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EXECUTIVE SUMMARY 

BACKGROUND 

Following a successful unexploded ordnance (UXO) classification demonstration 

carried out at the former Camp Sibert, AL [13], the former Camp San Luis Obispo, CA, 

was chosen as a second site in a series of demonstrations of increasing difficulty. The 

high-level goal of the demonstration was to assess the capability of classification 

algorithms, developed under the Strategic Environmental Research and Development 

Program (SERDP) and refined under the Environmental Security Technology 

Certification Program (ESTCP), to reliably determine which detected items could be left 

safely in the ground vs. which had to be dug. This demonstration represents a further step 

along the path to UXO classification, validation, and acceptance. 

The intent of the demonstration was to evaluate, on a second and more 

challenging live site, those instruments and algorithms that had proven successful in the 

previous demonstration. As at Camp Sibert, inert UXO was seeded within the 

demonstration site to provide reliable statistics on classification performance. Typically, 

UXO might constitute fewer than 1% of the items dug on a live site, and with a budget 

that could support approximately 2500 excavations, seeding of UXO was necessary to 

allow sufficient understanding of the likelihood of false-negative classification decisions. 

No additional clutter was seeded. 

There was also a desire in this demonstration to test emerging advanced 

instruments, as well as algorithms tailored to take advantage of the richer data set those 

instruments provide. Another important goal of the demonstration was continued 

involvement of the regulatory community in the design, conduct, and evaluation of all 

demonstrators in an effort to better understand what might be required if detected items 

that are classified as not hazardous were actually to be left in the ground. 

The Institute for Defense Analyses (IDA) was assigned the responsibility to assist 

ESTCP in planning, carrying out, and scoring the classification demonstration. IDA’s 

principal functions were to provide seed emplacement locations and burial procedures, 

create a master anomaly list, develop scoring protocols, score demonstrators’ detection 

and classification results, and provide a comprehensive final report describing the 



iv 

demonstration. This final technical report serves as an adjunct to the summary final report 

produced by ESTCP [17]. 

DATA COLLECTION 

This demonstration used seven data-collection instruments: (1) a standard EM61-

Mk2 cart, (2) the Mobile Towed Array Detection System (MTADS) EM61 array, (3) 

MTADS magnetometer array, (4) the Man-portable Simultaneous Magnetometer and 

Electromagnetic System (MSEMS), (5) the MetalMapper, (6) the Time-domain 

Electromagnetic MTADS (TEMTADS), and (7) the Berkeley UXO Discriminator 

(BUD). The TEMTADS and the MetalMapper collected cued data over the entire survey 

area, with the TEMTADS cuing off the MTADS EM61 array anomalies and the 

MetalMapper off its own anomalies. The BUD collected cued data at a subset of the 

TEMTADS locations.  

Ten different groups submitted ranked anomaly lists for classification scoring. 

These were the Army Corps of Engineers, Huntsville Center (CEHNC), Dartmouth, 

Geometrics, Lawrence Berkeley National Laboratory, NAEVA, Parsons, RML, SAIC, 

Signal Innovations Group, and Sky Research. Different groups provided lists for different 

instruments, and sometimes multiple lists used different classification algorithms for the 

same instrument. In all, 62 ranked anomaly lists were submitted, with multiple lists 

submitted by some groups for a single data set. For each list, the demonstrators specified 

a “don’t dig threshold.” Based on their calculations, the demonstrators believed that all 

locations listed above the threshold did not have to be dug because any buried items were 

not likely to be UXO and could therefore be left safely in the ground. 

Careful steps were taken to prepare the site before data collection. After an 

exhaustive excavation of two 50 ft  50 ft areas in a high anomaly concentration area of 

the site, 60 mm mortars, 81 mm mortars, 4.2 in mortars, and 2.36 in rockets were selected 

as seed items. Two hundred total seed items were emplaced, with 14 as 2.36 in rockets, 

54 as 4.2 in mortars, 76 as 60 mm mortars and 56 as 81 mm mortars. In addition, during 

excavation for scoring, 44 additional UXO items were dug that had not been seeded. 

These included single instances of a 3 in Stokes mortar, a 37 mm round, and a 5 in 

rocket, plus additional instances of types of UXO that had been seeded. The classification 

demonstrators were responsible for correctly identifying the unexpected UXO types as 

items to be dug. 
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RESULTS 

Camp San Luis Obispo was chosen for this demonstration because, with more 

difficult terrain, steeper slopes, more types of UXO, and smaller UXO, it was a more 

challenging site than Camp Sibert. Results at Camp San Luis Obispo were not as 

impressive as results at Camp Sibert. Taking into consideration the challenges imposed 

by the site, however, the results of this demonstration clearly show that current 

classification procedures could be successful on a much more difficult site than Camp 

Sibert in terms of both variety of UXO and topography. 

For this executive summary, only two illustrative performance curves are shown. 

The first, presented in Figure ES-1, provides results achieved using survey data from a 

standard EM61-Mk2 cart sensor that was analyzed using commercially available software 

(UX-Process, a module within Oasis montaj). At its “don’t dig threshold,” the performer, 

CEHNC, would have successfully dug all targets of interest (TOI), while leaving more 

than 30% of the non-TOI in the ground. 

 
Figure ES-1. CEHNC’s second-pass scoring results for the EM61 CART data and the UX-
Process classification software. No true TOI locations rose above the don’t dig threshold 

(dark-blue dot). 

The second example, Figure ES-2, shows results using an advanced sensor, the 

MetalMapper, and custom software developed and applied by Sky Research. While the 

don’t dig threshold was incorrectly set, leaving two TOI in the ground, the near-vertical 

rise of the performance curve shows that the combination of advanced sensor data and 

classification algorithm could successfully distinguish most TOI from non-TOI. One of 
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the two TOI above threshold was a 37 mm round, which was not an expected UXO item. 

The other was a partial 2.36 in rocket body that also had other munition debris around it. 

Multiple proximate objects continue to be difficult for current classification approaches 

to handle, and performance improvement in that situation is an active area of research. 

 
Figure ES-2. Sky’s scoring results for the MetalMapper data and the “Statistical Classifier” 
classification algorithm. Two true TOI locations rose above the don’t dig threshold (dark-

blue dot). 

FINDINGS 

The results described in this document provide a second confirmation that 

successful classification is possible on a live site using currently available instruments 

and software. Specific findings from this demonstration are summarized below: 

 Commercially available instruments and software often led to very good 
classification performance. The better performers using EM61-Mk2 data and UX-
Analyze or UX-Process selected “don’t dig thresholds” that would have left no 
true TOI in the ground while reducing the unnecessary non-TOI digs by 30% to 
50%. 

 In general, in spite of the EM61-Mk2’s limited decay-time coverage and having 
only four time gates, classification approaches based on principal polarizabilities 
and decay rate (size, shape, and wall thickness), or simply decay rate (wall 
thickness only) provided better performance than approaches based on 
comparisons of principal polarizability values alone (size and shape only). 

 Although there were problems with a few specific true TOI locations rising well 
above the demonstrators’ “don’t dig thresholds,” many of the classification 
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performance curves for the MetalMapper and TEMTADS had a near-right-angle 
shape, indicating a very clear separation in feature space between true TOI and 
true non-TOI. 

 The true TOI that challenged the advanced instruments were generally portions of 
2.36 in rocket bodies close to other munitions debris. For example, location 
#241/1475 rose above the demonstrator’s don’t dig threshold on 13 of the 14 
TEMTADS ranked anomaly lists and 7 of the 10 MetalMapper ranked anomaly 
lists (and would have been the last true TOI recovered on 2 of the 3 ranked 
anomaly lists where it was below the don’t dig threshold). Other items causing 
problems were typically low SNR items, particularly partial 60 mm mortars 
buried deeply. 

 For the commercial EMI-based instruments, even though demonstrators typically 
set the don’t dig threshold somewhat aggressively (18 out of 28 ranked anomaly 
lists would have left at least one true TOI in the ground), 21 of the lists would 
have recovered over 98% of the true TOI, and all but 2 of the lists would have 
recovered over 95% of the true TOI.  

 For the advanced instruments, “don’t dig thresholds” were uniformly aggressive, 
with only 1 of the 29 ranked anomaly lists showing all true TOI correctly placed 
below the don’t dig threshold. Nevertheless, only one of the ranked anomaly lists 
would have recovered fewer than 95% of the true TOI. Nineteen of the 29 would 
have recovered more than 98% of the true TOI. 

 No clear metric indicated that either the MetalMapper or TEMTADS performed 
better than the other in this demonstration. Of the eight ranked anomaly lists for 
each instrument that were directly comparable, each proved superior on four (i.e., 
left fewer true TOI in the ground at the don’t dig threshold). Averaged over the 
eight ranked lists, the MetalMapper would have left 3.9 true TOI per list in the 
ground; the TEMTADS would have left 3.6. 
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1. INTRODUCTION 

Following a successful unexploded ordnance (UXO) classification demonstration 

carried out at the former Camp Sibert, AL [13], the former Camp San Luis Obispo, CA, 

was chosen as a second site in a series of demonstrations of increasing difficulty. The 

high-level goal of the demonstration was to assess the capability of classification 

algorithms, developed under the Strategic Environmental Research and Development 

Program (SERDP) and refined under the Environmental Security Technology 

Certification Program (ESTCP), to reliably determine which detected items could be left 

safely in the ground vs. which had to be dug. A 2003 Defense Science Board study noted 

that as much as 75% of current UXO cleanup costs might be associated with digging up 

nonhazardous scrap [10]. Obviously, the development, validation, and acceptance of 

reliable classification instruments and algorithms have the potential to significantly 

reduce UXO clearance costs or to allow more areas to be cleared for the same amount of 

funding. This demonstration represents a further step along the path to UXO 

classification, validation, and acceptance. 

The intent of the demonstration was to evaluate, on a second and more 

challenging live site, those instruments and algorithms that had proven successful in the 

previous demonstration at Camp Sibert. As at Camp Sibert, inert UXO was seeded within 

the demonstration site to provide reliable statistics on classification performance. 

Typically, UXO might constitute 1% or less of the items dug on a live site, and with a 

budget that could support approximately 2500 excavations, seeding of UXO was 

necessary to allow sufficient understanding of the likelihood of false-negative 

classification decisions. No additional clutter was seeded.  

There was also a desire to test emerging advanced instruments, as well as 

algorithms tailored to take advantage of the richer data set those instruments provide. 

Another important goal of this demonstration was continued involvement of the 

regulatory community in its design, conduct, and evaluation of all demonstrations in an 

effort to better understand what might be required if detected items that are classified as 

not hazardous are actually to be left in the ground. 

