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Executive Summary

Current methods for Unexploded Ordnance (UXO) discrimination using magnetic and electromagnetic
induction (EMI) data generally rely on feature vectors extracted from physics based dipole models. These
feature vectors are obtained by solving an inverse problem that provides a “best-fit” to the observed
data. Typically, this best-fit is defined as the model that minimizes the sum-of-squares of the residuals
between observed and predicted data, with each residual weighted by an estimated standard deviation
(the-so-called L2 norm). Thus, there is an implicit assumption that the residuals are normally distributed
(Gaussian) and that the maximum likelihood solution is the most appropriate model to extract from the
data. This assumption of Gaussian statistics may not be appropriate if the residuals have outliers (due
to sensor or positional glitches) or if the residuals contain significant structure (model not adequate to
represent the data). In those cases, the predicted feature vectors may be significantly in error and should
not be relied upon for discrimination. In addition, the maximum likelihood solution does not account for
any uncertainty in the recovered feature vectors and may not be the most appropriate criterion to use
to assess UXO likelihood.

In this project we researched the statistical structure of the underlying inversion process and devel-
oped methods for more accurate extraction of feature vectors from multi-time, multi-frequency and
multi-component EMI data.There were four main areas explored with the first three involving different
treatments of Bayes equation for combining a-priori knowledge with the constraints imposed by the
observed data.
Topic 1: Robust-statistical methods. The L2 norm involves minimizing the sum of squares of the residuals
between observed and predicted data. Any outliers in the data (due to glitches, positional error, model
mismatch) then excerpt undue influence on the fitted model parameters: the model parameters can
change significantly just to accommodate one outlier. The first approach explored in this project was
to use robust-statistical norms that down-weight the influence of outliers and result in recovered model
parameters that are less sensitive to a few abnormal data-points. Robust-statistical methods effectively
use a likelihood function that has fatter tails than the Gaussian distribution corresponding to the L2
norm. Robust statistical methods were able to improve the false-alarm rates encountered at Camp
Butner when using both the EM61 production mode data and the MetalMapper cued-interrogation
data. In both cases, the primary contribution of the robust-statistical method was the prevention of
outliers in the TOI class. For the EM61 we found that the robust statistical method did not result in a
significant improvement in the accuracy of the depth (and hence size) estimates. Monte-Carlo simulations
revealed that correlated position errors appear to be the dominant cause of depth uncertainty. To militate
against this effect, methods that explicitly account for positional uncertainty would need to be used. For
the MetalMapper, improved recovery of secondary and tertiary polarizabilities using the robust-statistics
algorithm resulted in more TOI identified early using the classifier built on all polarizabilities, with less
dependence on the more robust, but less efficient, classifier built on total-polarizability. On a subset of
the MetalMapper data collected with a newer instrument and with better field procedures, there was no
significant performance improvement when using robust-statistics. As intuitively expected, the robust-
methods are most effective when applied to problem datasets. But they also have the desirable attribute
of not degrading performance when applied to data free of outliers.
Topic 2: Regularization methods. The next approach explored was to incorporate prior information into
the model parameter estimation problem. UXO are typically ferrous and axially symmetric which results in
one large and two smaller and equal-polarizabilities. A parameter extraction routine that is biased towards
recovering models with minimal difference between secondary polarizabilities will minimize the chance
that a target of interest (TOI) is mistaken as harmless scrap. Incorporation of a-priori information results
in a regularization problem that involves a trade-off between fitting the data and satisfying the model
parameter penalty term. We developed a regularized inversion algorithm that penalizes the deviation
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between secondary polarizabilities. Rather than selecting a single model from this inversion process, we
input all models into a support vector machine classifier. This corresponds to test features vectors with
multiple values for each element. We compare the elements of each test vector with the training data
and retain the model value which best corresponds to a given training vector. We also penalize the
match of test and training vectors by the likelihood that the model fits the observed data. We find
that the regularized method can improve initial performance on high SNR targets with well-constrained
secondary polarizabilities while preventing the occurrence of outlying TOI that arise when we rely on
unregularized parameters throughout the diglist. The greatest benefit in discrimination performance is
obtained with sensor data which interrogates all polarizabilities with orthogonal (horizontal and vertical)
primary fields (i.e. MetalMapper).
Topic 3: Incorporating uncertainty into the classification problem. Using the single model that maximizes
the a-posteriori probability does not account for any uncertainty in the recovered model parameters when
developing a UXO classification strategy. We explored methods for explicitly incorporating model param-
eter uncertainty in the classification process. Effectively, this involved using the a-posteriori probability
to appraise the ensemble of potential models that could have generated the observed data (to within
the limits imposed by noise). We first compare a local uncertainty estimate derived from the curvature
of the misfit function with global estimates of model posterior probability density (PPD) obtained with
Markov chain sampling. For well-posed experiments (i.e. with high SNR and adequate spatial coverage),
the two methods of uncertainty appraisal agree. However, when the inverse problem is ill-posed we find
that the PPD can be multimodal. To incorporate these uncertainties in discrimination, we first develop
an extension of discriminant analysis which integrates over the posterior distribution of the model. When
dealing with multimodal PPDs, we show that an effective solution is to input all modes of the PPD-
corresponding to all models at local minima of the misfit - into discrimination, and to then classify on
the basis of the model which is most likely a UXO.

The method was applied to EM61 and EM63 data sets acquired at Camp Sibert. For both EM61 and
EM63 data sets the area under the ROC and the false alarm rate at Pd = 1 (i.e. the proportion of false
positives required to identify all true positives) are improved. While the improvement for the EM63 data
appears negligible (Pfp reduced from 0.03 to 0), the identification of one outlying UXO (4.2" mortar)
is a significant result from the perspective of a regulator charged with site remediation. Similarly, the
significant reduction in false alarm rate at Pd = 1 for the EM61 data (Pfp reduced from 0.35 to 0.08)
improves the likelihood that all ordnance will be identified with this sensor.
Topic 4: Determining when to stop digging. The final issue addressed in this report was the determination
of a stop-digging point. It is clear that regulators do not want to leave hazardous items in the ground,
so that any strategy for determining an optimal operating point must attempt to recover all TOI. Ideally
the stop-dig point lies just after the last TOI has been excavated to prevent excessive numbers of clutter
items from being removed. Here we have developed heuristics and statistical criteria for the operating
point problem when the total number of instances which must be labelled is known. We derived an
approximate probability distribution for the discrete random variable λ, which we defined as the order
statistic at which all T instances are labelled. This probability distribution depends upon the generating
distributions, prior probabilities, and sample size. Given this probability distribution, we can select an
operating point which corresponds to the most likely value of λ. In addition, we have derived a lower
bound to the expected value of λ which is a useful approximation to the most likely value. However, this
approach has limited practical applicability because it depends upon accurate estimation of the generating
distributions and extrapolation into the extreme tails of these distributions. To address this shortcoming,
we have proposed a heuristic for selecting NL, the number of F instances which must occur sequentially
before digging is terminated. This is equivalent to cost minimization, but the proposed heuristic provides
an objective means of choosing relative costs based upon sample size. In simulations and applications to
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real data we find that this technique has an improved probability of finding all ordnance in a test data
set, relative to previously published methods. We have limited our investigations to samples on the order
of N = 103, which is representative of the number of detected targets at many sites. Tests on larger
data sets should still be carried out.

In previous work we considered a bootstrapping approach to selecting the operating point. While this
method may still be viable we find that it is highly dependent upon the training data realization and
does not exploit information in the test data as digging proceeds. In contrast, specifying the parameter
NL does not depend on training data and termination of digging depends upon the test data (rather
than some pre-specified point derived from limited training data). If successful in finding all TOI, the
proposed approach will always overshoot the last target of interest by NL items, but this is a necessary
expense if we are to have confidence that all TOI have been identified. Furthermore, when digging is
terminated with this method, we can accurately estimate the distributions of T and F items and use this
to compute a confidence that no more targets of interest remain in the ground. A program of verification
digging (e.g. using Visual Sample Plan) should also be employed to provide independent confirmation
of the stated confidence level.

At the same time that new methods were being developed under this project, comprehensive tests
of discrimination performance were conducted at three sites as part of the ESTCP Discrimination Pilot
Study. These included the Former Camp Sibert in Alabama, San Luis Obispo in California and Camp
Butner in North Carolina. At the demonstration sites, the highest quality data and best discrimination
results were achieved in cued-interrogation mode by instruments that dwell at a fixed location while
changing the transmitter excitation pattern (e.g. MetalMapper, TEMTADS). ROC curves from the next
generation sensor data at both SLO and Camp Butner were near vertical initially (many TOI recovered
with low numbers of false-alarms) but often tended to flatten out, with many false alarms excavated
before all TOI were recovered. In effect, one part of the discrimination problem (with next-generation
sensor platforms deployed in cued-interrogation mode) is relatively easy, with the second part more
challenging.

The principal contribution of the work reported here was in developing algorithms and strategies that
minimize or eliminate the discrimination outliers encountered during the live-site tests. That is, the
methods were particularly efficacious when applied to the “hard” anomalies encountered at a site. By
minimizing or eliminating outliers in a UXO discrimination strategy we can alleviate the greatest concerns
of the regulatory community: that hazardous UXO are left in the ground at the end of the remediation
process.
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1. Introduction

The 2003 Defense Science Board report on unexploded ordnance (UXO) discrimination projected that
a reduction in false alarm rates from 100:1 to 10:1 would save $36 billion on remediation projects within
the United States (Delaney and Etter, 2003). This cost reduction was expected to be achieved by
improvements in sensor and data processing technologies. These goals have been met, and sometimes
exceeded, in recent demonstration projects conducted by the Environmental Security Technology Certi-
fication Program (ESTCP), see e.g. Billings et al. (2010). Advances in electromagnetic (EM) sensors
have been crucial to these successes: the data provided by multi-static, multicomponent EM platforms
are much improved inputs into the inversion and discrimination algorithms applied to this problem. For
example, the Time Domain Electromagnetic Towed Array Detection System (TEMTADS) is comprised
of an array of 25 horizontal transmitter loops arranged in a 5x5 grid, with horizontal receivers measuring
the vertical field arranged concentric to these transmitters (see figure 1). The transmitters are fired
sequentially and the secondary field response is recorded in all receivers simultaneously. This multi-static
configuration provides a diverse data set which is better able to constrain target depth and transverse
polarizabilities than a mono-static sensor. The MetalMapper sensor has also greatly improved the relia-
bility of estimated parameters by transmitting orthogonal primary fields and measuring all components
of the secondary field in multiple receivers. Both MetalMapper and TEMTADS systems are deployed in
a static mode: previously-detected targets are interrogated with a stationary sensor. This removes the
requirement for accurate geolocation that complicates data acquisition with a moving sensor.

Figure 1. Left to right: Mono-static EM-61 and multi-static MetalMapper and TEM-
TADS sensors for unexploded ordnance detection and discrimination. Top row shows
sensor geometry and bottom row shows time channels

Current methods for UXO discrimination using magnetic and electromagnetic induction data generally
rely on feature vectors extracted from physics based dipole models. These feature vectors are obtained by
solving an inverse problem that provides a “best-fit” to the observed data. Typically, this best-fit is defined
as the model that minimizes the sum-of-squares of the residuals between observed and predicted data,
with each residual weighted by an estimated standard deviation. Thus, there is an implicit assumption
that the residuals are normally distributed (Gaussian) and that the maximum likelihood solution is the
most appropriate model to extract from the data. This assumption of Gaussian statistics may not be
appropriate if the residuals have outliers (due to sensor or positional glitches) or if the residuals contain
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significant structure (model not adequate to represent the data). In those cases, the predicted feature
vectors may be significantly in error and should not be relied upon for discrimination. In addition,
the maximum likelihood solution may not be the most appropriate one to recover from the available
data. In this project we researched the statistical structure of the underlying inversion process and
developed methods for more accurate extraction of feature vectors from multi-time, multi-frequency and
multi-component EMI data. Before describing the work conducted we first provide some background
information on the forward models used and the basic underlying principles behind our inversion routines.

Throughout this report we use the dipole model (Bell (2005), Pasion (2007)) to predict observed
TEM data. The secondary magnetic field is computed as

(1) Bs(r, t) =
m(t)
r3

(3(m̂(t) · r̂)r̂− m̂(t))

with r the separation between target and observation location, and m(t) a time-varying dipole moment

(2) m(t) =
1
µo

M(t) ·Bo.

The induced dipole is the projection of the primary field Bo onto the target’s polarization tensor M(t).
If the primary field is itself modelled as a dipole, then the above expressions indicate that the observed
data will have a 1/r6 dependence. The polarization tensor is assumed to be symmetric and positive
definite and so can be decomposed as

(3) M(t) = ATL(t)A

with A an orthogonal matrix which rotates the coordinate system from geographic coordinates to a
local, body centered coordinate system.

(4) L(t) =

L1(t) 0 0
0 L2(t) 0
0 0 L3(t)


Typically, the polarization tensor is estimated at a number of discrete time-channels as dictated by the
measurement characteristics of the EMI sensor.

Decomposing the polarization tensor with equation 3 parameterizes the model in an orthogonal coor-
dinate system which is assumed to correspond to axial and transverse coordinates of a target. However,
this parameterization introduces additional nonlinearity into the forward model: the rotation matrix A
is a nonlinear function of target orientation. An additional source of nonlinearity in the forward model is
the 1/r6 dependence arising from the dipolar primary and secondary fields. All of these nonlinearities
complicate the corresponding inverse problem. Iterative algorithms may converge to local minima of the
chosen objective function and thereby produce model estimates which are far from the true parameters.
One way to address these complications is to repeatedly solve a related linear problem. If the target
location is known, then the forward model for the data at a single time channel is linear in terms of
the elements of M(t). Solving this linear problem over a range of proposed target locations provides a
preliminary search of model space and can help identify local minima of the misfit and starting models
for subsequent nonlinear inversion.

From a set of N observations, d, of the magnetic or electromagnetic field, the inverse problem is
to find the set of model parameters m = (x, y, z,M(t1), ...,M(tn)), that best-fits the data, where
(x, y, z) is the estimated dipole position and we assume that there are n time-channels. Predicted data
corresponding to the model m is obtained through the forward modelling operating dpred = g(m). This
optimization problem is usually solved through maximization of the posterior probability density function
(PDF),

MR-1629: Robust Statistics Final Report 2 July 11, 2011



(5) P (m|d) = kp(m)L(d|m)

where p(m) is the prior-PDF of the model parameters, L(d|m) is the likelihood-function that rep-
resents the fit to the data and k is a normalizing constant. This is the well known Bayes formula. By
neglecting the prior (for the present moment) the posterior PDF is determined entirely by the likelihood
function which can be written in the form

(6) L(d|m) = exp[−ρ(x)]

Maximization of the likelihood corresponding to minimization of the norm ρ(x) with

(7) x = Wd(d− g(m))

expressing the (weighted) discrepancy between observed and predicted data. The approach usually taken
is to assume that the residuals are normally distributed which corresponds to using an L2, or least-squares
norm,

(8) ρ(x) = xTx

1.1. Scope of the work conducted. There were four main areas explored in the work conducted under
this project, with the first three involving different treatments of Equation 5:

(1) Robust-statistical methods: The L2 norm involves minimizing the sum of squares of the residuals
between observed and predicted data. Any outliers in the data (due to glitches, positional
error, model mismatch) then excerpt undue influence on the fitted model parameters: the model
parameters can change significantly just to accommodate one outlier. The first approach explored
in this project is to use robust-statistical norms that down-weight the influence of outliers and
result in recovered model parameters that are less sensitive to a few abnormal data-points.
Robust-statistical methods effectively use a likelihood function that has fatter tails than the
Gaussian distribution corresponding to the L2 norm. Most of the theoretical material and initial
results with robust-statistics are provided in a paper published by Beran et al. (2011a) and are
not reproduced here. In section 2, we do present some more recent work undertaken at the
Camp Butner discrimination site.

