FINAL REPORT
Improved Analysis Algorithms for UXO Filler Identification

SERDP Project MM-1383

FEBRUARY 2009

Robert Holslin
Robert Sullivan
SAIC

This document has been approved for public release.

Strategic Environmental Research and
Development Program




EXECUTIVE SUMMARY

SAIC and Duke University investigated several advanced data analysis algorithms and
techniques to apply to Pulsed Elemental Analysis with Neutrons (PELAN) data. The data was
collected on shells filled with inert and explosive materials, and chemical simulants. The goal of
this investigation was to improve the performance, reliability, and robustness of the PELAN
decision-making process and to make it easier to train the PELAN system using target libraries.
These studies have provided considerable improvements in performance over the previous
methods used to analyze the PELAN spectra and the decision-making process. The focus of this
effort concentrated on unexploded ordnance (UXO) items. Both the Least Squares/Generalized
Likelihood Ratio Test (LS/GLRT) and the Least Squares/Principal Component Analysis
(LS/PCA) combinations showed significant improvement over the LS/decision tree approach.
As a result, the LS/GLRT method was implemented into the portable PELAN unit. We are
continuing investigation into the PCA spectral analysis method, which shows even more
improvement over the LS/GLRT approach. The PCA algorithm was shown to be effective at
using the entire spectrum to extract characteristics of the target for improved identification.

During this project, several key results were established and are summarized below:

¢ GLRT was established as an effective decision making algorithm.
o GLRT can be used in conjunction with LS, PCA, and other spectral analysis
techniques (e.g., Multiple Signal Classification, MUSIC).
o The tertiary declaration was added for GLRT decision making (“unknown”) for
explosives/inert-filled shells.
PCA can perform better than Least Squares on shell targets.
e Background measurements may not be necessary for effective PCA analysis.
o The need for empty sheH in background is eliminated.
o Less user input is reqmred for recording the environment.
o Further testing is required for verification.
o The GLRT, tertiary declaration, and entropy-based confidence level were implemented
into PELAN Non-invasive Filler Identifier (NFI) systems.
e Data Collection at Indian Head was conducted Dec 6-22, 2004.
o Strategic Environmental Research and Development Program data was made
available to SAIC and:Duke University in February 2005.

SAIC, in collaboration with Duke University and Environmental Chemical Corporation (ECC),
have been selected by ESTCP to build, test, demonstrate and validate a mobile, multi-detector-
based PELAN unit for the classification of UXO filler at cleanup sites. With improved
classification algorithms, we can improve the reliability of the target analysis, improve the
performance, and, thus, provide a cheaper and safer means for environmental remediation needs
and other explosive ordnance disposal-related efforts. The improved spectral analysis and
decision-making algorithms developed in this project will be implemented directly into the
current PELAN systems. Along these lines, we have already implemented and started testing the
tertiary GLRT and entropy-based confidence algorithms in the PELAN IV system.



TABLE OF CONTENTS

EXECUTIVE SUMMARY ...ooioiiiieisneiasneeissssssessnsposssssssss e ssssssssssssssssssss s sssssssensssssossnsons i
TABLE OF FIGURES ...ttt sesa s it ns s e s sttt ens s s ms s o iv
TABLE OF TABLES .....ccoovvinene enpsaeenreenes oo oottt et e et bttt be st e s te b e st e b e er e b sbbenbenenentenaens v
ACRONYMS ..ottt ettt b a b ss e n s s st ba e b en s st a et sase st sae st eseseenes vii
1. INTRODUCGTION ..ottt ettt tett et stebe st ste b et s st esasbestesassestastabessessessassanassansns 9
1.1 Project Background..........ccooiieiiiiiiiiniiictcie ettt e 9
1.2 ObJECLIVE vttt e 00thohaust st nananaasussat At e e s s s e ndan st saee st abananana s 9
1.3 Technical APProachi....c..cccoeiiiiniiiiniiniiiiniiicnie ettt ettt ettt sre e s et s e 11
1.3.1 Technical Description c.....cc.cocoviiiiiiiciiininiicceeieiecetestee ettt 11
1.3.2 The PELAN SYSEM....coiiiiiiiiiiinecieeir ettt ettt st estescereste s ees st ee b e s esse s 11

1.3.3 Earlier Spectral Analysis and Decision-making Methods ........c.ccccevvvvieverieninennennnnn. 12

1.3.4 Evaluation of New Analysis TeChniqUeSs.........ccceeveiiieveioiieniieicieceeeeee e 13

1.4 Summary Of RESUIES ....cccouieieiiriiniiiiiienicenteietcteiesrtee et se et et sae s sra s s e e s 14

2. PROJECT ACCOMPLISHMENTS ...c.ooiiiiiiiiiiiicneteerrtctese st s ee e e se e 14
2.1 BaCKGround ..ottt et et aes 14
2.1.1 PCA for Spectral ANalysSiS......cccocueeruereiieenteiniiiirenceieeereiesieecse et treseseeesestsane s ene 15
2.1.2 GLRT for Decision MaKing.........cccocevvieiieniieiiiiieeieie et eerer e v svsesiesenessteenneenre s 16
2.1.3 Preliminary RESULLS ......ccoeiriiiiiniiiiiiiiiientetet ettt sttt ev s b saesaens 17

2.2 Data COlECHION ..ueeeiciiiiieeict ettt ettt st ettt es e e st e ka s tabesa s assessesesseasensas 19
2.3 Normalization STUAIES.........ccciueiiiiiiinieniiniiiincene ettt ettt ere et e sressaeneane 20
2.3.1 Data Transformation .........cieereninceneteiente sttt ev st s eneeneesaeseneene 20
2.3.2 GLRT Target Groupmg and SELUP <ottt ettt see st e searee e seeas 21
233 RESUIES . ettt etttk e 37
2.3.4 CONCIUSIONS 1...rvvreererrier s it st ee ettt eaess bttt s st bas st ensses s s e sssaesessssaenessssanans 38

2.4 ConfIdence MEITICS.....ccouvueiriiientiietitete ettt et ettt steseestese s se oo sreenessaentesuessennnanns 38
2.4.1 Entropy-based Confidence MELTIC ......ccc.coeviriniirinienenienineniinteierenierestesseensesveseens 38
2.4.2 Experimental Data REeSUILS.......coociveiiiiiniiericieeee et st sreevens 40

2.5 Spectral Analysis With PCA .......ccoooiiiiiininieene sttt eneeece e sttt saesas e sre e 44
2.5.1 Effects of Background SubtracCtion.........o..ccevvevuieviieerinieiinececee et eveene s 44
2.5.2 Variables Affecting Cluster FOrmation..........cccecvevivvenienenierienenienenenieeeseeeseeeeveens 47

2.6 Spectral ESHMAtION ..c.ooueiiniiiiiiniiiintci ettt ettt ettt e e st te s e nesa e benaes e sressaensanes 71
2.7. Processing Of PELAN IV Data ..c.coccoovciiiiinicnnnient ittt se v tesaesassassesenes 73

2. 7.1 INETOAUCTION ...ttt ettt sttt et st aebb s e sesasessessenseanen 73
2.7.2. Analysis AIOTItRINS ..c.covvrieiiiiiiicteere ettt et vs b ss e ne 75
2.7.3. Performance RESUILS ..........lcueuiuieiriiieeeieieieeieie ettt sae st ese et ee sttt senesenas 76
2.7.4. Performance Results of December 2004 Data..........c.cccoovvviviiiiiciiiccinicceicens 80
2.7.5. Comparison with Neural Net ANalySis ........c...oooovueeeievrieeissereseseressesseseseesosesesene. 81
2.7.6. SUIMIMATY c.oveitreiieiiereertietirttente s st ete st aeesaeessassae s e taesses s esbenssesseessesrssssnentsanssetnserseoresa 86

2.8. Implementation in PELAN IV .ottt et 86

3. CONCLUSIONS ... ottt ettt e et s b e s e e b es e e e es e nans e ns e seenessseseareas 87
4. TRANSITION PLAN AND RECOMMENDATIONS ............................................................ 88
APPENDIX A: Test Plan........... OO OSSOSO 90

iii



TABLE OF FIGURES

Figure 1.3-1 The PELAN III (left) and PELAN IV systems. The PELAN IV system was used
for tests at Indian Head in December 2004 oot es e 12
Figure 2.2-1. PELAN IV shown inspecting ordnance in soil test box at Indian Head in December
2004 o et 1ttt ettt a et ta ettt et n et aeeeeeeeeren 20
Figure 2.4-1: Identification results ﬁpf ML estimates of fill material when the correlation between
the element counts is included in the algorithm...........ccoooioviiiiiiiiieee e 41
Figure 2.4-2: Identification results for ML estimate of fill material when the element counts are
assumed to be uncorrelated in the algorithm. ... 42
Figure 2.4-3: Identification results for ML estimate of fill material when the correlation between
the element counts is included in the algorithm.............c.oovvoeieiiiiiiicee e, 43
Figure 2.4-4: Identification results for ML estimate of fill material when the element counts are
assumed to be uncorrelated in the algorithm. ........ccoovvieviieiiice e, 43
Figure 2.5.1-1. ROC of PCA trained with data taken on a table, then tested on a table. The left
ROC plot is with no background subtraction, and the right ROC plot is with background
SUDIFACTEA. v.vovvviiiir ettt ettt sttt eea e es e n s eaneees 46
Figure 2.5.1-2. ROC of PCA trained with data taken on a table then tested on sand, asphalt, and
soil. The left ROC plot is with no background subtraction, and the right ROC plot is with

background SUDITACIEM. .........c.ceiinuiieiiininiient ittt et e s e eaeens 47
Figure 2.5.2 — 1: Stem plot of the first three principal components for large shells on any
background. There is no preprocessing 0f the data..............ocooeiviiveieiiieeiiieieeeeeee e, 52
Figure 2.5.2 —~2: Stem plot of the first three principal components for large shells on any
background. Background signal is subtracted from the data. ..........ooo.ooovvoovoeoorreesoeooeoo 53
Figure 2.5.2 — 3: Stem plot of the ﬁ;st three principal components for large shells on any
background. The data is Mean-Centered. ... ...oovvviviviviiiiririeeeee ittt e eeees s, 54
Figure 2.5.2 — 4: Stem plot of the first three principal components for large shells on any
background. The data is QUtoSCAlEd.............ocovvuiveieiieseeieeceeeeeee oo 55
Figure 2.5.2 —5: Stem plot of the first three principal components for large shells on any
background. The data is mean-centered with background subtraction. ..........c..cooooovviiininis 56
Figure 2.5.2 - 6: Stem plot of the first. three principal components for large shells on any
background. The data is autoscaled' W]fh background subtraction. ...........cccocoevvereeririieennnnnn. 57
Fi 1gure 2.5.2~7: Graphical display of the first three principal components for empty shells on
soil background. The data is MEAN-CENtEred. ............o..vuveereereereerreeeseecessree oo, 59
Figure 2.5.2 ~ 8: Graphical display of the first three principal components for empty shells on
table background. The data is Mean-Centered. .............c.o.oveveeveiniiemeeeeeeeeeee oo 60

Figure 2.5.2 — 9: Graphical display of the first three principal components for empty shells on
table or soil background. The data is mean-centered. Color-coding is according to shell size.. 61
Figure 2.5.2 — 14: Stem plot of the first three principal components for large shells on any
background. The data is MEAN-CENTEred........cceeviviviuirererieiceceeeeece e ee e e oo es oo 66
Figure 2.5.2 — 15: Stem plot of the first three principal components for large and medium shells
on any background. The data is mean-centered...............coovouooeeiinereeeeeeese oo 67
Figure 2.5.2 ~ 16: Stem plot of the first three principal components for large, medium, and small
shells on any background. The data’is mean-centered..............ooorvviuivevueereoeeeeeeereereeesee s, 68

v



Figure 2.5.2 — 17: Graphical display.of the first three principal components for large and

medium shells on any background. The data is mean-centered............cocoveiniieennineincnnnn 69
Figure 2.5.2 — 18: Graphical display of second, third and fourth principal components for large
and medium shells on any background. The data is mean-centered. ...........ccooeviiriiinninnnnncn. 69
Figure 2.7-1. All shell sizes, with correlation, 0% Don’t Know (left) and 15% Don’t Know
(right), with an empty shell in the background run.............coooiii 77
Figure 2.7-2. Small and medium size shells, with correlation, 0% Don’t Know (left) and 15%
Don’t Know (right), with an empty shell in the background run............cooooniinnnnn 78
Figure 2.7-3. Small (left) and medium (right) shells, with correlation, each 15% Don’t Know,
with an empty shell in the background run. ... 79
Figure 2.7-4. Small and medium shells together, with correlation, 0% Don’t Know (left), 15%
Don’t Know (right), with NO empty shell in the background run..........cococooiiinnninn 79
Figure 2.7-5. Small (left) and medium (right) shells analyzed separately, with correlation, 15%
Don’t Know, with NO empty shell in the background run...........ccoooiiiiniii e 80
Figure 2.7-6. All December 2004 data (left) and December 2004 data with an empty shell in the
background (right), with correlation, 15% Don’t KnOW........coooiiiiniiniiiie 81

Figure 2.7.5-1. Neural net results of all PELAN IV data with shell size as input (left plot) and
with background as input (right plot). The black curve is the baseline curve as described in the

Figure 2.7.5-2. Neural net results of all PELAN IV data with baseline curve (no inputs) and with
shells size and background as INPULS. ......c.cceviiiiriiinuiiiee e s 83
Figure 2.7.5-3. GLRT results of all’ PELAN [V data with only SEC input (left plot) and with size
as input (right plot). The black curve is for the equivalent analysis using the neural net............. 84
Figure 2.7.5-4. GLRT results of all PELAN IV data with background as input (left plot) and
with size and background as input (right plot). The black curve is for the equivalent analysis

USING the NEUTAL NEL. .o.eviiiiiieiiict e st 84
Figure 2.7.5-5. Neural network results of all PELAN IV data for each shell size group after
training on €aCh SEPArAELY .......ccouruirirmiiriiii it s 85

Figure 2.7.5-6. GLRT results of all PELAN IV data for small and medium sized shell size group
after training on each separately. The black curves are the equivalent analysis using neural

NEEWOTKS. 1. veieeeeie et et e et e etesete et et e s e e aeesteeseanaeas e emses s e nseeonteans sotentsabbeasbab e e s s e ebassa e e s es s annne e besneens 85
. TABLE OF TABLES
Improved Analysis Algorithms for UXO Filler Identification .......c...cocccovmvinninniiiiiiine, i
Table 1.3-1 Elemental densities and ratios of three classes of SUDSIANCES. ........cccuerevrvrnreesrreeenne 11
Table 2.3-1 GLRT Test Results of Shell Data Using Empty Shell Background........................ 24
Table 2.3-2 GLRT Test Results of" Shell Data Using Empty Shell Background............coo........ 25
Table 2.3-3 GLRT Test Results of Shell Data Using Empty Shell Background...............c....... 26
Table 2.3-4 GLRT Test Results of Shell Data Using Empty Shell Background........................ 26
Table 2.3-5 GLRT Test Results of Shell Data Using Empty Shell Background...........cc.cccouuu... 27
Table 2.3-6 GLRT Test Results Of Shel] Data Using Empty Shell Background..........ccoee.. 27
Table 2.3-7 GLRT Test Results of $hel Data Using Empty Shell Background....................... 28
Table 2.3-8 GLRT Test Results of Shell Data Using Empty Shell Background.............coo.ov..... 28
Table 2.3-9 GLRT Test Results of Shell Data Using Empty Shell Background........................ 29
Table 2.3-10 GLRT Test Results of Shell Data Using Empty Shell Background...................... 29
Table 2.3-11 GLRT Test Results of Shell Data Using Empty Shell Background...................... 30



Table 2.3-12
Table 2.3-13
Table 2.3-14
Table 2.3-13
Table 2.3-16
Table 2.3-17
Table 2.3-18

Table 2.3-19
Table 2.3-20
Table 2.3-21
Table 2.3-22
Table 2.3-23
Table 2.3-24

GLRT Test Results of Shell Data Using Empty Shell Background...................... 30

GLRT Test Results of ‘Sghell, Data Using Empty Shell Background...................... 31
GLRT Test Results of Shell Data Using Empty Shell Background...................... 31
GLRT Test Results of Shell Data Using Empty Shell Background...................... 32
GLRT Test Results of Shell Data Using Empty Shell Background...................... 32
GLRT Test Results of Shell Data Using Empty Shell Background...................... 33
GLRT Test Resulté’ofﬁhell Data Using Empty Shell Background..................... 33
GLRT Test Results of Shell Data Using Empty Shell Background...................... 34
GLRT Test Results of Shell Data Using Empty Shell Background...................... 34
GLRT Test Results of Shell Data Using Empty Shell Background...................... 35
GLRT Test Results of Shell Data Using Empty Shell Background...................... 35
GLRT Test Results of Shell Data Using Empty Shell Background...................... 36
GLRT Test Results of Shell Data Using Empty Shell Background...................... 36

Table 2.7-1. Data distribution (546 total) for PELAN IV data (excluding December 2004 at
Indian Head) taken with an empty shell in the background..........ocooevevevivieeieeeeeeeeeee, 74
Table 2.7-2. Data distribution (494 total) for 2004 data taken without an empty shell in the

background...

vi



ACF
ACM
ANFO
AR
ARMA
ASTM
AT
BGO
C-4
COMPB
cps
Cw
DoD
DOE
DP
ESTCP
FA
GLRT
HE
HEAT
HMX
D
1EDs
LS
MCNP
ML
NAVEODTECHDIV
NEODTD
NFI
NG

NN
NRC
pdf

pPC
PCA
PELAN
PFTNA
PoP
PSD
RDX
ROC
SAIC
SEC
SERDP

ACRONYMS

Autocorrelation function

Autocorrelation matrix

Ammonium Nitrate-Fuel Oil mixture

Auto-Regressive

Auto-Regressive moving average

American Standards of Testing and Materials

Anti-tank

Bismuth germinate Bi;Ge O,

Composition 4

A mixture of TNT and RDX

counts per second

Chemical Warfare agent

Department of Defense

Department of Energy

Detection Probability

Environmental Security Technology Certification Program
False Alarm

Generalized Likelihood Ratio Test

High explosive

High Explosive Anti-Tank

High Melting eXplosive (one of multiple definitions)
Identification

Improvised explosive devices

Least Squares spectral analysis

Monte Carlo N-Particle code

Maximum likelihood

Navy Explosive Ordnance Disposal Technology Division, Indian Head
Equivalent to NAVEODTECHDIV

Non-invasivé Filler Identifier (program sponsored by NEODTD)
Neutron generator

Neural Network

Nuclear Regulatory Commission

Probability density function

Principal Components

Principal Component Analysis

Pulsed ELemental Analysis with Neutrons

Pulsed Fast/Thermal Neutron Analysis

Plaster of Paris

Power spectral density

A military explosive (1,3,5-Trinitro-1,3,5-triazacyclohexane)
Receiver operator characteristic

Science Applications International Corporation

Spider Elemental Counts

Strategic Environmental Research and Development Program

vii



SIMCA
SNR
SPIDER
TNA
TNT
TSWG
nCi
UXoO
WKU
WP
WSS
XML

Soft Independent Modeling of Class Analogies
Signal to noise ratio

SPectrum Interpolation and DEconvolution Routine
Thermal neutron analysis

Tri-nitro toluene

Technical Support Working Group

micro Curies (37,000 decays/second)
Unexploded Ordnance

Western Kentucky University

White Phosphorous

Wide-sense stationary

Extensible Markup Language

viii



1. INTRODUCTION

1.1 Project Background

Prior to the selection of a disposal method for unexploded ordnance (UXO), a determination must
be made of the filler material. The materials can range from standard military explosives to
chemical agents to inert simulants. Currently, trained UXO experts perform this determination
using external markings and visual examination. Many times, the UXO has weathered or corroded
and the markings and external visual cues are deteriorated or absent. If a conservative approach is
used and all questionable UXO is treated as explosive or chemical filled, the cost of clearance
operations is greatly increased. If a less conservative approach is used, accidents occur, such as
those at the Naval Surface Warfare Center, Indian Head Division, and the San Clemente Test
Range, that lead to injury or loss of life. There is the need for a means of rapidly and correctly
determining the fill of UXO to permit the rapid disposition of inert rounds and proper handling of
explosive or chemical-filled UXO.