Under a task titled “ESTCP/SERDP: Assessment of Traditional and Emerging 

Approaches to the Detection and Identification of Surface and Buried Unexploded 
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Ordnance,” the Institute for Defense Analyses (IDA) was assigned the responsibility to 

assist ESTCP in planning, carrying out, and scoring the classification demonstration. 

IDA’s principal functions were to provide seed emplacement locations and burial 

procedures, create a master anomaly list, develop scoring protocols, score demonstrators’ 

detection and classification results, and provide a comprehensive final report describing 

the demonstration. This final technical report serves as an adjunct to the summary final 

report produced by ESTCP [17]. 

1.1 DETAILED OBJECTIVES 

The classification study demonstration plan [1] lays out the detailed objectives of 

this demonstration: 

1. Test and validate detection and classification capabilities of currently 
available and emerging technologies on real sites under operational 
conditions. 

2. In cooperation with regulators and program managers, investigate how 
classification technologies can be acceptably implemented in cleanup 
operations. 

Within each of these two overarching objectives are several technical sub-

objectives: 

 Test and evaluate capabilities by demonstrating and evaluating individual 
instrument and software technologies, as well as processes that combine 
these technologies. Compare advanced methods to existing practices and 
validate the pilot technologies for the following: 

– Ability to detect UXO. 

– Ability to identify features that distinguish scrap and other clutter from 
UXO. 

– Ability to reduce false alarms (items that could be left in the ground that 
are incorrectly classified as UXO) while maintaining a probability of 
detection (Pd) of UXO that is acceptable to all. 

– Ability to identify sources of uncertainty in the classification process and 
to quantify their impact to support decision-making, including issues such 
as impact of data quality due to how data are collected. 

– Ability to quantify the overall impact on risk arising from the capability 
to clear more land more quickly for the same investment. 

– Ability to address the issues of a dig/no-dig decision process and the 
related quality-assurance/quality-control issues. 
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 Understand the applicability and limitations of the pilot technologies in the 
context of project objectives, site characteristics, and suspected ordnance 
contamination. 

 Collect high-quality, well documented data to support the next generation of 
signal-processing research. 

This report discusses a subset of these points. The remaining points are discussed 

in the summary final report produced by ESTCP [17]. 

1.2 DEMONSTRATION MOTIVATION 

A 2003 Defense Science Board study on UXO cleanup technologies pointed out 

that in a typical clearance action, more than 99% of the items dug could have been left 

safely in the ground [10]. It also noted that reducing the false-alarm rate from greater than 

99% to a lower, yet still relatively high, number could still save much of the cost of 

clearance actions. 

Significant progress has been made in classification technology as a result of 

SERDP and ESTCP funding. With the exception of the initial demonstration at the 

former Camp Sibert, however, testing of these approaches to date has been primarily 

limited to artificially constructed test sites such as those at Aberdeen Proving Ground, 

MD, and Yuma Proving Ground, AZ. Acceptance of classification technologies requires 

demonstration of system capabilities at live UXO sites under real-world conditions. Any 

attempt to declare detected anomalies to be harmless will require demonstrating to 

regulators not only individual technologies, but an entire decision-making process. This 

classification study was the second in a continuing effort that will span a number of 

years. Follow-on demonstrations already in the initial planning stage at two more sites 

present challenges not faced to date. 

The importance of live-site testing is that the distribution of the items in the 

ground before testing is realistic for UXO and clutter items. While extremely valuable, 

areas such as the Aberdeen and Yuma Proving Grounds Standardized UXO Test Sites 

[16] will always be somewhat artificial because both UXO and clutter items have been 

emplaced in accordance with preconceived notions of how they should be distributed in 

type, size, and depth, as well as location. In contrast, clutter items are not emplaced at 

live sites such as Camp Sibert and Camp San Luis Obispo. Although it is usually 

necessary in live-site testing to seed the area with appropriate UXO to ensure sufficient 

munitions to provide reasonable statistics, the in situ clutter and any in situ UXO types 

are, by definition, “real” for that site. 
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1.3 GENERAL APPROACH 

The ESTCP Program Office, in conjunction with IDA and the Advisory Group of 

local and state regulators, selected Camp San Luis Obispo for the second demonstration 

because it met a number of desired characteristics. Historical records showed that the 

portion of Camp San Luis Obispo where testing was planned likely contained 60 mm, 

81 mm, and 4.2 in mortars, along with 2.36 in rockets. This made it a much more 

complex site than Camp Sibert, which contained only 4.2 in mortars. In addition, the site 

at Camp San Luis Obispo was on the side of a hill, providing more difficult topography 

than the earlier demonstration. 

Data-collection teams initially collected magnetometer array transects (widely 

spaced lines of data used to assess general anomaly density in an area). Those results 

guided selection of approximately 30 acres for a complete electromagnetic induction 

(EMI) survey using a standard EM61-Mk2 cart. The cart results were used to select the 

specific demonstration area for the study, as well as an area for the instrument 

verification strip (IVS) and a test pit.  

The purpose of the IVS was to confirm at the start and end of each day that all 

data-collection instruments were properly functioning—that is, that they provided the 

expected signal on all emplaced items, which included seed munitions and spheres. An 

exhaustive excavation was performed to clear the IVS area of all metallic items before it 

was seeded to ensure that only the desired signals would exist. A test pit area adjacent to 

the IVS was also cleared and used to collect additional training data against expected 

munition types. 

In addition, two 50 ft  50 ft high-density areas were exhaustively excavated to 

confirm the presence of the expected munitions types and to assess their depth 

distributions. Based on the excavation results, it appeared unlikely that UXO would be 

found deeper than 30 cm, and so detection thresholds were set assuming the smallest 

expected signal for a target of interest (TOI) at 45 cm, providing a 50% depth margin. 

As noted earlier, because of the limited number of UXO typically found (often  

fewer than 1 out of 100 items excavated), it is usually necessary to seed demonstration 

sites with inert UXO to provide reasonable confidence bounds on classification 

performance, and seeding was necessary in this case. IDA generated a plan to seed 

previously fired and inert 60 mm, 81 mm, and 4.2 in mortars, as well as 2.36 in rockets, 

throughout the demonstration area and IVS. Parsons, the site-support contractor, followed 

this plan and emplaced the seeds as directed. The emplacement team took care to seed the 
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items at least 3 m away from each other and from other EM61-Mk2 anomalies because 

previous work has shown that current classification technologies cannot reliably analyze 

multiple closely spaced items with overlapping signatures [2, 16]. 

Next, the data-collection teams surveyed the demonstration area using seven data-

collection instruments: (1) a standard EM61-Mk2 cart, (2) the Mobile Towed Array 

Detection System (MTADS) EM61 array, (3) MTADS magnetometer array, (4) the Man-

portable Simultaneous Magnetometer and Electromagnetic System (MSEMS), (5) the 

MetalMapper, (6) the Time-domain Electromagnetic MTADS (TEMTADS), and (7) the 

Berkeley UXO Discriminator (BUD). The TEMTADS and the MetalMapper collected 

cued data over the entire survey area, with the TEMTADS cuing off the MTADS EM61 

array anomalies and the MetalMapper off its own anomalies. The BUD collected cued 

data at a subset of the TEMTADS locations. Table 1 provides a brief description of each 

system, with more detail provided in Section 2. 

Table 1. Data Collection Systems 

System Name 
Report 

Nomenclature 
Sensor Description Collection Mode 

MTADS 
EM61 Array 

EM61 ARRAY 

2 m × 1 m array of 3 overlapped 
EM61-Mk2 time domain EMI sensors 
with 1 m × 1 m coils firing 
simultaneously. 

Survey 

MTADS 
Magnetometer 
Array 

MAG ARRAY 

Eight Geometrics G-822A cesium 
vapor magnetometers spaced 25 cm 
apart and  approximately 25 cm above 
the ground 

Survey 

EM61-Mk2 Cart EM61 CART 
Standard EM61-Mk2 cart (0.5 m × 1 m 
coil) 

Survey 

MSEMS MSEMS 
EM61-Mk2 cart sensor (0.5 m × 1 m 
coil) operated simultaneously with a G-
822A cesium vapor magnetometer 

Survey 

MetalMapper MetalMapper 
Three orthogonal transmit coil time-
domain EMI sensor with 7 triaxial 
receive coils 

Survey and 
cued 

TEMTADS TEMTADS 
5×5 array of  approximately 40 cm × 
40 cm time-domain EMI transmit and 
receive coils operated multistatically 

Cued 

Berkeley UXO 
Discriminator 

BUD 

Three orthogonal transmit coil time 
domain EMI sensors with eight pairs of 
single-axis receive coils operating in a 
gradiometer mode. 

Partial site 
cued 

 

The data-collection teams selected detection thresholds for the survey instruments 

on the basis of physics-based dipole models of the smallest expected signature collected 
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from a horizontally placed 60 mm mortar at 45 cm depth and confirmed the validity of 

these thresholds using the IVS. As was recognized at the beginning of the study, different 

survey instruments resulted in different anomaly detection lists. That is, many items were 

detected by all instruments, some items were detected by more than one but not all 

instruments, and some items were detected by a single instrument only. IDA developed 

methods for reconciling the differences between individual instruments’ anomaly lists to 

produce two cross-referenced master anomaly lists, one based on the EM61 array, cart, 

and MSEMS anomalies and one based on the MetalMapper. Appendix A lists the number 

of anomalies associated with each instrument. 

Parsons, the site-support contractor, then excavated items at each location on the 

master anomaly lists. Based on the excavated items, the Program Office assigned ground 

truth labels to each location, with some locations assigned the label of “TOI” (target of 

interest) and other locations assigned the label of “non-TOI.” IDA then separated the 

locations on the master anomaly lists into a Standard Training Set and a Standard Test 

Set. 

Ten different groups submitted ranked anomaly lists for classification scoring. 

These were the Army Corps of Engineers Huntsville Center (CEHNC), Dartmouth, 

Geometrics, Lawrence Berkeley National Laboratory (LBNL), NAEVA, Parsons, RML, 

SAIC, Signal Innovations Group (SIG), and Sky Research. Different groups provided 

lists for different instruments, and sometimes multiple lists using different classification 

algorithms for the same instrument. In all, 62 ranked anomaly lists were submitted, with 

multiple lists submitted by some groups for a single data set. Demonstrator/data set 

combinations are denoted with an X in Table 2. 

Table 2. Data sets used by each demonstrator to provide distinct ranked anomaly lists. 

