the early time regime, where the 1/

√
t power law takes over.

ciples, physics based models covering the entire mea-
surement window, from the early time multi-power law
regime, all the way through the multi-exponential regime
to the late time mono-exponential regime. Prior to the
mean field code’s current upgrade [8], the number of
accurately computed modes used to describe the multi-
exponential regime was limited to perhaps a few dozen
[9]. As seen in the validation results presented, this up-
grade is absolutely critical to the success of the predic-
tions, by generating the required overlap of the early time
and multi-exponential regimes.

It should be emphasized that the increase in predic-
tive power continues to operate with extremely high nu-
merical efficiency. The creation of the mode data for a

given target cannot be performed in real time, but once
this data is made available in a database that spans the
expected target geometries, its acquisition and use for
measurement predictions can be performed in real time—
operating at essentially the same speed as predictions us-
ing the exact solution for the sphere.

As seen in the figures, the dominant regimes visible
in the data depend very strongly on the target size and
physical properties. Increasing target size and magnetic
permeability expands the early time regime to later phys-
ical time. Smaller aluminum targets (e.g., blue lines in
Fig. 11) are completely described by the mean field ap-
proach over the full time range, while even the smaller
steel targets barely enter multi-exponential regime (see
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49 cm early t prediction (l

eff
 = 0.75)
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6×6×30, 46 cm depth, 90o (×0.8)
46 cm MF prediction
46 cm early t prediction (l
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 = 0.7)

6.67×6.67×20, 33.67 cm depth, 90o (×0.85)
33.67 cm MF prediction
33.67 cm early t prediction (l
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 = 0.8)

5×5×20, 34.5 cm depth, 90o (×0.9)
34.5 cm MF prediction
34.5 cm early t prediction (l
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4×4×20, 35 cm depth, 90o (×0.95)
35 cm MF prediction
35 cm early t prediction (l

eff
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FIG. 13: Consolidated plot of data and theory for a range of steel prolate spheroidal targets. Orientation angles indicate
symmetry axis inclination (toward the center of sensor 11), so that 0◦ corresponds to horizontal and 90◦ to vertical. The
multipliers are again the overall factors applied to the data to obtain optimal agreement with the prediction. The thick dashed
lines are the early time predictions, which show remarkable agreement over nearly the entire measurement window. The latter
take the form (2.11) with a single term, in which the amplitude V e

1 and eigenvalue κ1 = leff/
√
τmag are adjusted to optimize the

fit. Here τmag is defined by (2.10) and (2.8), with the choice L = min{axy, az} = axy. The mean field predictions are shown by
the dotted lines. If extended over the full time interval, they also would display the S-curve behavior seen in Fig. 8. For these
smaller targets, their region of validity begins only as the signal levels are falling into the noise floor. The early time regime
therefore pretty much encompasses the full range of useful data.

Figs. 13 and 14) before the signal fades into the noise
floor [10].
All of these features, whose quantitative interpretation

is enabled by the present models, will be used in pursuit
of robust target discrimination and identification in later

stages of this project. The code efficiency becomes es-
pecially critical for this purpose, as searches through the
database for the target whose response best matches the
data may require hundreds, or even thousands, of itera-
tions.
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Tx12, Rx12: St oblate spheroids under Tx/Rx12 at various depths−to−center: data and predictions
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FIG. 14: Consolidated plot of data and theory for a range of steel oblate spheroidal targets. Orientation angles indicate
symmetry axis inclination (toward the center of sensor 11), so that 0◦ corresponds to horizontal and 90◦ to vertical. The
multipliers are again the overall factors applied to the data to obtain optimal agreement with the prediction. The thick dashed
lines are the early time predictions, which show remarkable agreement over nearly the entire measurement window. The latter
take the form (2.11) with a single term, in which the amplitude V e

1 and eigenvalue κ1 = leff/
√
τmag are adjusted to optimize

the fit. Here τmag is defined by (2.10) and (2.8), with the choice L = min{axy, az} = az. The mean field predictions are shown
by the dotted lines. If extended over the full time interval, they also would again display the S-curve behavior seen in Fig. 8.
For these smaller targets, their region of validity again begins only as the signal levels are falling into the noise floor, and the
early time regime pretty much encompasses the full range of useful data.
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