The Naval Explosive Ordnance Technology Division (NAVEODTECHDIV) has been investigating
the use of the Pulsed ELemental Analysis with Neutrons (PELAN) developed by the University of
Western Kentucky (WKU) and SAIC as part of an Office of Naval Research Applied Research
effort and an Environmental Security Technology Certification Program (ESTCP) effort. These
efforts have demonstrated the utility of using PELAN to gather data from explosive-, chemical- and
inert-filled UXO, but have highlighted the need for more advanced signal processing to increase the
probability of detection and reduce the false alarm rate.

This project addressed the Statement of Need Number UXSON-04-02 for Innovative Technology
for Identification of Filler Material in Recovered UXO. The PELAN system is being further
developed and tested with support from ESTCP and NAVEODTECHDIV. Our tasks were to
investigate, test, and demonstrate advanced data analysis and decision making algorithms for the
PELAN system for non-intrusively idéntifying the fillers of UXO in-situ for cost-effective and safer
environmental remediation. The goals of these improvements are to increase the filler detection
efficiency and accuracy, reduce false alarm rates, and allow the system to be capable of learning the
signatures of new targets. o

1.2 Objective

The objectives in this project were to investigate, test, and demonstrate advanced data analysis and
decision-making algorithms for the PELAN system. The goals of these algorithmic improvements
are to increase the filler detection efficiency and accuracy, reduce false alarm rates, and improve the
system’s ability to learn the signatures of new targets.

We originally proposed a 12-month, three-phase effort for evaluating, testing, and demonstrating
advanced analysis algorithms to improve the performance of PELAN. Below is the Statement of
Work we suggested for the project.

Phase 1: Concept Study (three months)



Collect available data (spectra and elemental intensities) measured with the PELAN system
Apply matching pursuits and/or other algorithms to analyze spectral data for elemental
features

Investigate generalized likelihood ratio decision algorithms for the decision-making process
Determine detection and false alarm rates (or receiver operating characteristics, ROC’s) as
part of the analysis

Compare results to current decision tree approach

Phase 2: Optimization (six months)

L ]

L
]

Evaluate additional spectral algorithms, including the Multiple Signal Classification
(MUSIC) method

Evaluate additional decision algorlthms including Support Vector Machines and Relevance
Vector Machines .

Evaluate combinations of spectral and decision-making analyses for optimal performance
Extend model to include potentially nonlinear factors

Conduct targeted experiments to support optimization and model evaluation

Phase 3: Implementation (3 months)

L
[ ]

Convert MATLAB®-based (MathWorks, Inc.) algorithms to software code
Incorporate algorithms into PELAN system and test
Demonstrate PELAN with improved analysis algorithms

ROVIES

SAIC’s focus in this project were the following tasks:

* o o 0

Provided project management

Provided subcontract to Duke

Developed test plans for tests at NAVEODTECHDIV

Evaluated and provided data sets to Duke and NAVEODTECHDIV for analysis
Implemented Generalized Likelihood Ratio Test (GLRT) and entropy-based confidence
level into PELAN

Examined normalization methods to reduce effects from moisture changes, shell size, and
target position

Examined variables and analy sis approaches affecting the principal component analysis
(PCA) results :

Provided guidance to Duke: Umversﬁy during their investigations

Duke University was a major contributor and provided the following tasks:

Developed confidence metrics for fill material classification and identification

Examined the effects of background subtraction on PCA analysis

Investigated several spectral estimation techniques to improve the spectral features
Analyzed the performance df GLRT trained on the results of several spectral analyses using
ROC i

Compared neural net and GLRT decision-making results using same analysis approaches
Provided guidance for the interpretation of the analysis and for implementation

10



These tasks and results are described in this final report. The results of the studies in this project are
key to the continuing development of PELAN for improved discrimination of UXO fills.

1.3 Technical Approach

1.3.1 Technical Description

High explosives (TNT, RDX, C-4, ¢tc.) are composed primarily of the chemical elements hydrogen,
carbon, nitrogen, and oxygen. Many innocuous materials are also primarily composed of these
same elements. However, these elements are found in each material with very different elemental
ratios and concentrations. It is thus p0551ble to identify and differentiate, for example, TNT from
paraffin. Table 1.3-1 shows the atomic density of elements for various materials, along with the
atomic ratios. For narcotics, the C/O ratio is at least a factor of two larger than the innocuous
materials. Explosives have been shown to be differentiated by utilization of both the C/O ratio and
the C/N ratio. The problem of identifying explosives and other threat materials is thus reduced to
the problem of elemental identification.

Nuclear techniques present a number of advantages for non-destructive elemental characterization.
These advantages include the ability to examine bulk quantities with speed, high elemental
specificity, and no memory effects from the previously measured object. These qualities are
important for an effective detection system for explosives and drugs.

Neutrons are highly penetrating particles, so their intensity is not diminished significantly by the
thickness of commonly utilized containers. Furthermore, the outgoing gamma rays are also very
penetrating, easily exiting the interrogated volume. Thus, the method is non-intrusive (the
interrogation can take place from a distance of several centimeters) and non-destructive because of
the very small amount of radiation absorbed by the interrogated object.

Density or H C O Cl C/O C/N Cl/O
Ratio oy : .
Narcotics High High |- Low Low Medium | High, High Very
O . . 3 >3 High
Explosives Low- Med High Very | Medium | Low, Low, Low to
Medium : High to None <1 <1 Medium
Plastics Medium- | High | High to | Medium | Medium | Medium Very -
High Low to None High

Table 1.3-1 Elemental densities and ratios of three classes of substances.

1.3.2 The PELAN System

Developed by WKU with support!from Technical Support Working Group (TSWG) and Navy
Explosive Ordnance Disposal, PELAN utilizes a pulsing deuterium-tritium (d-T) neutron generator.

i1



By using fast neutron reactions, capture reactions, and activation analysis, a large number of
elements can be identified in a continuous mode without sampling. PELAN is a man-portable
device designed for portability and rapid deployment. The PELAN III prototype is shown in Figure
1.3-1. Under an existing program sponsored by TSWG, SAIC has extensively upgraded PELAN 111
to improve reliability, ease of use, and data handling. The new, upgraded version, PELAN 1V, has
been fabricated and undergone testing. This system, shown to the right in Figure 1.3-1, consists of
two equal weight portions. The upper section is the neutron generator and accompanying digital
control system. The lower section contains the embedded computer, detector system, detector
shielding, and operator interfaces such as Ethernet communication link to a laptop. The controller
provides fully automatic operation of PELAN. With a single touch command, all necessary power
supplies are energized, neutrons aré produced, and data is collected for a predetermined time. Upon
the completion of data acquisition, the data are automatically reduced, analyzed, and the results of
the interrogation are displayed on the screen.

SAIC has an exclusive license with NuMaT, Inc. and WKU to build and sell PELAN systems. In
May 2002, the Phase III prototype was demonstrated at NAVEODTECHDIV in Indian Head, Md.
At Indian Head, the system was used to acquire over 230 measurements on a variety of shells on a
number of different soil types.

Figure 1.3-1 The PELAN III (left) and PELAN IV systems. The PELAN IV system was used for
tests at Indian Head in December 2004.

1.3.3 Earlier Spectral Analysi& and Deciﬁion—making Methods

In the current PELAN system, data analysis of the resulting gamma-ray spectra is performed with
the computer code Spectrum Interpolation and Deconvolution Routine (SPIDER), a spectrum de-
convolution code developed for Microsoft Corporation’s Windows® 95/98/Windows NT®
platforms. In the absence of any sample placed in front of the detector, the detector records gamma
rays emanating from the materials surrounding the detector, as well as from the materials inside and
around the neutron generator. This spectrum is called the background spectrum. When a sample is
placed in front of the detector and a gamma-ray spectrum is acquired, the spectrum of a sample can



be represented as a linear combination of the background spectrum and the response spectra of the
various elements utilized to fit the,spectrum. SPIDER employs a Least —Squares (LS) algorithm to
fit the equation. g

The elemental intensities resulting from the LS fit and the computed elemental ratios are used in a
decision tree to determine the composition of the filler material. In order to automatically identify
an object through its elemental composition, a library of the substances of interest must reside in the
PELAN’s computer. o ) ‘

The successful characterization of materials using elemental analysis on PELAN data depends upon
pattern recognition and experimental investigation using known substances. Explosives, chemical
warfare agents, and contraband drugs are all substances with distinct elemental signatures. After
interrogating the substances listed above, as well as a variety of harmless substances, characteristic
differences become evident and can be exploited in order to determine an unknown substance. From
the experimental results, elemental ratios as well as the presence or absence of specific chemical
elements can be used in making a decision on whether an unknown substance belongs to a group of
“dangerous” substances. The PELAN responses can be dependent on the material of the container
and its physical properties as well as any other objects in the container. Attention should be given to
the background and the container, particularly if the amount of substance to be analyzed is small.

1.3.4 Evaluation of New Analysis Techniques

In order to improve the detection sensitivity, reliability, reduce false negative and positive alarms,
and to allow the system to more easily learn signatures of new targets and backgrounds, new
analytical and decision-making analysis techniques were investigated. Several approaches were
evaluated to develop a robust autgrnféfc}d filler detection scheme for PELAN.

Currently, the count data for the elements of interest (namely, C, N, O and H) is estimated using a
linear signal model and a measure of the signal and background spectrum. A Least Squares fit is
utilized to obtain estimates of the counts of the various elements. Our objectives were to (1)
investigate alternative signal models that may more accurately reflect the underlying physics
associated with the sensing modality, (2) investigate alternative spectral estimation procedures (e.g.,
Auto-Regressive moving average (ARMA)) methods, matching pursuits, and MUSIC methods), and
(3) investigate statistical algorithms to more effectively process the count data. These lines of
investigation were separated into three stages. In the first, or proof-of-concept phase, we applied
pre-existing matching pursuits algorithms and generalized likelihood ratio decision algorithms to
existing data sets to demonstrate the feasibility of the proposed approaches and to assess
performance improvements over the techniques currently in use. In the second phase, we pursued
the remaining spectral estimation and statistical decision techniques to determine which
combination provides the most robust and optimal performance. In the final phase, our intention
was to transition the MATLAB-based algorithms developed at Duke to the PELAN system and to
perform a field demonstration using these algorithms.



1.4 Summary of Results

Both the LS/GLRT and LS/PCA combinations showed significant improvement over the
LS/decision tree approach, and the LS/GLRT method was implemented in the portable PELAN
unit.  Work is continuing on the PCA spectral analysis method, which shows even more
improvement over the LS/GLRT approach. The PCA algorithm is much more effective at using the
entire spectrum to extract characteristics of the target for improved identification.

During this project, several key resﬁffs were established, and are summarized below:

¢ GLRT was established as an effective decision-making algorithm.
o GLRT can be used in conjunction with LS, PCA, and other spectral analysis
techniques (e.g., MUSIC).
e The tertiary declaration was added for GLRT decision making (“unknown”) for
explosives/inert-filled shells.
* PCA can perform better than Least Squares on shell targets.
Background measurements may not be necessary for effective PCA analysis.
o The need for empty shell in background is eliminated.
o Less user input is required for recording the environment.
o Further testing is required for verification.
e The GLRT, tertiary declaration and entropy-based confidence level were implemented into
PELAN Non-invasive Filler Identifier (NFI) systems.
o Data collection at Indian Head was conducted December 6-22, 2004.
o Strategic Environmental Research and Development Program (SERDP) data was
made available to SAIC and Duke University in February 2005.

2. PROJECT ACCOMPLISHMENTS

2.1 Background

Prior to the start of the SERDP project, SAIC and Duke University conducted some preliminary
studies into various spectral analysis and decision-making methods. A good summary of these
studies is found in a paper presented at the SPIE Orlando conference in April 2004". In this section,
we provide a summary of the methods that were investigated and the results using data collected
with PELAN III in 2002 and 2003. . .

The PELAN data is currently processed using a Least Squares analysis of the spectrum, which is
assumed to be a linear combinatien of the measured background and a number of elemental
response functions that correspond to elements of interest. For each measured spectrum and
associated background, the output of the Least Squares analysis provides a number of elemental

! Giancarlo Borgonovi, Daniel Holslin, Leslie Collins, Stacy Tantum, "Data analysis for classification of UXO filler
using pulsed neutron techniques,” in Detection and Remediation Technologies for Mines and Mine-like Targets 1X,
edited by Russell S.Harmon, J. Thomas Broach, John H. Holloway, Jr., Proceedings of SPIE Vol. 5415 (SPIE,
Bellingham, WA, 2004).
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intensities. For small amounts of explosive material or, in general, when the sample spectrum is not
very different from the background, the elemental intensities are not directly proportional to the
fraction of elements in the target. They are, however, useful indicators, which are representative of
the spectra and display correlation with some properties (such as explosive or non-explosive) of the
substances that produced the spectra. .

The correlation of the elemental intensities with the material properties useful for decision making
has historically been demonstrated and exploited by using a decision tree approach. The decision
tree is a set of rules or inequalities on the elemental intensities that is developed through inspection
of the data plus trial and error. The development of a tree is a laborious process, since the data must
be visualized in multi-dimensions.

Two well-established techniques of statistical data analysis have been investigated for the analysis
of PELAN data. The first one is the GLRT, which offers a simple and automated way of correlating
the indicators to the properties. The GLRT method can be an alternative to the decision tree
approach and can be used on the results of the Least Squares analysis as well as on the results from
other spectral analysis techniques. An advantage of the GLRT approach is that it provides a natural
way of assessing performance, through the ROC curve.

The second technique is the PCA, which uses an eigenvector approach to derive sets of numbers
(indicators) directly from the spectra, without the need for a model and elemental response
functions. These indicators are also' representative of the spectra and display correlation to the
properties. Thus, the decomposition’ of'the spectra into principal components is an alternative to the
characterization of the spectra by elemental mtensntles

2.1.1 PCA for Spectral Analysis

The method of principal component analysis is based on a particular expansion in terms of
orthonormal functions. Any vector, including a spectrum, can be decomposed into a sum of vectors

as follows:

[S)=c\[P)+c,|Py)+.ct ey | Py )

where the ¢; ... ¢, coefficients are numbers, and the vectors lP > Pn> form an orthonormal basis.

The above equation is true for any orthonormal set. The question is, is there a preferred way to
choose the |p,)? : «

When we have many vectors |S), we can arrange them to form a matrix X. This matrix is not

square. However, the matrix XX that is proportional to the covariance of the matrix X (provided
that the data has been mean-centered) is square. The eigenvectors of this square covariance matrix,
by definition, form an orthonormal. set. They can be ordered in descending order according to the
magnitude of the corresponding. elgenvalues The advantage of this procedure is that often one does
not need all of the eigenvectors to expand the spectra. Instead, a relatively small number of
components may be sufficient for the spectral expansion, and most of the variance in the data is
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captured by the first few principal components. Once the principal components have been
determined, a particular spectrum is represented by a small number of indicators, also known as
scores, which are obtained by projecting the vector onto the principal components, as follows:

In summary, the PCA method works as follows:

Form a matrix of all the data, for example spectra (taking into account the background).

e Calculate the covariance of this matrix.
Compute the set of eigenvectors of the covariance matrix, and order them in descending
order by eigenvalue.

» Select a smaller subset of eigenvectors from the top of the ordered list. These are the
principal components to be used.

* Project each data vector (spectrum) on the above components.

The method just described extracts a group of indicators, or scores, for each data vector. These
numbers take the place of the elemental intensities obtained from the Least Squares approach, and
can be used to make declarations, either via a decision tree’ or via a GLRT method.