Org./Data 
EM61 
CART 

EM61 
ARRAY 

MAG 
ARRAY 

EM61 
MSEMS  

MAG 
MSEMS 

Metal 
Mapper 

TEM 
TADS 

BUD 

CEHNC X        

Dartmouth      X X  

Geometrics      X   

LBNL        X 

NAEVA X        

Parsons X        

RML  X       

SAIC X X  X  X X  

SIG X X X X  X X X 

Sky X X X X X X X X 
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The Program Office distributed the collected data and the master anomaly lists to 

each demonstration team. The demonstrators also received the ground truth labels for all 

locations in the Standard Training Set, but remained blind to the ground truth labels for 

all locations in the Standard Test Set. The demonstrators used the data and ground truth 

labels in the training set to optimize their inversion routines and classification algorithms. 

Inversion routines are used to fit the data collected around each location on the master 

anomaly list to a dipole model to estimate parameters of the buried target. Classification 

algorithms are used to estimate the likelihood or probability that a buried target is a TOI 

based on its estimated parameters. The demonstrators then applied their optimized 

processes to the data in the test set while remaining blind to the ground truth labels. The 

demonstrators created a ranked list by arranging the locations in the test set according to 

their estimated probability or likelihood of being a non-TOI. Because the intent of 

classification is to leave non-TOI in the ground, the ranked list is ordered from 1, the item 

most likely to be non-TOI, to the highest number, the item most likely to be TOI. The 

demonstrators also specified a “don’t dig threshold” that could be applied to the ranked 

list, such that it was likely that all locations on the ranked list above the don’t dig 

threshold were non-TOI and could therefore be left safely in the ground. 

IDA scored each demonstrator’s ranked list and don’t dig threshold by comparing 

the dig/don’t-dig label calculated for every location in the test set with its corresponding 

ground truth label. IDA summarized the classification performance of each instrument-

algorithm combination with the metrics Percent of TOI Below Threshold and Number of 

Non-TOI Below Threshold. The Percent of TOI Below Threshold is a metric similar in 

concept to Pd, the probability of detection; it represents the percentage of locations with a 

ground truth label of “TOI” that were correctly placed below the don’t dig threshold on 

the ranked list. The Number of Non-TOI Below Threshold is simply the number of false 

alarms; it represents the number of locations with a ground truth label of “non-TOI” that 

were incorrectly placed below the don’t dig threshold on the ranked list. 

IDA also revisited the choice of don’t dig threshold by retrospectively testing 

every possible value. For each possible value of the “don’t dig threshold,” IDA 

recalculated the Percent of TOI Below Threshold and the Number of Non-TOI Below 

Threshold and plotted these metrics against each other to form a classification 

performance curve, similar to a receiver operating characteristic (ROC) curve. The 

classification performance curves and the statistics drawn from them lead to the key 

findings from this demonstration. They are discussed in detail in the Results and 

Discussion chapter of this report. 
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1.4 LIMITATIONS 

A number of changes were implemented for this demonstration based on lessons 

learned from the former Camp Sibert [13]. Even so, several limitations remain that are 

the result of budget and experimental requirements: 

 The primary limitation was the need to seed Camp San Luis Obispo with 
inert munitions to obtain reasonable classification statistics. In an ideal 
demonstration, the area tested would be sufficiently large that valid statistics 
could be gained simply from recovered intact UXO. In that case, a potentially 
artificial distribution of UXO density, depths, and orientations is not a 
concern. Although 44 true UXO that were not seed items were found in the 
approximately 10 acres that were excavated, that still is too small a number 
to provide reliable statistics, and there was no assurance at the beginning of 
the study that even that many would be detected. Thus, to collect data from 
enough recovered intact UXO for valid statistics, a very large area would 
have to be tested. The cost of excavating all anomalies detected in such a 
large area would have been prohibitive. Thus, seeding was required in this 
demonstration, resulting in a potentially artificial distribution of UXO 
density, depths, and orientations. This is a limitation that is unlikely to ever 
be overcome in scientific testing because of funding constraints. 

 A second limitation was unexpected. The original plan had been to 
exhaustively excavate all anomalies that exceeded the detection threshold of 
all instruments. It was hoped that such an excavation would remain within 
the budget, allowing approximately 2500 anomalies to be dug. But a 
combination of geology and small anomalies resulted in far more 
magnetometer anomalies than could be dug within the budget (5266 
anomalies above the MAG ARRAY threshold and 3389 above the MSEMS 
magnetometer threshold). Thus, excavation focused on those magnetometer 
anomalies that correlated with EMI anomalies. In addition, a number of 
apparently large, deep anomalies identified by the MSEMS magnetometer 
were excavated. Those excavations resulted in no metallic objects being 
found. 

 A final limitation involves the subjective judgment of what constitutes a TOI 
when assigning ground truth labels. In this demonstration we chose a very 
conservative definition and treated as TOI those items that were not only 
clearly munitions, but those that we felt might cause the general population 
concern if found. Thus, a number of the 2.36 in partial rocket bodies without 
warheads were treated as TOI although they had been classified by the UXO 
technicians as nonhazardous, and those partial rockets gave the classification 
demonstrators significant problems. This blurs the bright binary scoring line 
we preferred in a scientific experiment, but appears unavoidable in the real 
world.
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2. METHODS 

This chapter describes the process used to select a site for the study, select 

particular areas of the site as demonstration areas, emplace seed targets in the 

demonstration areas, collect data from the demonstration areas, detect anomalies in the 

collected data, provide collected data and a master list of detected anomalies to the data-

processing demonstrators, and score the results of the demonstrators’ classification 

outputs. Figure 1 is a flowchart of this process. 
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Figure 1: A flowchart of the UXO classification study at San Luis Obispo. 
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2.1 SELECT SITE  

The first live-site UXO classification demonstration, held at the former Camp 

Sibert, AL, was intentionally chosen to provide benign terrain and geology, and it 

contained only one munition type, the 4.2 in mortar [13]. For the second demonstration, 

the ESTCP Program Office and the Advisory Group desired a site with more challenging 

topography and with a variety of munition types. The site chosen was the Rifle Range 

#13 at the former Camp San Luis Obispo, CA. The site encompasses a grassy hillside 

with a rock outcrop at the top and occasional isolated rocks and holes that, along with the 

terrain slope, made data collection significantly more difficult than at Camp Sibert. 

Figure 2, taken from the site inspection report [8], is a map of the former Camp San Luis 

Obispo, CA. 

 

Figure 2: A map of the former Camp San Luis Obispo, CA. Thick black lines outline the 
property boundary. Blue, red, and purple lines outline the ranges for different munition 

types, according to historical records. The small green square shows the site selected for 
demonstration. Taken from [8]. 

Based on recommendations from the Advisory Group, criteria for the second 

study included multiple munition types and more challenging terrain, but still relatively 

benign geology. The overall site at Camp San Luis Obispo has historically included 

training ranges with multiple munition types (see Figure 2). Further research by the 

Program Office suggested that 60 mm, 81 mm, and 4.2 in mortars, along with 2.36 in 
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rockets, would likely be found at the particular site selected for demonstration. This site 

is outlined with a small green square in Figure 2. Figure 3 shows a black-and-white aerial 

photograph of this site, overlaid with a topographical map. 

 

Figure 3: An aerial photograph of the selected site overlaid with a topographical map. Thin 
black lines outline large rocks at the top of a hill, and the thick black line in the southeast 

corner indicates a road. The angled dark brown lines indicate fences, and the curved, light 
brown lines indicate topographical contours, representing 40 ft differences in elevation. 

The large gray letters and large brown numbers are part of the overlaid topographical map. 
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2.2 INITIAL SURVEY 

A series of surveys conducted before the demonstration provided data appropriate 

for selecting the final demonstration area. Initially, total field magnetometer transect 

surveys were collected at Camp San Luis Obispo and another potential site in California. 

The transects at Camp San Luis Obispo covered approximately 12% of an approximate 

15 ha area. Anomaly density maps were constructed from the transects and used to 

narrow the potential demonstration area down to approximately 12 ha, over which a 

100% coverage survey was taken using an EM61-Mk2 cart-based instrument operated by 

NAEVA Geophysics, Inc. Figure 4 shows the EM61 survey map of the selected site. 

Color shadings indicate the received signal amplitude at the first time gate. 
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Figure 4: The initial EM61-Mk2 cart survey map of the selected site. Colored shading 
indicates the sensed amplitude at the first time gate. Angled brown lines indicate fences. 

Thin black lines outline large rocks at the top of the hill, and the thick black line in the 
southeast corner indicates a road. Blue lines outline the survey area, avoiding both the 

rocky region at the top of the hill and the region of large positive amplitude in the 
southwest quadrant. The two red squares outline the two sample excavation areas, both in 

the region of large positive amplitude in the southwest quadrant.  



15 

2.3 SELECT AREAS 

The Program Office selected four areas of the site for specific purposes: (1) the 

demonstration area where the classification performance evaluation would take place, (2) 

the instrument verification strip (IVS) where the data-collection teams would calibrate 

their instruments at the beginning and end of each day, (3) a test pit to allow training data 

on seed items to be collected, and (4) the sample excavation areas where the Program 

Office would confirm the existence of multiple munition types before the demonstration 

began. An area southeast of the road was selected for the IVS because its low anomaly 

density (based on EM61 CART survey) and proximity to the road would lead to a more 

straightforward and efficient daily instrument calibration. A contiguous region (thick blue 

line in Figure 4) was chosen for the demonstration area to allow efficient collection of 

data by the vehicle-towed sensors. The rocky outcrops at the top of the hill were avoided 

for the demonstration area because it would have been difficult for a number of the 

instruments to collect data there. Another major criterion used to select the demonstration 

area was that it could provide 250–500 anomalies per hectare, a density that would make 

it likely that most anomalies consisted of individual items, allowing a reasonable 

probability of classification. State-of-the-art classification technology is not advanced 

enough that correct classification is likely where multiple closely spaced items occur [2, 

16]. To that end, the highly dense region in the southwest quadrant of Figure 4 was not 

used as a demonstration area. This region was selected for the two 50 ft  50 ft sample 

excavation areas (red squares in Figure 4), however, because a large number of items 

would likely be recovered, making it easier to confirm the existence of multiple munition 

types. 

2.4 EXCAVATE SAMPLE AREAS 

The Program Office team completely excavated the sample areas to help ascertain 

the potential munition types. The team recovered 369 total items from the two grids, all 

buried at 30 cm depths or shallower, with subsequent EMI interrogation not indicating 

more deeply buried items. In addition, the excavation team felt it unlikely that items 

would be found below 30 cm, given the underlying soil composition. 

Recovered items included fragments from 60 mm, 81 mm, and 4.2 in mortars. 

Fuzes and unknown fragments were also recovered. No 2.36 in rocket fragments were 

identified from the sample areas, although a number of 2.36 in rocket bodies were found 

in the demonstration area during excavation to establish ground truth. 
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Once multiple munition types were confirmed at the site, the demonstration 

proceeded to the next step: emplacing seeds in the demonstration area and instrument 

verification strip. 