(2) Regularization methods: The next approach explored was to incorporate prior information into
the model parameter estimation problem of Equation 5. UXO are typically ferrous and axially
symmetric which results in one large and two smaller and equal-polarizabilities. A parameter
extraction routines that is biased towards recovering models with minimal difference between
secondary polarizabilities will minimize the chance that a target of interest (TOI) is mistaken
as harmless scrap. Incorporation of a-priori information results in a regularization problem with
methods for solution discussed in section 3.

(3) Incorporating uncertainty into the classification problem: Using the single model that maxi-
mizes the a-posteriori probability does not account for any uncertainty in the recovered model
parameters when developing a UXO classification strategy. We explored methods for explicitly
incorporating model parameter uncertainty in the classification process. Effectively, this involved
using the a-posteriori probability of Equation 5 to appraise the ensemble of potential models
that could have generated the observed data (to within the limits imposed by noise). The theo-
retical basis and results of the methods that incorporate uncertainty in the classification process
are described in Beran et al. (2011b) and are not reproduced here, with just a brief summary
presented in section 4.

(4) Determining when to stop digging: The final issue addressed in this report is the determination
of a stop-digging point. It is clear that regulators do not want to leave hazardous items in
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the ground, so that any strategy for determining an optimal operating point must attempt to
recover all TOI. Ideally the stop-dig point lies just after the last TOI has been excavated to
prevent excessive numbers of clutter items from being removed. The analysis we present in
section 5 demonstrates that determination of an optimal operating point involves understanding
the tails of the distributions of TOI and non-TOI.
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2. Robust statistics applied to UXO discrimination

Robust inversion algorithms in the geophysical and statistical literature modify the misfit function so
that outlying data have downweighted contributions to the total misfit. In the context of geophysical
inversion, Farquharson and Oldenburg have demonstrated the use of various robust norms for measuring
both data misfit and model norm (Farquharson and Oldenburg, 1998). Here we follow their development
of an iterative approach to minimizing these norms for linear and nonlinear inverse problems. The
proceeding section developed some of the preliminary material and introduced the concept of the norm
and forward model g(m). For a linear problem, we can write g(m) = Gm. Now to minimize φ with
respect to the model vector m we have

∂ρ

∂m
=
∂ρ

∂x
∂x
∂m

= BTRx
(9)

with

(10) R = diag

(
∂ρ/∂x

x

)
and

(11) Bij =
∂xi
∂mj

.

For a linear forward problem then

∂φ

∂m
= BTRx

= GTWT
dRWd(d−Gm).

(12)

Setting the above expression equal to zero and solving for m yields an expression identical to that in a
standard least squares problem, except for the presence of R. This matrix depends upon x the weighted
residual, and so is a function of the model m. Hence minimization of an arbitrary norm becomes a
nonlinear problem even when the forward problem is linear. This nonlinearity can be circumvented with
the “iteratively reweighted least squares" (IRLS) algorithm, which iteratively updates the model according
to the following procedure

(1) Set Rii = 1 and solve for m with equation 12.
(2) Update the elements of R (equation 10) using the current estimate of m
(3) Recompute m and iterate to 2 until convergence.

For a nonlinear forward problem, we can use the linearization

(13) F (m + δm) ≈ F (m) + Jδm

to derive an expression for the model perturbation δm at each iteration, with the sensitivity matrix J
taking the place of the forward modelling operator G in equation 12. IRLS provides a general procedure
for minimizing a norm, table 2 summarizes a number of norms which appear in the literature. Figure 2
compares these norms as a function of x and also shows the resulting weightings Rii. The bisquare
norm is unique amongst the norms considered here in that it has the capability to completely disregard
outlying data (Rii = 0 for |xi| > k). For this reason it is recommended by statistical practitioners for
linear regression applications. However, some care must be taken in initializing IRLS for the bisquare
norm, since the algorithm is not guaranteed to converge for this norm (Marrona et al., 2006). We find
that initializing IRLS with the least squares solution works well in this application.
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Norm ρ(x)

Huber { 1/2x2, |x| ≤ k
k|x| − 1/2k2, |x| > k

Eckblom (x2 + k2)p/2

Bisquare (Tukey) {
k2

6

(
1−

[
1− (x/k)2

]3)
, |x| ≤ k

k2/6, |x| > k
Table 1. Example norms used for robust inversion
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Figure 2. Left: comparison of norms as a function of x, the weighted discrepancy
between observed and predicted data. Right: weightings (Rii) applied to data for IRLS
minimization of robust norms. For all norms k = 1, and p = 1 for the Eckblom p norm.

The reasoning and algorithms behind our robust statistical methodology and initial applications to
field data are described in Beran et al. (2011a). In this section of the final report, we describe new
work that we have not published previously on the Camp Butner ESTCP discrimination study data.
The production mode EM-61 data and the MetalMapper data collected in cued-mode represent the two
most interesting datasets, from the perspective of robust statistics, within that discrimination study.
The reader is referred to the relevant ESTCP discrimination reports for additional details on these two
datasets.

2.1. Abstract from paper on robust inversion. We refer the interested reader to the paper Be-
ran et al. (2011a) for more details of the robust-inversion methods and initial applications to Geonics
EM-61 and EM-63 data collected at Camp Sibert, Alabama. The abstract of the paper follows: We
invert time-domain electromagnetic data for the purpose of discriminating between buried unexploded
ordnance (UXO) and non-hazardous metallic clutter. The observed secondary magnetic field radiated
by a conductor is forward modelled as a linear combination of decaying, orthogonal dipoles. We show
via a perturbation analysis that errors in the measurement of sensor position propagate to non-normal
errors on the observed data. A least squares (L2) inversion assumes normal errors on the data, and so
non-normal errors have the potential to bias dipole parameter estimates. In contrast, robust norms are
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designed to downweight the effect of outlying (noisy) data and so can provide useful parameter estimates
when there is a non-normal component to the noise.

When positional errors are modelled as independent Gaussian perturbations, we find that weighted
least squares and robust inversions have comparable performance. Both inversion techniques estimate
data uncertainties from observed data, and this has the effect of “robustifying” the least squares inversion.
However, when simulated errors are correlated, robust inversion with a bisquare norm provides a marked
improvement over L2 inversion. Application of robust inversion to real data sets from Camp Sibert,
Alabama produced an incremental improvement to the initial L2 inversion, identifying outlying ordnance
items and improving discrimination performance.

2.2. Analysis of EM61 data from Camp Butner. We reanalyzed the EM-61 data from Camp Butner
using a robust-statistical inversion algorithm. The algorithm uses the bisquare norm in place of the
weighted least-squares algorithm we used for the discrimination study. The inversion algorithm was
improved over our previous incarnations in Beran et al. (2011a) by

(1) Using the bisquare norm to select an optimal position and depth of the dipole model (previously
we had used the least-squares position and depth);

(2) Incorporation of constraints when solving for the non-decomposed polarizability matrix to ensure
that M is positive definite.

Figure 3 shows a feature space comprised of a time-decay feature versus a size based feature. In our
ESTCP submissions we had used the sum of the polarizabilities to calculate both the size (sum of all
polarizabilities at all channels) and time-decay features (ratio of 4th to 1st channels). One improvement
we made with this plot was to use the maximum time-decay calculated from either the total-polarizability
and the principal polarizabilty. This had the effect of suppressing some potential outliers when the total-
polarizability was not well constrained. The results for the least-squares and robust algorithms look
reasonably similar. The main difference between the two is that the robust norm has eliminated the
worst time-decay outliers: the minimum time-decay of any TOI is 0.13 compared to 0.095 for the least-
squares algorithm. For our scoring submissions for the ESTCP study we used the time-decay to rank
the digging order: items with slower decay were dug earlier. With our modified time-decay feature and
the least-squares algorithm we would need to dig 88% of the non-TOI to recover all TOI (Figure 3c)
compared to 58% of the non-TOI for the robust statistics (Figure 3d). This involves a reduction from
1640 to 1080 unnecessary digs.

Figure 4a compares the ROC curves for the least-squares and robust norm classification methods that
threshold on the time-decay. The performance is virtually identical up to the point where the false-alarm
rate is 40%. The superior ability of the robust statistical algorithm to prevent outliers results in it
reaching PTP = 1 much sooner than the least-squares algorithm. Figure 4b shows how the performance
varies if the size parameter is also included in the classification ranking. For both least-squares and
robust-statistics the ranking strategy is modified by taking a weighted sum of the size and time-decay
parameters. Again the robust statistical method produces lower false-alarm rates than least-squares.
Performance gains against the method that used time-decay only for ranking are marginal and the
increased complexity and risk associated with including the size parameter are not justified.

One of the reasons the EM61 discrimination ability is so limited is that the object depth, and hence
size, is poorly resolved (Figure 5a-b). There is a strong tendency to over-predict the item depth,
particularly for the small, shallow non-TOI (Figure 5d). The robust-statistical algorithm displays a slight
improvement in the accuracy of the recovered depths for the TOI items but does not improve the depth
accuracy for the non-TOI (in fact these appear to be slightly worse).

The depth recovery problem is well illustrated by the object that caused anomaly 165. The ground-
truth indicates that the item was a fuze at 1 cm depth, but both the robust (56 cm) and least-squares
(70 cm) algorithms placed the item at significantly greater depths (Figure 6a). Comparison of observed
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(a) Least Squares feature space
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(b) Robust feature space
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Figure 3. Comparison of EM61 derived features using least-squares and robust statis-
tical algorithms.
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Figure 4. Comparison of discrimination performance of least-squares and robust sta-
tistical algorithms. A slight improvement results if both size and time-decay are utilized.
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data with best-fitting predicted data at difference depths (Figure 6b) shows that the deeper models
provide a better fit to the observed data. At the shallower depths, the model is unable to match all of
the observed peaks in the profile data. We believe that this is caused by correlated position errors of
the sensor positions from different transects across the area. To test this assertion, we used the same
positions as anomaly 165 and modelled a synthetic 37 mm projectile that was horizontal at a depth of 0
and oriented 45o from North. We then corrupted the positions by both random and correlated position
errors of different sizes before calculating a set of synthetic data (which was also corrupted by additive
noise of 5 mV standard deviation). For random errors we added normally distributed pertubations of
a specified standard deviation to each of the three position coordinates. For the correlated errors we
added a randomly generated shift to all the Northing values in each transect, with the sign of the error
alternating between each line (that is all Northward collected lines were moved North and all Southward
collected lines were moved South). Figure 7 shows the misfit-versus depth curves for two realisations
for each of the different error scenarios. An inversion algorithm will seek the model with minimum
misfit. With no positional error, there is a local minima at a depth of approximately 50 cm, but the fit
is significantly worse than when the model is placed at the surface. With correlated positional errors
the deeper model often becomes preferred relative to the shallower model. We repeated the calculation
of the misfit versus depth curves for 100 different realisations and kept track of the best-fitting depth
in each case (Figure 8). The results indicate that, for this case, sensor noise alone never causes the
deeper model to be preferred. The deeper model becomes much more common with increasing levels of
correlated positional perturbations.

2.3. Analysis of MetalMapper data from Camp Butner. We also applied the robust statistical al-
gorithm to the MetalMapper data collected at Camp Butner. Positions and depths recovered by the
least-squares method were generally very accurate and no significant differences between the depths re-
covered by robust and least-squares methods were found. Figure 9 compares the polarizabilities obtained
by the different methods on data collected at a test-pit at Camp Butner. It was discovered after the
survey that the Y-component of the 3rd receiver was faulty. The robust inversion method is, as expected,
much more tolerant of the outlying data compared to the least-squares inversion. This is particularly
evident in the feature space plots of Figure 10, which compare time-decay, size and asymmetry feature
vectors obtained by the least-squares and robust methods. The time-decay and size feature vectors were
calculated using the total-polarizability: the time-decay feature vector as the ratio of time-channels at 8.1
ms and 160µs, and the size size feature vector as the sum of all 42 time-channels between 160µs and 8.1
ms. The asymmetry parameter was calculated as the sum of the difference between the secondary and
tertiary polarizabilities normalized by the secondary polarizability. All asymmetry calculations were made
using all time-channels between 160µs and 1 ms. The asymmetry parameter will be zero for radially
symmetric steel objects. There is considerably less scatter in the feature-vector plots obtained through
robust-statistics and the asymmetry values are generally smaller. If the faulty receiver is excluded from
the inversion process, then the polarizabilites recovered by the least-squares and robust methods are
almost identical (Figures 9c-d).

Figure 11 compares time-decay and size based feature vectors obtained by the least-squares and robust
methods on all of the live-site data anomalies. At the Camp Butner site, two vendors, Geometrics and
SKY, were involved in the data collection. In was previously pointed out by us (in our ESTCP report) and
others that the SKY data were of a higher quality than the Geometrics data (the Geometrics system was
used on the test-plot). This is evident in the plots showing the feature space broken out across the two
methods (Figures 11c-d) where there is considerably greater variability shown within the feature vectors
derived from the Geometrics data. These differences are even more evident when we plot a feature
space comprising the object size and asymmetry (Figure 12). There is considerably less variability of
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(a) Least Squares depth recovery
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(b) Robust feature depth recovery
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−60 −40 −20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

Depth error (cm)

C
u

m
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n

 

 

LSQ: Non−TOI

LSQ: TOI
Robust: Non−TOI

Robust: TOI

(d) Cumulative depth error (signed)

Figure 5. Comparison of EM61 derived depths using least-squares and robust statistical
algorithms. The signed cumulative depth plot is defined as observed minus predicted
depth.

the asymmetry parameter when calculated from the polarizabilities recovered by the robust statistical
algorithm.

Even with the robust statistics algorithm, there are still some outliers in the size versus asymmetry
space (Figure 12). Figure 13a plots the asymmetry parameter versus the offset from the center of the
MetalMapper array. The worst outliers are offset by more than 30 cm from the array center and arise
because the MetalMapper cannot constrain all the polarizabilities when the object is too far from the
array center. The positional offset does not explain all of the outliers. In an effort to better understand
the underlying cause of the outliers, we calculated linearized error estimates of the polarizabilities. These
are straightforward to obtain for a fixed position as the problem is linear (Smith and Morrison, 2005) .
Figure 13b plots the error in the total-polarizability (square root of the trace of the model covariance
matrix) against the asymmetry parameter. The total uncertainty tends to be large for the 105 mm
projectiles as these are deeply buried and reflect the increasing uncertainty with depth. This is evident in
Figure 13c which plots total polarizability error versus item depth. The percentage error in polarizability
Figure 13d is a more useful metric. It identifies all of the asymmetry outliers (7 of them with percentage
error > 10%) and anomaly 2504 which was an item that many venders had trouble identifying.
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(a) Inversion result
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Figure 6. (a) Least-squares inversion of anomaly 165. (b) Comparison of EM-61
observed and predicted data at time-channel 3 for anomaly 165.
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(a) Realization 1
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(b) Realization 2

Figure 7. Impact of positional errors on misfit versus depth curves. Rows contain in-
creasing amounts of random positional error (σ), while columns have increasing amounts
of correlated positional errors (σw).