2.1.2 GLRT for Decision Making

The GLRT is an excellent choice for carrying out the secondary data analysis. It can be applied to
any set of indicators, either elemental intensities, or scores on principal components. For application
of the GLRT method, we need a training set consisting of samples. For each sample, we know the
indicators and whether the sample is explosive or inert. For example, if the primary data analysis is
obtained using the Least Squares method, a sample may consist of a vector W with four components
(C, H, N, and O intensities, obtained from the primary data analysis). The samples could include all
the measurements or a subset, for example, all the measurements made on a particular kind of
environment, such as on a concrete surface. We compute the mean and the covariance matrix for the
explosives (m;, Covy) and for the ingrt items (mo, Covy), respectively. For a generic vector W
compute

h= (W) (Covy)™ (W= )=(W =) (Cov) ™ (W),

where T indicates the transpose. The quantity A can be used to make a declaration by comparing its
value to a threshold level. The procedure for the declaration is as follows:

If % <Threshold  the declaration is explosive

[f A > Threshold the declaration is inert

By comparing the result of the declarations to the known state (explosive or inert) of the sample, we
can calculate the detection probability (DP) and the probability of false alarms (FA) for that
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particular threshold. If we let the threshold vary over the entire range of 0 to I, we obtain a ROC
curve, which is a plot of detection probability versus probability of false alarms.

The ROC curve is a good global way of assessing the performance of both primary and secondary
data analysis methods. The GLRT method can then be used for making decisions on new data. We
select a threshold value that corresponds to an acceptable level on the ROC curve (for example 10%
FA, 80% DP) and use the same procedure as above for making the decision. The result of the
decision may be explosive or inert. The GLRT parameter has also been used to calculate a
confidence value to associate with the declaration. If enough information is available for a range of
different substances, the GLRT parameter can also be used for substance identification. The
substance is identified as belongmg to the class (either explosive or inert) corresponding to the
highest confidence.

The general conclusion from this analysis is that the GLRT method is easier to implement and, on
average, produces better results (in terms of detection and false alarm probabilities) than the
decision tree approach.

The advantages of the GLRT method are as follows:

¢ [t can be applied to any number of dimensions.
The parameters determmmg the decision can be obtained with a completely automated
analysis.

e The method generates well- behaved boundaries and does not result in "over training."

e Once a threshold has been selected, a confidence level can be associated with the
declaration. ‘

The GLRT is fundamentally a binary decision, in this case, explosive or inert. In some cases, where
the distributions of explosives and inerts overlap, the result is not clear because the probabilities of
each choice are nearly equal. In these situations, it may be desirable to add a third decision
(“unknown” or “don’t know”). For the NFI 6.2 Program, the requirement allowed for up to 25%
“don’t know” results. The GLRT was modified to include this choice, making it a tertiary decision.
For this case, the ROC curve is relabeled with probability of detection on the vertical axis (as in the
standard ROC curve) and with probability of correct rejection Pcr, (that is, detecting an inert) on
the horizontal axis. The probability of false alarm, Pf, is then given by Pf= 1-Pcg. Throughout this
report, we use the tertiary GLRT for decision making. :

2.1.3 Preliminary Results

Data were collected with the PELAN IV system at the NAVEODTECHDIV, Stump Neck, Indian
Head, Md., during December 2003., The data were from a number of shells filled with both
explosive and inert material. The analysrs of the data was carried out using the GLRT applied to the
following indicators:

o Elemental intensities (C, H, N,O) as determined with the Least Squares method.
» Principal components determined directly from the sample and background spectra.
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The PELAN system collects gamma. spectra, a sample spectrum and an associated background
spectrum, which can be analyzed with one of two methods. The first method is based on a Least
Squares fit and uses elemental response functions. The second method is based on the PCA
approach, uses principal components that are derived from measurements conducted on an
ensemble of test items spanning the items of interest and is currently implemented through
specialized MATLAB programs. Both methods result in indicators that, for the purpose of the
subsequent analysis, replace the run and background spectra. The set of indicators for a certain
ensemble of items is then processed through the GLRT algorithm, which provides estimates of
parameters to be used for future decisions on new items. Since the first application of the GLRT
technique is a training procedure, one must know the characteristic (explosive or inert) of each item
used in the training set. The GLRT also provides a measure of performance (the ROC curve) of the
system on the training set.

We note that there is not a unique way of applying the PCA method. For example, different regions
of the spectra can be utilized, or different ways of combining fast and thermal spectra, as well as
different ways of combining run and background signals. Accordingly, the PCA method was
exercised, both at SAIC and at Duke University, in different forms, showing performance (as
measured by the ROC curves) generally superior to the LS method.

Usually, the ROC curves produced from training show good performance, which means acceptably
high detection probability and acceptably low probability of false alarms. The real test comes when
a new set of data is analyzed using"p'arameters derived from a previous test, which makes the new
test a blind test. We have made a ‘comparison using two data sets taken on explosive and inert
shells, one set measured in April 2003 and one set measured in December 2003. The April set is
more comprehensive since it consisted of a much larger number of data points. For a comparison of
LS/GLRT and PCA/GLRT results, see Figures 3 and 4 in the SPIE publication.

We have found that the GLRT method has several advantages over the decision tree approach. The
main advantage is that the method" ‘does not require the cumbersome manual analysis involved in
developing sets of inequalities and" transl ating them into conditional "if-then" statements. Instead,
one uses the indicators obtained from measuring a known set to obtain mean and covariance for
explosives and inert items. The mean and covariance are then used to generate a ROC curve, which
is a powerful way to assess the performance of the system.

The GLRT method has been tested on several sets of elemental intensities derived from data
collected during 2002 and 2003. In all cases, the GLRT method has been found to be superior to the
decision tree approach and, therefore, has been implemented on the PELAN IV system.

The current LS approach, which uses response functions, generates elemental intensities for
selected elements. It appears that these numbers cannot be used in an absolute, that is to say
stoichiometric sense, but only with reference to a calibration on known sets of samples. Therefore,
the data analysis approach must be based on some kind of training (such as the decision tree) and
the problem becomes one of pattern recognition. Under these circumstances, it is a legitimate
question to ask whether PCA can perform the same function. With PCA, the spectra themselves
become the items to be recognized, and the indicators are the coefficients of a small number of
(orthogonal) principal components, which are sufficient to characterize the spectra.
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In addition to providing better performance, as-illustrated by the ROC curves, we have found that
the PCA method also results in better stability when the parameters obtained from one test (training)
are applied to a second, totally independent test. Thus, the heuristic pattern recognition approach
inherent in the PCA method appears to be a valid alternative to the more classic LS approach for the
current PELAN system design and targets of interest.

2.2 Data Collection

The purpose of the data collection was to support the algorithm development in the SERDP project.
A test plan, shown in Appendix A, was developed and provided to NAVEODTECHDIV and
SERDP. This plan for SERDP data collection was incorporated into one written by
NAVEODTECHDIV, which can provide SERDP a copy if needed. The data was collected during
the period December 6 through 22, 2004.

These were the issues we wanted to address in this testing:

1. Study the effects of variations in target-to-detector distance and filler size and to evaluate
methods to correct these effects. Reducing this affect would also allow the training on
smaller, more readily available shells, to be used for identification of larger shell fills.

2. Study and correct for changes on H signal (or any other thermal capture gamma ray) due to
variations in the moisture content of the soil (or changes in neutron thermalization caused by
the presence of a nearby wall).

3. Evaluate the effect on PCA results due to variation in background environment (especially
dry versus wet soil).

4. Investigate methods to eliminate the need for using an empty shell in the background
measurement.

5. Improve the tertiary explosives identifier by separating the particular types of inert and
explosive fills. Develop GLRT parameters separately for the separate fill clusters.

6. Acquire additional data on new targets for addition to the library.

Under the guidance of Denice (Forsht) Lee, NAVEODTECHDIV personnel operated the PELAN
IV units and collected the data. A typical setup is shown in Figure 2.2-1. Because testing for the
NFI program was also being conducted during this time, SAIC personnel were not allowed to be
present at the test site. Rachel Kinney from NAVEODTECHDIV provided the data to SAIC on
January 31, 2005. The data were analyzed using the SPIDER algorithm with an empty shell in the
background. This data was also provided to Duke University and NAVEODTECHDIV for
supporting their algorithm studies.” A total of 70 runs were made.

The data variables included the following:

Explosive fills: TNT, RDX, HMX

Inert fills: Plaster of Paris, wax, sand

Shell size: 60mm-155mm

Environment: Soil, wet soil sand, wet sand, metal table
Moisture variation of sand/soil: 3%, 17% and 30%

* & o @
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Figure 2.2-1. PELAN IV shown inspeting ordnance in soil test box at Iian Head in December
2004.

2.3 Normalization Studies

The current NFI Target Identification Algorithm applies either GLRT or Tertiary test to the
SPIDER results, directly. Due to the variations in both shell sizes and environment, the signal
intensity ranges are quite large, even for some of the same targets. Applying ratios among different
SPIDER element results could reduce-that variation theoretically. However, direct application of
the ratios could cause some problem, ‘as the denominators are close to zero or even negative. This
report summaries the study of utilizing data transformation to the SPIDER data before applying
GLRT tests. The proposed data transformation could eliminate the situations of denominator close
to zero or being negative and still preserve the proper “signal intensity” information.

2.3.1 Data Transformation

To explore the performance of using ratios among the Least-Squares estimated element amounts,
i.e., SPIDER results, a data transformation is applied to eliminate the cases of dividing by negative
or close to zero numbers. For a given set of data, X, with some data being close to zero or negative,
the following linear transformation is applied to calculate the transformed data, X’:

!/ . “Xmin
x :HX(I—XQ)+XO,

max
where x; and x;” represent the i-th data point before and after transformation, respectively; Xy, and
Xmax represent the minimum and maximum of the data, respectively; and X, is a threshold (a small
positive constant), for example 0.1.

The above transformation is applied. to the SEC (SPIDER Element Counts) of the interested
elements, such as H, C, N, and ©. Note that the Xmin and Xy are different for each element, but X,
is the same. e



The GLRT parameters, including the means and inverse of the covariance matrix, are derived from
the transformed data.

Before making the GLRT test, the SPIDER results are transformed first using the same Xuin, Xmax,
and X; for each element used before, respectively. Both “transformed data” and “untransformed
~ data” are tested with GLRT.

A special way of transforming data is by applying offset only. For a given set of data, X, with some
data being close to zero or negative, the following linear transformation is applied to calculate the
transformed data, X’:

x,'= X+ | X i | +X,, NP B X

where x; and x;’ represent the i-th data point before and after transformation, respectively; | Xmin |
represents the absolute value of the minimum of the data; and Xo is a threshold (a small positive
constant), for example 0.1.

The “Offset Data” and the “Transformed Data” are treated similarly.

2.3.2 GLRT Target Grouping and Setup

Tests are performed using the SEC, either “transformed” or “untransformed,” directly (C, H, N, and
0), or using the ratios among elements (H/C, N/C, and C/O).

Two groupings on targets are tested, respectively.

a. Dual targets:
The targets are categorized into two groups, “Explosives” and “Inerts.”

b. Multi-targets:
The targets are categorized into different substances. There are six groups for
explosives, i.e., TNT, RDX, HMX, CompB, HEAT, and unknown explosives. There are
five groups for inerts, i.e:, cement, sand, plaster of Paris, wax, and empty.

The shell sizes are grouped into threég‘groups.
a. Small shells: for shell size smaller than 90mm
b. Medium shells: for shell size between and including 90mm and 105mm

¢. Large shells: for shell size larger than 105mm

The environments are grouped into three groups.
a. Concrete: including concrete, gravel, sand, and asphalt

b. Metal table: including both metal and metal table
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¢. Soil: including soil, plastic table, wood table, and all the other environments

With different combinations of GLRT ‘parameters and grouping of parameters, as described above,
the following 24 GLRT setups are tested.

1. Data: Untransformed
GLRT parameters: C, H N, and O
Target grouping: Dual targets
Training grouping: Target type only

2. Data: Untransformed
GLRT parameters: C, H N, and O
Target grouping: Dual targets
Training grouping: Target type and Shell size

3. Data: Untransformed
GLRT parameters: C, H, N, and O
Target grouping: Dual targets
Training grouping: Target type, Shell size, and Environment

4. Data: Untransformed
GLRT parameters: C, H N, and O
Target grouping: Multi-targets
Training grouping: Target type only

5. Data: Untransformed o
GLRT parameters: C, H N, and O
Target grouping: Multi-targets
Training grouping: Target type and Shell size

6. Data: Untransformed
'GLRT parameters: C, H N, and O
Target grouping: Multi-targets
Training grouping: Target type, Shell size, and Environment

7. Data: Untransformed

GLRT parameters: C, H, N, and O

Target grouping: Dual targets

Training grouping: Target type only { Using only Small and Medium Shell data)}
8. Data: Untransformed o

GLRT parameters: C, H, N, and O

Target grouping: Dual targets

Training grouping: Target type only { Using only Medium Shell data}

9. Data: Transformed
GLRT parameters: H/C, N/C, and O/C
Target grouping: Dual targets
Training grouping: Target type only
10. Data: Transformed '
GLRT parameters: H/C, N/C, and O/C
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Target grouping: Dual targets
Training grouping: Target type and Shell size

11. Data: Transformed o
GLRT parameters: H/C, N/C and O/C
Target grouping: Dual targets,
Training grouping: Target type, Shell size, and Environment

12. Data: Transformed
GLRT parameters: H/C, NC and O/C
Target grouping: Multi-targets .
Training grouping: Target type only

13. Data: Transformed
GLRT parameters: H/C, N/C and O/C
Target grouping: Multi-targets
Training grouping: Target type and Shell size

14. Data: Transformed
GLRT parameters: H/C, N/C, and O/C
Target grouping: Multi-targets
Training grouping: Target type, Shell size, and Environment

15. Data: Transformed
GLRT parameters: H/C, N/C, and O/C
Target grouping: Dual targets
Training grouping: Target type only {Using only Small and Medium Shell data}

16. Data: Transformed
GLRT parameters: H/C, N/C, and O/C
Target grouping: Dual targets
Training grouping: Target type only {Using only Medium Shell data}

17. Data: Offset adjusted
GLRT parameters: H/C, N/C and O/C
Target grouping: Dual targets
Training grouping: Target type only

18. Data: Offset adjusted
GLRT parameters: H/C, N/C, and O/C
Target grouping: Dual targets
Training grouping: Target type and Shell size

19. Data: Offset adjusted
GLRT parameters: H/C, N/C, and O/C
Target grouping: Dual targets
Training grouping: Target type, Shell size, and Environment

20. Data: Offset adjusted
GLRT parameters: H/C, N/C, and O/C
Target grouping: Multi-targets
Training grouping: Target type only
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21. Data: Offset adjusted
GLRT parameters: H/C, N/C, and O/C
Target grouping: Multi-targets
Training grouping: Target type and Shell size

22. Data: Offset adjusted
GLRT parameters: H/C, N/C, and O/C
Target grouping: Multi-targets
Training grouping: Target type, Shell size, and Environment

23. Data: Offset adjusted
GLRT parameters: H/C, N/C, and O/C
Target grouping: Dual targets.
Training grouping: Target type only { Using only Small and Medium Shell data}

24. Data: Offset adjusted
GLRT parameters: H/C, N/C, and O/C
Target grouping: Dual targets
Training grouping: Target type only {Using only Medium Shell data}

The result of each GLRT setup is tabulated in the corresponding table numbers, for example Table
2.3-7 using the GLRT setup No.7, etc. The data used here were shared with Duke University and
tabulated in the file PELAN Runs Simmar: 1o Dunke.xls.

Table 2.3-1 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: C, H, N, O of Untransformed Data)
(Trained on Dual Targets Only)

Explosives Inerts Correct ID Rate

D | it | ot | ot | vomeety | esptosives | mert
A | B. c E F G (BIA) (FIE)
42 18- 24 100 97 3 42.9% 97.0%
47 20 27 54 53 1 42.6% 98.1%
8 | 38| st | 154 | 150 | 4 | 42.7% 97.4%
56 49 7 37 36 1 87.5% 97.3%
59 33 ] 6 37 36 1 89.8% 97.3%
s foogexel 13 | me 72 2 33.7% 97.3%
44 38 6 22 21 1 86.4% 95,59
65 65 0 21 21 0 100.0% | 100.0%
109 103 | ¢ 423 42 1 94.5% 97.7%




Table 2.3-2 GLRT Test Results of Shell Data Using Empty Shell Background

(GLRT Parameters: C, H, N, O of Untransformed Data)

(Trained on Dual Targets and Shell Size)

Exploéivés Inerts Correct ID Rate

Shell | Environ-| Number | Comectiy Miss Number | Correctly Miss )
Size ment | ofDus enied Iacxgﬁea of Dar dened zaergﬁea E‘z’é";‘;";‘ (n!‘__efés)
Table 12 3s 7 100 91 9 83.3% 91.0%
Small | Ground 47 39 3 54 38 16 83.0% 70.4%
Total 39 74 15 154 129 25 83.1% | 83.8%
Table 56 56 0 37 37 0 100.0% | 100.0%
Medium | Ground 59 58 1 37 35 2 98.3% 94.6%
Total 115 114 1 74 72 2 99.1% 97.3%
Table 44 38 6 22 21 1 86.4% 05.5%
Large | Ground 65 58 7 21 21 0 89.2% 100.0%
Total 109 9 13 43 2 1 88.1% 97.7%
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Table 2.3-3 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: C, H, N, O of Untransformed Data)
(Trained on Dual Targets, Shell Size, and Environment)

Explosives Inerts Correct ID Rate

Shell Enviren- | Number Correctly Miss Number Correctly Miss
Size et of Dua Idm;ﬁcd ldcngﬁed of Dua Idm:ﬁed ldcn;ﬁed E"‘i’é"”;")" ‘1‘;‘}':)
Table 42 37 ] 100 90 10 88.1% 90.0%
Small | Ground 47 43 4 34 46 8 91.5% 85.2%
Total 39 30 9 154 136 13 $9.99% 88.3%
Table 56 56 0 37 37 0 100.0°%% 100.0%
Mediun | Ground 59 59 0 37 36 1 100.0% 97.3%
Total 115 115 0 74 73 1 100.0% 98.6%
Table H 38 6 22 22 0 86.4% 100.0%
Large Ground 65 65 0 21 21 0 100.0% 100.0%
i Tolal 109 103 (] 43 43 g 94.5% 100.0%

Table 2.3-4 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT kParameters: C, H, N, O of Untransformed Data)

(Trained on Multi-targets Only)

Ekplosifyes Inerts Correct ID Rate
prl ki Rl e R g s I e e
A B Cc E F G

Table 42 24 18 100 96 4 57.1% | 96.0%

Small | Ground [ 47 25 22 54 53 1 532% | 98.1%
Total | 89 49 40 | 15¢ | 149 | 5 | s51% | 968%