2.5 GENERATE SEED PLAN 

The seed plan consisted of a list of locations where the emplacement team was 

instructed to bury inert munitions, called “seeds” [22]. The list was separated into two 

sections. The first listed 200 seeds for emplacement in the demonstration area of the site. 

The purpose of these 200 seeds was to guarantee the existence of a large number of TOI 

to ensure sufficient statistical confidence in the classification performance metrics 

eventually calculated at the end of the study. The second section listed 10 seeds for 

emplacement in the IVS. The purpose of the IVS was to allow the data-collection teams 

to recalibrate their instruments on a daily basis using known TOI.  

2.5.1 Demonstration Area 

To select the intended locations of all 200 seeds in the demonstration area, IDA 

applied an amplitude threshold to the EM61 survey map to identify strong anomalies 

representing geology or items indigenous to the site. Figure 5 shows the thresholded map; 

blue lines outline the demonstration area. Locations with strong anomalies are shaded in 

pink; all other locations are shaded in light blue. IDA visually analyzed this thresholded 

map and manually selected 200 locations in the demonstration area that were far from 

each other and far from any anomalies. Anomalies were avoided since multiple closely 

spaced items, such as a seed emplaced next to a shell fragment, are generally difficult to 

separate and classify with the state-of-the-art technology [2, 16]. Black circles mark the 

intended locations of the seeds. Figure 6 is a close-up of the area enclosed by the black 

square in Figure 5. Five intended seed locations are shown; all locations are far from each 

other and far from any anomaly. 
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Figure 5: The thresholded EM61-Mk2 survey map with intended seed locations. Anomaly 
locations with a first time gate amplitude greater than 8.5 mV are shaded in pink; all other 
locations are shaded in light blue. Blue lines outline the demonstration area, and the thick 
black line in the southeast corner indicates a road. Black circles mark the intended seed 
locations. Two hundred seeds were emplaced in the demonstration area, and 10 seeds 

formed an instrument verification strip to the southeast of the road. 



18 

 

Figure 6: A close-up of the 30 m × 30 m grid of the thresholded EM61-Mk2 survey map 
enclosed by the black square in Figure 5. Anomalies are common. Black circles mark the 
intended locations of five seeds. Each circle has a radius of 3 m. Intended locations are 

further than 6 m from each other and 3 m from any anomaly. 

A TOI type was then selected for emplacement at each of the 200 seed locations. 

The Program Office was able to obtain many mortars from munition stores across the 

United States, but estimated that it would only be able to obtain eleven 2.36 in rockets. 

Therefore, eleven of the 200 seed locations were randomly selected for the 2.36 in 

rockets, with the remaining 189 seed locations randomly assigned to 63 each of 60 mm, 

81 mm, and 4.2 in mortars.  

Next, depths were selected for the 200 seeds in the demonstration area. All seeds 

were initially assigned an intended depth of 30 cm because no items from the sample 

excavation areas were buried deeper than 30 cm, and the diggers thought it unlikely items 

would be buried deeper. However, the program team decided to bury five 60 mm 

mortars, five 81 mm mortars, and five 4.2 in mortars at 45 cm to provide some deeper 

targets. No 2.36 in rockets were chosen for a depth of 45 cm because there were so few of 

them. 

Intended azimuth angles were selected for each of the 200 seeds in the 

demonstration area. Each seed was randomly assigned to 1 of 12 groups, regardless of its 

munition type. All seeds in the first group were assigned an azimuth angle of zero 

degrees from magnetic north. The azimuth angle of each subsequent group was 

incremented by an additional 30 degrees so that all seeds in the 12th group were assigned 

an azimuth angle of 330 degrees.  
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Finally, intended inclination angles were selected for each of the 200 seeds. The 

Advisory Group pointed out that most indirect-fire munitions settle in a downward 

orientation. Therefore, 140 (70%) seeds were randomly assigned a downward inclination 

angle, defined as within 45 degrees of pointing straight down. Similarly, 40 (20%) of the 

remaining seeds were randomly chosen for a “below horizontal” inclination angle, 

defined as within 45 degrees below horizontal. An “above horizontal” inclination was 

chosen for the remaining 20 (10%) seeds, defined as within 45 degrees above horizontal. 

Recognizing that some of the larger seeds could not be buried at a downward inclination 

angle without part of the seed sticking out of the ground, the inclination angles of all 

downward 81 mm mortars, 4.2 in mortars, and 2.36 in rockets were reset to below 

horizontal. Only 60 mm mortars, which were small enough to remain completely buried, 

were allowed to keep their initially assigned downward inclination angles. 

The seed plan instructed the emplacement team to bury each seed as close as 

possible to its intended location, azimuth angle, inclination angle, and depth. But the plan 

also allowed for minor deviations, if needed. For example, the plan instructed the 

emplacement team to inspect the ground at an intended location with a hand-held EMI 

detection device before emplacing the seed to check for anomalous indigenous items or 

geology that, for some reason, had failed to appear on the initial EM61-Mk2 survey map. 

If there were no strong anomalies detected by the hand-held instrument within 

approximately 3 m of the intended location, the seed plan instructed the emplacement 

team to proceed with burying the seed. If, however, there was indeed a strong anomaly 

within 3 m of the intended location, the seed plan instructed the team to choose a nearby 

location for the seed. In another example, the seed plan instructed the emplacement team 

to alter the depth and orientation angles of the seed if the intended parameters did not 

allow at least 10 cm of dirt over the top of the buried seed. These deviations allowed for 

appropriate seed emplacement. 

2.5.2 Instrument Verification Strip 

IDA and the Program Office manually selected the intended locations of the 10 

seeds in the IVS. The Program Office recommended situating the strip directly across the 

road running through the southeast corner of the site. As shown in Figure 5, this area 

exhibited few anomalies representing indigenous items or geology. Furthermore, the 

data-collection teams could easily access this area with their instruments at the beginning 

and ending of each day. Based on that guidance, IDA selected a strip of land parallel to 

and approximately 6 m southeast of the road. The seed plan instructed the emplacement 
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team to first search for, and clear this strip of, indigenous items and then emplace the 10 

seeds 6 m apart from each other along the strip. 

TOI locations, depths, azimuth angles, and inclination angles were selected for 

each of the 10 seeds in the IVS. Two intended locations were chosen for each munition 

type (60 mm mortars, 81 mm mortars, 4.2 in mortars, and 2.36 in rockets). The remaining 

two locations were reserved for iron spheres (shot puts). All seeds were assigned a depth 

of 30 cm. One of each type of TOI was assigned an inclination angle straight down (or as 

close as possible while still allowing 5 cm of dirt over the top of the buried seed) because 

downward items generally provide the strongest signal for EMI sensors. The remaining 

TOI were assigned a horizontal cross-track orientation (an inclination angle directly 

horizontal and an azimuth angle perpendicular to the length of the strip) because 

horizontal cross-track items generally provide the weakest signals for EMI sensors.  

2.6 EMPLACE SEEDS 

The emplacement team followed the instructions contained in the seed plan to 

emplace seeds at or near their intended locations, depths, and orientation angles, with one 

exception. Upon the recommendation of the Advisory Group, the Program Office 

instructed the emplacement team to choose five 60 mm mortars, five 81 mm mortars, and 

five 4.2 in mortars in the demonstration area with intended depths of 30 cm and, instead, 

bury them at depths of 45 cm. This doubled the number of each of these TOI types buried 

at deeper depths. No 2.36 in rockets were chosen for a 45 cm depth because there were so 

few of them. The emplacement team also made some substitutions into the types of TOI 

buried each intended location, resulting in fourteen 2.36 in rockets (rather than the 

intended 11), seventy-six 60 mm mortars (instead of the intended 63), fifty-four 4.2 in 

mortars (instead of 63), and fifty-six 81 mm mortars (instead of 63). 

After emplacing each seed in the ground, but before covering the seed with dirt, 

the emplacement team recorded the following information: 

 The identification number of the seed. 

 The TOI type of the seed (e.g., “60 mm mortar,” “4.2 in mortar,” etc.). 

 The easting, northing, and height-above-ellipsoid coordinates for the nose, 
center, and tail of the seed, with a surveyed point on the lip of the hole 
providing a depth reference. 

 The azimuth and inclination angles of the seed. 
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 A photograph of the seed, with the identification number clearly written on 
the seed and a ruler clearly placed next to the seed. 

Once seeds were emplaced in the ground, data collection could begin. 

2.7 COLLECT SURVEY DATA  

The data-collection teams surveyed the demonstration area with six different data-

collection instruments. This section explains the motivation for selecting the instruments 

and briefly describes the sensor technology employed by each. More detail can be found 

in the plans and reports written by the data-collection teams [4, 6, 19, 21]. 

2.7.1 EM61 CART 

The typical EMI instrument used in commercial surveys will be called the “EM61 

CART” for the remainder of this document. The EM61 CART consists of a standard 

EM61-Mk2 sensor mounted on a two-wheel cart. This instrument employs a 1 m × 0.5 m 

receive coil mounted 30 cm above a second 1 m × 0.5 m coil that transmits as well as 

receives. The instrument may be set up with four time gates from the lower coil or with 

three time gates from the lower coil and the first time gate from the upper coil. The 

classification demonstrators preferred the first option because it provided the maximum 

temporal extent for assessing the decay characteristics of the components of the 

polarization tensor. 

The operator of the instrument wears a backpack containing the sensor electronics 

and battery. The data-acquisition system records data (consisting of the four time gates 

for the lower coil) at a rate of 16 records per second and can store up to 1 million records. 

In typical commercial surveys, survey lines are often spaced 1 m apart. Because the 

purpose of this study was to collect high-quality data that could support classification, the 

operator was instructed to space the survey lines 0.5 m apart. Figure 7 shows the EM61 

CART collecting data at San Luis Obispo. 

NAEVA Geophysics, Inc., the data-collection team that operated the EM61 

CART, employed a Trimble 5700 real time kinematic (RTK) differential global 

positioning system (DGPS) to track the position of the sensors. Figure 7 shows the DGPS 

antenna mounted above the center of the sensor coils, the standard configuration.  
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Figure 7: A photograph of the EM61 CART collecting data at Camp San Luis Obispo. 

2.7.2 EM61 ARRAY 

The Multi-sensor Towed Array Detection System (MTADS), developed by the 

Naval Research Laboratory, was used to serially collect magnetometer and EMI data at 

San Luis Obispo. Each sensor mounted on the time-domain EMI version of the MTADS 

instrument (called the “EM61 ARRAY” for the remainder of this document) is a 

modification of the standard EM61-Mk2 sensor sold commercially by Geonics, Ltd. 