The "model error" metrics computed in Figure 13 do not directly include any information on the
misfit between observed and predicted data. We therefore computed a "data error" metric by taking
the ratio of the sum of squares of the residuals divided by the sum of squares of the observed data.
This metric was calculated using the time-channels between 160 and 460 µs after pulse turn-off. Figure
14 compares the model and data errors against asymmetry for the anomalies collected by Geometrics
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Figure 8. Histogram of best fitting depths for 100 realizations of different positional
pertubations. Rows contain increasing amounts of random positional error (σ), while
columns have increasing amounts of correlated positional errors (σw).

and those collected by SKY. Both error metrics are generally larger for the Geometrics derived datasets,
reflecting our earlier comments on the higher quality of the SKY derived data. Percentage data error
is larger for the non-TOI items for both datasets: this occurs because most of the clutter is small and
data amplitudes are generally low. The cumulative distribution plots in Figures 14e-f show that 85% of
TOI and 30% of non-TOI of the Geometrics anomalies have model errors of less than 10% compared to
98% of TOI and 90% of non-TOI for the Sky anomalies. For data errors the comparison is 65% of TOI
and 15% of non-TOI for Geometrics anomalies against 78% of TOI and 30% of non-TOI.

Turning now to classification performance, we employ a similar method to that used for our MetalMap-
per submissions for Camp Butner that were generated under the MM-1004 project. The recovered po-
larizabilities across all time-channels were used to train two support-vector machine classifiers. The first
used all polarizabilities (all channels of the primary polarization and the first 15 channels of the secondary
polarizations) while the second used just the total-polarizability (all time-channels). The classifier that
used all polarizabilities was trained using 35 items measured in a test-pit (all UXO) and 18 items from
the live-site. The 18 items were chosen on the boundaries between the obvious clusters of TOI items
and comprised 5 TOI items. The classifier that used total-polarizabilities was trained using the same
40 TOI items, but for non-TOI we did not use the training data and instead used the 500 items that
were furthest from the TOI items. These were typically the small, fast decaying items that are obviously
non-TOI and produce a more effective classifier than when using the 13 non-TOI in our training set. In
our original submission, we combined the two classifiers by selecting the highest ranked classifier output:
this procedure was intended to minimize the chance of false-negatives occurring for TOI with poorly
constrained secondary polarizabilities. We utilized two variations of this procedure to generate the ROC
curves shown in Figures 15:
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Figure 9. Comparison of polarizabilities extracted over the test-pit using least-squares
and robust statistical algorithms. In the bottom row the faulty Y-component of sensor
3 was excluded.

(1) Combined using a cutoff on the SVM applied to all polarizabilities. In this method the highest
ranked items were all those anomalies with SVM(all polarizabilities)>0.5, with the SVM(total
polarizability) controlling the ranking for the remainder of the items. The 0.5 cutoff was chosen
by inspection of the SVM values in the dataset. It appeared to lie just above a large cluster of
non-TOI items. The model and data errors did not explicitly influence the ranking scheme.

(2) Combined using percentage data and model errors. In this method the dig-order from the all-
polarizability ranking was used except for those anomalies where either data or model error was
above the pre-defined thresholds of 15% and 10% respectively and the total-polarizability ranking
placed the item higher in the digging order.
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(a) Least Squares (Size vs decay)
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(b) Robust (Size vs decay)
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(c) Least Squares (Size vs asymmetry)
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(d) Robust (Size vs asymmetry)

Figure 10. Comparison of polarizabilities extracted over the test-pit using least-squares
and robust statistical algorithms. In the bottom row the faulty Y-component of sensor
3 was excluded.

Figures 15a-b show the ROC curves for the combined methods when using feature vectors recovered
by least-squares and robust-statistics along with the ROC curve for the MetalMapper submission made
under project MR-10041. Also shown are the ROC curves that would be obtained by using the SVM
trained on all polarizabilities and on the total-polarizability. The first combined method has an identical
ROC curve to the all-polarizabilities method until the point where SVM=0.5 at which point it switches
to the total-polarizability method. For both the least-squares and robust feature vectors switching over
to the total-polarizability causes a significant reduction in the number of false-alarms required to dig all
TOI: from 724 down to 633 for least-squares and from 814 down to 434 for robust statistics (Table 2).
The final false-alarm rates of the second combined method are similar to those from the first method

1Note that we use the revised submission made under MR-1004 that corrected a QC error in the original submission
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but the ROC curves do not rise quite as steeply as the first method in the early stages. This occurs
because the ranking based on all-polarizabilities is very effective at distinguishing TOI with high-quality
data from non-TOI: it just becomes a much less effective method when the data-quality degrades.

The last five TOI recovered by the first method and robust feature vectors are anomalies 1346, 1154,
2405, 1298 and 2504 (very last one). Four of these items are obvious outliers in the model and data error
plots provided in figures 13 and 14. Anomaly 2504 is the worst outlier with a model error percentage
of almost 60%. Clearly, we should not even rely on the total-polarizability for anomalies with such
large model errors. If we assign all anomalies with a model error > 50% to a "can’t decide" category
(there are 53 of them with just one TOI, anomaly 2504) and insert them at the point where SVM(total
polarizabilies)=0, then we get the ROC curves shown in Figures 15c-e. The ROC curve flattens out at
the point where the "can’t decide" anomalies are dug, but rises to 1 much faster than a ranking scheme
that does not use a "can’t decide" category. For instance, with robust statistics and the first combined
method the false-alarm rate is reduced from 434 to 225 (Table 2).

On all combinations of classifier the robust statistics derived feature vectors were better than the least-
squares feature vectors (Table 2). The best-performing least-squares method (first method with can’t
decide) required 319 false-alarms, which was 94 items more than the equivalent robust-statistics derived
ranking scheme. As was evident in the feature plots, there is a significant difference in the discrimination
performance when the Geometrics and SKY collected data are treated separately (Figure 16 and Table
3). For the Geometrics collected data the false-alarm rate of the robust-statistics derived feature vectors
using method 1 (164 items) is 99 items less than the best performing classifier built using least-squares
derived feature vectors (263 items). For the SKY collected data, the false-alarm rates of the classifiers
built using the different feature vectors are very similar. The good performance of least-squares derived
feature vectors implies that the higher-quality data from the SKY system do not contain significant
outliers that would benefit from the application of a robust inversion routine (this was evident in the
feature vector plots in Figures 11 and 12).

Note that adding the false-alarm rates for the SKY and Geometrics systems in Table 3 does not
produce the same false-alarm rate for the combined systems in Table 2. This is because there is a subset
of SKY collected false-alarms that occur after the last SKY collected true-positive and before the last
Geometrics collected true-positives (and vice-versa, depending on which system has the last ranked TOI).
These items are included in the false-alarm rate for the combined system but not when false-alarm rates
for each are tallied separately.

Least Squares Robust statistics
Method No can’t decide With can’t decide No can’t decide With can’t decide
Total polarizabilities 633 427 434 313
All Polarizabilities 724 400 814 818
Combined (SVM < -0.5) 633 368 434 225
Combined (%error) 909 319 555 262
As submitted 736 403

Table 2. False alarm rates for the different ranking methods applied to MetalMapper
data at Camp Butner.

2.4. Discussion. Robust statistical methods were able to improve the false-alarm rates encountered at
Camp Butner when using both the EM61 production mode data and the MetalMapper cued-interrogation
data. In both cases, the primary contribution of the robust-statistical method was the prevention of
outliers in the TOI class. For the EM61 we found that the robust statistical method did not result in a
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10
2

10
3

10
4

10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sum L
t

R
e

la
ti
v
e

 d
e

c
a

y
: 

L t(3
5

)/
L

t(5
)

  10

1002

 109

1154

1187   12

 126

1276

1298

 133

 134

1344

 135
 138

1386

1395

 141

  15

 155
 161

 166

1664

 177

 178

1887

1894

 192
 197

1981

 199

   2

 207 215

 220

 226

2340

 236

2405

 246

 250

2504

  26

 260

 265

 273

 281

 282

  29

  31

 328

 329 339

  36

  37

 371
 377   38

  39

 401

 418

  42

 429

 445

 452 466

 474

  48

 492    5

  52

  54

 543

 553 582

   6

  60

 603

 617

 624

 635

  64

  65

   7

  72

 720

  73

  77
 770

 773

  78

  79

 798

   8  83

  85
  86

 884

  89

 900
  99

 996

 

 

(c) Least Squares (Geometrics)
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(d) Robust (Geometrics)
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(e) Least Squares (SKY)

10
2

10
3

10
4

10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sum L
t

R
e

la
ti
v
e

 d
e

c
a

y
: 

L t(3
5

)/
L

t(5
)

   1

1000

1026

1117

 115

 118

1201

1235

 124

 130

 143

 144 158

  16

1728

1787 181 2023

 218

  23

 249

 258

 261

 272

 284

 292

   3

 324 326 330
  34

  35

 370
 373

   4

 404

  44

 458

 460

 489

 503

 520

 521

 523 551

 555

  58

 583

  59

 605

  61

  66
 683

 693

  71

  74
 795

  80

 800

 845

 856

 873

  93

 988

 

 

(f) Robust (SKY)

Figure 11. Comparison of MetalMapper time-decay and size related features using
least-squares and robust statistical algorithms.

MR-1629: Robust Statistics Final Report 16 July 11, 2011



10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Polarizability

A
s
y
m

m
e

tr
y

   1
  10

1000

1002
1026
 109

1117

 115

1154

 118
1187

  12
1201

1235
 124

 126

1276

1298

 130

 133

 134

1344

 135
 138

1386

1395

 141

 143

 144

  15 155

 158
  16

 161

 166

1664

1728 177

 178

1787

 181

1887
1894

 192
 197

1981

 199
   2

2023

 207

 215

 218

 220
 226

  23

2340

 236

2405

 246

 249 250

2504

 258

  26

 260
 261

 265

 272

 273

 281

 282
 284

  29

 292
   3

  31

 324

 326
 328

 329

 330

 339

  34

  35

  36

  37

 370

 371

 373

 377

  38

  39

   4

 401

 404

 418   42 429

  44

 445

 452

 458

 460
 466

 474

  48

 489 492    5

 503

  52

 520

 521

 523

  54

 543

 551

 553

 555

  58

 582

 583

  59

   6

  60

 603

 605

  61
 617

 624
 635

  64
  65
  66

 683

 693

   7  71

  72

 720

  73

  74

  77
 770

 773

  78
  79 795

 798

   8

  80

 800

  83

 845
  85

 856

  86

 873

 884

  89

 900

  93 988  99
 996

 

 

(a) Least Squares (All)
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(b) Robust (All)
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(c) Least Squares (Geometrics)
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(d) Robust (Geometrics)
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(e) Least Squares (SKY)
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(f) Robust (SKY)

Figure 12. Comparison of MetalMapper asymmetry and size related features using
least-squares and robust statistical algorithms.
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(b) Total uncertainty (All)
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(d) Percentage uncertainty(All)

Figure 13. Error analysis of MetalMapper data

Geometrics Sky
Method Least-squares Robust Least-squares Robust
Total polarizabilities 348 235 18 16
All Polarizabilities 324 551 17 17
Combined (SVM < -0.5) 302 164 23 10
Combined (%error) 263 182 23 22
As submitted 250 21

Table 3. False alarm rates for the different ranking methods applied to MetalMapper
data at Camp Butner, split by data collection group.

significant improvement in the accuracy of the depth (and hence size) estimates. Monte-Carlo simulations
revealed that correlated position errors appear to be the dominant cause of depth uncertainty. To militate
against this effect, methods that explicitly account for positional uncertainty would need to be used.
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Figure 14. Error analysis of MetalMapper data split between Geometrics and SKY
collected datasets
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Figure 15. Top left-hand corner of ROC curves for least-squares (left column) and
robust statistics (right column) feature vectors either without (top row) or with (bottom
row) a "can’t decide" category based on model error of > 50%.

For the MetalMapper, improved recovery of secondary and tertiary polarizabilities using the robust-
statistics algorithm resulted in more TOI identified early using the classifier built on all polarizabilities,
with less dependence on the more robust, but less efficient, classifier built on total-polarizability. On a
subset of the MetalMapper data collected with a newer instrument and with better field procedures, there
was no significant performance improvement when using robust-statistics. As intuitively expected, the
robust-methods are most effective when applied to problem datasets. But they also have the desirable
attribute of not degrading performance when applied to data free of outliers.
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Figure 16. Top left hand corner of ROC curves for feature-vectors derived from least-
squares and robust statistics algorithms and incorporating a can’t decide category, split
by data collection group.
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3. Regularizing polarizabilities in time-domain electromagnetic inversion

3.1. Introduction. In the introduction to this report we discussed the dipole forward model and the
concept of the polarizability tensor M(t). The polarizability tensor is assumed to be symmetric and
positive definite and so can be decomposed as

(14) M(t) = ATL(t)A

with A an orthogonal matrix which rotates the coordinate system from geographic coordinates to a
local, body centered coordinate system. The diagonal eigenvalue matrix L(t) contains the principal
polarizabilities Li(t) (i = 1, 2, 3), which are assumed to be independent of target orientation and location.
Features derived from the dipole model, in particular amplitude and decay of the principal polarizibilities,
have been successfully used to discriminate between targets of interest (TOI) and non-hazardous metallic
clutter. These parameters are useful because, to first order, a conductor can be modelled as a simple LR
loop which is inductively coupled to transmitters and receivers on the surface. The current response of
this loop is a decaying exponential which is fully described by an amplitude and time constant (West and
Macnae, 1991). The TEM dipole model generalizes this simple circuit model to account for target size
and shape. This latter property is represented by the principal polarizabilities, which decay independently
in time and are approximately aligned with the semi-major and minor axes of the target.

Equal transverse (secondary and tertiary) polarizabilities indicate an axisymmetric target (Bell and
Barrow, 2001). Most ordnance can be treated as bodies of revolution (Shubitidze et al., 2002), and so
equality of transverse polarizabilities has been proposed as a useful feature for discriminating between
TOI and irregularly-shaped clutter. However, in practice it has been difficult to reliably estimate target
shape from observed TEM data. This is because mono-static, vertical-component sensors conventionally
deployed for unexploded ordnance detection often cannot adequately interrogate the transverse response
of buried targets. Figure 17 illustrates this effect for a spherical target illuminated by a mono-static
Geonics EM-61 sensor (geometry and time channels are shown in figure 1). In order to excite the

Transverse (y) Axial (z) Data

0 40 80

−1

0

1

Transverse (x)

Figure 17. Components of the dipole response over a target positioned at r =
[0, 0, −0.3] m for the EM-61. Predicted data are linear combination of axial and
transverse responses, here for a spherical target with polarizabilities Li = 1, i = 1, 2, 3.
Excitation of transverse responses requires a horizontal standoff, resulting in a lower SNR
than for axial excitation.

transverse response of the target the sensor must be positioned with a horizontal stand-off from the
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target. Assuming an approximately dipolar field from transmitter and target, the secondary field decays
approximately as 1/r6 with increasing sensor-target separation r. For this reason, the axial polarizability
response dominates the measured data. Data which are sensitive to transverse polarizations tend to
have low signal to noise, so that inverted parameters for axisymmetric targets will not necessarily have
approximately equal transverse polarizabilities. Early attempts to estimate target shape from mono-static
sensors therefore proved unsuccessful (e.g. Bell and Barrow (2001)).