Table 56 52 4 37 36 1 929% | 97.3%

Medium | Ground | 59 56 3 37 36 1 94.9% | 97.3%
Totar | 115 | 108 7 L | 7z | 2 | 939% | on3%

Table 14 41 3 2 21 1 932% | 95.35%

Large | Gromnd | 65 65 0 21 21 0 100.0% | 100.0%
Total 109 106 3 43 42 1 | 9729% | 97.79%




Table 2.3-5 GLRT Test Results of Shell Data Using Empty Shell Background

(GLRT Parameters: C, H, N, O of Untransformed Data)
(Trained on Multi-targets and Shell Size)

Explosives Inerts Correct ID Rate
| B | N | it | s | oo | i | s [Eepses | e
A B c E F G

Table 42 38 Bl 100 80 20 90.5% 80.0%%

Small Ground 47 43 4 54 37 17 91.5% 68.3%
Totnl 89 81 & 154 117 37 91.0% 76.0%

Table 56 58 1 37 37 0 98.2% 100.0%

Medium | Ground 59 57 2 37 37 0 96.6% 100.0%%
Totnl 115 112 3 74 74 (/] 97.4% 100.0%

Table 44 39 5 22 22 0 88.6% 100.0%

Large Ground 65 61 El 21 21 0 93.8% 100.0%
Totnl 109 100 9 43 43 g 91.7% 100.0%

Table 2.3-6 GLRT Test Results of Shell Data Using Empty Shell Background

(GLRT Parameters: C, H, N, O of Untransformed Data)
(Trained on Multi-targets, Shell Size, and Environment)

Explosives Inerts Correct ID Rate
shen | B e T T | o | s | s | s | e
A B C E F G

Table 42 37 5 100 8s 15 $8.1% | 85.0%

Small | Ground | 47 43 4 54 16 8 91.5% | 85.2%
Total 89 20 9 154 131 23 89.9% | 85.1%

Table 56 55 1 37 37 0 98.2% | 100.0%
Medium | Ground | 59 57 2 37 37 0 96.6% | 100.0%
Total 115 g 3 74 74 0 97.4% | 100.0%

Table 1 39 s 22 20 2 88.6% | 90.9%

Large | Ground | 65 65 0 21 21 0 100.0% | 100.0%
Total 109 104 5 43 41 2 95.4% | 95.3%
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Table 2.3-7 GLRT Test Results of Shell Data Using Empty Shell Background

(GLRT Parameters: C, H, N, O of Untransformed Data)

(Trained on Dual Targets {Small & Medium Shells})

Explosives Inerts Correct ID Rate

pil et [l ] P e e N P e
5 Table 42 27 15 100 97 3 64.3% 97.0%
- Small | Ground | 47 34 13 54 16 8 72.3% | 85.2%
Total 39 61 28 154 143 11 68.5% 92.9%

Table 56 53 3 37 35 2 04.6% 94.6%

Medium | Ground 59 58 1 37 36 1 98.3% 97.3%
Total 115 111 + 74 71 3 96.5% 95.9%;

Table H 41 3 22 21 1 93.2% 95.5%

Large Ground 63 G5 0 21 20 1 100.0% 95.2%
Total 109 106 3 43 41 2 97.2% 95.3%

Table 2.3-8 GLRT T:est-i{gsults of Shell Data Using Empty Shell Background

(GLRT Parameters: C, H, N, O of Untransformed Data)

(Trained on Dual Targets {Medium Shells})

Explosii’es - Inerts Correct ID Rate

prl i el ) B B ) B ey e
Table ) 30 12 100 85 15 71.4% | 85.0%

Small | Groumd | 47 9| s 54 31 23 83.0% | 57.4%
Totnl 89 | 6 | 20 | 154 16 | 38 | 77.5% | 75.3%

Table 56 56 0 37 37 0 100.0% | 100.0%

Mediom | Gromd | 59 58 1 37 35 2 98.3% | 94.6%
Totat | 115 | 114 | 1 | 74 72 |2 | eeua% | 973%

Table 44 41 3 22 21 1 03.2% | 95.5%

Large | Gromnd | 65 65 0 21 20 1 100.0% | 95.2%
' Totat | 1209 | 106 | 3 | 4 | 41 2 | 9729% | 9539%




Table 2.3-9 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, C/O of Transformed Data, X0=0.1)
(Trained on Dual Targets Only)

Explosives Inerts Correct ID Rate

| P | | [ L [ e
Table 12 28 14 100 96 4 66.7% | 96.0%

Small | Grownd | 7 18 54 45 9 61.7% | 83.3%
Total | 89 32 | 15¢ | 141 | 13 | 640% | oL6%

Table 56 51 5 37 36 1 91.1% | 97.3%
Medium | Ground | 39 49 10 37 36 1 83.1% | 97.3%
Tott | 115 | 100 | 15 | 74 72 2 37.0% | 97.3%

Table 44 41 3 22 21 1 93.2% | 95.5%

Large | Ground | 65 64 1 21 20 1 98.5% | 95.2%
Totw | 109 | 105 | 4 43 | 41 | 2z | 963% | 9s3%

Table 2.3-10 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters. H/C, N/C, O/C of Transformed Data, X0=0.1)
“(Trained on Dual Targets and Shell Size)

Explosives Inerts Correct ID Rate

ol ool ISl e I g ) I Py e
s A 8 c E F G A0
Table 42 34 8 100 78 22 81.0% 78.0%

Small | Grownd | 47 38 9 54 41 13 80.9% 75.9%
" Totl | 89 72 17 | 154 | 19 | 35 | s09% | 773%
Table 56 54 2 37 37 0 96.4% | 100.0%

Medium | Ground | 9 50 9 37 36 1 84.7% | 97.3%
Total 115 104 11 74 | 73 | 1 | 904% | 986%

Table 14 37 7 22 20 2 84.1%% 90.9%

Large | Gromnd | 65 61 1 21 21 0 93.8% | 100.0%
Total 109 98 11 43 41 2 39.9% | 9539%
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Table 2.3-11 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Transformed Data, X0=0.1)

(Trained on Dual Targets, Shell Size, and Environment)

Explosives Inerts Correct ID Rate

e || i | e | i | o | Sl | sl [ | tere
A B ¢ E F G

Table 42 33 9 100 82 18 78.6% 82.0%

Small Ground 47 42 5 54 43 11 89.4% 79.6%

Toial 39 7._$ 14 154 125 29 34.3% 81.2%

Table 56 55 1 37 37 0 98.2% 100.0%%

Medium | Ground 59 51 8 37 35 2 86.4% 94.6%

Total 115 106 9 74 72 2 92.2% 97.3%

Table 44 38 6 22 22 0 86.4% 100.0%

Large Ground 65 64 1 21 21 0 98.5% 100.0%

Totai 169 102 7 43 43 /] 93.6% 100.0%

Table 2.3-12 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Transformed Data, X0=0.1)
(Trained on Multi-targets Only)

Explosives Inerts Cotrect ID Rate
Shell | Environ-| Number | Correcty Miss Number | Correctly Miss )

Size el o k:am Eden;ﬁcd {dngﬁed of [E>ata Idengﬁcd Idengﬁed E"%’é"f;‘;‘” (I‘;fl"és)

Table 42 28 14 100 91 9 66.7% 91.0%

Small | Ground | 47 28 19 54 45 9 59.6% | 83.3%

Total | 89 56 33 | 154 | 136 | 15 | 629% | s23%

Table 56 53 3 37 3 3 94.6% | 91.9%

Medimn | Ground [ <9 3 6 37 35 2 89.8% | 94.6%
Total | 115 | 106 o | 7¢ | 60 | 5 | e22% | 9320

; Table 14 40 1 2 20 2 90.9% | 90.9%

Large | Ground | 65 65- 0 21 18 3 100.0% | 85.7%

| Totar | 109 105 4 43 38 | 5 | 96.3% | 33.4%




Table 2.3-13 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Transformed Data, X0=0.1)
. (Trained on Multi-targets and Shell Size)

Explosives Inerts Correct ID Rate
| e AN R e B R
A B c E F G

Table 42 35 7 100 75 25 83.3% 75.0%

Small Ground 47 42 S 54 39 15 89.4%% 72.2%
Total &9 77 12 154 114 +0 86.5% 74.0%

Table 56 34 2 37 37 0 96.4% 100.0%

Medium | Ground 59 53 (] 37 36 1 89.8% 97.3%
Total 115 107 3 74 73 1 93.0% 98.6%

Table H 40 4 22 20 2 90.9% 90.9%

Large Ground 65 63 2 21 20 1 96.9% 95.2%
Total 109 103 6 43 40 3 94.5% 93.0%

Table 2.3-14 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Transformed Data, X0=0.1)
(Trained on Multi-targets, Shell Size, and Environment)

Explogf?es = Inerts . Correct ID Rate
shen | Eavron-| b [ oo Tt | i Tomet | ot [Boptones [ e
A B o E F G

Table 42 33 9 100 81 19 78.6% | 81.0%

Small | Ground | 47 39 8 54 10 14 83.0% | 74.1%
Totat | 89 72 17 | 1s¢ | 121 | 33 | s09% | 73.6%

Table 56 <3 3 37 37 0 94.6% | 100.0%

Medium | Ground | 59 54 s 37 37 0 91.5% | 100.0%
Tott | 115 | 107 8 74 74 0 | 9%0% | 100.0%

o Table 44 38 6 2 21 1 86.4% | 95.5%
Large | Ground 65 65 0 21 21 0 100.0% | 100.0%
0 Tomt 109 103 6 43 42 1 94.5% | 97.7%
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Table 2.3-15 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, C/O of Transformed Data, X0=0.1)
(Trained on Dual Targets {Small & Medium Shells})

Explosives Inerts Correct ID Rate

s | e | om | v | s | S5 | Y |l [P |
Table 12 29 13 100 93 7 69.0% 93.0%

 Small | Grownd | 7 35 12 54 13 11 745% | 79.6%
Toial 39 64 25 154 136 13 71.9% 88.3%

Table 56 54 2 37 37 0 96.4% 100.0%

Medium | Ground 59 19 10 37 36 1 83.1% 97.3%
Total 115 103 12 74 73 1 89.6% 93.6%

Table 44 42 2 22 21 1 95.5% 95.5%

Large | Groumd 65 63 2 21 12 9 96.9% 57.1%
Tolal 109 105 4 43 33 10 96.3% 76.7%

Table 2.3-16 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT P’zitiati{eters: H/C, N/C, C/O of Transformed Data, X0=0.1)
""" '(Trained on Dual Targets {Medium Shells})

Expf;s;;res «, Inerts Correct ID Rate

| T | T T [ | e
A B C E F G

Table | 42 29 13 100 87 13 | 69.0% | 87.0%

Small | Gromnd | 47 36 1 54 39 15 76.6% | 72.2%

Totat 39 65 24 15¢ | 126 28 | 73.0% | 81.8%

e Table | 56 54 2 37 ¥ 0 96.4% | 100.0%

Medinm | Gromd | 5o 50 9 37 36 1 84.7% | 97.3%

| totm | s | 104 | 1 74 73 1| 904% | 9869

| Table | 44 12 2 2 20 2 95.5% | 90.9%

Large | Gromd | o5 63 2 21 13 8 96.9% | 61.9%

| romt | 100 | 105 | « P T 10 | 963% | 76.79%
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Table 2.3-17 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, C/O of Offset Data, X0=0.1)
(Trained on Dual Targets Only)

Explosives Inerts Correct ID Rate

S;I: El:::n- :?El::ar ;:;;;B:;g ld:z:g;ed 1:;:5::: E:EEE: :d%;ed E"rg’f’;"; s II?"F?I
Table 42 29 13 100 8s 15 69.0% 85.0%

Small Ground 47 28 19 LE | 42 12 59.6%0 77.8%
Tolal a9 5‘:?; 32 154 127 27 64.0% 82.5%

Table 56 53 3 37 37 0 94.6% 100.0%

Medium | Ground 59 46 13 37 36 1 78.0% 97.3%
Total 115 99 16 74 73 1 36.1% 98.6%

Table 44 12 2 22 21 1 95.5% 95.5%

Large Ground 65 60 5 21 15 6 92.3% 71.4%
Tetnl 109 102 7.4 43 36 93.6% 33.7%

.

Table 2.3-18 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Offset Data, X0=0.1)
(Trained on Dual Targets and Shell Size)

Explosives Inerts Correct ID Rate
e ) R EA N RSl I ey e
A B c E F G

\ Table 42 35 7 100 76 24 83.3% 76.0%
Small | Grownd | 47 30 8 54 39 15 83.0% | 72.2%
k ! Totmt 29 74 .| 1s 154 115 39 83.1% | 74.7%
Table 56 55 1 37 37 0 98.2% | 100.0%

‘Medium | Ground | %9 18 11 37 34 3 81.4% 91.9%
2 Total 115 103 12 74 71 3 89.6% | 95.9%
Table 44 37 7 2 20 2 84.1% 90.9%

Large | Gronnd 63 62— 3 21 21 0 95 4% 100.0%%
R 109 99 10 43 41 2 90.8% | 95.3%
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Table 2.3-19 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Offset Data, X0=0.1)
(Trained on Dual Targets, Shell Size, and Environment)

Explosives Inerts Correct ID Rate

S || o | | s | S | et e
: A B ¢ E F G

Table 42 34 8 100 83 17 81.0%% 83.0%

Small | Gromnd | 47 43 4 54 41 13 91.5% 75.9%

Total 89 77 12 154 124 30 36.5% 80.5%

Table 56 54 2 37 37 0 96.4% 100.0%

Medium | Ground 39 48 11 37 32 3 B1.4% 86.5%

Totnl 115 102 13 74 69 5 88.7% 93.2%

Table 44 39 5 22 21 1 88.6% 95.5%

Large Ground 65 63 0 21 20 1 100.0% 95.2%

Total 109 104 5 43 41 2 95.4% 95.3%

Table 2.3-20 GLRT ’Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Offset Data, X0=0.1)
"~ (Trained on Multi-targets Only)

Explosives & Inerts Correct ID Rate

i'::l E;v:::n— ?F%l:g giitrggfg mjfggga ?fugzg ii’,’géfﬁ xagggca E"(Pg’f;")“ (I';ef;’)

| Table | 42 33 9 100 82 18 78.6% | 82.0%

‘Small | Gromd | 47 37 10 54 38 16 78.7% | 70.4%
Totnl 39 76 19 | 154 | 120 | 34 | 7879 | 7799

| Table 56 s 1 37 36 1 98.2% | 97.3%

Mekd,lmh Ground | 59 44 15 37 31 6 74.6% $3.8%
| Towmr | 11s | os 16 | 7 [ o7 | 7 | se1% | snsw

| Table | 44 43 1 22 20 2 97.7% | 90.9%

Largt ' Gromnd | 65 62 3 1 13 8 95.4% , | 61.9%

| Totat 109 105 4 43 | 33 10 96.3% | 76.7%

i
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Table 2.3-21 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Offset Data, X0=0.1)
(Trained on Multi-targets and Shell Size)

Explosives Inerts Correct ID Rate

el et EE A BN R A IR D P
Table 12 35 7 100 72 28 83.3% 72.0%

Small | Ground | 47 141 6 54 35 19 87.2% 64.8%
Total | 89 76 13 15¢ | 107 | 47 | 354% | 69.5%

Table 56 53 3 37 36 1 94.6% 97.3%
Medium | Ground | 59 44 15 37 34 3 74.6% 91.9%
Tolal 115 97 13 74 70 4 84.3% 94.6%

Table 44 41 3 2 20 2 93.2% 90.9%

Large | Ground | 65 64 21 15 6 98.5% 71.4%
Total 109 105 4 43 35 s 96.3% | 81L4%

Table 2.3-22 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, O/C of Offset Data, X0=0.1)

(Trained ‘'on Multi-targets, Shell Size, and Environment)

Explbsiiges Inerts Correct ID Rate
el | Ewi | viowe [ o | e | e | Doiey | e | EXplosees | Iers
A B C E F G

Table 42 33 9 100 79 21 78.6% 79.0%
 Small | Ground 47 41 6 54 2 12 87.2% 77.8%
Total 39 74 15 154 121 33 83.1% 78.6%
. Table 56 52 1 37 37 0 92.9% 100.0%
Medium | Ground | 59 19 10 37 34 3 83.1% | 91.9%
Total 115 101 14 74 71 3 87.8% 95.9%
| Table [ w 39 5 2 21 1 88.6% | 95.5%
Large | Ground | 65 64 1 21 17 4 98.5% 81.0%
o ot 109 103 6 43 38 5 94.5% 88.4%

(¥
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Table 2.3-23 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, C/O of Offset Data, X0=0.1)
(Trained on Dual Targets {Small & Medium Shells})

Explosives Inerts Correct ID Rate
e | e | e | it | s | 5 |G | i [t s
A B c E F G
& Table 42 35 7 100 80 20 83.3% 80.0%
. Small | Ground | 47 33 14 54 40 14 70.2% 74.1%
5 Total | 8 | 68 | 21 U154 120 | 34 - 764% | 77.9%
; Table 56 54 2 37 36 1 96.4% 97.3%
kMedinm Ground 59 45 14 37 33 4 76.3% 89.2%
Totat | 115 99 16 | 74 69 | 5 | 861% | 932%
Table 44 43 1 22 20 2 97.7% 90.9%
~ Large | Ground 65 60 5 21 9 12 92.3% 42.9%
B Total 109 103 6 43 | 29 14 | 945% | 67.4%
Table 2.3-24 GLRT Test Results of Shell Data Using Empty Shell Background
(GLRT Parameters: H/C, N/C, C/O of Offset Data, X0=0.1)
(Trained on Dual Targets {Medium Shells})
W : Explosives Inerts Correct ID Rate
S || oo | i | s | 235 [ G | ki e e
, Table | 42 3|1 100 77 23 73.8% | 77.0%
‘Small | Ground 47 32 13 54 39 15 68.1% 72.2%
‘ Tt | 39 | 65 | 26 | 15« | 16 | 35 | 70s% | 75.3%
" | Table 56 55 1 37 37 0 98.2% 100.0%
Medimn Gromd | 0 48 - 11 37 34 3 81.4% 91.9%
| rewm | 15 [Taes | 1z e |o7r 3 | #96% | 95.9%
7 ~ Table 44 42 2 22 20 2 95.5% 90.9%
Large | Grownd | 65 63 2 21 10 11 96.9% | 147.6%
| rotar | 109 | 105 4 | 4 | 3 13 | 9%.3% | 69.8%




2.3.3 Results o

I

Tables 2.3-1 to 2.3-24 tapj_;late the performance results of the corresponding GLRT
setups listed in Section 2.3.2, respectively.