While the standard EM61-Mk2 sensor is based on a single 1 m × 0.5 m coil, the modified 

sensor is based on three 1 m × 1 m coils. The three overlapping 1 m × 1 m coils are 

mounted on the EM61 ARRAY, as shown in Figure 8.  

 

Figure 8: A sketch of the three overlapping sensor coils mounted on the EM61 ARRAY. 

To maximize their sensitivity, the three transmitting coils are synchronized to 

provide as large a magnetic moment as possible. Based on the preference of the 

classification demonstrators, the EM61 ARRAY survey was conducted in four-gate 

mode, with all gates sampled on the lower coil. The sensors pulse at 75 Hz but do internal 

stacking and provide an output at 10 Hz, leading to a down-track sample spacing of 

15 cm for the typical 1.5 m/s survey speed. Because these are vector sensors, accurate 

measurement of the orientation of the sensors is necessary for accurate data inversions. 

Therefore, three RTK DGPS receivers are used to measure both the position and 

orientation of the sensors at 5 Hz. A Crossbow VG300 inertial measurement unit (IMU) 
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also outputs the orientation of the sensors at 30 Hz. Figure 9 shows the EM61 ARRAY 

collecting data at Camp San Luis Obispo. 

 

Figure 9: A photograph of the EM61 ARRAY collecting data at Camp San Luis Obispo. 

The EM61 ARRAY has some advantages over the EM61 CART. Its three DGPS 

receivers allow the orientation of the sensor to be measured. Corrections can be made to 

any errors in the sensor’s measured position caused by the tilting of the entire instrument 

as it is pulled over steep terrain. The EM61 CART’s single RTK DGPS receiver does not 

allow such corrections. The EM61 ARRAY also provides three cross-track samples with 

excellent relative position accuracy. In contrast, the CART’s relative position from 

survey line to survey line is only as accurate as its DGPS position measurements. 

However, because the EM61 ARRAY’s three transmit coils fire simultaneously, items 

near the center of a data line are unlikely to be illuminated by magnetic field components 

in both horizontal directions. Hence the EM61 ARRAY must make a pair of surveys over 

an area in orthogonal directions to ensure sufficient information for a reliable inversion. 

2.7.3 MAG ARRAY 

The magnetometer version of the MTADS instrument will be called the “MAG 

ARRAY” throughout the remainder of this document. This instrument employs eight 

Geometrics 822A total-field cesium vapor magnetometer sensors mounted in a linear 

array with 25 cm spacing. The distance of the sensors above the ground is also 

approximately 25 cm. The signals measured by the sensors are sampled at 50 Hz, leading 

to a down-track sample spacing of approximately 6 cm for the typical 3 m/s survey speed. 

A single RTK DGPS antenna is generally mounted over the center of the array and tracks 

the position of the sensors at a 5 Hz sampling rate. For this demonstration, however, a 

pair of DGPS antennas measured the array’s yaw and roll orientation for tilt correction. 
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(Pitch was neither measured nor corrected, although doing so would most likely have led 

to a slight improvement in the accuracy of the recorded positions.) A base station receiver 

placed at a surveyed monument provides DGPS corrections. Figure 10 shows the MAG 

ARRAY collecting data at San Luis Obispo. 

 

Figure 10: A photograph of the MAG ARRAY collecting data at Camp San Luis Obispo. 

2.7.4 MSEMS 

Under ESTCP funding, the Man-portable Simultaneous Magnetometer and 

Electromagnetic System (MSEMS) was developed by Science Applications International 

Corporation (SAIC) to provide a cart platform capable of collecting both EMI and 

magnetometer data in a single pass. As shown in Figure 11, this is accomplished by 

mounting the magnetometer on a boom that places it 4 ft ahead of a standard EM61 Mk-

2A coil. The EM61 sensor has standard wheels, so the coil is 40 cm from the ground. 

Only the lower coil was installed, and data were collected from the lower coil at four time 

gates. The carbon-fiber boom, supported by a third wheel, gives the Geometrics 822 

cesium vapor total field magnetometer an effective height from the ground of 51 cm. 

Figure 11 shows the MSEMS collecting data at San Luis Obispo. 
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Figure 11: A photograph of the MSEMS collecting data at Camp San Luis Obispo. 

The MSEMS collects data simultaneously by interleaving EMI and magnetometer 

collections. The EM61 is pulsed at a 75 Hz rate and outputs samples at a 10 Hz rate. For 

each pulse, after EMI primary field decay and time for the magnetometer output to settle, 

the magnetometer collects a static magnetic field sample. The MSEMS is pushed at a 

speed of approximately 1 m/s, so with the differences in sample output rate, the EM61 

provides a down-track sample spacing of about 10 cm while the magnetometer sample 

spacing is about 1.3 cm. MSEMS also employs RTK DGPS, with a single antenna 

between the two sensors that can be seen in Figure 11. 

NAEVA operated the MSEMS at Camp San Luis Obispo with technical 

assistance from SAIC. The MSEMS collected data on all grids that were scored in the 

demonstration. While Sky Research used the EMI and magnetometer anomaly lists for 

cooperative inversions (discussed later in this chapter), interference from local geology 

made the magnetometer data not useful in many areas. However, the MSEMS pre-

processing team used the magnetometer data to identify some anomalies believed to be 

deep, large targets. These were later dug, but no metallic objects were found. 

2.7.5 MetalMapper 

The MetalMapper is an advanced instrument developed under ESTCP funding by 

Geometrics, Inc., as an enhancement to the Advanced Ordnance Locator system 

developed earlier by G&G Sciences and tested under Navy funding. Figure 12 shows the 

MetalMapper deployed on the front lift of a Kubota tractor. The MetalMapper instrument 

employs three 1 m  1 m orthogonal transmit coils to illuminate all three target axes and 

a collection of seven three-axis receive coils arranged along the bottom of the instrument 

to overlap down-track and cross-track receive samples. 
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Figure 12: A photograph of the MetalMapper collecting data at Camp San Luis Obispo.  

At San Luis Obispo, the MetalMapper collected survey data that were then used 

to identify the locations where it should return to collect high-resolution, cued data. In 

survey mode, only the horizontal transmit coil (producing a vertically directed magnetic 

field) is energized, but data are collected on all receive coils. Data are collected at a 

tractor speed of approximately 0.4 m/s. With a 270 Hz waveform rate and stacking to 

output data at a 10 Hz rate, this produces data at about a 4 cm along-track separation. 

Tracks were run with a 0.7 m separation. While the MetalMapper employs only a single 

RTK DGPS receiver and antenna, it also includes an inertial measurement unit (IMU) 

that allows data to be tilt corrected. 

2.8 CORRECT FOR SLOPE 

Survey data were collected by six different sensors at San Luis Obispo: the EM61 

CART, the EM61 ARRAY, the MAG ARRAY, the MSEMS EM61 and magnetometer 

sensors, and the MetalMapper. To produce a master anomaly list, anomaly declarations 

from the different sensors had to be associated. Because the site was hilly and different 

instruments surveyed sections in different directions, there was a concern that the 

combination of the terrain slope and the vertical offset of the GPS antennas from the 

sensors would result in position errors that would make anomaly association between 

sensors difficult. The solution to that problem was to slope-correct the data. That could be 

done with on-board information for the EM61 ARRAY, MAG ARRAY, and 

MetalMapper systems, which had either multiple GPS antennas or IMUs to detect the 

sensor orientation. Because the EM61 CART and MSEMS had a single GPS antenna, 

their data had to be slope-corrected based on a map of terrain slope created from the 

EM61 ARRAY attitude data in a two-step process [11]. 
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The first step was to create a digital elevation map of the terrain that was free 

from artifacts caused by small local irregularities. This was accomplished by performing 

two levels of smoothing on the EM61 ARRAY GPS and IMU data. The first level used 

the standard Oasis montaj gridding routine to create a minimum-curvature 1 m cell grid. 

The size was chosen as a compromise between the down-track sample spacing of 

approximately 0.15 m between points and the cross-track spacing of 1.5 m. The second 

level of smoothing was accomplished by passing a 9  9 cell symmetric convolution filter 

over the data using a standard Oasis montaj grid filter. The 9 m  9 m area was chosen to 

encompass several array dimensions to remove any array orientation artifacts from the 

digital elevation map. 

The second step was to calculate directional grid gradients in the positive easting 

and northing directions from the smoothed digital elevation map using an Oasis montaj 

gradient routine. This produced a gradient map for each of the two orthogonal directions, 

and these maps were employed for the slope-correction calculations. To apply the slope 

correction to the recorded position of the data, the recorded position was used to look up 

the gradient in each direction, and offsets in the easting and northing directions were 

calculated using the gradient in that direction and the height of the GPS antenna for the 

sensor in question. Although an iterative calculation that provided a better slope 

correction based on the first corrected position could have been used, the average slope 

correction deltas were less than 0.5 m, and it was felt that a second iteration was not 

necessary. Slope-corrected data were provided to the classification demonstrators for all 

the survey instruments and were also used in associating anomalies among the various 

instruments when producing the master anomaly list. 

Once the survey data had been corrected for tilt, individual anomalies could be 

detected. 

2.9 DETECT ANOMALIES  

A consistent procedure for anomaly declaration was employed. Anomalies for the 

EM61 CART were selected by NAEVA, for the MSEMS by SAIC, for the MetalMapper 

by Snyder Geoscience, and for the EM61 ARRAY and MAG ARRAY by the Program 

Office team. The major difference between the instruments was the threshold above 

which an anomaly was declared. This description of anomaly selection focuses on the 

EM61 ARRAY, MAG ARRAY, and MSEMS, but the procedure for all instruments 

followed the same path. More detailed information can be found in the data-collection 

reports for these instruments [6, 21]. Information on the EM61 CART and MetalMapper 
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anomaly-selection procedures can be found in the data-collection plans and reports for 

these instruments [4, 19]. 

Based on the data collected from exhaustive excavation of the sample areas and 

the recommendation of the Advisory Group, a maximum expected target depth of 30 cm 

was selected, and a 50% depth margin was applied. To determine the anomaly-detection 

threshold, we considered the physics-based predictions of the worst-case response (i.e., at 

the most unfavorable orientation for the instrument) at 45 cm depth from each of the 

expected munitions items. Figure 13 provides those curves for the EM61 CART and a 

60 mm mortar, along with test pit measurements that show the accuracy of the worst-case 

prediction curves lower bounding the expected response. Note that the second time gate 

is selected for the plot; that gate was also used for detection processing. While the target 

signal is stronger in the first gate, the signal-to-noise ratio (SNR) is frequently larger in 

the second or third gates because of their improved immunity to motion noise. 