Multi-static TEM sensors designed for UXO detection have helped address these limitations. Fig-
ure 18 shows the components of the dipole response for the TEMTADS sensor over the same target
as in figure 17. The data received for transmitters immediately adjacent to the center transmitter are
primarily sensitive to a combination of the transverse (x and y) excitations. Inversion of these data
therefore produces less uncertain estimates of transverse polarizabilities. We illustrate this in figure 19

Transverse (x) Transverse (y) Axial (z) Data

−10 0 10

−0.8

0

0.8

Figure 18. Components of the dipole response over a spherical target for the 5 x 5
TEMTADS array. Each subplot shows the received field in all receivers excited by the
corresponding transmitter in the array. The locations of receivers are indicated by the
white markers in the top left subplot.

by considering the condition number of the linear forward operator G mapping from model mM to
predicted data dpred

(15) dpred = GmM.

Here the model mM is comprised of the six unique elements of the polarizability tensor M at a single
time channel

(16) mM = [M(1, 1), M(1, 2), M(1, 3), M(2, 2), M(2, 3), M(3, 3)]T .

For a datum at location ri (relative to the target), the corresponding row in G can be expressed as (Song
et al., 2011)

(17) Gi =
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with Bp the primary field at the target and Bs the secondary field at the receiver, with all fields implicitly
dependent upon ri. Superscripts denote the x, y, z components of the respective fields.

The predicted data in equation 15 are a linear function of the polarizability tensor, so that if target
location r is known, least squares parameter estimates can be directly obtained via the pseudoinverse
G†

(18) m̂M = G†dobs = (GTG)−1GTdobs

The least squares solution is a linear combination of the observed data weighted by the (inverse) singular
values of G (see Golub and van Loan (1989)). Small singular values si of G amplify errors on the data
and so the condition number

(19) cond(G) = max
i
si/min

i
si

is a diagnostic of ill-posedness. In figure 19 we see that the condition number for the EM-61 can increase
unexpectedly as a function of target depth for data acquired with a 50 cm line spacing (and 10 cm along
line spacing). This indicates that the inversion can be ill-posed if the survey is in an unlucky configuration
relative to a given target, so that G has small singular values. This can be alleviated by decreasing line
spacing to 25 cm: here data coverage is sufficient that the inversion is well-posed over the entire range
of target depths. However, in practice this tight line spacing is prohibitively slow to acquire relative to
multi-static sensors that can fully interrogate a target with a single sounding.
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Figure 19. Left: condition number of the forward modelling matrix G as a function
of target depth for EM-61 and TEMTADS sensors. Right: trace of the covariance of the
polarizability tensor elements as a function of target depth.

For the TEMTADS sensor positioned directly over the target, we see in figure 19 that the condition
number decreases monotonically with target depth. This is because the effective number of data is
decreased as a shallow point dipole response is restricted to central transmitters and receivers. This can
be addressed by eliminating low amplitude data from outer coils, by truncating small singular values in
the singular value decomposition of G, or, as will be explored in this paper, by explicitly regularizing the
inverse problem. Also shown in figure 19 is the trace of the estimated model covariance for the same
scenarios. The model covariance is (Menke, 1989)

(20) cov(m̂) = (GTG)−1.
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The TEMTADS and cued (0.25 m) EM-61 surveys decrease the total uncertainty relative to the detection
mode (0.5 m) EM-61 survey. This covariance, however, does not account for errors on the data and
assumes that target depth is perfectly recovered. Data acquired with a moving sensor are susceptible to
correlated errors in position, and this can translate to models at local minima corresponding to erroneous
depths. In practice, cued data acquired with a stationary multi-static sensor provide better estimates of
target depth and so greatly reduce uncertainty in polarizabilities (Billings et al., 2010).

However, small or deep TOI can still be problematic in multi-static data processing. The decreased
signal from deep targets counteracts improved conditioning of the inverse operator with depth and can
make polarizability estimates ill-posed. This is exacerbated for low SNR channels at late times, as
illustrated in figure 20 for inversion of TEMTADS data acquired over an (axisymmetric) 4.2" mortar.
The unregularized inversion produces transverse polarizabilities which are approximately equal over most
of the channels, but at late times it is evident that low SNR precludes accurate estimation of these
parameters, even for the large TOI considered here.
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Figure 20. Unregularized TEMTADS inversion result: 4.2" mortar. We average TEM-
TADS channels (see figure 1) in windows of length 5, producing 23 channels spanning
the range 0.05-22 ms. This speeds processing and improves SNR at later channels.

Here we investigate techniques for explicitly constraining transverse polarizability estimates in an
inversion. An obvious and viable approach to this problem is to simply reparameterize the dipole model
so that secondary and tertiary polarizabilities are equal. This is termed a two-dipole model because the
secondary response is a superposition of axial and (equal) transverse polarizations. Practical use of the
two-dipole model is motivated by the analytic response of a spheroid and by successful fits to high-fidelity
test stand data acquired over axisymmetric targets (Pasion, 2007). Of course, the two-dipole model may
not provide a good fit to data acquired over an non-axisymmetric target.
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A data processing approach which has been proposed to handle this ambiguity is to fit each target
using both two or three (i.e. unequal transverse) dipole parameterizations and then to compare the
fits to the observed data. The three-dipole parameterization has more degrees of freedom with which
to fit observed data and so generally provides a lower misfit than the two-dipole parameterization.
The problem is then to determine what constitutes a significant difference in data misfit for the two
competing parameterizations. Model selection criteria can be used to select the most parsimonious
model parameterization which can explain the data (Hastie et al., 2001).

In this work we instead develop regularization techniques to constrain the recovered polarizabilities.
Constraints on model parameters are typically applied in the form of parameter bounds, here we will
impose an additional constraint in the form of a penalty on unequal transverse polarizabilities. This
approach provides us with a continuum of possible models between constrained and unconstrained models
(or, equivalently, between two and three dipole parameterizations). We do not select a single model but
rather input all models into a discrimination algorithm and then classify a target based on the model
which most probably corresponds to a target of interest. The method is demonstrated on TEMTADS
and MetalMapper data sets acquired at San Luis Obispo (SLO), California, and Camp Butner, North
Carolina.

3.2. Regularized inversion. When solving parametric inverse problems, it is usually sufficient to mini-
mize a data norm quantifying the misfit between observed and predicted data

(21) φd = ‖dobs − dpred‖2

with dpred = F (m) generally a nonlinear functional of the model m. Additional prior information can
be incorporated in the inversion via parameter bounds (e.g. positivity) or by constructing a model which
has specified properties. In the latter case, the optimization problem becomes

min
m

φm

s.t. φd ≤ τ.
(22)

The model norm φm is a regularizer which ensures that the recovered model has, for example, a minimum
deviation from some prior reference model. The parameter τ is a target value of the data misfit which is
typically specified as the expected value of φd under the assumption of Gaussian noise (Oldenburg and
Li, 2005).

In the case of the dipole model, a simple regularizer which penalizes differences in secondary and
tertiary polarizabilities is

(23) φm = (L2 − L3)2.

To solve the optimization problem in equation 22, we form the Lagrangian

(24) L = φm + γ(φd − τ)

subject to the Lagrange multiplier satisfying γ ≥ 0. Minimizing the Lagrangian yields the unconstrained
minimization problem (Tikhonov regularization)

(25) minφ = φd + βφm.

For a nonlinear forward modelling with fixed β, the solution is obtained by linearizing φ and iteratively
computing the least squares solution to an overdetermined system of equations for the model perturbation
δm

(26)
(

J√
βφ′′m

)
δm ≈

(
δd
0

)
We solve this system using the lsqnonlin routine in Matlab with sensitivities J computed numerically.
The regularization parameter β is inversely proportional to the Lagrange multiplier γ. In practice, the
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inverse problem is solved by minimizing equation 25 over a range of βs values until a model satisfying
φd ≈ τ is identified. Criteria such as generalized cross-validation or L-curve heuristics can also be used
to select a model which balances the trade-off between model and data norms (Oldenburg and Li, 2005).
In this work we will employ a different approach to model selection: we allow a discrimination algorithm
to select a model which best corresponds to a target of interest. Before turning to the discrimination
stage, however, we describe in more detail our inversion algorithm.

Following on work in Song et al. (2011), we use a sequential inversion approach as follows:
1: Solve an inverse problem for target location r. From equation 18, the model mr = r is related to

the data via the nonlinear functional

(27) dpred = F [r] = G(r)G†(r)dobs.

We estimate r by minimization of equation 21 using an iterative Gauss-Newton algorithm in Matlab.
2: Solve the linear inverse problem for the unique elements of the polarizability tensor M(t) (equa-

tion 18) at all time channels using the location obtained at the previous step.
3: Compute the eigenvalue decomposition of the polarizability tensor at each time channel. The eigen-

values are an initial estimate of principal polarizabilities, and eigenvectors correspond to the columns
of the Euler rotation matrix A in equation 14. To estimate the orientation angles we then minimize
the least squares difference (Frobenius norm) between the eigenvector matrix and Euler rotation
matrix parameterized by orientation angles (φ, θ, ψ).

4: Finally, at each time channel solve a nonlinear regularized inverse problem for orientation angles and
principal polarizabilities. The model at each time channel is

(28) mL(tj) = [φ, θ, ψ, L1(tj), L2(tj), L3(tj)]T

At each time channel we obtain a set of models corresponding to the solution of equation 25 over a
range of βs.

We use a “β cooling" technique to generate the models in the final step. In this approach we iteratively
minimize 25 starting from an initial, large value of β. The regularization parameter is initialized so that
the term βφm � φd at the initial model obtained in step 3. On convergence at a given β, we lower
the regularization parameter by a factor κ (e.g. κ = 0.5) and initialize the next inversion in step 4
with the final model from the previous step. This procedure is repeated until the relative change in
the model parameters achieves some tolerance ε. Note that for this problem we do not terminate the
inversion on the basis of achieving some target data misfit. This is because in a parametric inversion
the model has limited degrees of freedom with which to fit the data and so the β cooling procedure
will stall at a model corresponding to the unconstrained (β = 0) solution. This is in contrast to the
overdetermined inverse problem, where decreasing the regularization parameter below the target misfit
introduces spurious model structure (Oldenburg and Li, 2005).

We remark that the sequential inversion approach developed by Song is very fast relative to an “all-
at once" algorithm which tries to estimate polarizability parameters at all time channels simultaneously.
Because the time channels are inverted separately in the sequential method, re-weighting of time channels
via estimated errors is unnecessary and parallel processing can greatly reduce computation time.

Figure 21 shows the regularized inversion result for channel 1 for the same TEMTADS data acquired
over a 4.2" mortar as in figure 20. As the regularization parameter is decreased with β the objective
function φ in equation 25 is dominated by the data misfit term, so that φd decreases monotonically.
Conversely, the model norm increases monotonically with decreasing β. The Tikhonov (or Pareto) curve
shows φd versus φm; typically this curve is used to select a model which balances the trade-off between
norms. Finally we see in figure 21 that the initial, regularized model estimate has equal transverse
polarizabilities. As the regularization parameter is decreased the secondary and tertiary polarizabilities
diverge to their unregularized values, with the primary polarizability unaffected by the regularization.
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Figure 21. Regularized inversion result for channel one of target in figure 20

Regularized inversion results at all channels are shown in figure 22. We show the relative quality of the
fit to the observed data by computing a likelihood

(29) p(mj
i ) = exp

(
−
φd(m

j
i )−min(φjd)

min(φjd)

)
for the ith model at the jth channel (mj

i ), with min(φjd) the minimum misfit obtained over all models at
channel j. This form of model likelihood is somewhat arbitrary; rigorous calculation of model likelihoods
(or posterior probabilities) requires a full uncertainty appraisal. However, we will show in the following
examples that equation 29 is a reasonable metric for weighting competing models. We also remark that
the model likelihood is approximately

p(mj
i ) ≈ 1−

φd(m
j
i )−min(φjd)

min(φjd)
= 1− relative misfit

(30)

with relative misfit used to compare models in a misfit vs. depth curve (Lhomme et al., 2008). In
figure 22 we show the minimum misfit (unregularized) model (with p(m) = 1) and the model from
regularized inversion with minimal model norm. At early, high SNR channels, the unregularized model
is a slightly better fit to the data than the regularized model, and so the latter has a somewhat reduced
likelihood. However, at late time channels (i.e channels 15 and beyond in figure 22) both models have
approximately equal likelihoods, indicating that the regularized model with L2 ≈ L3 is as good a fit to
the data as the unregularized model.
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Figure 22. Models from regularized TEMTADS inversion: 4.2" mortar. Solid lines
indicate unregularized result, jittered L2 and L3 correspond to models with the minimum
difference in transverse polarizabilities obtained with regularized inversions.

Figure 23 shows a regularized inversion result for a 60 mm mortar at 15 cm depth in the TEMTADS
training data at San Luis Obispo. There is a much greater deviation between transverse polarizabilities
for the unregularized inversions, particularly at the first time channel. This suggests that discrimination
using target shape can still be problematic for small targets at even modest depths. Again, axisymmetric
models from the regularized inversions are nearly as likely as the best-fitting (non-axisymmetric) model,
as might be expected for this TOI.

If the target is in fact non-axisymmetric, then can we definitively rule it out as a target of interest by
comparing the relative likelihoods of models from regularized inversions? It depends. Figure 24 shows
a regularized inversion result for a clutter item at the surface. While there is not a marked difference
between unregularized transverse polarizabilities in figure 24, at early times a model with equal (or nearly
equal) transverse polarizabilities is less likely (i.e. is a significantly poorer fit to the data). However,
at later times with reduced SNR, axisymmetric models become almost as probable as non-axisymmetric
models. Hence if the SNR is sufficiently high, then we may be able to eliminate a target as a TOI on
the basis of shape information. If the target is small or deep (as in figure 23), there may not be enough
information in the data to confidently rule out a TOI using target shape alone.

3.3. Multi-object regularized inversion. Any practical inversion algorithm for UXO discrimination
must consider overlapping responses from multiple targets. The approach in Song et al. (2011) augments
the model vector with multiple dipole sources and simultaneously estimates locations for all sources,
followed by estimation of all polarizabilities. Applying regularized inversion at this second step would
require separate model norm terms for each object, and careful balancing of these terms via separate
regularization parameters. A more straightforward route is to decouple the regularized inversions into a
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Figure 23. Models from regularized TEMTADS inversion: 60 mm mortar. Solid lines
indicate unregularized result, jittered L2 and L3 correspond to models with the minimum
difference in transverse polarizabilities obtained with regularized inversions.

series of single object inversions. In this procedure, termed an “iterative residual fit" (IRF) by Bell (2006),
each single object inversion fits the residual data that cannot be predicted by other objects (figure 25). We
apply this approach to our initial location estimation problem, iterating between single object inversions
until each converges to a final location. We then carry out separate regularized inversions at these
locations, with each regularized inversion again fitting the residual data that cannot be predicted by all
other dipole sources. Initial testing of the iterative residual fit procedure by Bell (2006) on magnetic
and mono-static electromagnetic data proved unsuccessful: the method was consistently outperformed
by simultaneous estimation of all sources (the “double happiness" approach). However, the diversity of
transmitter excitations and receiver components in multi-static data may better support the iterative
approach.