Comparing between Tables 2.3-1 and 2.3-4, using multi-targets can help with the correct
identification (ID) rate when GLRT is trained on “targets,” or on “targets and shell size,”
especially on small shell runs, but it does not help when the GLRT is trained on “targets,
shell sizes, and environments.” Similar results can be observed for “transformed data with
GLRT trained on SEC ratios,” as shown in Tables 2.3-7 to 2.3-12.

For “untransformed data” and using “dual-targets,” the best performance is the GLRT
trained on “targets, shell sizes, and environments,” as shown in Table 2.3-3. Similar
performance could be expected with GLRT trained on “targets and shell sizes” for
“untransformed data’ and using “multi-targets,” as shown in Table 2.3-5.

For “transformed data” and using “dual-targets,” the best performance is also for GLRT
trained on ‘“targets, shell sizes, and environments,” as shown in Table 2.3-9. But its
performance is not as good as the “untransformed data,” compared to Table 2.3-3.

In general, the “data transformation” does not help with the performance, even though it
makes the SEC ratios look better. This is probably because the data for different shell sizes
and environments are brought closer through transformation.
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2.3.4 Conclusions

1. The “data transformation” does not help with the performance, even though it makes the
SEC ratios look better. This is probably because the data for different shell sizes and
environments are brought closer through transformation. Another possible reason is that the
number of GLRT parameters on the “transformed data” is less than that of the

“untransformed data.”

2. Except for the cases of “inert on the ground,” the “transformed data” performs more
consistently than the “untransformed data,” as the GLRT is trained with a subset of the data,
i.e., “Small and Medium Shells Only,” or “Medium Shells Only,” as shown in Tables 2.3-13
to 2.3-16.

3. Surprisingly, the “untransformed data” results in better performance when small sets of
data are used in training the GLRT parameters, as when comparing the “Correct ID Rates of
Explosives” in Tables 2.3-1, 2.3-13, and 2.3-15.

4. The best performance on the training data among all of the 24 GLRT setups is using the
GLRT parameters trained with “dual targets, shell sizes, and environments” applied to the
“untransformed data,” as shown in Table 2.3-3.

2.4 Confidence Metrics

In a fielded system, a classification decision (inert versus explosive) is usually made by
comparing the algorithm output to a fixed threshold that may be either pre-determined or set in
the field by a calibration procedure: Similarly, an identification decision (fill type) is often made
by determining which of the hypotheses is most likely given the measured data. For both
classification and identification, it is desirable to report the confidence in the decision in addition
to the decision itself.

Two approaches for determining the,confidence jn a decision are presented. The first is a
probability-based confidence measure which relates the probability of the algorithm output under
the declared hypothesis to the confidence. The second is an entropy-based confidence measure,
which assigns a confidence based on 'the likelihoods of all the hypotheses.

In this discussion, we focus on the entropy-based confidence measure for identification of the fill
type. This approach was used for identification among several target types and can be used to
identify the particular fill within a classification (such as TNT, RDX, or HMX). Details of the
probability-based confidence for classification and identification and for classification using an
entropy-based confidence measure are found in the final report from Duke.

2.4.1 Entropy-based Confidence Metric

There are several interpretations of: entropy, one being a measure of the uncertainty associated
with a partition of a space, with higher entropy corresponding to greater uncertainty. Taking this
point of view, a measure of confidence, or certainty, can be developed from entropy. The idea of
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using entropy as a confidence metric was previously proposed for assigning a confidence to the
classification of pixels in high-resolution, remotely sensed data.

The entropy-based identification confidence measure can also be extended to multiple
hypotheses. For an S-element space, the entropy, H, is defined as

8

H = — Z pelog pe

s== ]

where ps is the probability of élement's. When all the elements in the partition are equally likely,
the entropy of the partltton is IogS Therefore the normalized entropy measure, H,, whose values
range from O to 1, is «

s
— Z pelog pe
s

H, =
’ fog§

b4

and the corresponding entropy-based identification confidence metric, Cg, is given by

$
2: polog p,
]

Again, the confidence is a function of only two probabilities, not three, since p(H2|data) = 1—
p(HO|data)— p(H1|data). This confidence measure is intuitively appealing because it is close to
zero when the hypotheses are nearly equally likely, and it tends to 1 when one of the hypotheses
is dominant. The probability-scaled entropy-based identification confidence metric, Cgp, whose
values range from 1/S to 1, is

"‘1~+f:sn~ NC I~

Cppe= < =1+ ——H,

Unlike the probability-based identification confidence measure, the entropy-based measure can
be determined without first estimating M-dimensional probability density functions (pdfs).

The probability-based and probability-scaled entropy-based classification confidence measures
provide similar confidence values. As shown in the Duke report, plots of these confidence
measures as a function of the classification algorithm output and the probability of H,
(explosive), given the measured data, demonstrate that the probability-scaled entropy-based
confidence metric provides a reasonable approximation to the rigorous probability-based
confidence metric.

The probability-scaled entropy-based identification confidence metric also provides a reasonable
approximation to the probability-based identification confidence metric. In addition, the
probability-scaled entropy-based identification confidence metric allows for the calculation of
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confidence for all possible values of ®*, The probability-based identification confidence metric
can be determined only for those values of ®* which were encountered when the pdfs were
estimated. '

2.4.2 Experimental Data Resu'lftsg. ,

The maximum likelihood (ML) fill material ;es\timatjon algorithm, previously derived, is applied
to SPIDER element counts provided by SAIC (training_mat_full.txt), which were determined for
chemical data. The chemicals present in this data set are ANFO, bleach, gasoline, diesel,
ammonia, and water.

For the maximum likelihood fill estimation algorithm, the estimated fill material is the fill
material, which is most likely given the observed data. The results were determined under two
assumptions regarding the covariance structure of the data. The first assumption is that the
variables are correlated with the correlation determined by the training data. The second
assumption is that the variables are uncorrelated. In both cases, the confidence is determined
using the entropy-based identification confidence measure described in the previous section.

Figures 2.4-1 and 2.4-2 show histograms of the confidence values and the probability of correct
identification as a function of the confidence value under the assumption of correlated variables
and uncorrelated variables, respectively. Generally, the probability of correct identification
increases with the confidence value. It is important to note the number of data points with
confidence values within a bin to determine if the associated probability of correct identification
is reliable. For instance, if there are only a few cases in which the confidence is within a certain
range, then performance of 100% correct identification in that confidence range would be
suspect. The figures also show the confidence value versus the probability of the maximum
likelihood fill material estimate. The data points (blue asterisks) surrounded by red circles
represent the points for which the de¢lared identification is incorrect.

Confusion matrices follow in Figs. 2.4-3 and 2.4-4, again under the assumption of correlated
variables and uncorrelated variables, respectively. The average probability of correct
identification is 0.855 ("k = 0.826) when correlation between the element counts is considered in
the algorithm and 0.738 ("k = 0.686) when the element counts are assumed to be uncorrelated.

Finally, the results are tabulated and shown in tables in Section 5 of the Duke Final Report 6 for
the assumption of correlated variables and for the assumption of uncorrelated variables. Each
table lists the results for all the measurements corresponding to one fill material. For each
measurement, the measurement number (order in the file provided by SAIC), estimated fill
material, probability of the estimated fill material, and entropy-based identification confidence
value are listed. The most common 'confusions are between diesel and gasoline, and water and
ammonia. Each of these pairs has éirﬁilar chemical composition.

i
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Figure 2.4-1: Identification results for ML estimates of fill material when the correlation between
the element counts is included in the algorithm.
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Figure 2.4-2: Identification results for ML estimate of fill material when the element counts are
assumed to be uncorrelated in the algorithm.
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ANFO
Bleach

True Gasoline

Fill
Diesel

Ammonia

Water

Estimated Fill

ANFO  Bleach Gasoline Diesel Ammonia  Water
1.000
0.021 0.958 0.021
0.750 0.250
0.209 0.791
0.744 0.256
0.111 0.889

Figure 2.4-3: Identification results for ML estimate of fill material when the correlation between
the element counts is included in the algorithm.
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0.705 0.292

0.395 0.605
0.026 0.051 0.539 0.385
0.089 | 0.067 0.044 0.800

Figure 2.4-4: Identification results for ML estimate of fill material when the element counts are
assumed to be uncorrelated in the algorithm.
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2.4.3 Summary

Two approaches for determining decision confidence have been presented: a probability-based
confidence measure and an entropy-based confidence measure. The probability-based confidence
measure provides a rigorous manner in which to assign a confidence to a classification or
identification decision. However, since it utilizes the pdfs of the algorithm output, it is necessary
to estimate pdfs, and the estimation of M-dimensional pdfs for identification confidence may not
be practical. Therefore, this approach is only truly viable for classification decision confidence.
The entropy-based confidence measure is not as rigorously derived as is the probability-based
measure, but it is easily calculated and does not require estimating pdfs. In addition, its values
range from 0 to 1, rather than 1/S to 1 as does the probability-based metric. Thus, the range of
the entropy-based metric is independent of the number of hypotheses, whereas the minimum
value of the probability-based metric, 1/S , depends on the number of hypotheses. If the scale of
the probability-based metric is more intuitively appealing, the entropy-based metric can be
converted to the same scale as the probability-based metric. The probability-scaled entropy-
based confidence measure provides an easily computed approximation to the probability-based
metric. The entropy-based identification confidence measure was applied to SPIDER eclement
counts provided by SAIC for chemical data.

2.5 Spectral Analysis With PCA

2.5.1 Effects of Background Subtraction

2.5.1.2 Simulations

The background response measured by the PELAN system is usually much larger than the
elemental responses of the target. Thus, the background response usually masks, or nearly
masks, the target response. Background subtraction has been investigated as a means to eliminate
the masking effect of the background response. However, since the background itself is not
precisely known, this technique has the potential to introduce more noise into the measured
signal and, consequently, may degrade performance. In addition, systematic error may be
introduced by background subtraction if the assumed background response subtracted from the
measured signal is different from the background response present in the measured signal. The
additional noise and/or error resulting from subtracting a background response may adversely
impact detection and identification performance.

One method used to analyze PELAN-measured spectra is PCA. PCA is a technique wherein a set
of orthogonal basis functions, termed principal components (PCs), are determined from the data.
Thus, the model for the measured spectral response, M(c), using PCA is

) K
Mic)=Mic1+ ) WeBiic)

k=1
3

where M(c) represents the mean of the data, Bi(c) are the basis functions, or PCs, and Wy are the
weighting coefticients associated with each PC. The coefficients Wy are calculated by projecting
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the measured spectra onto the PCs and prov1de a concise set of features for classification and/or
identification.

Simulations are performed to evaluate the impact of background subtraction on explosive
detection when a GLRT is applied; to the PC. coefficients, Wi. The results indicate that
subtracting a background response.:prior to applying PCA degrades explosive detection
performance, and theoretical analysis explains the reasons this occurs. Details of the simulations
described here are found in the Duke Final Report. We provide a summary of the investigation
and its results here. (

The signals utilized in the simulations are based on elemental and background spectral responses
provided by SAIC. Each of the elemental spectral responses is quite distinct with respect to both
the other elements and the background response. However, the background response is three
orders of magnitude larger than the elemental responses.

The background response provided by SAIC is not associated with any particular background
environment. In order to investigate the effects of the target background environment on
explosive detection performance, additional simulated background responses were generated for
different types of backgrounds based on the ESTCP 2003 data set. This data set provided
background spectra for each of the target measurements. All of the background responses
provided for each type of background (gravel, sand, soil, table, and wet soil) were averaged to
create a simulated background response for each type of background. The average responses are
shown in Fig. 16 in the Duke Final Report, along with the background response provided by
SAIC. The inset contains a magnified view of the responses for channels 100 through 250. With
the exception of the table background, the variability of the background responses is the same
order of magnitude as the variation ‘éf“eated by the target response.

Using these simulated spectra, the effects of subtracting a local background measurement prior to
PCA were investigated. The background responses utilized for training and testing may be the
same, or they may be different. Both scenarios are considered in these simulations.

PCA is applied to the simulated training data to determine the principal components and the
principal component coefficients. For these simulations, five principal components are utilized
for detection. The statistics for the GLRT are determined from the training data principal
component coefficients. The testing data is processed by first determining the principal
component coefficients corresponding to the principal components found for the training data.
The GLRT designed using the training data is then applied to the testing data principal
component coefficients. The decision statistic produced by the GLRT is utilized to assess
performance through ROC curves.

In summary, the results indicate that subtracting a background measurement prior to applying
PCA effectively lowers the signal-to-noise ratio (SNR) by 3dB, and consequently, performance
is degraded. In addition, the simulation results indicate the performance is insensitive to the
background utilized for training and testing, so it may not be necessary to ensure that the training
and testing backgrounds are identical.
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2.5.1.2 Evaluation Using PELAN Data

The results of the simulations were tested using PELAN IV data collected at Indian Head in
December 2003 and April 2004 on explosive- and inert-filled shells. Additional data on inert-
filled shells taken at SAIC-San Diego were also included.  The spectra data set
(all_shells_spectr.txt) was provided to Duke University to conducting this analysis. A 25%
“Don’t Know” was used in a tertiary decision. Training was conducted with data collected on a
table, then a test was run for data collected on the table. Also, training was conducted on a table

and then tested on data collected on other surfaces (sand, soil, and asphalt). For each of these
combinations, the following approach was used:

e Repeat the following 20 times
o Randomly select 80% of table data and train GLRT parameters
o Randomly select a new 80% of table (or sand/asphalt/soil) data and test GLRT
o Generate a ROC assuming 25% “Don’t Know”

e Average 20 ROCs to determine the average ROC

The PCA parameters were determined with and without the background spectra subtracted from
the target spectra. A total of 296 table measurements and 269 non-table measurements were used
in this investigation. The training used all shell sizes; that is, no separate parameters were
generated for each size group. Also, as was done for the simulations described in the previous
section, only the gamma spectra from fast neutron reactions were used. Three principle
components were used to train the GLRT (no model parameters). For baseline comparison, the
energy using the SPIDER element counts and the energy from the measured spectra to which
PCA is applied were calculated and compared to the results. The results are shown in the

following figures.
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Figure 2.5.1-1. ROC of PCA trained with data taken on a table, then tested on a table. The left
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subtracted.
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PCA F, PC Threshold=3 PCA F minus Background, PC Threshold=3

= , n P e
o7k . g\ o] o7k -
st o ~ 06
o® o5} a® 05
03k ' ?* 0.3+
02 ——— GLRT - No Model Parameters ‘ 02 ——— GLRT - No Model Parameters|
0.4] — Es - Spider element counts s 0.4| *= Es - Spider element counts
Es - Measured Spectra ; i Es - Measured Spectra
% 0.1 02 03 04 05 06 07 08 09 1 % 0.4 02 03 04 05 06 07 08 098 1

PCR PCR
Figure 2.5.1-2. ROC of PCA trained with data taken on a table then tested on sand, asphalt, and
soil. The left ROC plot is with no background subtraction, and the right ROC plot is with
background subtracted.

The results of this exercise show that subtracting the background spectra greatly reduces the
performance when PCA is used to analyze the spectra. Furthermore, using data trained on one
environment (metal table) can be- used to predict the outcome of data taken on another
environment (soil, sand, asphalt) with little change in the performance. This is consistent with
the results of the simulations described above. The outcome of this result is that a background
run may not be required prior to the target run, saving time and eliminating the need to have an
empty shell for a background run.

2.5.2 Variables Affecting Cluster Formation

2.5.2.1 Introduction

PCA is applied to PELAN data for shells containing both inert and explosive fill materials in this
work. The far-reaching purpose of this work is to contribute to the understanding of how
explosive fill materials can be différentiated from inert fill materials using PC analysis of
PELAN signals. PCA is applied with two specific goals in mind: classification of the fill
materials (explosive versus inert) and identification of the individual fill materials.

The data for explosive fill materials was collected at NAVEODTECHDIV, Indian Head,
December 2003 and April 2004. The data for inert fill materials was collected at SAIC, Rancho
Bernardo, spring 2004.

One of the purposes of the PC anéIysifsfis to sort data into clusters that can be visualized in three-

dimensional plots. The fomaﬁon,gf the clusters is dependent upon many variables. For the
purpose of classification of fill material, it is desirable to have the PC analysis sort the data into
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two clusters, one for explosive materials and one for inert materials. For the purpose of
identification of fill materials, it is desirable to have smaller sub-clusters form, one for each fill

material.

H .
Ao

There are many variables besides the fill material of the shell that affect the formation of clusters
in PC analysis. The variables fall into three general categories: data collection variables, data
preprocessing variables, and PCA post-processing variables.

1. Data collection variables
¢ The distance from the shell to the PELAN unit
e Thesize of the shell =
* The composition of the background (e.g., the shell may rest on soil or cement or a
table) L
e The overall environment (e.g., data collection may occur indoors or outdoors)

2. Data preprocessing variables
* The selection of PELAN channels to include in the PC analysis
e The subtraction of a background signal
e Mean centering of the data
e Autoscaling of the data

3. PCA post-processing variables
¢ The number of principal components to include in the analysis

It should be emphasized that the subject of this work is not to determine whether a shell’s fill
material is explosive or inert. The actual decision making is left to prediction algorithms such as
GLRT. -

In summary, the purpose of this study was to preprocess, process, and analyze PELAN data for a
particular data set, using PC analysis, with the goal of differentiating explosive materials from

inert materials. Furthermore, we wanted to understand the effect of the three types of variables
described above on the analysis and formation of PCA clusters.

2.5.2.2 Description of Variables Affecting Cluster Formation
In the introduction, it was noted that there are three types of variables that affect cluster

formation: data collection variables, data preprocessing variables, and PCA post-processing
variables. In this section, these variables are described in detail.