 

Figure 13: The expected EM61 CART second time gate amplitude for the most unfavorable 
orientation as a function of distance below the transmit coil for a 60 mm mortar and 

measured data from the test pit. 

Given the threshold for a particular instrument, detection processing first 

consisted of selecting peaks in the gridded data that exceeded the chosen threshold. Other 

than gridding the data, no data smoothing was performed before anomaly selection. 

Actual anomaly selection was accomplished using the gridpeak function in Oasis montaj. 
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Once the list of anomalies and their locations was produced, the instrument data 

were imported into the UX-Analyze module of Oasis montaj so that the anomalies could 

be inverted using a dipole model. A chip of data surrounding the anomaly peak that 

encompassed the anomaly was either extracted automatically or a polygon surrounding 

the desired data was generated manually for data inversion. UX-Analyze provides a 

picture of the gridded data along with the match data produced by the inversion 

parameters; fit coherence values; and fit parameters, including the location and depth of 

the object. The data analyst checks those parameters as part of the overall quality-control 

process. If the fit location passes the quality check, it is returned as the anomaly location. 

For items with a poor fit, the grid location of the anomaly peak is returned instead. 

For elongated items, particularly those elongated in the down-track direction, 

EM61-based instruments can provide a double-humped return for a single item. For this 

experiment, the data analyst looked at all anomalies that were within 0.6 m of each other 

to determine whether they came from a single item or from multiple closely spaced items. 

In the cases where it was judged that the returns constituted a single unique anomaly, it 

was treated as such on the anomaly list. 

Determining anomalies for the magnetometer data followed a similar procedure as 

that for the EM61-based instruments, but there were differences due to the physics that 

determines the response for the two types of instruments. Magnetometers sense the 

distortion in Earth’s magnetic field due to the presence of a ferrous object. For most 

target aspects relative to Earth’s field, this distortion presents itself as a bipolar field 

distortion. This field distortion at the instrument can be predicted using physics models 

analogous to those for the EM61-based instruments. Such models were used to establish 

the threshold for detection by the magnetometers, using the same 50% depth safety factor 

as for the EMI case. Actual anomaly detection selection was based on the positive peak 

of the anomaly, but the anomaly location reported was that given by a dipole inversion. 

Adverse geology at the Camp San Luis Obispo site caused the magnetometer 

threshold to be exceeded in a number of instances, many of which were not near an EMI 

anomaly. For that reason, the only magnetometer anomalies prosecuted in the excavation 

phase of the demonstration were those that associated with an EMI anomaly, plus 45 

additional excavations for what the MSEMS pre-processor felt might be large, deeply 

buried items. (The demonstrators did not attempt to classify these additional 45 

anomalies, however. Furthermore, no metallic items were recovered from these 

anomalies during excavation.) Because the geology of the site was highly magnetic in 
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some areas, many more anomalies were detected in the magnetometer-based survey data 

than in the EM61-based data. 

Once the data-collection teams had detected individual anomalies in the survey 

data, other data-collection teams could collect high-resolution, cued data at individual 

locations throughout the site. 

2.10 GENERATE CUED LISTS 

The cued lists provided the data-collection teams with the locations of high-

resolution data to be collected with the cued instruments. Three cued lists were formed, 

one for the TEMTADS, the BUD, and the MetalMapper, the three cued instruments used 

at Camp San Luis Obispo. 

2.10.1 TEMTADS 

IDA created the TEMTADS cued list from the EM61 ARRAY anomaly list. The 

1464 locations on the TEMTADS cued list corresponded to the 1464 unique anomalies 

detected by the EM61 ARRAY. The Program Office team fit the data from each EM61 

ARRAY anomaly to a dipole model using the UX-Analyze module in Oasis montaj. IDA 

included an anomaly’s fitted location on the TEMTADS cued list if the anomaly’s data:  

 Exhibited a fit coherence greater than or equal to 0.85, and 

 Based on the Program Office team’s visual analysis: 

 Fit well to the dipole model, 

 Appeared to represent a single buried item, and 

 Encompassed the complete anomaly. 

Conversely, the location of the anomaly’s peak signal was included on the TEMTADS 

cued list, rather than its fitted location, if the anomaly’s data:  

 Exhibited a fit coherence less than 0.85, or 

 Based on the Program Office team’s visual analysis: 

 Appeared to fit poorly to the dipole model, 

 Appeared to represent multiple closely spaced items, or 

 Did not encompass the complete anomaly. 

2.10.2 BUD 

The BUD cued list was a subset of the TEMTADS cued list. BUD remains in the 

early phase of development, and its large size and weight cause difficulties in 
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transporting it from one cued location to another, especially over steep terrain. The 

Program Office decided in advance that the BUD would collect data only at locations 

with relatively flat terrain. To that end, two contiguous sub-areas of the site that were 

relatively flat were identified, and all TEMTADS cued locations in these sub-areas were 

assigned to the BUD cued list. Figure 14 is a topographical map of the site. Blue lines 

outline the survey area, and the curved light-brown lines indicate topographical contours. 

Orange dots show locations where both the TEMTADS and BUD collected cued data; all 

are within relatively flat sub-areas of the site. Purple dots show locations where only the 

TEMTADS collected cued data; the terrain was quite steep in these locations. 
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Figure 14: A topographical map of the selected site with TEMTADS and BUD cued 

locations. Blue lines outline the demonstration area, and the curved light-brown lines 
indicate topographical contours with elevation differences of 40 ft. Orange dots show 

locations where both the TEMTADS and BUD collected cued data; all are within relatively 
flat sub-areas of the site. Purple dots show locations where only the TEMTADS collected 

cued data; the terrain was quite steep in these areas. 

2.10.3 MetalMapper 

The MetalMapper data-collection team created the MetalMapper cued list 

independently of the TEMTADS and BUD cued lists. As discussed in the data-collection 

report [19], the data-collection team surveyed the site with the MetalMapper in dynamic 



33 

mode. The team detected 1617 unique anomalies in the MetalMapper survey data and 

included the locations of each of these anomalies on the MetalMapper cued list. Cued 

data were eventually collected at all 1617 locations on the MetalMapper cued list. But the 

classification demonstrators processed the data recorded at only 1561 cued locations 

because 56 locations were not excavated in time to provide ground truth labels used for 

optimizing the classification algorithms. 

2.11 COLLECT CUED DATA AT LOCATIONS ON CUED LISTS 

In collecting cued data, TEMTADS, BUD, and MetalMapper used different sets 

of cued locations. This section describes the sensor technology of the instruments. More 

detail can be found in the reports written by the data-collection teams [5, 14, 19]. 

2.11.1 TEMTADS 

TEMTADS, an advanced sensor constructed by the Naval Research Laboratory, is 

based on the coils and electronics from the Advanced Ordnance Locator system, 

developed under Navy funding by G&G Sciences. As shown in Figure 15, TEMTADS 

employs twenty-five 35 cm square sensors arranged in a 5  5 array. Each sensor consists 

of a 35 cm square outside transmit coil and a 25 cm square inner receive coil. The coils 

are mounted on 40 cm centers, forming a 2 m  2 m array. 

 

Figure 15: A sketch of the transmit/receive coils mounted on the TEMTADS. 

Each transmit coil is sequentially pulsed, with the induced secondary field from 

any item below the array sensed by all 25 receive coils. This arrangement provides spatial 

transmit and receive diversity, along with the additional information provided by multi-

static operation. As a cued sensor, TEMTADS can do sufficient signal stacking to 
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produce high SNR data. In addition, the increased sensitivity provided by stacking allows 

extension of the receiver processing time to 25 ms, giving a good sampling of the late-

time decay for large, thick-walled objects. Sampling is done at 250 kHz, but data for 

analysis consist of 115 logarithmically spaced gates covering 40 s to 25 ms. 

At Camp San Luis Obispo, TEMTADS collected cued data at all the unique 

anomaly locations produced from the EM61 ARRAY survey. The procedure was to 

program anomaly locations into the TEMTADS navigation software, drive the tow 

vehicle to place the center of the array over the anomaly, collect data, and then move to 

the next anomaly. Quality control checks were subsequently performed on the collected 

data to allow anomalies to be revisited if necessary. Figure 16 shows the TEMTADS 

collecting data at San Luis Obispo. 

 

Figure 16: A photograph of TEMTADS collecting data at Camp San Luis Obispo. 

2.11.2 BUD 

BUD is a next-generation instrument developed by Lawrence Berkeley National 

Laboratory. Its design and construction were funded by ESTCP and SERDP. BUD is still 

a developmental instrument and data collection is slow, so it collected data in only the 

cued mode. Figure 17 shows the BUD collecting cued data at Camp San Luis Obispo. For 

this collection, the BUD operators chose to collect data at 11 points relative to the flagged 

anomaly, 5 points at half-meter intervals with the center point over the anomaly, and 3 

points in lines offset. 
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Figure 17: A photograph of the BUD collecting data at Camp San Luis Obispo. 

The BUD consists of three orthogonal transmit coils and eight pairs of receive 

coils that are differenced to provide a gradiometer output. The eight pairs of receive coils 

are mounted diagonally across the upper and lower horizontal transmit coils to provide 

gradiometric samples along the three axes. In cued mode, the BUD sequentially pulses all 

three transmit coils to fully interrogate the source of the anomaly. The BUD samples at a 

rate of 250 kHz and has 35 sample gates logarithmically spaced from 153 µs to 1387 µs. 

Because the BUD remains temporarily stationary while collecting data, time is available 

for data stacking, and motion noise is suppressed. This leads to an improved SNR, which 

in turn leads to more accurate data inversions. 

2.11.3 MetalMapper 

For this demonstration, the MetalMapper was self-cued from a list of anomalies 

detected in the data it collected itself in survey mode. Thus, the MetalMapper 

demonstration took place independently of the demonstration of the other instruments. In 

cued mode, the MetalMapper was driven to the anomaly location and lowered so that the 

bottom skids were on the ground. Data were collected by sequentially exciting each of 

the three transmitter coils. Data were collected at a 30 Hz rate, and 270 repetitions were 

stacked for each transmitter to improve SNR.  

Once data were collected by all survey and cued instruments, preparations began 

for excavating each detected anomaly to provide ground truth for scoring. 

2.12 GENERATE MASTER LIST 

The master list consisted of the union of all survey instruments’ anomaly lists and 

all cued instruments’ cued lists. The purpose of the master list was to develop a single 
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excavation list and to allow for a straightforward scoring process. The master list 

instructed the classification demonstrators where to extract features from the collected 

data; the demonstrators then classified each location based on its extracted features. The 

master list also instructed the excavation team where to recover buried items; the 

Program Office then assigned one ground truth label to each master location based on the 

characteristics of its recovered item or items. IDA scored the demonstrators’ 

classification performance by comparing each location’s classification output with its 

ground truth label.  