Figure 26 compares single and two-object inversion results for TEMTADS data acquired over a 37mm
target at Camp Butner. In this example the two-object (IRF) inversion recovers a set of polarizabilities
that are in much better agreement with the training data than the single object result. Despite this
improvement, we note that the estimated secondary polarizabilities for this target are poorly constrained
at late times; subsequent regularized inversion at the corresponding source location addresses this ill-
conditioning.

3.4. Discrimination using transverse polarizabilities. To demonstrate the utility of including regu-
larized transverse polarizabilities in discrimination, we consider discrimination with a nonlinear support
vector machine (SVM) (see Hastie et al. (2001) or Burges (1998) for a full description) The decision
function for the SVM is

(31) ytest = wTK(xtrain, xtest) + b0
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Figure 24. Models from regularized inversion: clutter. Solid lines indicate unregular-
ized result, jittered L2 and L3 correspond to models with the minimum difference in
tranverse polarizabilities obtained with regularized inversions.
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Figure 25. Processing flow for iterative residual fit procedure.

with K a kernel matrix, w a (sparse) weight vector, and b0 a constant bias term. For a radial basis
function

(32) Kij = exp(−ν‖xtraini − xtestj ‖2)
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Figure 26. Estimated polarizabilities extracted from TEMTADS data for a 37 mm
target at Camp Butner. Grey lines are training data polarizabilities for this target class.
Left: single object inversion, right: two object inversion with iterative residual fit method

with xtraini and xtestj the ith training and jth test vectors, respectively. For discrimination with po-
larizabilities, the elements of these feature vectors are log-transformed primary, secondary, and tertiary
polarizabilities at a subset of the available time channels. Expanding the norm in terms of the elements
of training and test vectors, the kernel matrix can be expressed as

(33) Kij =
N∏
k=1

exp(−ν(xtrainik − xtestjk )2).

When considering multiple models from a regularized inversion, the kth element of the jth test vec-
tor has multiple values, denoted xtestjkl , with corresponding likelihoods p(xtestjkl ) from equation 29. For
discrimination, we select the element for which the term

(34) κijkl =
[
exp(−ν(xtrainik − xtestjkl )2)p(xtestjkl )

]
is maximized. The elements of the kernel matrix are then

(35) Kij =
N∏
k=1

max
l
κijkl =

N∏
k=1

max
l

[
exp(−ν(xtrainik − xtestjkl )2)p(xtestjkl )

]
.

The preceding computations compare all possible values of a test vector with a given training vector
and retain the test vector elements which are “closest" (in the sense of the radial basis function) to that
training vector. The weighting by model likelihoods acts to penalize models which may agree with a
training vector but which do not fit the data.

We have applied the above processing to cued MetalMapper and TEMTADS data sets acquired for
ESTCP demonstrations at San Luis Obispo (SLO) and Camp Butner. At SLO, the discrimination task
was to identify seeded targets ranging in size from 4.2" mortars down to 60 mm mortars (figure 27a). For
this site training data were provided by ESTCP and comprised a random sample of 174 detected targets.
Targets of interest at Camp Butner ranged from large 105 mm projectiles down to 37 mm projectiles
(figure 27b). Beyond test pit measurements of individual items from each class of TOI, no training data
were initially available for classifier training. For each data set at Camp Butner, we requested groundtruth
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for a small number (< 50) of targets in order to characterize the distributions of TOI polarizabilities.
More description of this procedure is given in Pasion et al. (2011).

Figure 28 compares the performance of nonlinear support vector machines using regularized and unreg-
ularized test polarizabilities. In all cases, regularization decreases the false alarm rate relative to using all
(primary, secondary and tertiary) unregularized polarizabilities. For SLO and Camp Butner MetalMapper
data sets the regularized method achieves the maximal area under the ROC (AUC) and a false alarm
rate (FAR) comparable to discrimination using only primary polarizabilities. For the TEMTADS data
sets, discrimination with regularized inversion has similar AUC and FAR to discrimination with primary
polarizabilities.

3.5. Conclusions. We have developed a regularized inversion algorithm that penalizes the deviation
between transverse polarizabilities. Rather than selecting a single model from this inversion process, we
input all models into a support vector machine classifier. This corresponds to test features vectors with
multiple values for each element. We compare the elements of each test vector with the training data
and retain the model value which best corresponds to a given training vector. We also penalize the
match of test and training vectors by the likelihood that the model fits the observed data.

We find that the regularized method can improve initial performance on high SNR targets with
well-constrained tranverse polarizabilities while preventing the occurrence of outlying TOI that arise
when we rely on unregularized parameters throughout the diglist. The greatest benefit in discrimination
performance is obtained with sensor data which interrogates all polarizabilities with orthogonal (horizontal
and vertical) primary fields (i.e. MetalMapper).
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(a) San Luis Obispo. Clockwise from top left: 60 mm mortar, 81 mm mortar, 4.2"
mortar, 2.36" rocket.

(b) Camp Butner. Clockwise from top left: 37 mm projectile, M48 fuze, 105 mm
high explosive (HE) projectile, 105 mm high explosive anti-tank (HEAT) projectile.

Figure 27. Targets of interest for ESTCP demonstrations at SLO and Camp Butner.
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(b) Butner MetalMapper
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(c) SLO TEMTADS
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(d) Butner TEMTADS

Figure 28. Receiver operating characteristics for support vector machines applied to
cued data sets at San Luis Obispo (SLO) and Camp Butner.
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4. Including uncertainty in parameter estimates during UXO classification

We have investigated how model parameter uncertainty can be incorporated in the discrimination
process. A full description of methods and results can be found in Beran et al. (2011b), here we provide
a brief summary of the work.

Figure 29 shows a motivating example for the problem of discrimination with features extracted from
time-domain electromagnetic (TEM) data. The best-fitting model for one target (indicated by an arrow in
figure 29) is far removed from the typical feature vectors we obtain for this type of ordnance. This outlier
highlights that the TEM parameter estimation problem is fundamentally ill-posed: a small perturbation
in the data caused by noise can produce a large change in the estimated model (ill-conditioning), and
multiple models can fit the data equally well (non-uniqueness).
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Figure 29. Estimated model parameters for ordnance and non-ordnance targets for
Camp Sibert EM63 data. Crosshairs show the location of the mean of the UXO class.

Model uncertainty characterizes whether a given inverse problem is ill-posed. For a nonlinear forward
modelling dpred = F(m) the misfit can be minimized iteratively by solving for the model perturbation
δm

(36) Hδm = JTWT
dWdδd

with H = ∇2φ the Hessian of the misfit, J the Jacobian matrix of sensitivities, and δd = (dobs−F(m)).
At the minimizer m̂ we can approximate the model covariance as (Menke, 1989)

(37) cov(m̂) ≈ H−1.

From this result we see that if there is a large curvature to the misfit function at the model estimate m̂,
then the model is well constrained and the variance of the model parameters is small. The probability
distribution of the model parameters may then be approximated as a normal PDF with mean m̂ and
covariance computed with equation 37 (Menke, 1989).
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This linearized uncertainty analysis may not be valid if the objective function is nonconvex. In this
case the local quadratic approximation provides a poor approximation to the actual objective function
and uncertainties estimated with equation 37 may not be reflective of the actual uncertainties in the
model. An alternative approach to estimating uncertainties is to use a Bayesian framework (Tarantola
(2005), Sen and Stoffa (1995)) to estimate the model posterior probability distribution (PPD)

(38) p(m|dobs) ∝ p(dobs|m)p(m).

The PPD for a nonlinear problem can be estimated numerically using the Metropolis-Hastings algorithm.
This algorithm works by randomly perturbing the current model mcurrent to a proposed model mproposed

and accepting the proposed model according to the Metropolis criterion (Metropolis et al., 1953). This
scheme is a Markov chain; acceptance of the proposed model depends only on the current model. After
a sufficient number of samples the chain of accepted models will converge to a stationary distribution
which is the posterior distribution.

From linearized and nonlinear uncertainty appraisals of TEM dipole parameters we concluded that:
(1) the minimum misfit model is not always the best model to use for discrimination,
(2) linearized uncertainty appraisal cannot always account for the deviation of an estimated feature

vector from the expected value of that target class.
We applied Bayes rule to propagate model uncertainty through to the discrimination stage. This

yielded the posterior probabilities of class membership (in classes T (UXO) and F (clutter)) given the
observed data dobs

p(T |dobs) =
∫
p(x|dobs)p(x|T )p(T )dx∫

p(x|dobs)p(x|T )p(T )dx +
∫
p(x|dobs)p(x|F )p(F )dx

p(F |dobs) = 1− p(T |dobs).
(39)

Intuitively, the above expression evaluates Bayes rule over all possible values of the estimated feature
vector x, weighted by the probability of each respective value. For multivariate normal distributions the
integral can be solved analytically, with the result that the integral of two Gaussians is itself a Gauss-
ian distribution (Brookes, 2005). We therefore term a classifier employing equation 39 with Gaussian
distributions for both classes and feature vectors a “Gaussian product" (GP) classifier.

Application of the GP classifier requires estimation of model uncertainty for all inverted targets.
While nonlinear appraisal can be carried out for all targets, here we find that an efficient solution is to
approximate the multi-modal parameter distributions with an ensemble of models obtained by repeatedly
minimizing the misfit with an iterative algorithm. Each model corresponds to a mode of the posterior
probability distribution. Figure 30 shows EM63 test data from Camp Sibert, AL generated with this
approach. We then evaluate the Gaussian product (equation 39) using the linearized uncertainty about
each model in our ensemble (i.e. each kernel in the mixture model). The kernel with maximal probability
of membership in the UXO class is then used to classify the respective target.

Figure 31 compares receiver operating characteristics (ROCs) obtained with this approach with con-
ventional quadratic discriminant analysis (QDA) using only the minimum misfit feature vector to classify
each target. The method is applied to EM61 and EM63 data sets acquired at Camp Sibert. For both
EM61 and EM63 data sets the area under the ROC and the false alarm rate at Pd=1 (i.e. the propor-
tion of false positives required to identify all true positives) are improved by the GP classifier. While the
improvement for the EM63 data appears negligible, the identification of one outlying UXO (4.2" mortar)
is a significant result from the perspective of a regulator charged with site remediation. Similarly, the
significant reduction in false alarm rate at Pd=1 for the EM61 data improves the likelihood that all
ordnance will be identified with this sensor.
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Figure 30. Feature vectors estimated from Camp Sibert EM63 data. Feature vectors
for a given target are connected by a line, with the largest marker indicating the minimum
misfit model. Highlighted feature vector is an outlier to the ordnance class.
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Figure 31. Receiver operating characteristics for classifiers applied to EM61 (left) and
EM63 (right) test data.
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5. Selecting a receiver operating point

The receiver operating characteristic (ROC) curve is a tool for displaying the performance of a binary
decision process and is used in applications such as medical diagnosis, economics, and machine learning.
The curve is generated by varying the threshold of the decision algorithm and plotting the resulting
proportion of true positives as a function of the proportion of false positives. For medical studies a
true positive often denotes correctly predicting that a condition is present, while a false positive denotes
incorrectly predicting the presence of the condition. The decision statistic, or score, is a single continuous
or discrete value which corresponds to the output of a diagnostic test. A second application, which is
our focus in this article, is unexploded ordnance discrimination. Here a true positive indicates that we
have successfully predicted that an ordnance belongs to the class of UXO targets (T ) which must be
dug, while a false positive is a non-ordnance item belonging to the class F which we have predicted
belongs to T . The decision statistic is the output of any algorithm which can discriminate between T
and F classes. For example, the decision statistic might be the probability of membership in the UXO
class predicted with a discriminant analysis classifier.

As the decision statistic is varied monotonically for a test data set, we generate a sequence of true
and false positives which cumulatively generate points on the ROC. This empirical curve is necessarily
an uncertain estimate of the expected performance of a discrimination algorithm, since it is derived from
a limited set of observations which is assumed to be representative of the underlying populations of T
and F classes. Accordingly, methods for computing ROC confidence intervals are increasingly applied in
machine learning contexts (Macskassy et al., 2005).

In this work we address selection of the operating point on the ROC curve. The operating point is a
cut-off value of the decision statistic used to generate the ROC. For example, any diagnostic test with a
value less than a selected operating point will be classified as “disease present." In the UXO problem the
operating point corresponds to the “stop-dig" point, any targets with a decision statistic less than this
threshold will be left in the ground. When full clearance of all detected targets is required by a regulator,
the operating point might instead represent the division between digging targets with explosive ordnance
disposal (EOD) technicians and digging with slightly fewer precautions (e.g. using a backhoe to dig
targets which are likely clutter).

In section 5.1 we set up the problem and discuss existing methods for selecting the operating point.
These methods use slightly different notions of optimality to balance the trade-off between true and false
positive fractions. In unexploded ordnance discrimination we often know a priori how many unlabelled
targets must be classified. We assume that this set of unlabelled targets is a sample from hypothetical
generating distributions of T and F classes. In section 5.2, we show that the empirical ROC for a sample
depends upon the generating and prior distributions of T and F classes, as well as the size of the sample.
In particular, as the sample size grows the expected proportion of targets which must be labelled in order
to find all T instances in the sample also grows. We then derive the approximate sampling distribution of
the point on the ROC at which all T instances are found. In theory, this distribution can be used to select
an operating point which attains a specified probability of identifying all T instances in a sample. In
practice, however, this depends upon accurate estimation and extrapolation of the tails of the generating
distributions from a limited training data set. We find that this approach has limited success when
applied to real data sets.

We therefore propose a simple method that does not depend upon estimating distributions, but
rather continues labelling instances until a predefined number NL of false instances occur in sequence.
In applications to synthetic and real data this technique has a higher probability of identifying all T
instances than other methods, though with a commensurate increase in the proportion of labelled F
instances.
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5.1. Optimal operating points. In this section we review existing theory for choosing the operating
point. Following work in Kanungo and Haralack (1995) and Fawcett (2004), denote a positive (e.g.
target is ordnance) by T and a negative (e.g. target is not ordnance) as F . At a specified threshold Λ
of the decision statistic x, we define the following probabilities

P (T |T,Λ) =

Λ∫
−∞

p(x|T )dx (true positive)(40)

P (F |T,Λ) =

∞∫
Λ

p(x|T )dx = 1− P (T |T,Λ) (false negative)(41)

P (T |F,Λ) =

Λ∫
−∞

p(x|F )dx (false positive)(42)

P (F |F,Λ) =

∞∫
Λ

p(x|F )dx = 1− P (T |F,Λ) (true negative)(43)

where p(x|T ) and p(x|F ) are the distributions of T and F , as shown in figure 32(a). The decision statistic
x is a number representing the output of a discrimination algorithm, and p(x|T ) and p(x|F ) are univariate
distributions, sometimes referred to as score distributions, which are specific to that discrimination
algorithm. Statistical classification algorithms (e.g. discriminant analysis, support vector machines)
may operate in a high-dimensional feature space to generate the decision statistic; we emphasize that
the score distributions are a univariate projection of the distributions of T and F in the feature space.
In figure 32(a) we have shown the score distributions as normal probability distributions. However,
in practice score distributions are rarely normal (Macskassy et al., 2005) and the development which
follows is therefore general to any form of p(x|T ) and p(x|F ). The receiver operating curve shows
the dependence of P (T |T,Λ) (true positives) upon P (T |F,Λ) (false positives) as Λ is varied. The
probabilities at a given threshold Λ can be displayed as a “confusion matrix" (figure 32(b)). Hereafter
we retain the convention that if the decision statistic x for a test item is less than the threshold Λ then
that item classified as T by our discrimination algorithm, as shown in figure 32(a)2.