Data Collection Variables

Data collection variables include those variables that come into play as the data is being
collected. Four of these variables are described below.
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The distance of the shell to the detector: Almost all shells in the data set were placed 2
inches from the detector, with the exception of a few that were placed at a distance of 1
inch from the detector. To eliminate this variable, the shells placed at 1 inch were
excluded from the PC analysis.

The size of the shells. The shells are labeled by size according to their diameter measured
in millimeters. The shells are described as small, medium, and large:

Small < 90mm,
90mm <= Medium < 120mm,
Large >= 120mm.

The composition of the background. The majority of the shells were placed on either an
aluminum table or soil for collection of the PELAN data. Some of the shells were placed
on cement, sand, grass, wet grass, wet asphalt, dry dirt test bed, and wet sand test bed.
These background variables are labeled in this study as

o Table
» Soil
o Other

The overall environment. SQme of the data were collected indoors and some outdoors.
The data collected indoors tends to have a larger background signal.

Preprocessing the Data

After the data has been collected but before it is sent to the PC analysis algorithm, it may be
subjected to preprocessing. There are four possible preprocessing steps:

1.

ra

Channel selection. The PELAN unit collects 1,024 channels of data. Certain channels
map to atomic elements of interest for explosives detection. Other channels are not of
interest. For this study, the effect of channel selection on PC cluster formation was not
considered, and the channel selectlon was fixed to be the range of channels 50 to 450 and

channels 557 to 962.

Subtraction of background signal. The background signal is the signal obtained when the
shell is not present. PC analysis was performed on data both with and without the
background subtracted. This is an important variable to consider, since the collection of
background signal is time-consuming in the field. One issue with background subtraction
is noise. The background signal has noise associated with it, and by subtracting, it could
effectively double the noise in the sample data. Another issue is that the background
signal data is not always co!lected at the same time as the shell data and, thus, may not be
an accurate reflection of the true background.
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3. Mean centering. Mean centeéring is performed on the data by calculating the mean for
each channel, and subtracting. Mean centering can be important to efficient PC analysis.
PCA was performed on the data both with and without mean centering.

4. Autoscaling. Autoscaling is the application of both mean centering and variance scaling
to the data. Variance scaling is performed by dividing each channel by the standard
deviation of that channel. Autoscaling is typically applied to data so that scale does not
dominate the analysis. Autoscaled data is unitless, and autoscaling is typically used when
the data is known to be of different types (units) or of greatly different ranges. In this
study, PC analysis was performed on the data both with and without autoscaling.

Post-Processing the Data

Post-processing of the data occurs after PC analysis has been performed. At this point, the
number of principal components to include in the cluster formation must be decided. Typically,
the first few components are included in the analysis. For the work in this report, the first three
principal components are displayed. There is a section of the report dedicated to post-
processing, where the effect of additional components is explored.

2.5.2.3 Overview of PELAN Data and the Interpretation of PCA Plots

It is assumed that the reader IS 'fatﬁ_i«l’iar‘ with PCA techniques. However, before proceeding
further, a very brief overview of the PELAN data, the PC analysis techniques, and interpretation
of PCA plots is in order.

For each shell, fill material, and background, the PELAN unit generates a data sample point.
The sample point consists of 1,024 channels of data the units of the data being “counts.” In this
study, as a preprocessing step, the number of channe s is reduced to 807, and the other channels

are ignored.

Suppose there are a total of 500 samples in the data set. For the PCA, all of the data is placed in
a 500 by 807 matrix, called the data matrix. Each row of the matrix corresponds to a sample
point. Preprocessing steps are applied to this matrix. As an example of preprocessing, to mean
center the data, the mean of each column of the matrix is calculated and then subtracted from
each element in that column.

PCA begins with a singular value decomposition on the data matrix. The principal components
are the singular vectors of the data matrix. The principal components have 807 elements, which
is equal to the number of data channels, and the principal components span what is called the
sample space. Each principal component is associated with a singular value; the principal
components are listed in descending order according to the magnitude of the singular value.

The principal components have the property that they are orthogonal to one another, and their
direction describes the variance in the data. The first principal component accounts for the



largest percentage of variance in the data. The plots in this study are comprised of the first three
principal components.

Each PCA plot in this report is a display of the orthogonal projection of the sample points in the
data set onto the first three principal components. The clustering of the sample points gives a
visual indication of how close the sample points are to one another.

The units on the PCA plots axes are “counts,” the same as the PELAN data. The exception is for
the case where the data has been autoscaled, then the principal component axes are unitless.
Sometimes the counts appear as negative numbers; this is due to the mean centering.

Three-dimensional visualization is important to this study. To aid in visualization, stem plots are
employed at times. A stem plot is a three-dimensional plot of the sample points, (x, y, z), where
each point has at tail. The end of the tail always touches the xy plane.

2.5.2.4 Preprocessing Studies

The goal of the preprocessing studies is to determine the best combination of background
subtraction, mean centering or autoscaling to perform on the data before applying the PC
analysis. The following six combinations of preprocessing techniques are considered.

No preprocessing

Background subtraction

Mean centering

Autoscaling

Mean centering with background subtraction
Autoscaling with background subtraction

Ak o b~

This preprocessing study was resffictéd to large shells (>= 120mm diameter) since they were
expected to produce the best signal-to-noise ratio of all the shells. All possible backgrounds
(table, soil, other) were allowed so that the effect of background subtraction could be determined
effectively. The ultimate goal of PCA applied to PELAN data is to separate explosive fill
materials and inert fill materials into separate clusters, thus, the effect of the six combinations on
the PCA clustering of inert and explosive fill materials is used as a benchmark of comparison.

The following stem plots show the large shell data in sample space for each of the six
preprocessing combinations. Sample points for empty shells and shells filled with inert materials
are green and sample points for shells filled with explosive materials are red.

1. No preprocessing

Data points representing the empty/inert fill materials (green) cluster separately from the data
points for explosive fill materials (red) with the exception of three empty 152mm shells on the
bottom right of Figure 2.5.2 - 1.
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No Pre-Processing

3rd PC

L

explosive
empty or inert

Figure 2.5.2 - 1: Stem plot of the first three principal components for large shells on any

background. There is no preprocessing of the data.

2. Background subtraction

Data points representing the inert fill materials (green) cluster separately from the data points for
explosive fill materials (red), although the clusters are not as distinct as they are in the no
preprocessing case (No. 1). It appears that background subtraction alone may not be as effective
as others for solving the identification problem, since the individual clusters, which correspond
to individual fill materials, are not as distinct. However, the method may be suitable for the

classification problem since the red and green clusters are distinct.




Background Subtraction

o~

L4

explosive
empty or inert

3d PC

Figure 2.5.2 — 2: Stem plot of the first three principal components for large shells on any

background. Background signal is subtracted from the data.

3. Mean centering

Data points representing the inert fill materials (green) cluster separately from the data points for
explosive fill materials (red), again, with the exception of three 152mm empty shells, as seen in
case No. 1. Note that there are two large inert clusters, one largely consisting of data taken with
soil as the background and the other with a table as the background.
preprocessing appears suitable for both the classification and identification problems since the

individual clusters are so clearly defined.
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Mean Centering

explosive
empty or inert

3rd PC

Figure 2.5.2 — 3: Stem plot of the first three principal components for large shells on any
background. The data is mean-centered.

4. Autoscaling

Data points representing the inert fill materials (green) cluster separately from the data points for
explosive fill materials (red), again, as seen in cases No. | and 3, with the exception of three
empty 152mm shells near the center of the plot.

Note that the two large inert clusters are present, as in the mean-centering case (No. 3), but are
even more distinct, one largely consisting of data taken with soil as the background and the other
with a table as the background.

This method of preprocessing appears suitable for both the classification and identification
problems since the individual clusters are very clearly defined.
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Autoscaling

7: explosive
empty or inert

3rd PC

2nd PC

Figure 2.5.2 — 4: Stem plot of the first three principal components for large shells on any
background. The data is autoscaled.

5. Mean centering with background subtraction

Data points representing the inert fill materials (green) cluster separately from the data points for
explosive fill materials (red). This case is similar to the background subtraction case (No. 2).

As in case No. 2, it appears that this preprocessing method may not be as effective as others for
solving the identification problem, since the individual clusters, which correspond to individual
fill materials, are not very distinct. However, the method may be suitable for the classification
problem since the red and green clusters are distinct.
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Mean Centering with Background Subtraction

explosive
empty or inert

Figure 2.5.2 - 5: Stem plot of the first three principal components for large shells on any
background. The data is mean-centered with background subtraction.

6. Autoscaling with background subtraction

Autoscaling with background subtraction (No. 6) appears to give the best separation of explosive
fill materials from inert fill materials for this data set. Autoscaling removes the effect of signal
strength, and all of the inert fill materials cluster tightly together. Note that the 152mm empty
shells are in the inert cluster. This method of preprocessing the data appears to be the best for
both classification and identification of the fill materials.



Autoscaling with Background Subtraction

explosive
empty or inert

3rd PC

Figure 2.5.2 — 6: Stem plot of the first three principal components for large shells on any
background. The data is autoscaled with background subtraction.

Summary of the Six Preprocessing Combinations

For cases No. 1, 3 and 4, where there is no background subtraction, a good separation of
explosive and inert fill materials oceurs, with the exception of three data points representing inert
materials that fall near the explosives. These three data points correspond to empty 152mm
shells. :

For cases No. 2, background subtraction, and No. 5, mean centering with background
subtraction, there is separation of explosive and inert fill materials, which is useful for the
classification problem, but the individual clusters may not be distinct enough for the
identification problem.

Case No. 6, autoscaling with background subtraction, provides the best separation of inert
materials from explosive materials and preserves individual clusters for the identification
problem. Since autoscaling tends to remove the element of signal size, it may eliminate the
effect of shell size on cluster formation, which is a key variable in the analysis.

Autoscaling with background subtraction is worthy of further investigation, however, that work
is not pursued here. There are two main issues to consider with background subtraction: first,
the background must be accurate, since the background signal dwarfs the shell signal; and
second, the collection of the background signal slows down work in the field.



These six examples show that subtracting local background may not be necessary in order to
separate explosive fill materials from inert fill materials. This is an important finding because
ignoring the local background greatly simplifies the data collection process in the field.

Elaboration of Case No. 3 (Mean centering without background subtraction)

All further studies in this work are conducted with mean centering as in case No. 3. This method
is selected for several reasons: the good separation of explosive and inert fill materials (with the
exception of 152mm empties), the tight clustering of the inert data points, the simplification of
the data collection process because background signal is not required, mean centering allows
efficient PC analysis. ‘

The last reason needs elaboration: Mean centering is important to efficient PC analysis. When
the data is not mean-centered, the first principal component vector describes the direction from
the origin to the cloud of data. The second principal component is constrained to be orthogonal
to the first and cannot orient itself along the length (maximum variation) of the cloud of data.
With mean centering of the data, the data cloud is shifted to the origin, and the first principal
component effectively describes the length of the cloud of data,

In addition, previous studies at Duke University (Duke University, Final Report for SERDP, Part
I) have indicated that mean centering without background subtraction is a promising
preprocessing combination for classifying explosive and inert materials.

2.5.2.5 Studies on Empty Shells

A study of all the empty shells was’ performed in order to determine the role of shell size and
environment in the PC analysis. First, the background environment was fixed for these studies
as soil or metal table. The PC analysis shows that for a fixed environment (soil or metal table),

the shells clustered in sample space éccording to their size. Then the data for the soil and metal
table backgrounds were combined in a single data matrix and analyzed together.

Empty Shells on Soil Background N

The first case studied was empty shells of any size on soil background. Figure 2.5.2 - 7 clearly
demonstrates that the shells cluster according to size.
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Empty Shells on Soil
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Figure 2.5.2 — 7: Graphical display of the first three principal components for empty shells on

soil background. The data is mean-centered.
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Empty Shells on Table Background

The second case studied is empty shells of any size on table background. Figure 2.5.2 - 8 clearly
demonstrates that the shells cluster according to size, with the exception of overlap of the 61mm
on the 81mm shells. In addition, some of the shells of the same size form more than one cluster,
the blue 76mm shells for example; this may be due to the data collection process, where some of
the data on the table was collected indoors and some outdoors.

Notice that “No Shell” data is included in the plot. This data consists of just the table
background.
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Figure 2.5.2 — 8: Graphical display of the first three principal components for empty shells on
table background. The data is mean-centered.

Empty Shells on Soil or Table Background

The third case studied is empty shells of any size on both soil and table backgrounds. Figure
2.5.2 - 9 again clearly demonstrates that the shells cluster according to size, with the exception
of overlap of the 61mm and the 81mm shells. In addition, some of the shells of the same size
form more than one cluster; this may be due to the data collection process, where some of the
data on the table was collected indoors and some outdoors.
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Empty Shells on Soil or Table
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Figure 2.5.2 - 9: Graphical display of the first three principal components for empty shells on
table or soil background. The data is mean-centered. Color-coding is according to shell size.

To further investigate the relative effect of background on empty shell clusters, Figure 2.5.2 - 10
was produced. This Figure 2.5.2 — 10 can be superimposed on Figure 2.5.2 - 9, Figure 2.5.2 -
10 shows the shells displayed by background type, either soil or table.
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Empty Shells on Soil or Table

table
soil
o other

Figure 2.5.2 — 10: Graphical display of the first three principal components for empty shells on
table or soil background. The data is mean-centered. Color-coding is according to background.

This empty shell study is inconclusive as to the dominance of background over shell size in the
PC analysis. No obvious conclusions are drawn from the two figures and further investigation is
warranted. For example, the effect of indoor versus outdoor data collection could be taken into
account.

2.5.2.6 Studies on Inert Fill Materials and Empty Shells

Empty shells together with inert fill materials are studied to determine how they cluster in
sample space relative to one another. The inert fill materials included in the study are sand,
cement, plaster of Paris, paraffin, and wax. Soil and table backgrounds are considered. Shells of
all sizes are included.

Three PCA plots are given to illustrate the relative impact of background, shell size, and fill
material on the formation of the PCA clusters.

First, Figure 2.5.2 — 11 shows the separation of the sample points according to the two
backgrounds, soil and table. Figure 2.5.2 — 11 shows the sample space divided into two distinct
regions, soil (magenta) and table (cyan). There are a few exceptions: three 90mm empty shells
in the region corresponding to soil (magenta) that appear in the region corresponding to table
(cyan), and one 6 Imm empty shell on table background that appears in the soil region.
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Figure 2.5.2 — 11: Graphical display of the first three principal components for empty shells and
shells filled with inert materials on table or soil background. The data is mean-centered. Color-
coding is according to background type. '

Second, Figure 2.5.2 — 12 shows the separation of the sample points according to shell size.
These are the identical sample points that are plotted in Figure 2.5.2 — 12, but they are now
color-coded according to shell size. Figure 2.5.2 — 12 shows that within the two distinct regions -
corresponding to background, the shells tend to cluster according to size. There are some
exceptions: the 61mm and 81mm do not always form separate clusters.

Note that most of the shell sizes form two clusters. Take the 155mm shells designated by yellow
asterisks, for example, near the top of the plot. They form two separate clusters, and by
comparing to Figure 2.5.2 — 11, it is evident the one cluster is on a soil background and the other

on a table background.

From Figures 2.5.2 — 11 and 2.5.2 — 12, it may be concluded that the background takes
precedence over shell size in cluster formation for empty/inert shells.
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Shell Sizes
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Figure 2.5.2 — 12: Graphical display of the first three principal components for empty shells and
shells filled with inert materials on table or soil background. The data is mean-centered. Color-
coding is according to shell size.

Third, Figure 2.5.2 — 13 shows the separation of the sample points according to fill material.
These are the identical sample points that are plotted in the previous two figures, but they are
now color-coded according to fill material. Not all of the sample points are plotted, due to
software limitations. Figure 2.5.2 — 13 shows that the sample points do not cluster according to
inert fill material; each cluster is comprised of multiple fill materials. This is an important result.
It implies that inert fill materials cannot be distinguished from one another with this PCA
methodology.
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Figure 2.5.2 — 13: Graphical display of the first three principal components for empty shells and
shells filled with inert materials on table or soil background. The data is mean-centered. Color-
coding is according to fill material.. Not all sample points are displayed, due to software

limitations.

In summary, comparing Figure 2.5.2 — 13 with Figures 2.5.2 — 12 and 2.5.2 — 11 shows that the
sample points divide into two regions according to background and then, within these regions,
cluster according to size. The inert fill materials do not affect the formation of the clusters, and
(with the exceptions noted for Figure 2.5.2 — 12) the shells cluster according to size. From these
two figures, it may be concluded that the background takes precedence over size, and size takes
precedence over empty/inert fill material.

In other words, for this data set, with few exceptions, shells filled with sand, cement, plaster of
Paris, paraffin and wax are similar to the response from empty shells of the same size and
background. This similarity may be due to the small C/H ratio (<1) for inerts compared to large
C/H ratios (>1) typical for explosives.

2.5.2.7 Studies of Explosive Fill Materials versus Empty/Inert Fill Materials

The ultimate goal of this work is to understand how to best apply PC analysis to PELAN data so
that explosive fill materials may be differentiated from inert fill materials. In this section, PC
analysis is applied to classify the data into explosive and inert fill materials. It was determined
that shell size is the largest factor in successfully classifying the shells into explosive and
empty/inert fill materials. Shells described as large ( >= 120mm in diameter) were classified
with the most success, and this success is attributed to the greater signal-to-noise ratio.
Classification was studied for three cases: large shells; large and medium shells; and large,
medium, and small shells. All backgrounds are included (soil, metal table, grass, wet grass,
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metal table, wet asphalt, dry dirt test bed, wet sand test bed) as well as all inert fill materials
(sand, cement, plaster of Paris, wax, paraffin) and all explosive fill materials.

Large Shells

Shells in the data set described as large ( >= 120mm in diameter ), on any background, are
successfully separated into two very distinct regions by PCA: one region corresponding to
explosive fill materials and one corresponding to inert fill materials together with empty shells.
There are three data points that do not separate, which are 152mm empty shells.

Figure 2.5.2 — 14 shows this very promising result for the classification problem.
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Figure 2.5.2 — 14: Stem plot of the first three principal components for large shells on any
background. The data is mean-centered.