The master list was constructed in three sequential steps. In the initial step, the 

first 1464 locations on the master list were defined as the 1464 locations on the 

TEMTADS cued list, corresponding to the 1464 unique anomalies detected by the EM61 

ARRAY. In the second step, an additional 355 master locations were taken from the 

fitted locations of 355 of the 1552 unique anomalies detected by the EM61 CART. These 

355 anomalies had fitted locations further than 0.6 m from any of the master locations 

from the first step. In the third step, an additional 387 master locations were added from 

387 of the 1561 unique locations on the MetalMapper cued list. These 387 cued locations 

were further than 0.6 m from any of the master locations already designated in the first 

and second steps. The remaining MetalMapper anomalies fell within 0.6 m of a location 

added to the list in the first or second step. Thus, the master list consisted of a total of 

2206 locations (1464 + 355 + 387). 

The Program Office briefly considered appending additional locations to the 

master list in a fourth, fifth, and sixth step. The fourth step would have added an 

additional 614 master locations from 614 of the 2316 unique EM61 MSEMS anomalies 

whose fitted locations were further than 0.6 m from any of the master locations created in 

the first three steps. The Program Office quickly abandoned this idea due to the 

prohibitive cost of recovering items from over 600 additional locations. The fifth and 

sixth steps would have added master locations from MAG MSEMS and MAG ARRAY 

anomalies whose fitted locations were further than 0.6 m from any previously formed 

master location. This idea was also abandoned because the magnetic geology of some 

areas of the site made magnetometer-based survey instruments unsuitable for anomaly 

detection. 

IDA associated each of the 2206 master locations with one or more instruments, 

with the exception of the MetalMapper. Specifically, a master location was associated 

with a cued instrument if the instrument collected cued data within 0.6 m of the master 

location. Similarly, a master location was associated with an EM61-based survey 
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instrument if there was at least one anomaly detected by the instrument whose fitted 

location was within 0.6 m of the master location. The same approach could not be used to 

associate master locations with magnetometer-based survey instruments, however, 

because the magnetometer-based surveys led to the detection of many overlapping 

anomalies. Therefore, a master location was associated with the MAG ARRAY if it had 

already been associated with the EM61 ARRAY. Similarly, master locations were 

associated with the MAG MSEMS sensor if they were already associated with the EM61 

MSEMS sensor. No master locations were associated with the MetalMapper because the 

MetalMapper classification demonstration was held independently of the rest of the 

study. The table in Appendix A shows the number of locations associated with each 

instrument.  

Once the master list was created, the classification demonstrators could begin 

processing data at each location on the master list.  

2.13 SELECT SURVEY DATA AT LOCATIONS ON MASTER LIST  

Data collected with cued instruments differ in nature from data collected with 

survey instruments. A cued instrument collects many individual sets of data, with each 

set collected over one location on the instrument’s cued list. In contrast, a survey 

instrument collects a single large set of data over the entire demonstration area of the site. 

In this study, the classification demonstrators had to select from this large set of survey 

data many individual smaller subsets of data, with each subset corresponding to one 

location on the master list. This process was one of the most subjective steps in the entire 

study. 

The demonstrators selected survey data around individual master locations. First, 

they visually analyzed the survey data surrounding each master location associated with a 

given instrument. Then, they selected a polygon circumscribing the master location. The 

polygon was intended to capture only those data points representing the detected 

anomaly, so that only the data representing the anomaly, rather than background, would 

be analyzed further. For master locations associated with more than one survey 

instrument, the demonstrators selected different polygons for different instruments 

because the data collected by some instruments were of a higher resolution or SNR than 

the data collected by other instruments. 

While the demonstrators were analyzing the collected data, the Program Office 

was taking steps to assign ground truth labels to the collected data. 



38 

2.14 EXCAVATE 

The excavation team recovered all items buried at the master locations. The 

purpose of the excavation was to gather ground truth information that could be used to 

score the output of the demonstrators’ classification analyses. As it turned out, multiple 

items were recovered from some master locations, while no items were recovered from 

other locations. Upon uncovering an item, but before removing it from the ground, the 

excavation team cataloged the following information: 

 The easting, northing, and depth coordinates for the center of the item, with 
depth measured with respect to a surveyed point on the lip of the hole. 

 A description of the item (e.g., “60 mm mortar,” “fin parts,” “scrap metal,” 
etc.). 

 A photograph of the item, with a ruler and a small white board clearly placed 
next to the item. The excavation team wrote the master location’s 
identification number on the white board. Figure 18 shows photographs of 
different recovered items.  

The excavation team recovered all 200 seeds that had been emplaced in the 

survey area, along with hundreds of clutter items (including parts of previously exploded 

munitions), as well as 44 intact or nearly intact munitions that were indigenous to the site. 

Some of these indigenous munitions—one 5 in rocket, one 3 in Stokes mortar, and one 

37 mm round—were unexpected because historical records did not indicate that these 

types of munitions had been fired at the site. 

2.15 ASSIGN GROUND TRUTH LABELS 

The Program Office and IDA assigned a single ground truth label to each master 

location, as well as to each MetalMapper cued location. Each label was based on the 

characteristics of the item or items recovered at the location. 

2.15.1 Master Locations 

The Program Office assigned one ground truth label to each location on the 

master list. Specifically, a location was labeled as “TOI” if any item recovered from the 

location was a seed; an intact munition indigenous to the site; or any item that a 

reasonable individual might suspect to be an explosive munition, based on the excavation 

team’s description and photograph of the item. Conversely, a master location was labeled 

as “non-TOI” if no items recovered from the location met these criteria. In addition, all 

locations labeled as “TOI” were further labeled by type (e.g., “60 mm mortar,” “81 mm 
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mortar,” etc.). As it turned out, no more than one TOI was recovered from any one 

location. 

Some locations were difficult to label. The Program Office questioned whether a 

reasonable individual might suspect some partial munitions to be explosive, such as those 

shown in Figure 19. To settle the matter, photographs of questionable items recovered 

were gathered from locations that had been assigned to the Standard Training Set. (The 

training and test sets will be discussed later in this chapter.) These photographs were 

presented to both the Advisory Group and the classification demonstrators, and these 

groups were asked for their opinion. After much debate, the Program Office, the 

Advisory Group, and the classification demonstrators labeled each questionable location 

in the training set as “TOI” or “non-TOI.” For example, they labeled the training set 

location in Figure 19(a) as “TOI,” since they believed a reasonable individual would 

suspect the item to be an explosive munition. Much of this was because the item still 

retained many of its fins, which can appear dangerous to a reasonable, yet untrained, 

individual. The Program Office then applied the same logic to each questionable location 

in the test set, labeling each of these as “TOI” or “non-TOI” in a manner consistent with 

the training set. (The Program Office did not ask for the demonstrators’ opinions 

regarding the questionable locations in the test set because the demonstrators remained 

blind to the ground truth labels in the test set throughout the course of the study.) For 

example, the Program Office labeled the test set location in Figure 19(b) as “TOI” 

because the recovered item resembled the item shown in Figure 19(a).  
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

Figure 18: Photographs of recovered items, including (a) a 60 mm mortar, (b) an 81 mm 
mortar, (c) a 4.2 in mortar, (d) a 2.36 in rocket, (e) a 5 in rocket, (f) a 3 in Stokes mortar, (g) 

a 37 mm round, and (h) scrap metal from a previously exploded munition. 
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 (a)  (b)  

Figure 19: Photographs of questionable items excavated from (a) a training set location 
and (b) a test set location. After much debate, the Program Office, the Advisory Group, and 

the classification demonstrators labeled the training set location in (a) as “TOI” because 
they believed a reasonable individual would suspect the recovered item to be an explosive 
munition. To maintain consistency, the Program Office also labeled the test set location in 

(b) as “TOI” because the recovered item bore a close resemblance to the item shown in 
the first photograph. 

The Program Office erred on the side of caution when assigning ground truth 

labels to questionable locations, more often labeling a questionable location as “TOI” 

than as “non-TOI.” In a real-world situation, a partial munition that remained in the 

ground poses no true threat to public safety since it can no longer explode. But a 

reasonable individual who found the munition could perceive it as a threat, leading to 

costs associated with public relations and any potential police or explosive ordnance 

disposal response to 911 calls.  

2.15.2 MetalMapper Cued Locations 

IDA also assigned a single ground truth label to each MetalMapper cued location. 

The MetalMapper demonstration occurred independently of the other parts of the study, 

and not all MetalMapper cued locations mapped directly to a master location. Therefore, 

for each MetalMapper cued location, all master locations within 0.6 m of the cued 

location were identified. Most cued locations had only one master location within 0.6 m. 

These cued locations were assigned the ground truth label of the associated master 

location. However, some cued locations had more than one master location within 0.6 m. 

Only one of the associated ground truth labels were assigned to each of these cued 

locations, with TOI taking precedence over non-TOI. As it turned out, no cued locations 

were associated with more than one master location labeled as TOI. 

While the Program Office and IDA assigned ground truth labels to the master 

locations and MetalMapper cued locations, the classification demonstrators were further 

analyzing the data collected at these locations. 
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2.16 FEATURE EXTRACTION 

The classification demonstrators processed the data collected at each location 

associated with a given instrument. First, the demonstrators classified each location as 

“Can Analyze” or “Cannot Analyze.” Then, they extracted features from the “Can 

Analyze” locations; most demonstrators extracted these features by fitting the collected 

data to a dipole model. Finally, they selected a subset of the extracted features on which 

further, more specific classification could be based. 

2.16.1 Classify “Can Analyze” and “Cannot Analyze” Locations 

The demonstrators classified a given location as “Can Analyze” or “Cannot 

Analyze” based on the quality of data recorded at that location. The data recorded from 

most instruments at most locations were of sufficient quality for accurate feature 

extraction. In these cases, the demonstrators classified the locations as “Can Analyze.” In 

contrast, the data recorded by some instruments at some locations suffered from 

geolocation errors, spotty coverage, low data density, or low SNR, making it difficult, if 

not impossible, to extract accurate features. In such cases, the demonstrators classified 

these locations as “Cannot Analyze.”  

Different demonstrators used different criteria for making the “Can Analyze” or 

“Cannot Analyze” classification. While some demonstrators used quantitative criteria, 

such as the fit coherence or a similar measure of how well the collected data fit to a 

dipole model, other demonstrators used subjective criteria, such as visual analysis of the 

collected data. Furthermore, in many cases, the same demonstrator classified a location as 

“Can Analyze” based on one instrument’s data but as “Cannot Analyze” based on another 

instrument’s data because different instruments have different resolutions, SNRs, etc. 