In this framework, confusion matrix probabilities alone are not sufficient to select an optimal threshold,
we must assign some cost C to each of the decisions we make. We denote the cost of a true positive
as C(T |T ), and a false positive as C(T |F ). The costs of the other elements of the confusion matrix
are similarly defined. A notable feature of the ROC is that it is independent of the relative frequencies
of the two classes (the prior probabilities P (T ) and P (F )). However, once we assign a cost to each
of the decisions in the confusion matrix, the prior probabilities become crucial because they determine
how often we expect to incur the specified costs. Now given our confusion matrix probabilities, specified
costs and prior probabilities, the expected cost (also called risk) at Λ will be

E(C(Λ)) = P (T |T,Λ)C(T |T )P (T ) + P (F |T,Λ)C(F |T )P (T )

+ P (F |F,Λ)C(F |F )P (F ) + P (T |F,Λ)C(T |F )P (F )

= P (T |T,Λ)C(T |T )P (T ) + (1− P (T |T,Λ))C(F |T )P (T )

+ (1− P (F |T,Λ))C(F |F )P (F ) + P (T |F,Λ)C(T |F )P (F )

(44)

2Many statistical classifiers output a probability P (T |x), so that a large decision statistic indicates that an instance is
likely to be T . In this case we simply threshold on −P (T |x).
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Figure 32. (a) The ROC is generated by integrating the distributions of T and F
classes. (b) At a given operating point Λ,we have a confusion matrix of probabilities,
and the ROC is a plot of the first row of this matrix as a function of Λ. (c) The resulting
ROC with operating point Λ.

Minimizing the expected cost with respect to Λ gives

(45)
∂P (T |T,Λ)
∂P (T |F,Λ)

=
(C(F |F )− C(T |F ))P (F )
(C(T |T )− C(F |T ))P (T )

.

Recalling that the ROC is a plot of P (T |T,Λ) versus P (T |F,Λ), the optimal operating point is defined
by the point where the slope of the curve equals the right hand side of the above expression (Kanungo
and Haralack, 1995). The ROC is a non-decreasing function, and a positive slope can be ensured by
requiring

C(T |F ) ≥ C(F |F )

C(F |T ) ≥ C(T |T )
(46)

so that misclassification costs more than correct classification. In machine learning it is often assumed
that correct classifications do not incur any cost and we must only specify the relative costs of false
negatives and false positives. While in some applications (e.g. economics) costs are available, in many
cases it is not obvious how to objectively choose these parameters. Of particular concern is the cost
of the false negative. What does it cost to leave an ordnance item in the ground? In the short term,
not taking action when it is required may save us expenditures on remediation, but in the long term we
must account for potential environmental damage, liability, etc. We might encode expert, but ultimately
subjective, judgements into costs. Variable costs of remediating targets might be considered: for example
deep targets are more time-consuming (and hence more expensive) to excavate than shallow targets.
However, deep targets are also likely to pose less risk for accidental detonation. We conclude that there
is considerable ambiguity to cost specification and employing expert judgement when specifying costs
may not minimize actual risk.

Even if costs can be chosen in a manner that will satisfy regulators, we also require the prior probability
for each class to apply equation 45. We are thus faced with the problem of specifying two functions
(costs and priors) from limited training data. A further problem is that the empirical ROC generated
from observed data is a piecewise constant curve with infinite or zero slope, and so finding an operating
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point with slope satisfying equation 45 requires that we fit a smooth function to the empirical ROC.
This interpolated function may also achieve the desired slope in more than one location, so that a given
specification of costs and priors does not unambiguously define an operating point.

Billings (2004) suggested that an operating point for UXO discrimination be chosen by terminating
digging once a predefined number NL of successive F instances (clutter) are encountered in the ordered
list of targets. In this case the sequence of labelled targets will end with one T instance followed by NL

F instances. The slope of the ROC at this operating point is approximately

(47)
∂P (T |T,Λ)
∂P (T |F,Λ)

≈ 1/NT

NL/NF
=

1
NL

P (F )
P (T )

Choosing NL is equivalent to specifying the right hand side of equation 45. Approximating the slope
of the ROC in this way circumvents the need to estimate priors and to interpolate the empirical ROC,
but still leaves us with the problem of choosing costs via the parameter NL. In section 5.2 we explore
how NL is influenced by sample size (the total number of instances) and propose objective criteria for
specifying this parameter.

Simpler options for selecting an operating point which do not require costs or priors have also been
proposed. Two criteria which have been considered are the point on the ROC closest to the point (0,1),
and the point on the ROC which is the largest vertical distance from the 45 degree line passing through
(0,0) and (1,1) (the Youden index, Perkins and Shisterman (2006)). Figure 33 illustrates these methods.
The point closest to (0,1) is also equivalent to choosing the point with the largest perpendicular distance
from the 45 degree line. The 45 degree line corresponds to random chance: a discrimination algorithm
with this ROC will correctly rank randomly selected items from each class only half of the time (Fawcett,
2004).

Figure 33 compares the location of operating points on a theoretical ROC curve with the three
methods discussed thus far. This curve is generated for two univariate Gaussian distributions with
standard deviations σT = σ and σF = 2σ, and means separated by 4σ, as shown in figure 32(a).
To illustrate the effect of unequal costs on the operating point, we also show operating points with
hypothetical costs displayed in table 4. The Youden index and cost minimization with equal priors and
equal costs to incorrect classification give the same operating point. We can see this by writing the
vertical distance d between the ROC and the 45 degree line as

(48) d = P (T |T,Λ)− P (T |F,Λ).

Maximizing d with respect to Λ yields equation 45 for equal priors and costs. The operating point for
the closest (0,1) method stops slightly before the Youden index, while cost minimization with lower costs
for digging clutter has the intuitive result that decreasing the relative costs of digging clutter causes us
to dig more clutter.

Method C(T|T) C(T|F) C(F|T) C(F|F)
C1 0 1 1 0
C2 0 0.1 1 0

Table 4. Example costs for risk minimization used in figure 33.

5.2. Optimal operating points for samples. The operating points discussed in the previous section
are expected to be optimal (according to slightly different criteria) for the underlying population from
which our observed data are assumed to be a random sample. However, in practice we are not applying
our discrimination algorithm to the inferred population, but to a sample from that population. How
do the expected ROC curves for a population and a sample from that population differ? The empirical
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Figure 33. Methods for selecting the operating point on an ROC curve. A: closest
to point (0,1), B: maximum vertical distance from 45 degree line (dashed). C1: risk
minimization with equal priors and equal misclassification costs. C2: risk minimization
with equal priors and unequal misclassification costs (C(F |T ) > C(T |F )) specified in
table 4. ROC (heavy line) is generated from two univariate normal distributions with
µT = 2σ, µF = −2σ, σT = σ, σF = 2σ, as shown in figure 32(a).

ROC for a sample is generated by ordering the sample from smallest to largest decision statistic, and
then incrementing the cumulative counts of T and F instances as we move up the ordered list. The
true and false positive fractions are therefore discrete quantities which asymptote to the continuous form
(equation 43) as N →∞.

Consider the example of two univariate Gaussian distributions from the previous section. Figure 34
shows the theoretical ROC curve for the population, as well as ROC curves for sample sizes ranging
from N = 200 to N = 800, with N/2 the number of samples from each distribution (i.e. equal priors).
As sample size increases, the empirical ROCs are increasingly better approximations to the true ROC.
Also shown in figure 34 are the false alarm rates (FAR) for the random samples. Here we define the
FAR as the proportion of F items which must be dug in order to find all T items in the sample. The
generating distributions require that we dig every F item to guarantee that all T items are found, so that
FAR = 1 for the population, However, the expected value of the false alarm rate for a given sample size
is considerably less than one for finite samples and slowly asymptotes to one as sample size is increased.

Based upon these observations, it seems reasonable to define an optimal operating point λ for a
sample of size N as one which finds all T items in the sample. Processing of unexploded ordnance data
typically occurs in batches, so that the sample size is known prior to selecting the operating point. If
the prior probability of T is known (or is estimated from a training data set) and the total number of
instances in the unlabelled sample (test data) is known, then the expected number of T instances in the
test data can be computed. This suggests a straightforward criterion for selecting an operating point:
continue labelling until the expected number of T instances has been found. However, if the number
of T instances is overestimated by just one, then this approach will lead us to label all instances in a
fruitless search for a non-existent occurrence of T . This defeats the purpose of discrimination, and so
instead we seek to develop methods which have an improved chance of identifying all T instances than
the methods previously discussed.
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Figure 34. Effect of sample size on ROC and false alarm rate. Left column: population
ROC (heavy line) and realizations of empirical ROCs for samples of size N/2 from each
generating distribution. Right column: false alarm rates (FAR) of empirical ROCs in left
column. Solid horizontal line is the mean FAR over all realizations.

Here λ is a discrete random variable which corresponds to the index of the last T instance encountered
in the ordered sample. A lower bound on the expected value of λ can be derived by finding the critical
value xλ such that

(49) 1− P (xλ|T ) =

∞∫
xλ

p(x|T )dx = 1/NT ,

with NT = NP (T ) the expected number of T instances in the sample (and similarly, NF = NP (F ) =
N(1 − P (T )). At the point xλ, we expect that one T instance will occur somewhere in the interval
[xλ ∞]. This extreme value is the last T instance we will encounter in the sample and therefore defines
the desired operating point. At xλ we expect the false alarm rate to be

(50) P (xλ|F ) =

xλ∫
−∞

p(x|F )dx
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so that the expected number of F instances occurring before the point xλ is NFP (xλ|F ). Then a lower
bound on the expected number of instances which must be labelled in order to find all T occurrences in
a sample of size N is

(51) E(λ) ≥ NT +NFP (xλ|F ).

This expression is only a lower bound on the expected value of λ because the extreme T instance can
occur anywhere in the interval [xλ ∞]. We note that computing this lower bound requires that we
integrate the distribution p(x|T ) up to a small probability 1/NT (equation 49) so that the corresponding
value xλ will be in the tail of p(x|T ). In practice the generating distributions must usually be estimated
from a small set of labelled training data, and extrapolation beyond the range of observations into the
extreme tails of an estimated distribution is prone to large errors (Pandey, 2001). We will demonstrate
this problem in section 5.4 with applications to real data sets.

Now to derive an approximate probability distribution for the discrete random variable λ, we consider
a test sample comprised of the union of independent samples from p(x|T ) and p(x|F ). The test data
have the score distribution

(52) p(x) = p(x|T )P (T ) + p(x|F )P (F ).

The empirical ROC is generated by ordering the test data from smallest to largest score (decision
statistic). The ith item in this ordered list of N samples (the ith order statistic x(i)) has the probability
distribution (Balakrishnan and Cohen, 1956)

(53) p(x|x(i)) =
N !

(i− 1)!(N − i)!
P (x)(i−1)(1− P (x))(N−i)p(x).

The probability of observing a sample from the T class at x is given by Bayes rule

(54) P (T |x) =
p(x|T )P (T )

p(x|T )p(T ) + p(x|F )p(F )
.

Figure 35 illustrates the computation of equations 52 through 54. Marginalizing over x we obtain the
probability that the ith order statistic in the test data belongs to the T class

(55) P (T |x(i)) =

∞∫
−∞

P (T |x)p(x|x(i))dx

with P (F |x(i)) = 1− P (T |x(i)). Figure 36 verifies computation of equation 55.
To compute the probability that the ith order statistic is the last true item in the sample (P (i = λ)),

we must enumerate all permutations for which this outcome can occur and compute the probability of
each permutation. This quickly becomes prohibitively expensive for even modest sample sizes, and so
here we approximate the distribution of P (i = λ) as follows. If the ith order statistic is the last T item in
the sample, then the remaining i+ 1 through N order statistics must all be F . Therefore the probability
that the ith order statistic is the last T is approximately equal to

(56) P (i = λ) ≈ P (T |x(i))P (F |x(i+ 1))P (F |x(i+ 2))...P (F |x(N)).

Figure 37 shows computation of equation 56 for the generating distributions shown in figure 32(a),
with equal priors and for sample sizes ranging from N = 200 to 800.

The probability mass function P (i = λ) can in principle be used to select an operating point λ. For
example, we might adopt the order statistic which is most probably the maximum T instance in a sample
of size N as an optimal operating point (i.e. the mode of the distribution of P (i = λ)). Figure 38 shows
the dependence of the mode of λ upon sample size and prior probability of the T class. The operating
point increases logarithmically with sample size, with the rate of increase weakly dependent upon the
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Figure 35. Steps in computing the probability p(T |x(i)) of a T instance given the
ith order statistic from a sample. (a) The probability distribution of the test data p(x)
is comprised of the distributions p(x|T )p(T ) and p(x|F )p(F ) (equation 52). (b) The
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by multiplying each p(x|x(i)) by p(T |x) and integrating over all x.
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Figure 36. Computing the probability P (T |x(i)) of a T instance given the ith order
statistic. Points are generated by repeated sampling from the distribution p(x), ordering
the sample, and then determining the proportion of realizations for which the i/N th item
is T . Solid line is the prediction from equation 55, with the required integrals evaluated
numerically.

prior probabilities. Also shown in figure 38 is the lower bound on the expected value of λ computed
with equation 51. We see that the lower bound asymptotes to the most probable value as sample
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size increases. This makes equation 51 a useful approximation for large sample sizes where computing
equation 55 over all order statistics can become quite slow.
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Figure 38. Dependence of the optimal operating point λ on sample size N and prior
probability T for the generating distributions of figure 32(a). Lines with markers are a
lower bound on the expected value of λ (equation 51).

We now return to the idea of specifying a number (NL) of F instances occurring sequentially in
the ordered diglist which will trigger us to stop digging. The approximate distribution of λ can help
to understand how a particular choice of NL affects the probability of finding all T instances. Using
the probabilities P (F |x(i)) (equation 55), figure 39 shows the probability P (NL) of observing NL F
instances in sequence immediately prior to the most likely value of λ in an ordered list of length N .
If P (NL) is small then there is a small probability that we will terminate digging prior to the final T
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instance. As NL is increased, P (NL) will necessarily decrease monotonically since P (F |x(i)) < 1. The
curves in figure 39 have the character of a Tikhonov curve encountered when solving a regularized inverse
problem. This suggests using a heuristic from Tikhonov regularization (such as the point of maximum
curvature) to select NL. However, in practice it will be difficult to construct these curves from limited
training data and so we seek heuristics which depend only on the size of the sample N . In figure 39 we
find that P(NL) is bounded by the function

(57) P (NL) ≤ exp
(
−
N2
L

N

)
.