Medium and Large shells

Shells in the data set described as large and medium (>= 90mm in diameter), on any background,
are successfully separated into two distinct regions by PCA, with a few exceptions.

Figure 2.5.2 — 15 shows the PCA plot for medium and large shells. The 152mm empty shells are
in the explosive region as described above, and in addition, three new clusters of inert shells have
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formed, each corresponding to 152mm shells, one for wax-filled shells on a table, one for empty
shells on a table, and one for empty shells on a dry dirt test bed.

Medium and Large Shells - All Backgrounds

explosive
empty or inert

Figure 2.5.2 — 15: Stem plot of the first three principal components for large and medium shells
on any background. The data is mean-centered.

Small, Medium and Large Shells

Shells in the data set described as large, medium, and small (>= 60mm in diameter), on any
background, do not successfully separate into two distinct regions by PCA with this
methodology.

There is much interleaving of the inert and explosive fill materials, as is shown in Figure 2.5.2 —
16. This failure to separate is most likely due to the small signal generated by the smaller sized
shells.
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Figure 2.5.2 — 16: Stem plot of the first three principal components for large, medium, and small
shells on any background. The data is. mean-centered.

2.5.2.8 Studies on the Number of Pﬁryincipal Components to Include in PC Analysis
In this section, an example is given that demonstrates the effect of adding an additional
component to the PC analysis. The example is of medium and large shells on any background,

with the goal of separating explosive fill materials from empty/inert fill materials.

Figure 2.5.2 — 17 is a plot of the first three principal components. Note that there are two large
inert clusters (green), and that subjectively, the lower cluster appears “close” to the explosive
cluster (red).

Figure 2.5.2 — 18 is a plot of the second, third, and fourth principal components. In this plot, the
two large inert clusters are clearly separate from the explosive region.
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Components 1,2, and 3
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Figure 2.5.2 — 17: Graphical display of the first three principal components for large and
medium shells on any background. The data is mean-centered.

Components 2,3, and 4
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Figure 2.5.2 — 18: Graphical display of second, third and fourth principal components for large
and medium shells on any background. The data is mean-centered.
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The chart below shows that the fourth principal component is responsible for only 1.22 percent
of the variance in the data. However, Figures 2.5.2 — 17 and 2.5.2 — 18 show that, at least
visually, the component is important for cluster separation.

Percent Variance Captured by PCA Model

Principal Eigenvalue % Variance % Variance

Component of Captured Captured

Number Cov {X) This PC Total
1 6.60e+008 ] 83.50 83.50
2 8.48e+007 C.10.73 94 .22
3 2.87e+007 U 3.64 37.86
4 9.61e+006 1.22 99.08
5 1.97e+006 0.25 99.33
6 1.09e+006 0.14 99.46

2.5.2.9 Further Work
Several areas in this study are worthy of further investigation:

e The explosive fill materials form individual clusters and investigation of the content of
these clusters will provide additional understanding of the explosive-fill identification
problem.

s Autoscaling with background subtraction provided excellent separation of explosive and
empty/inert fill materials and warrants further investigation, especially for smaller sized
shells, which were not successfully differentiated with the mean-centering technique.

o The distance between clusters can be quantified.

s The problem of predicting the fill material of a shell can be addressed using well-known
techniques that are compatible to PCA, such as Soft Independent Modeling of Class
Analogies (SIMCA).

2.5.2.10 Summary and Conclusions

PCA techniques are effective at classifying explosive and inert fill materials in large and medium
sized shells (>= 90mm) on a multitude of backgrounds for this data set. In addition, the sample
space can be divided into two distinct regions, explosive and empty/inert.

It was determined that mean centering of data is an effective preprocessing technique and that
background subtraction is not necessary for separating the explosive and inert fill materials for
large and medium sized shells. This is an important result because the collection of background
signal can be time-consuming in the field.

An accurate background signal may; be necessary to apply PCA techniques to small shells since
the small shells produce a low signal-to-noise ratio.
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It appears that the data for large and medium shells form individual clusters according to
background and shell size.

It appears that shells of all sizes with inert fill materials are indistinguishable from empty shells
of the same background and size.

For this data set, three principal components are sufficient to separate the explosive and inert fill
materials in sample space for large and medium sized shells.

2.6 Spectral Estimation

Fill material classification and identification performance are dependent on the quality of the
measured spectra. This may also be true of methods that operate directly on the measured spectra
as well as on methods that extract a set of features, such as the SPIDER Element Counts or
principal component coefficients, from the measured spectra. The theoretical model for the
measured spectra indicates that it should consist of spectral peaks corresponding to the
constituent elements. The resolution of the measured spectra, however, may not be sufficient to
resolve closely spaced peaks.

Frequency estimation methods were investigated to improve the resolution of the measured
spectra. These methods are well suited to estimating spectra that contain sinusoidal components
and, therefore, are appropriate for this application where the spectral response contains peaks due
to individual elemental responses. It was anticipated that detection performance should improve
if the resolution of the spectral peaks due to the elemental responses in the measured spectra can
be improved. All of the approaches considered here are based on eigenanalysis of the
autocorrelation matrix. Only a summary of the methods and results are presented in this section.
Please see Section III of the Duke Fmal Report for more details.

The relationship between the power spectral density (PSD) and the autocorrelation function
(ACF) of a wide-sense stationary (WSS) random process is a familiar one, the Fourier transform.
[2] The PSD is simply the Fourier transform of the ACF, and similarly, the ACF is the inverse
Fourier transform of the PSD. An important property of the ACF of a WSS process is that it is
conjugate symmetric. In the special case of a real-valued random process, the ACF is a real-
valued even function according to this property. Two important properties of the PSD are that it
is real-valued because the ACF is conjugate symmetric, and it is non-negative. Again, a real-
valued random process is a special case for which the PSD is an even function because the ACF
is real and even.

The measured PELAN spectra satisfy the two properties of a PSD (it is real-valued and
nonnegative) and, therefore, may be interpreted as a PSD for positive frequencies. Assuming the
underlying random process is real- valued so that the PSD is an even function, the corresponding
ACF, r(t), for each measurement is generated by reflecting the measured spectra about the f= 0
axis and then taking the real part of the inverse Fourier transform. The real part of the inverse
Fourier transform is taken because the ACF of a real-valued random process is a real-valued
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even function. Once the ACF has been determined, the autocorrelation matrix (ACM), R, can be
generated.

Once the ACM corresponding to the measured PELAN date has been formed, standard
eigenanalysis approaches may be applied to decompose the ACM into a set of orthogonal
vectors, termed eigenvectors. Corresponding to each eigenvector is an eigenvalue, A, which is a
complex-valued scalar satisfying Rv=Av for the eigenvector v.

The parametric spectral estimation, or more precisely, frequency estimation, techniques
considered here are all based on the.eigenanalysis of the total ACM, which is composed of two
distinct ACMs, the signal ACM and the noise ACM. [7] The theory behind these eigenanalysis
approaches is that the p principal eigenvectors of the total ACM, which are the same as the p
principal eigenvectors of the signal ACM, may be used to extract the sinusoidal components of
the signal. Once the principal eigenvectors have been obtained, they are transformed to the
frequency domain, and the spectral (frequency) estimate is obtained by summing the frequency
domain representations of the eigenvectors. It is important to note that these methods do not
actually provide true spectral estimates, but rather, estimates of distinct frequencies present in the

signal.

Several approaches were used that differ primarily in the criteria applied to select the
eigenvectors to retain for the frequency estimation and how the retained eigenvectors are
combined to form the spectral estimate. In addition, those that retain only a subset of the
eigenvectors all share the common challenge of choosing the correct model order, or the correct
number of eigenvectors, to retain for the frequency estimation. These approaches are

Auto-Regressive (AR) Frequency Estimation
Minimum Variance Frequency Estimation
Bartlett Frequency Estimation

Multiple Signal Classification (MUSIC)
Eigenvector Frequency Analyéis

The eigenanalysis spectral estlmatlon algonthms were applied to the chemical data provided by
SAIC. This data set contains six chemical compounds: ammonium nitrate (AN) bleach (BL),
gasoline (GS), diesel fuel (DS), ammonia (AM), and water (WA).

Each of the eigenanalysis spectral estimation techmques assumes the model order, p, is known.

The model order p determines the number of complex exponentials assumed to exist in the
spectrum. Since a single sinusoid is the sum of two complex exponentials, the number of
sinusoids assumed to exist in the spectrum is p/2. Selecting the model order has proven to be a
very challenging task, particularly when a background measurement has been subtracted, and to-
date, no method for selecting the model order has been found to be universally appropriate. Thus,
model order selection for the eigenanalysis spectral estimation algorithms remains an area for

continuing work.
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Frequency analysis of the autocorrelation matrix eigenvectors using the chemical compounds has
produced some promising initial results. Analysis was performed with and without background
subtraction. See Sections 13-17 of the Duke Final “Report for some sample results.

In summary, alternative spectral estimation techniques have the potential to improve fill material

classification and identification performance by i improving the quality of the measured spectra.
Initial efforts focused on frequency estimation methods, which employ eigenanalysis of the
autocorrelation matrix. Unfortunately, the question of model order selection hindered the spectral
estimates and remains an area of open research. However, an alternative approach, also based on
the eigenanalysis of the autocorrelation matrix, did produce promising results. The eigenvector
frequency analysis differs from the spectral estimation methods in that, rather than summing the
magnitude spectra of a selected subset of the eigenvectors, the pattern of the magnitude spectra
for all eigenvectors is considered. This approach considers the order in which the frequencies
appear in the eigenvectors but does not consider the relative contribution of each frequency as
identification algorithms operating on the measured spectra would.

2.7. Processing of PELAN IV Data

2.7.1. Introduction

SPIDER element count (SEC) data were collected at Indian Head and at SAIC using the PELAN
IV system from December 2003 to December 2004 and were processed to assess system
performance for fill material classification (non-explosive versus explosive), where the non-
explosive class included both empty shells and shells with an inert fill material. The data
contains an extensive set of fill materials; however, for this study, the measurements for the
chemical and miscellaneous fills ‘are discarded and only the empty, inert, and explosive fill
materials are retained. The explosive fill materials retained are TNT, RDX, HMX, and CompB,
and the inert fill materials retained are cement, sand, plaster of Paris, and wax. The measured
data has been parameterized according to general shell size (small, medium, and large) as well as
background environment. Although there are four distinct background environments, (sand,
asphalt, soil, and a metal table), the first three environments (sand, asphalt, and soil) were
grouped together to create a common environment so, in practice, only two environment
parameterizations are considered (common and metal table). The SECs were determined with an
empty shell in the background measurement as well as without an empty shell in the background
measurement. The data distribution, excluding the December 2004 data, for the data taken with
an empty shell in the background is given in Table 2.7-1, and the data distribution, again
ex’.cludmg the December 2004 data, for the data taken w1th0ut an empty shell in the background
follows in Table 2.7-2. These tables show that although this is a rather large data set (546
measurements with an empty shell and 494 measurements without an empty shell), it does not
contain enough data for all the subset parameterizations, such as for empty large shells measured
with a common background, to reliably evaluate all the detection algorithms that have been
developed. It will be shown in the following sections how the paucity of data affects evaluation
of the detection algorithms.
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With Empty Shell in Background

Environnent
e Adl Eavironme nis
commen o Metal Table
i Saned, Asphalt. Seily
Fill Material EX N EM EX N EM EX IN EM
43 B T4 29 17 40
sl 47 42 89
54 163 157
Shell 7| 10 I8 20 45 0
Size MD 41 47 b3
31 38 75
18 A 12 10 30 i3
LG 55 39 G4
21 22 43
88 24 104 39 192 &3
All Shell Sizes 143 128 271
112 163 7E

Table 2.7-1. Data distribution (546 total) for PELAN IV data (excluding December 2004 at
Indian Head) taken with an empty shell in the background.

Without Empty Shell in Background

Enviromrent
Common . All Environments
. o Ketal Table
tSand. Asphalt. Soil),
Fill Materal EM EM
SM 42 a2 74
49 - . 1z 161
Shell B3 1w 13 25 36 35
Size. MDY 36 b ¥ R 75
EX R 7i
13 3 12 7 30 16
LG 31 - 22 73
21 19 40
79 e 113 66 182 i3
All Shell Sizes 129 93 2
103 1he X2
mm

Table 2.7-2. Data distribution (494 total) for 2004 data taken without an empty shell in the
background.
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2.7.2. Analysis Algorithms

The baseline algorithm is the energy detector. This algorithm simply computes the energy in the
SEC vector for each measurement,

where S is the SEC value for element ¢ and there is a total of C counts in the SEC vector.

The WKU decision tree results are also shown as a baseline performance measure. However,
they are probably not reliable, since they were designed for a previous generation of the PELAN
system and have not been optimized for this system.

The algorithms considered for fill material classification are all variants of a generalized GLRT.
The GLRTs vary in the choice of model parameterization. The GLRTSs considered here range
from a simple GLRT, in which there is no model parameterization, to a more complex GLRT, in
which the model is parameterized by both shell size and background environment.

The simplest GLRT under consideration is the one for which there is no model parameterization.
This GLRT simply aggregates all the explosive data to determine a single set of statistics for that
class (H) and the non-explosive data to determine a single set of statistics for that class (Hp).
Assuming the data, x, follows a Gaussian distribution, the closed form expression for the GLR
after simplification is

< 1172 .

AX) = 1Gol o Alx=a0)T (a7 (k=i )]
e -2

JCy |k
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where p; is the mean of the distribution for hypothesis i, and C; is its covariance. For
computational efficiency, constants are typically absorbed into the threshold, and the natural
logarithm of the likelihood ratio is usually computed. Since the natural logarithm is a monotonic
function, it does not alter the detection results. Consequently, the GLR is often expressed as

ANXY =X - _u,(;;:r(fgl(x — gl = (X~ ;n}T(fl”!{,\: - U

This form of the GLR assumes theré are no uncertain parameters, other than the underlying
hypothesis, on which the signal depends. The signal model utilized in the GLR (or LR) can be
made as general or precise as desired. In general, the trade-offs considered are computational
complexity, model accuracy, and ability to estimate the necessary parameters or otherwise train
the algorithm. Using a more precise model usually requires more extensive training data and
increases the complexity of the GLR computation, but in return, it can provide improved
performance. Usually, studies are conducted to determine how performance depends on the
signal model so that the simplest model with the best performance can be chosen for
implementation.
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Considering the dependence of the data on the signal parameters when forming the GLR often
improves performance, even when the values taken by the parameters are not known a priori.
However, if some, or all, of them are known a priori, performance often improves even more,
sometimes dramatically. The degree of improvement depends on the characteristics of the data,
and how strongly each parameter influences the data.

In this study, the signal model parameters chosen for investigation are the fill material, the target
size, and the background environment. Thus, the measured signal, s(9, 1, £), is a function of the
fill material, ¢, the target size, 1, and the background environment, . Expressions of A(x) as a
function of these parameters are found'in the Duke Final Report.

Lot

2.7.3. Performance Results

The performance of the GLRTs on the PELAN 1V data, excluding the December 2004 data, is
compared to the baseline energy detector and WKU decision tree performance. The GLRTs
implemented for this study are
e No model parameters
Size known
Size unknown
Background known
Background unknown
Size unknown and background unknown
Size unknown and background known
Size known and background unknown
Size known and background known

In addition, each of the above GLRTs was implemented for three different assumptions
regarding the fill material for the null hypothesis, HO:
S :

o Inert and empty fills aggregated to determine HO statistics (M = 1)
e Inert and empty fills kept separate to determine two groups of HO statistics (M = 2)
e Only inert fills are utilized to determine the HO statistics (M = 1)

In all of the GLRTs, all explosive fills were aggregated to determine H1 statistics (M = 1).

The ROCs were generated by taking the average of 100 independent training/testing set
realizations in which 90% of the data was utilized for training and the remaining 10% was
utilized for testing. No effort was made to assure the training and testing sets were evenly
matched. For instance, the training set consisted of 90% of the total data, not the combination of
90% of the explosive fill material data, 90% of the inert fill material data, and 90% of the empty
(no fill material) data. Finally, performance was assessed for 0%, 15%, and 25% “Don’t Know”
in order to evaluate the impact of the “Don’t Know” declaration on the overall performance

level.
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ROC curves generated as part of this analysis are provided in the Duke Final Report. Only a
selection of the ROC curves is shown here for aiding the discussion. FEach figure shows a
comparison of ROCs for a given “Don’t Know” level. The comparisons show the performance
for each of the three assumptions regarding Hy as well as the effects of excluding the cross-
correlation from the covariance matrix. It is important to note the scale on the axes when
comparing ROCs since many of them have limits of 0.5 to 1, rather than the conventional limits
of 0 to 1, in order to more clearly show the different curves.

Figure 2.7-1 shows performance when an empty shell is included in the background
measurement. For these curves and those in the Duke report, the data includes all three shell
sizes. The ROCs indicate that, with sufficient training data, the GLRTSs outperform the baseline
energy detector, and generally there is not much performance difference between grouping the
empty and inert fills together or integrating over the Hy fill material. They also show that for all
three parameterizations, the GLRTs with unknown parameters often perform better than the
same GLRTs with the parameters known. This result is an artifact of insufficient training data for
the large shells because the statistics cannot be reliably estimated. Neglecting the correlation
generally degrades performance, but sometimes it corrects the problem of the parameter-
uncertain GLRT, outperforming the parameter-known GLRT. This occurs because it is easier to
estimate variances than the full covariance matrix.
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Figure 2.7-1. All shell sizes, with correlation, 0% Don’t Know (left) and 15% Don’t Know
(right), with an empty shell in the background run.

To test the hypothesis that there is insufficient large shell data to adequately train the GLRTs, the
performance is also evaluated for only the small and medium shells. These ROCs are represented
in Figure 2.7-2. Once the large shells are excluded from the data set, the size-known GLRT
outperforms the size-unknown GLRT, which supports the hypothesis that the previous results
showing the size-uncertain GLRT outperforming the size-known GLRT are a result of
insufficient training data for the large shells. However, the other parameter-uncertain GLRTS,
which include the background environment in their parameterizations, still often outperform their
respective parameter-known GLRTs. This is likely an unreliable result, due to inadequate
training data. There is consistency with the previous set of results in that generally there is not
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much performance difference between grouping the empty and inert fills together or integrating
over the HO fill material, and neglecting the correlation generally degrades performance, but
sometimes it corrects the problem of the parameter-uncertain GLRT, outperforming the
parameter-known GLRT because it is easier to estimate variances than the full covariance

matrix.
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Figure 2.7-2. Small and medium size ,shells, with correlation, 0% Don’t Know (left) and 15%
Don’t Know (right), with an empty shell in the background run.

ROCs are also generated for small shells and medium shells as represented in Figure 2.7-3. The
performance for medium shells is better than for small shells. This is due to the increased volume
of fill material in the larger shell. In addition, the performance for medium shells generally
exhibits very good performance. These ROCs must be viewed with caution, however, since they
were generated with randomly selected training data sets which may not accurately reflect the
characteristics of the testing data set due the small amount of available data.
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Figure 2.7-3. Small (left) and medium (right) shells, with correlation, each 15% Don’t Know,
with an empty shell in the background run.

Finally, the data without an empty shell in the background measurement is considered.
Performance using the full data set, with all three shell sizes, could not be evaluated due to
insufficient training data; however, once the large shells were removed, it could be evaluated,
and the ROCs are represented in Figure 2.7-4. Some general trends are the same as the previous
sets of results. The GLRTs are better than the energy detector, provided sufficient training data is
available, and neglecting correlation generally degrades performance. One difference is that the
parameter-known GLRTs outperform the parameter-unknown GLRTs. This could be due to
sufficient training data now being available, or the Gaussian assumption is now more appropriate
than it was for the other two cases. Compared to the data for which an empty shell was included
in the background measurement, the performance is degraded for no model parameterization,
size parameterization, and background parameterization. For size and background
parameterization, however, the performance without an empty shell in the background is
comparable to the performance with an empty shell in the background. One additional difference
is that performance is slightly better for the GLRT which integrates over the uncertainty in the
HO fill material (HO = {IN or EM}) than the GLRT which aggregates the HO fill materials into a
single group (HO = {IN,EM}).
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Figure 2.7-4. Small and medium shqlig iogether, with correlation, 0% Don’t Know (left), 15%
Don’t Know (right), with NO empty shell in the background run.
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The small and medium shell data without an empty shell in the background were also evaluated
individually. The ROCs for the small and medium shells separately are represented in F igure 2.7-
5. Again, these ROCs should be viewed with caution since the amount of available data is rather
small and the training data sets were selected randomly.
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Figure 2.7-5. Small (left) and medium (right) shells analyzed separately, with correlation, 15%
Don’t Know, with NO empty shell in the background run.
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To mitigate some of the problems associated with using random training sets with limited data —
namely, not being guaranteed to have both Ho and H, data in the testing sets — matched training
sets are also evaluated. For these results, the training sets are composed of 90% of the Hy data
and 90% of the H, data. Otherwise; the performance analysis is the same as for the random

training sets.

ROCs were generated for small shells with an empty shell in the background measurement and
for medium shells. Also, ROCs are shown with results for small and medium shells without an
empty shell in the background. The performance trends seen earlier for the random training sets
continue here. Performance generally improves as more parameters are included in the model
and generally improves when the parameters are known, rather than uncertain. Performance
generally improves when correlation is included, though it may degrade if there is not enough
data to estimate the correlations. Integrating over the Hy hypotheses (empty and inert) also
slightly improves performance.

¢

Overall, the performance is promising. As expected, the medium shells show better performance
than the small shells, and the data with the empty shell in the background measurement shows
better performance than the data without the empty shell in the background measurement.

2.7.4. Performance Results of December 2004 Data

The December 2004 SEC data has been analyzed using GLRTs. The GLRTs were trained using
all PELAN 1V data with the empty shell in the background measurement analyzed in the
preceding section, and then applied to the December 2004 data. The December 2004 data
consists of 70 measurements, 61 of which have an empty shell in the background measurement.
The remaining nine measurements do not have an empty shell in the background measurement.
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The data were analyzed in two ways. First, all the PELAN IV data is retained, including the
December 2004 data. In this case, there potentially is a mismatch between the training data and
the nine test measurements that do not have an empty shell in the background. For this reason,
only the measurements that include an empty shell in the background measurement are also
evaluated. Some of the results for all the data and for only data with an empty in the background
are shown in Figure 2.7-6. The data without an empty shell in the background could not be
analyzed independently because the only fill material for which measurements were taken was
“Empty.” Therefore, ROCs cannot be generated, because there is only Hy data and no H, data.
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Figure 2.7-6. All December 2004 data (left) and December 2004 data with an empty shell in the
background (right), with correlation, 15% Don’t Know

There does not seem to be a. significant difference between performance for all the data and
performance for only the data with an empty shell in the background. In addition, the trends seen
previously follow through here. Increased model specificity generally improves performance, as
does knowledge of the parameter values.

2.7.5. Comparison with Neural Net Analysis

In a parallel effort supported by SERDP under a separate contract, NAVEODTECHDIV
investigated the application of neural nets to SEC for target classification (explosive versus
inert). The same SEC data sets used in the GLRT analysis described above were provided to
NAVEODTECHDIV, and the same analysis approach was used to generate ROC curves.
Several ROCs were provided to SAIC for comparison with the neural net results. More details of
the neural net investigation can be found in NAVEODTECHDIV’s final report (April 2005).

The baseline neural network parameters used in the analysis are as follows:

e Three-layer neural network
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e Four inputs (unless otherwise specified), the elemental counts of carbon, hydrogen,
nitrogen and oxygen. In certain cases, shell size and background were added as input
variables. C :

» Two internal neurons in hidden layer

» One output neuron A "

e Transfer function sequence of tansig, tansig, logsig

As in the GLRT analysis, the neural network randomly selected 90% training data and the
remaining 10% was used for testing. Therefore, no testing data was used for training. No “Don’t
Knows” were used in the training. The background (environment) and shell size were not used as
inputs in this training. Training and testing occurred 100 times, and the false positives and
probabilities of detection were stored in memory and were averaged.

At the time the analysis with GLRT was performed on the SEC for comparison with the neural
network (NN) results, the December 2004 data was not yet available. The results with GLRT
here are done without the 70 runs from December 2004, while the NN approach included these
data. Because the December 2004 data is close to only 10% of the total runs used in the training,
the differences in the ROC results without December 2004 data are minor.

This network is the “control” neural network to which all other networks are compared, and it is
represented in black on the ROC curve graphs provided by NAVEODTECHDIV. Two test
groups were provided to SAIC for comparison with GLRT: the first, in which size and
background are added as input variables (in addition to C, H, N, and O) and the second, in which
the three differently sized shell groups (small, medium, large) are trained and tested separately.

Test Group 1: Addition of shell sizéand background as input variables

Initially, the number of inputs to the neural network were four (i.e., just the elemental counts
from C, H, N, and O). During this testing, the number of inputs was increased to five when shell
size was added as an input variable and again when background was added as an input variable.
The number of inputs was increased to six when both shell size and background were added as
input variables. This made for a total of three tests. The NN results are shown in Figures 2.7.5-1
and 2.7.5-2, where the black curve in each figure is the control result (shell size and background
not included as input variables) and the colored curves are with an added input for shell size,
background, and shell size plus background.
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Figure 2.7.5-1. Neural net results of all PELAN v déta with shell size as input (left plot) and
with background as input (right plot). The black curve is the baseline curve as described in the

text.
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Figure 2.7.5-2. Neural net results of all PELAN IV data with baseline curve (no inputs) and with
shells size and background as inputs.

In Figures 2.7.5-3 and 2.7.5-4, we show the NN results plotted along with the GLRT results for
training, with no separation in shell size or background, with shell size known only, with
background known only, and with both shell size and background known. The black curves in
each plot are the NN results using the same data set and training parameters.
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Figure 2.7.5-3. GLRT results of all PELAN IV data with only SEC input (left plot) and with size
as input (right plot). The black curve is for the equivalent analysis using the neural net.
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Figure 2.7.5-4. GLRT results of all PELAN IV data with background as input (left plot) and
with size and background as input (right plot). The black curve is for the equivalent analysis
using the neural net.

Test Group 2: Separation of Data by Shell Size

All the data was separated into three groups by its shell size: small, medium, and large. Each
group, separately, was used to train the neural network using the procedure outline above and the
results were plotted graphed. Only the elemental counts from C, H, N, and O were used as
inputs. Figure 2.7.5-5 shows the results of each shell size group compared to the result when all
data is grouped together.
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Figure 2.7.5-5. Neural netwbrk results of all PELAN 1V data for each shell size group after
training on each separately.

The plots in Figure 2.7.5-6 compare the results of the NN (black curves) and the GLRT (blue
curves) for the small shells and the medium shells, separated in the training. The plot for the
large shell with GLRT is the same as that for the NN result.
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Figure 2.7.5-6. GLRT results of all PELAN IV data for small and medium sized shell size group
after training on each separately. The black curves are the equivalent analysis using neural
networks. -

In general, the NN and GLRT give similar results, but most often, GLRT reaches higher
detection probabilities at lower false alarms rates sooner than does the NN. The results of the
NN and GLRT for the small shells, where training is done for each group of shell sizes, are very
similar to each other, possibly due to fewer distinguishing features when the signal-to-noise ratio
is lower.
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2.7.6. Summary

The performance of GLRTs using SECs on the 2004 data is shown for a variety of model
parameterizations, several different data subsets, and three different “Don’t Know” percentages.
Generally, more precise model parameterization improves performance, provided that the
statistics can be reliably estimated. For this reason, performance without correlation is sometimes
better than with correlation. This is contrary to the expected result of performance with
correlation being better than performance without correlation. As expected, performance
improves as the shell size increases, due to the increased fill material volume. In addition, the
effect of including an empty shell in the background measurement is evaluated by considering
data measured with and without an empty shell in the background measurement. The neural
network analysis performed by NAVEODTECHDIV was compared to the GLRT analysis with
SECs and showed similar performance, though in general, GLRT performed better. Generally,
performance is better when an empty shell is included in the background measurement.

2.8. Implementation in PELAN IV

Because several algorithms developed with the support of SERDP demonstrated that they met
the goals of improving performance, increasing robustness, and easing the trainability for
multiple targets and library updates, they were implemented into the PELAN IV systems that
were delivered to the Navy as part of the NFI 6.4 program. SAIC implemented the GLRT
decision maker with the tertiary declaration and the entropy-based confidence level into PELAN
IV systems. The SPIDER spectral analysis is still used in the system.

A test report with performance réSul,ts%Was delivered to the Navy and, with their approval, can be

provided to SERDP. The Navy conducted tests in December 2004 using these units. As of this
writing, no results have been presented.

86



3. CONCLUSIONS

Several analysis algorithms were investigated in the SERDP contract for improving the
performance of PELAN 1V, increasing the robustness of the decision maker and allowing for
easier training and parameter upgrades.

SAIC and Duke University collaborated on the development of advanced algorithms. During
this project, several key results were obtained and are summarized below.

* GLRT was established as an effective decision-making algorithm.
o GLRT can be used in conjunction with Least Squares (SPIDER), PCA, and other
spectral analysis techniques (e.g., MUSIC).

* The tertiary declaration was added for GLRT decision making (“Don’t Know™) for
explosives/inert-filled shells.
o Improved performance occurred with addition of “Don’t Know.”

* PCA can perform better than Least Squares on shell targets.

e Background measurements may not be necessary for effective PCA analysis.
o The need for empty shell in background is eliminated.
o Less user input is required for recording the environment.
o Further testing is required for verification.

¢ The GLRT, tertiary declaragidn, and entropy-based confidence level were implemented
into PELAN NFI systems.

* Results using GLRT on elc;ngntal counts compared similarly in performance with the
neural network results provided by NAVEODTECHDIV.

» Data collection at Indian Head was conducted December 6-22, 2004,
o SERDP data was made available to SAIC and Duke University in February 2005.
o Using prior training parameters, the performance results of December 2004 data
were consistent with previous results.

For different sensor geometries or gamma-ray detector types (such as LaBr3), the data collected

with PELAN IV cannot be directly used in the target library. However, the methods developed
here using PELAN 1V data can be applied to systems with these different configurations.
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4. TRANSITION PLAN AND RECOMMENDATIONS

SAIC, in collaboration with Duke University and Environmental Chemical Corporation (ECC),
have been selected by ESTCP to build, test, demonstrate and validate a mobile, multi-detector-
based PELAN unit for the classification of UXO filler at cleanup sites. With improved
classification algorithms, we can improve the reliability of the target analysis, improve the
performance, and thus, provide a cheaper and safer means for environmental remediation needs
and other EOD-related efforts. The improved spectral analysis and decision-making algorithms
developed in this project will be implemented directly into the current PELAN systems. Along
these lines, we have already implemented and started testing the tertiary GLRT and entropy-
based confidence algorithms in the PELAN IV system.

Through the ESTCP project, we recommend the following steps for transitioning this technology
to field applications.

e Build and test a lab system.
o Conduct tests using modular system for determining optimal signal-to-noise
o Using data collected in the lab, evaluate LS/GLRT and PCA/GLRT algorithms
o Test system at Indian Head on live shells
o Evaluate performance against algorithms

e Build and test a prototype system.
o Build a fieldable PELAN system using multiple detectors
o Work with ECC, a UXO cleanup contractor, for evaluating PELAN
o Test PELAN at an ECC-supported site, such as Massachusetts Military Reserve,
based on accepted criteria
o Evaluate performance of system against selected algorithms

e Establish conditions and scale of cost benefits.
o Use results of validation testing at the selected site to verify cost benefits and best
mode of operation ‘
o Transition to commercial phase

Using a multiple detector system with collimation of the neutron beam and/or of the gamma-ray
detector, the inspection time can be reduced and the signal-to-noise ratio increased so that
detection performance of UXO targets is increased. [Increasing the neutron output will also
reduce the inspection time. This approach will also improve the detection rate and reduce the
false alarm rate for the smaller shells (<90mm) where performance is compromised because of
the smaller return signal. "

Furthermore, with a multi-detector system, off-axis/off-angle detectors can be used to measure
the background at the same time that target spectra are acquired. Both combinations of PCA with
GLRT and Least Squares analysis (SPIDER) with GLRT have shown very good performance
without the need for an empty shell in the background or, especially in the case with PCA, no
need for a background spectrum at all. The algorithms examined in this project will apply
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directly to the multi-detector-based system. Efforts will be carried out to determine the best way
to combine the spectra before an analysis is made for the decision. Our intent is to explore
further both of these approaches, and others described in this report, in the ESTCP contract and
use tests to validate their robustness; trainability, and performance.

Data collection is an important part- of determining an optimal system design and the most
effective analysis algorithms for meeting the site remediation requirements. For small design
changes, the system response changes little or can be corrected so that previous training data sets
can be applied. Major changes in the sensor design, such as going with a high-resolution
detector such as LaBr3, will require additional training data. The algorithms developed here can
still be applied to, for example, a LaBr3-based system. We recommend investigating techniques
for data transformation to map from one design change to another for preserving the performance
while maintaining as much of the previous data as possible.
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APPENDIX A: Test Plan
Test Plan for Data Collection at Indian Head in December 2004

Below is the test plan submitted to Kurt Hacker and Denice (Forsht) Lee on November 8, 2004.
The purpose of the data collection was to support the algorithm development in the SERDP
project. This plan was incorporated into one written by NAVEODTECHDIV, which can provide
SERDP a copy if needed. The data was collected during the period December 6 through 22,
2004.

The issues we want to address with this testing are:

1. Study the effects of variations in target-to-detector distance and filler size and to evaluate
methods to correct for these effects. Reducing this affect would also allow the training
on smaller, more readily available shells, to be used for identification of larger shell fills.
Study and correct for changes on H signal (or any other thermal capture gamma ray) due
to variations in the moisture content of the soil (or changes in neutron thermalization
caused by the presence of a nearby wall).

3. Evaluate the effect on PCA results due to variation in background environment

(especially dry vs. wet soil).

4. Investigate methods to eliminate the need for using an empty shell in the background
measurement.

5. Improve the tertiary explosives identifier by separating the particular types of inert and
explosive fills. Develop GLRT parameters separately for the separate fill clusters.

6. Acquire additional data on new targets for addition to the library.

b

There is overlap in these issues, and’ much of the PELAN 4 data on shells is being used to
address some of these issues. More data is always useful because there are usually areas where
too few measurements prevent adequate training. The most useful data would be on dry vs. wet
environments and distance/size measurements,

Aside from the usual equipment for most PELAN tests conducted thus far, we'll need the
following for these tests: . ,

1. Shells sizes from 60mm to 155mm and larger.

2. Both explosives and inert fillers. V

3. Soil, wet soil, and sand filled test beds. Ground environment is good too, but need a

controlled environment. '

4. Metal table for above ground measurements.

5. Moisture meter (provided by SAIC).

6. Photographer for taking photos of the various setups.

Data reporting:

At the end of each day, all Extensible Markup Language (XML) files and descriptions of the
runs should be sent to SAIC. Have photos taken of representative setups.
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Test procedures:

1.

Each target and each background measurement will be 5 minutes long (neutrons on). If
it's known that the fill contains no phosphorus (found in WP and nerve agent), then the
activation can be turned off so the runs never go more than 5 min.

For each particular environment (i.e., sand, dry, wet soil, or metal table), record a
background run without any empty shell present,

For each shell size, record a background with an empty shell present on the particular
environment. If no empty shell is available, such as for a 500 Ib bomb, use an empty shell
with a similar thickness. If several distance measurements on a shell will be made at, say,
2" to 10", take the background measurement at the average distance (may even consider
taking two, one closer, one further away).

For each target and environment, take 5 (10 preferred) target runs at different positions.
Positions should vary side-to-side and front to back over a few inches, depending on the
size of the shell. For small shells, like 60mm, a distance spread of 2" is sufficient. For
500 Ib bombs, a distance spread of 10" is reasonable.

For the smaller shells (155mm and lower), take all measurements on a dry soil test bed
first. Then wet the soil, let it set for a good hour, and continue with the measurements.
(Measurements could be done on sand in the mean time.) Periodically (every few runs)
record the moisture level. Try to maintain constant moisture level.

Periodically record the moisture level for each environment tested.
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