Setting P (NL) = 1/N in the above expression and solving for NL yields

(58) NL = d
√
N logNe

with the inequality converted to an equality and the ceiling function (d · e) mapping to the next largest
integer. As shown in figure 39, this approach yields a consistently small value of P (NL) for the sample
sizes considered. Beyond figure 39, we have no theoretical basis for justifying the form of equation 58,
and the result in figure 39 is of course particular to the distributions, prior probabilities, and sample
sizes in this example. Other choices for the dependence of NL on sample size can be considered, in
the remainder of this paper we demonstrate the efficacy of this particular form with simulations and
applications to real data.
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Figure 39. Solid lines: probability P (NL) of observing NL F instances in sequence,
immediately prior to the most likely value of λ (the last T instance), for varying sample
sizes N . Dashed lines: an upper bound on P (NL) (equation 57). Markers indicate NL

computed with equation 58.
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5.3. Simulations. To illustrate the relative merits of criteria for selecting an operating point, we simulate
the performance of the following operating points:

(a) the point on the training data ROC closest to (0,1).
(b) the lower bound on the expected value of λ (equation 51), assuming normal probability distri-

butions and with required probabilities and priors estimated from the training data. This is an
approximation to the most probable value of λ, as shown in figure 38.

(c) the number NL of F instances which must occur sequentially, computed with equation 58.

We estimate all operating points for (a) and (b) in the above list from the same realization of training
data, and then apply these operating points to an independent test data set to compute true and false
positive fractions (TPF , FPF ) at each operating point. For each realization of training data a single
realization of test data is used to evaluate all operating points. This is repeated for 100 independent
realizations of training and test data, allowing us to estimate means and standard deviations of TPF and
FPF at all operating points. Generating distributions for T and F classes are as depicted in figure 32,
and we used equal priors when generating the test data. These simulations are repeated for training data
sets ranging from N = 200 to N = 800, as in figure 34, with test sample size fixed at N test = 1000.

In table 5.3 we display the proportion of test realizations for which a given operating point is able to
identify all T instances, P (TPF = 1), as well as the mean and standard deviations of the false positive
fraction at the operating points. Not surprisingly, the closest (0,1) operating point has zero chance of
finding all T instances. The λ operating point asymptotes to finding all T instances approximately half
of the time. This is consistent with the distribution of λ in figure 39: at the most probable value of λ
there is still approximately half of the area under the distribution greater than this value. To achieve a
higher P (TPF = 1) we can integrate the distribution of λ up to some desired confidence, though of
course this will increase the expected number of F instances which must be labelled. While this approach
seems to represent a reasonable compromise between finding all true positives while limiting the number
of false positives, it is contingent upon knowing the correct form of the probability distributions. For
these simulations normal probability distributions are assumed and so the performance of the λ operating
point is quite good. This assumption will not hold in general and so actual performance of this operating
point may not be as suggested by these simulations. This is illustrated on a real data example in the next
section. Finally, we see that the NL operating point has a high probability of finding all T instances,
though with a corresponding increase in false positive fraction.

N train (a) Closest (0,1) (b) λ (Normal) (c) NL

P(TPF=1) FPF P(TPF=1) FPF P(TPF=1) FPF
200 0.00 0.10± 0.02 0.43 0.30± 0.04 0.93 0.46± 0.06
400 0.00 0.10± 0.02 0.45 0.31± 0.04 0.93 0.46± 0.06
800 0.00 0.10± 0.01 0.54 0.32± 0.03 0.96 0.47± 0.07

Table 5. Performance of operating point criteria for simulations with varying training
data size N train. P (TPF = 1) is the proportion of test data realizations for which the
operating point found all T instances, FPF is the mean and standard deviation of the
false positive fraction at the operating point.

5.4. Application to real data. We conclude with applications of operating point criteria to unexploded
ordnance discrimination. The problem of selecting an operating point has received limited attention in
this context: Zhang et al. (2004) derive an expression for a probability threshold which depends only
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upon the numbers of true and false instances in the training data

(59) P λ =
√
NT√

NT +
√
NF

.

This assumes that the score distributions are normally distributed with equal variance. Operating points
selected by this method typically identify 90% of the test ordnance items in the published results, and we
found that this technique had comparable performance to the closest (0,1) method for the simulations
reported in the previous section. We retain the latter method for application to real data sets. For
discrimination of UXO using frequency domain electromagnetic data, Huang et al. (2006) maximize a
“degree of discrimination" parameter identical to the maximum vertical distance from the 45 degree line
described in section 5.1. This method also found approximately ninety percent of ordnance in the test
data.

In figure 40 we compare the performance of operating point criteria applied to a data set from Guthrie
road, Montana. The discrimination problem at this site was to discriminate 81 mm mortars and 76 mm
projectiles from clutter using magnetics data. As described in Billings (2004), for each observed magnetic
anomaly we estimate an (apparent) remanence quantifying the deviation of the observed dipole moment
from a library of expected moments for ordnance targets. This provides a decision statistic which can be
used to discriminate ordnance (small remanence) from clutter (large remanence). We see in figure 40(a)
that the empirical distributions of the log transformed remanence are approximately normal. However,
the empirical distribution of ordnance is not symmetrical about its mean, such that the upper tail of the
normal distribution is a poor characterization of the actual distribution of ordnance. Extrapolation of a
fitted normal distribution to determine the operating point λ therefore overshoots the last T (ordnance)
instance and results in a large number of unneccesary digs on the ROC (40(b)). In this plot we have
not normalized the ROC axes by the numbers of true and false positives, so that the actual numbers
of ordnance (80) and clutter (644) are shown. The operating point selected with NL = 70 finds all
ordnance in this case, with an acceptable overshoot past the last ordnance item. In comparison, the
expected closest (0,1) operating point achieves a TPF = 0.925 (6 ordnance are left in the ground). This
is consistent with previously reported results for this method. In practice, the λ or closest (0,1) operating
points are estimated from a small training set and subsequently applied to the remaining test data. Here
we have instead used the full data set to choose these operating points and so the reported performance
does not capture the variability of these operating points introduced by the training procedure. A
bootstrap analysis can be used to quantify this effect, but the simulations in the previous section are
likely indicative of the relative variability of each technique. An obvious advantage of the NL operating
point is that it depends only upon the size N of the data set and so does not require a training data set
in order to determine an operating point.

Figure 41 shows example ROCs generated in a demonstration study at San Luis Obispo. The discrim-
ination task at this site was to find a variety of ordnance targets ranging in size from 4.2" mortars down
to 60 mm mortars. A number of electromagnetic sensors were deployed at the site, here we show results
for

(a) EM61 cart operating in a detection mode survey. The decision statistic is the estimated rate of
decay of the induced dipole moment.

(b) EM61 with a magnetometer (MSEMS sensor) operating in a detection mode survey. The decision
statistic is as in (a).

(c) TEMTADS array operating in a cued interrogation survey. The decision statistic is the maximum
correlation coefficient between the observed data and data predicted by a best fitting item in
a library of pre-defined ordnance polarizations (fingerprinting method described in Pasion et al.
(2007)).
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Figure 40. Operating points applied to Guthrie road data. Left plot shows the empir-
ical distributions of the decision statistic, apparent remanence, for ordnance and clutter
classes. Solid lines are normal distributions fit to these data. Right plot shows the ROC
generated by thresholding from smallest to largest decision statistic, with operating points
selected by closest (0,1), λ (Normal) and NL methods.

(d) Same TEMTADS data set as in (c), but with the decision statistic the probability of membership
in the ordnance class as predicted by a statistical classifier trained on size and decay rate of the
primary polarization (similar to the approach employed in chapter 2 of this thesis on Camp Sibert
data).

Given the limitations of the λ operating point demonstrated above, here we show only the closest
(0,1) and NL operating points. In figure 41 (a), (b) and (c) the NL operating point achieves TPF = 1,
while in (d) we obtain TPF = 0.990 (2 ordnance left in the ground). Again, the closest (0,1) point
finds approximately ninety percent of the ordnance in all cases. The slightly different results for (c) and
(d), both derived from the same TEMTADS data set, emphasize that the ROC curve depends not only
on the geophysical data, but on the discrimination strategy used to process these data. While careful
selection of an operating point can improve our chances of finding all ordnance, failures in inversion and
quality control can introduce outliers to the ordnance class. For the TEMTADS statistical classification
(figure 41(d)), the two outliers to the ordnance class are lower SNR 60 mm mortars for which the decay
parameter is difficult to estimate. More advanced discrimination techniques (e.g. robust inversion, or
incorporating parameter uncertainty in inversion) may reduce the occurrence of outliers and improve the
probability that TPF = 1.

5.5. Discussion. We have investigated selecting the operating point on a receiver operating curve.
Previously published criteria are generally designed to balance the trade-off between true and false
positive fractions on the ROC. This type of trade-off occurs in many analogous problems. For example,
in Tikhonov regularization of underdetermined inverse problems we seek a model which balances the
misfit to the observed data and some measure of model complexity. For the regularization problem a
model can be selected with heuristics (e.g. selecting a point of maximum curvature on the Tikhonov
curve), cross-validation techniques, or statistical criteria (e.g. achieving a target data misfit).

Here we have developed heuristics and statistical criteria for the operating point problem when the
total number of instances which must be labelled is known. We derived an approximate probability
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Figure 41. Operating points applied to San Luis Obispo data. Squares are closest
(0,1) operating points, circles are NL operating points. (a) EM61 cart (b) MSEMS
EM61 (c) TEMTADS fingerprinting (d) TEMTADS statistical classification.

distribution for the discrete random variable λ, which we defined as the order statistic at which all
T instances are labelled. This probability distribution depends upon the generating distributions, prior
probabilities, and sample size. Given this probability distribution, we can select an operating point which
corresponds to the most likely value of λ. In addition, we have derived a lower bound to the expected
value of λ which is a useful approximation to the most likely value. However, this approach has limited
practical applicability because it depends upon accurate estimation of the generating distributions and
extrapolation into the extreme tails of these distributions. To address this shortcoming, we have proposed
a heuristic for selecting NL, the number of F instances which must occur sequentially before digging
is terminated. This is equivalent to cost minimization, but the proposed heuristic provides an objective
means of choosing relative costs based upon sample size. In simulations and applications to real data we
find that this technique has an improved probability of finding all ordnance in a test data set, relative to
previously published methods. We have limited our investigations to samples on the order of N = 103,
which is representative of the number of detected targets at many sites. Tests on larger data sets should
still be carried out.
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In previous work we considered a bootstrapping approach to selecting the operating point. While this
method may still be viable we find that it is highly dependent upon the training data realization and
does not exploit information in the test data as digging proceeds. In contrast, specifying the parameter
NL does not depend on training data and termination of digging depends upon the test data (rather
than some pre-specified point derived from limited training data). If successful in finding all TOI, the
proposed approach will always overshoot the last target of interest by NL items, but this is a necessary
expense if we are to have confidence that all TOI have been identified. Furthermore, when digging is
terminated with this method, we can accurately estimate the distributions of T and F items and use this
to compute a confidence that no more targets of interest remain in the ground. A program of verification
digging (e.g. using Visual Sample Plan) should also be employed to provide independent confirmation
of the stated confidence level.
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6. Discussion

At the same time that new methods were being developed under this project, comprehensive tests
of discrimination performance were conducted at three sites as part of the ESTCP Discrimination Pilot
Study. These included the Former Camp Sibert in Alabama (mostly production EMI sensors with 4.2"
mortars the primary TOI), San Luis Obispo in California (production and next generation sensors with
60 mm, 81 mm and 4.2" mortars, and 2.36" rockets as the primary TOIs) and Camp Butner in North
Carolina (production and next generation sensors with 37 and 105 mm projectiles, and m48 fuzes as
TOI).

At the demonstration sites, the highest quality data and best discrimination results were achieved in
cued-interrogation mode by instruments that dwell at a fixed location while changing the transmitter
excitation pattern (e.g. MetalMapper, TEMTADS). ROC curves from the next generation sensor data at
both SLO and Camp Butner were near vertical initially (many TOI recovered with low numbers of false-
alarms) but often tended to flatten out, with many false alarms excavated before all TOI were recovered.
In effect, one part of the discrimination problem (with next-generation sensor platforms deployed in
cued-interrogation mode) is relatively easy, with the second part more challenging. The discrimination
problem was “easy” when the following conditions were met:

(1) single object in the field of view,
(2) cued-survey centred approximately over item location, and
(3) high SNR.

The discrimination problem was “hard” when the above conditions were not met, typically due to one or
more of the following issues:

• Challenge 1: Multiple objects in the field of view;
• Challenge 2: Anomaly response obscured by larger adjacent target or targets (similar to 1)
• Challenge 3: Data insufficient to constrain all components of the polarization tensor due to one
or more of the following:
– Low SNR
– Deep burial
– Object not centered under array

While not experienced at SLO or Camp Butner, viscous remanent magnetization of soil can also present
a significant challenge to effective discrimination.

The best results at SLO and Camp Butner were obtained with next generation sensors deployed in a
fixed location in a cued-interrogation mode. Additional challenges arise when dealing with other survey
modes as follows:

• Cued-interrogation by moving sensor: Including instruments such as the MPV where cued-data
are collected by moving the sensor and tracking its position (either using a template or a beacon).
The challenges are the same as for the static cued systems, but with the additional complication
that (1) we need to ensure the anomaly is adequately sampled; and (2) positional error could
come into play.
• One-Pass detection and discrimination: Includes instruments such as the One Pass TEM Ar-
ray (OPTEMA) where measurements are collected while continuously moving and varying the
transmitter excitation strategy. Challenges are similar to the MPV type situation, except with
the one-pass we can’t control the position of the object relative to the survey instrument.
• Detection mode: Includes instruments such as the MetalMapper Dynamic, where the measure-
ments are collected while continuously moving, but the transmitter excitation strategy doesn’t
change. Challenges are similar to the one-pass system with the extra consideration that these
systems were not designed to fully excite and measure the response of the 3 principle axes of an
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object. Thus even under ideal conditions (adequate SNR, shallow depth, adequate coverage),
the data won’t be able to constrain all components of the polarization tensor.

In addition, while discrimination using production quality EM61 data was not very effective at Camp
Butner, good results were achieved at SLO and Camp Sibert. This was mostly due to a better separation
between the decay characteristics of the TOI compared to the non-TOI items. At suitable sites, we expect
that some level of discrimination will be possible with an EM61 cart.

6.1. Principal contribution of the work performed under this project. While the discrimination
results at SLO and Camp Butner showed the great promise of the combination of next-generation sensor
data with high quality parameter extraction and classification algorithms, they also demonstrated that we
can’t always efficiently recover 100% of all TOI without also digging up a significant number of non-TOI.
The principal contribution of the work reported here was in developing algorithms and strategies that
minimize or eliminate the discrimination outliers that were often encountered at Camp Sibert, SLO and
Camp Butner. That is, the methods were particularly efficacious when applied to the “hard” anomalies
encountered at a site. This is because the methods exhibit the following two desirable attributes:

• Parameter extraction: The methods are robust and tolerant of data quality issues; and
• Discrimination: The methods are adaptable and sensitive to the uncertainty in the recovery of
extracted parameters.

6.2. Potential additional research under the robust statistics and regularization theme. The
following are directions of research within the area of parameter extraction that we believe deserve
additional attention:

(1) Robust statistical norms and multiple objects in the field of view: The algorithms developed here
only work when there is a single object in the field of view and need to be adapted for multiple
objects. Good and viable multi-object code using the least-squares approach exist (Song et al.,
2011) and these would need to be adapted to robust statistical norms.

(2) Regularization using reference models: An alternative form of regularization still to be investi-
gated is a penalty on the deviation of the recovered polarizabilities from some reference model.
Here the reference model is a library entry for a given ordnance type. This approach would
regularize all polarizabilities and represents a compromise between fixing polarizabilities at their
library values (as in the fingerprinting method developed under MR-1637) and an unconstrained
inversion. This may help to smooth noisy polarizability estimates for low SNR targets. When
discriminating multiple ordnance types, a separate regularized inversion (i.e with different refer-
ence polarizabilities) will be required for each ordnance type. The proposed approach is similar
to that employed in Aliamiri et al. (2007) (where the inverse problem is formulated in the context
of Bayesian maximum a priori (MAP) estimation) but has not been tested with field data.

(3) Include positional uncertainty in the inversion algorithm: We believe there is merit in specifically
targeting the issue of sensor positioning and orientation errors that arise from platform or cart
motion when data are collected dynamically.It is known that the measured EMI response is a
function of the location and dipole moment of an object as well as sensor positions. A precise
knowledge of sensor positions is generally required for accurate estimation of equivalent dipole
polarizabilities. For dynamically collected data, this stringent requirement is often hard to meet,
with accuracies typically on the order of several centimeters. Perturbations in sensor positions, if
not accounted for properly, can significantly degrade inverse results. Thus, it is highly desirable
to develop an EMI inversion scheme that can explicitly account for errors in the position and
orientation of the sensor.

Several signal processing approaches have been proposed to overcome sensor position uncer-
tainties including Tarokh and Miller (2007) and Tantum et al. (2008). The min-max approach
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of Tarokh and Miller (2007) was designed to look for the parameters of interest that minimize
the maximum data residual, where the maximum error is computed over ellipsoids or polyhedra
of possible sensor locations defined by the bound information. This approach is computationally
prohibitive if all possible scenarios need to be trialed in the search for the worst case scenario.
To avoid intensive computation, Tarokh and Miller (2007) simplified their min-max approach by
using a using a box-shaped uncertainty region, and performed the min-max inversion by testing
over the eight corner points of the box for each sensor location. The Bayesian approach of
Tantum et al. (2008) accounted for positional error by using a prior probability density func-
tion on positions. A high-dimensional integration over all unknown parameters was performed to
compute the maximum likelihood estimate of the underlying dipole parameters. This approach is
sensitive to the assumed prior density function. Although both these studies were numerical and
experimental in nature, they did show the feasibility of improving EMI inversion by incorporating
prior knowledge of sensor positioning errors into parameter extraction algorithms.

A potential research topic is the development of a technique which explicitly treats sensor
positions/orientations as additional model parameters in the inversion and aims to replace the
original sensor positions/orientations with nominally more accurate estimates. This is an ex-
tended inverse problem where we will determine not only target parameters but also relocate
sensor positions and orientations from observed data.

At first glance it appears that inverting for sensor positions would be computationally prohib-
itive as it increases the number of unknowns by three times the number of positions (six times
if we also invert for sensor attitude). We believe that there are a number of factors that work in
our favour. First, a UXO survey is a controlled experiment in which nominal sensor positions are
close to true sensor locations and can be good starting points for solving the associated nonlinear
inverse problem. This is in contrast to the case of determining the location of the obscured ob-
ject where we have to find a good initial model. Second, prior estimates of positioning accuracy
can be made and used as useful constraints in the inversion process. Third, if we assume that
the perturbations in each sensor can be treated as independent of others (Tarokh and Miller,
2007) then the relocation of each sensor position is decoupled from the other positions. This
simplifies the problem and makes it tractable. Fourth, and more importantly, next-generation
sensors typically take multi-time/multi-static/multi-component measurements which provide the
additional independent information needed to accurately relocate sensor positions.

In this extended problem the non-linear coupling between sensor positions and target pa-
rameters is mathematically challenging and introduces additional degrees of nonlinearity and
non-uniqueness into the solution process. We will initially utilize a solution strategy that in-
volves decomposing the extended inverse problem into two major steps in each of which one
category of model parameters is estimated. That is, the procedure is first to find locations and
dipolar polarizations given nominal sensor positions and then to optimize sensor locations given
the current estimate of target parameters. The process can be implemented in a sequential, iter-
ative manner until a pre-defined misfit level is reached (or the model reaches some convergence
tolerance).

A field data example of the extended inversion technique using the MetalMapper dynamic
data collected at SLO is shown in Figure 42. These are just preliminary tests but show that the
new method for accounting for sensor position errors, has promise.

In summary, to develop this extended inversion technique, we would need to: 1) Study the
sensitivities of transient electromagnetic signals to perturbations in sensor positions and orienta-
tions in order to assess the relative impact of the mis-located or mis-recorded spatial coordinates
on the measurements; 2) Investigate and quantify the trade-off and resolvability between two
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Figure 42. Polarizabilities extracted from MetalMapper data collected in dynamic
mode at SLO when using the an algorithm that accounts for errors in sensor posi-
tion. The secondary and tertiary polarizabilities extracted from the extended inversion
are approximately equal providing evidence that the obscured object could be an axially
symettric ordnance item.

set of model parameters, (i.e, one set that is related to the object, and the other with sensor
positions) using a number of sensor systems (e.g., OPTEMA, MPV and dynamic MetalMapper);
and 3) Formulate and develop an optimal, robust inverse approach that is able to effectively
account for the presence of sensor position uncertainties via a relocation process .

On the classification front we believe the following areas deserve additional attention:

(1) Methods to determine when to stop digging: Rather than guessing the stop-dig point prior to
digging based upon limited training data, we should make this decision based upon information
that becomes available as digging proceeds. When no TOI are encountered in a specified number
of digs N then we can stop remediation. The question is then how to determine an appropriate N
such that we reach a certain probability that no TOI remain in the ground. In the work performed
here we showed that estimation of these quantities requires accurate characterization of TOI
and non-TOI distributions, in particular the tails of the TOI distribution. This is impossible
with limited training data, and we believe there is merit in pursuing methods to learn these
distributions from the test data ground truth. These new methods should be compared with the
power analysis approach of Hathaway et al. (2009) for assessing the probability that TOI remain
in the ground.

(2) Methods to choose and/or assess the adequacy of training data: The Camp Butner demon-
stration provided a test ground for development of techniques to build the training data set by
iteratively digging test items. Our approach was to query test vectors in regions of overlap be-
tween TOI and non-TOI in order to determine the extent of the TOI distributions in the feature
space. More formally, this corresponds to regions of the feature space where the predicted class

MR-1629: Robust Statistics Final Report 57 July 11, 2011



memberships are most uncertain (i.e. have maximum entropy). In addition, we tried to identify
clusters of self-similar test targets by computing a symmetric matrix of the misfits between all
test vector polarizabilities. A number of feature vectors with small mutual misfits are then indica-
tive of a repeated polarizability fingerprint in the test data. We remark that this unsupervised
analysis has connections to the semi-supervised algorithm presented in Liu et al. (2008). While
our unsupervised analysis did help to identify 37mm TOI with slightly different polarizability
responses from calibration items, it failed to pick up some consistent non-TOI classes in the test
data (e.g. spent fuzes). Further investigation of these techniques is therefore required, as well as
development of methods for re-training classifiers as additional ground truth becomes available
during digging.

(3) Combining different classification strategies: Another topic to explore is the update of the dis-
crimination strategy as digging proceeds to account for varying difficulty of the problem. TOI
are typically easy to identify initially, and so an aggressive strategy which uses the full polariz-
ability response will produce good performance. However, as we encounter smaller, lower SNR
targets later in the diglist, we risk overfitting the training data and must therefore switch to a
less aggressive classifier (even when using robust statistical methods). Simpler classifiers trained
on total polarizabilities or size and decay parameters can help prevent outlying TOI. The results
reported here demonstrated the promise of this technique which needs to be further explored at
additional sites and with additional types of sensor data.

MR-1629: Robust Statistics Final Report 58 July 11, 2011



References

A. Aliamiri, J. Stalnaker, and E. L. Miller. Statistical classification of buried unexploded ordnance using
nonparametric prior models. IEEE Trans. Geosci. Remote Sensing, 45:2794–2806, 2007.

N. Balakrishnan and A. C. Cohen. Order statistics and inference: estimation methods. Academic Press,
1956.

T. Bell. Geo-location requirements for UXO discrimination. Technical report, Science Applications
International Corporation, 2005.

T. Bell. Adaptive and iterative processing techniques for overlapping signatures: Technical summary
report. Technical report, ESTCP, 2006.

T. Bell and B. Barrow. Subsurface discrimination using electromagnetic induction sensors. IEEE Trans.
Geosci. Remote Sensing, 39:1286–1293, 2001.

L. S. Beran, S. D. Billings, and D. Oldenburg. Robust inversion of time-domain electromagnetic data:
application to unexploded ordnance discrimination. Journal of Engineering and Environmental Geo-
physics, in press, 2011a.

L. S. Beran, S. D. Billings, and D. Oldenburg. Incorporating uncertainty in unexploded ordnance dis-
crimination. IEEE Trans. Geosci. Remote Sensing, in press, 2011b.

S. D. Billings. Discrimination and classification of buried unexploded ordnance using magnetometry.
IEEE Trans. Geosci. Remote Sensing, 42:1241–1251, 2004.

S. D. Billings, L. R. Pasion, L. Beran, N. Lhomme, L. Song, D. W. Oldenburg, K. Kingdon, D. Sinex,
and J. Jacobson. Unexploded ordnance discrimination using magnetic and electromagnetic sensors:
Case study from a former military site. Geophysics, 75:B103–B114, 2010.

M Brookes. The Matrix Reference Manual, 2005. URL
http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2:955–974, 1998.

W. P. Delaney and D. Etter. Report of the Defense Science Board on Unexploded Ordnance. Technical
report, Office of the Undersecretary of Defense for Acquisition, Technology and Logistics, 2003.

C. Farquharson and D. W. Oldenburg. Nonlinear inversion using general measures of data misfit and
model structure. Geophysical Journal International, 134:213–227, 1998.

T. Fawcett. ROC graphs: Notes and practical considerations for researchers. Technical report, HP Labs,
2004.

G. H. Golub and C. F. van Loan. Matrix Computations. Baltimore, MD, USA, second edition, 1989.
T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference

and prediction. Spring-Verlag, 2001.
J. Hathaway, R. Gilbert, J. Wilson, and B. Pulsipher. Evaluation of spatially clustered ordnance when

using compliance sampling surveys after clean-up at military training sites. Stoch. Environ. Res. Risk.
Assess., 23:253–261, 2009.

H. Huang, B. SanFilipo, and I.J. Won. Optimizing decision threshold and weighting parameter for UXO
discrimination. Geophysics, 71:313–320, 2006.

T. Kanungo and R. M. Haralack. Receiver operating characteristic curves and optimal Bayesian operating
points. In 1995 International Conference on Image Processing (ICIP’95) - Volume 3, 1995.

N. Lhomme, D. W. Oldenburg, L. R. Pasion, D. Sinex, and S. D. Billings. Assessing the quality of
electromagnetic data for the discrimination of UXO using figures of merit. Journal of Engineering and
Environmental Geophysics, 13:165–176, 2008.

Q. Liu, X. Liao, and L. Carin. Detection of unexploded ordnance via efficient semi-supervised and active
learning. IEEE Trans. Geosci. Remote Sensing, 46:2558–2567, 2008.

MR-1629: Robust Statistics Final Report 59 July 11, 2011



S. Macskassy, F. Provost, and S. Rosset. ROC confidence bands: An empirical evaluation. In Proceedings
of the 22nd International Conference on Machine Learning, 2005.

R. A. Marrona, R. D. Martin, and V. J. Yohai. Robust Statistics: Theory and Methods. J. Wiley, 2006.
W. Menke. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, 1989.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equations of state

calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.
D.W. Oldenburg and Y. Li. Investigations in Geophysics No.13: Near-surface, chapter Inversion for

applied geophysics: A tutorial, pages 89–150. Society of Exploration Geophysics, 2005.
M. D. Pandey. Extreme quantile estimation using order statistics with minimum cross-entropy principle.

Probabilistic Engineering Mechanics, 16:31–42, 2001.
L. R. Pasion. Inversion of time-domain electromagnetic data for the detection of unexploded ordnance.

PhD thesis, University of British Columbia, 2007.
L. R. Pasion, S. D. Billings, D. W. Oldenburg, and S. Walker. Application of a library-based method to

time domain electromagnetic data for the identification of unexploded ordnance. Journal of Applied
Geophysics, 61:279–291, 2007.

L. R. Pasion, L. S. Beran, B. C. Zelt, and K. A. Kingdon. Feature Extraction and Classification of EMI
Data, Camp Butner, NC. Technical report, ESTCP, 2011.

N. J. Perkins and E. F. Shisterman. The inconsistency of “optimal" cut-points using two ROC based
criteria. American Journal of Epidemiology, 163:670–675, 2006.

M. Sen and P.L. Stoffa. Global Optimization Methods in Geophysical Inversion. Elsevier, 1995.
F. Shubitidze, K. O"Neill, S. A. Haider, K. Sun, and K. D. Paulsen. Application of the Method of

Auxiliary Sources to the Wide-Band Electromagnetic Induction Problem. IEEE Trans. Geosci. Remote
Sensing, 40:928–942, 2002.

J. T. Smith and H. F. Morrison. Optimizing receiver configurations for resolution of equivalent dipole
polarizabilities in situ. IEEE Trans. Geosci. Remote Sensing, 43:1590–1498, 2005.

L. P. Song, L. R. Pasion, S. D. Billings, and D. W. Oldenburg. Non-linear inversion for multiple objects
in transient electromagnetic induction sensing of unexploded ordnance: Technique and applications.
IEEE Transactions on Geoscience and Remote Sensing, 99:1–14, 2011.

S. L. Tantum, Y. Li, and L. M. Collins. Bayesian mitigation of sensor position errors to improve
unexploded ordnance detection. IEEE Geosci. Remote Sensing Letters, 5:103–107, 2008.

A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, 2005.
A. B. Tarokh and E. L. Miller. Subsurface sensing under sensor positional uncertainty. IEEE Trans.

Geosci. Remote Sensing, 45:675–688, 2007.
G. F. West and J. C. Macnae. Electromagnetic methods in applied geophysics, chapter Physics of the

electromagnetic exploration method, pages 5–45. SEG, 1991.
Y. Zhang, X. Liao, and L. Carin. Detection of buried targets via active selection of labeled data:

Application to sensing subsurface UXO. IEEE Trans. Geosci. Remote Sensing, 42:2535–2543, 2004.

MR-1629: Robust Statistics Final Report 60 July 11, 2011