2.16.2 Extract Features From “Can Analyze” Locations 

The demonstrators extracted features from each location classified as “Can 

Analyze.” Most demonstration teams extracted geophysical parameters, estimating the 

characteristics of the item(s) that were likely to be buried at the location, based on a 

dipole model of the data collected at the location. In contrast, some demonstration teams 

extracted features that were related to direct measurements of the collected data itself. 

2.16.2.1 Extract Features: Geophysical Parameters of Dipole Models  

To estimate parameters of the item(s) buried at a location, demonstrators input the 

data collected at the location into a geophysical inversion computer routine. This routine 
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fit the data to a dipole model. Parameters of the best fit dipole model were then used in 

classification processing. 

Different demonstration teams used different inversion routines. Some routines 

assumed that only a single item was buried at each location, an assumption that was not 

always true. Other demonstrators used more complex routines that estimated the number 

of buried items as well as their parameters. Despite their differences, however, all 

inversion routines estimated intrinsic and extrinsic parameters of the buried item(s). 

Extrinsic parameters included a buried item’s easting and northing coordinates, as well as 

its orientation angles and depth. Intrinsic parameters included characteristics of the buried 

item—size, shape, material composition, and wall thickness—regardless of where or how 

the item was situated. The data-processing demonstrators designed their classification 

algorithms to exploit the known differences in intrinsic parameters between TOI and non-

TOI. 

Inversion routines operating on EMI data can estimate many intrinsic parameters. 

For example, the inversion routines applied to standard EM61-Mk2 sensor data estimate 

the polarizability of the buried item along each of its three major axes (1, 2, 3) at three 

or four different time gates. The amplitudes of the polarizabilities indicate the item’s size, 

and their relative amplitudes with respect to each other indicate the item’s shape. TOI 

tend to be ferrous bodies of revolution with one large axis and two equal, smaller axes. In 

contrast, non-TOI, such as munitions debris and cultural items, can be very small and are 

not often bodies of revolution. More advanced EMI sensors, such as those used on the 

TEMTADS and MetalMapper, sample the received signal at later time gates than the 

standard EM61-Mk2. Their inversion routines estimate the polarizabilities of the buried 

item over a longer span of time, such that the polarizabilities’ decay rates () can be 

estimated. Decay rates indicate the item’s material composition and wall thickness, with 

TOI tending toward thicker walls than non-TOI.  

Inversion routines applied to magnetometer data can estimate fewer intrinsic 

parameters. To estimate the three polarizabilities of a buried item—that is, to estimate its 

shape as well as its size—the item must be illuminated and sampled from three 

orthogonal directions. Magnetometers cannot always accomplish this because they rely 

on Earth’s magnetic field to illuminate the item; there is no assurance that this field will 

sufficiently illuminate all three axes of the item at once (e.g., if an item was aligned with 

Earth’s magnetic field, no information about the other two axes could be estimated). 

Magnetometers can only estimate the item’s magnetic moment (induced plus remanent) 

which gives the item’s effective size in the illumination direction only. 
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“Cooperative” inversions can also be performed using EMI and magnetometer 

data recorded at the same location. Although EMI inversions provide more information 

than magnetometer inversions, magnetometer inversions often lead to more accurate 

depth estimates. Cooperative inversions enjoy the advantages of both. Demonstrators first 

invert the magnetometer data to estimate the buried item’s depth as accurately as 

possible. Then, they invert the EMI data with the depth parameter of the EMI dipole 

model constrained to the value previously estimated using the magnetometer model. 

Constraining the value of one parameter reduces the number of degrees of freedom of the 

EMI model. If the parameter is constrained to an accurate value, the reduction in the 

number of degrees of freedom increases the likely accuracy of the other estimated 

parameters. One demonstration team, Sky Research, performed cooperative inversions in 

this study using the EM61 and MAG MSEMS data. Other demonstrators chose not to 

perform cooperative inversions because the highly magnetic geology of the site made the 

magnetometer data difficult to analyze. 

2.16.2.2 Extract Features: Data-Driven 

Some demonstration teams did not estimate the characteristics of the item buried 

at a location. Instead, they measured the characteristics of the anomaly to which the 

buried item gave rise. Examples of these measurements include the peak amplitude of the 

anomaly, the footprint area of the anomaly, and the time decay of one channel of data 

recorded at the anomaly (rather than the time decay of a polarizability parameter of a 

dipole model that was fitted to the data). Unlike the geophysical parameters resulting 

from dipole model inversions, these data-driven features do not directly describe the 

intrinsic parameters of the buried item(s). Some have hypothesized that these data-driven 

features can still be used for accurate classification, however. 

2.16.3 Selecting a Subset of Features 

For a given instrument, the demonstrators chose a subset of the extracted features 

likely to best exploit the known differences between TOI and non-TOI locations. The 

demonstrators formed a feature vector from the chosen subset, with each element of the 

vector holding one of the chosen features. Some demonstrators chose a very simple 

subset consisting of a single feature only, such as the magnetic moment or the principal 

polarizability at one time gate. This resulted in a one-dimensional feature vector. Other 

demonstrators chose more complex subsets consisting of multiple combinations of 

multiple parameters, such as the ratio of a polarizability decay rate to the polarizability 
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amplitude. This resulted in a multidimensional feature vector. In either case, the 

demonstrators used the feature vectors to further classify the locations. 

Before classification could proceed further, however, the collected data were 

separated into training and test sets.  

2.17 ASSIGN TRAINING AND TEST SETS 

IDA assigned each master location and each MetalMapper cued location to either 

a Standard Training Set or Standard Test Set. Training and test sets serve complementary 

purposes. A training set allows demonstrators to optimize their classification algorithms 

using a subset of data labeled with ground truth. To that end, the Program Office released 

to the demonstrators all ground truth information related to the Standard Training Set 

locations so that the demonstrators could use these labels to optimize their algorithms. 

(Demonstrators could also choose to use the data and ground truth labels from the TOI 

seeded in both the IVS and the test pit.) The Standard Test Set allows demonstrators to 

test their optimized algorithms by applying the algorithms to the remaining, unlabeled 

data. As such, the Program Office did not release ground truth information related to the 

Standard Test Set locations. In this way, the demonstrators’ analyses of the Standard Test 

Set locations were kept “blind.” 

2.17.1 Standard Training Set and Standard Test Set 

Most demonstrators used the Standard Training Set and Standard Test Set to 

optimize and test their classification algorithms. The survey site consisted of forty-five 

30 m  30 m grids. IDA selected six of these grids and assigned to the Standard Training 

Set all locations residing in these grids. All remaining locations were assigned to the 

Standard Test Set. The six Standard Training Set grids were selected from different sub-

areas of the site. (Two of the six grids were located in the sub-areas of the site over which 

the BUD collected data, shown in Figure 14. This was done such that the training data 

available for BUD-related analyses were a subset of the training data used for all other 

instruments’ analyses.) Figure 20 shows a topographical map of the site with master 

locations plotted as dots. (Only those master locations associated with the EM61 ARRAY 

are shown.) Those locations residing in the Standard Training Set grids are colored in red 

and green, depending on their ground truth label. The locations residing in the Standard 

Test Set grids are colored in black, regardless of their ground truth label. 
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Figure 20: A topographical map of the site with master locations associated with the EM61 
ARRAY in the Standard Training Set and Standard Test Set. The blue lines outline the 

demonstration area. Red and green dots mark the true TOI and non-TOI locations in the 
Standard Training Set. Black dots mark the locations in the Standard Test Set, regardless 

of ground truth label. 

Unlike most demonstrators, Signals Innovations Group (SIG) used both 

traditional and novel techniques for training and testing their classification algorithms. 

The traditional technique was supervised learning; like the other demonstrators, SIG 

optimized its algorithms using the ground truth labels in the training set and then applied 

the optimized algorithms to the test set. The novel technique was semi-supervised 
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learning. With semi-supervised learning, SIG optimized its algorithm using labeled data 

from the training set, as well as unlabeled data from the test set. Then, SIG tested the 

optimized algorithm by applying it to only the unlabeled data in the test set.  

2.17.2 Active Learning Training and Test Set 

SIG also used active learning [12]. Active learning, an alternative approach for 

constructing a training set, is used in conjunction with either supervised or semi-

supervised learning techniques. With active learning, the training set is not determined in 

advance. Instead, all locations are initially unlabeled, and the demonstrators use 

information-theory metrics to identify from which locations the optimization could 

benefit most if ground truth labels were assigned. Ground truth labels are made available 

for these locations, and the algorithm is optimized (using either supervised or semi-

supervised techniques). The process iterates several times until a second information-

theory metric notes that little further benefit can be gained by recovering additional items.  

With active learning, then, SIG itself assigned locations to the Active Learning 

Training Set, with all remaining locations assigned to the complementary Active 

Learning Test Set. SIG performed this task twice, creating one Active Learning Training 

Set for the EM61 ARRAY and another for TEMTADS. The two Active Learning 

Training Sets differed because the two instruments’ data differed in resolution, SNR, etc., 

causing the information-theory metrics to recommend different locations on which to 

train. Figure 21 and Figure 22 are topographical maps of the site, with dots showing the 

master locations associated with the EM61 ARRAY and TEMTADS, respectively. The 

Active Learning Training Set locations are colored in red and green for TOI and non-

TOI, respectively. Regardless of their ground truth label, the Active Learning Test Set 

locations are colored in black.  
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Figure 21: A topographical map of the site with master locations in SIG’s Active Learning 
Training Set and Active Learning Test Set for the EM61 ARRAY. The blue lines outline the 
demonstration area. Red and green dots mark true TOI and non-TOI locations in the Active 
Learning Training Set. Black dots mark locations in Active Learning Test Set, regardless of 

ground truth label. 
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Figure 22: A topographical map of the site with master locations in SIG’s Active Learning 
Training Set and Active Learning Test Set for the TEMTADS. The blue lines outline the 

demonstration area. Red and green dots mark true TOI and non-TOI locations in the Active 
Learning Training Set. Black dots mark locations in Active Learning Test Set, regardless of 

ground truth label. 

2.17.3 Extended Training and Test Set 

RML Technologies compared two different sets to train and test its classification 

algorithm [3]. First, RML used supervised learning to optimize its algorithm using the 

Standard Training Set and then tested the algorithm using the Standard Test Set. RML 

also requested the ground truth labels of approximately 200 additional locations and 
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formed an Extended Training Set from all labeled locations—those in the Standard 

Training Set along with the additional 200 locations. The unlabeled locations formed the 

complementary Extended Test Set. (Note that the Extended Training Set was larger than 

the Standard Training Set, and the Extended Test Set was smaller than the Standard Test 

Set.) RML used supervised learning to re-optimize the algorithm, this time using the 

Extended Training Set, and retested the algorithm, this time using the Extended Test Set. 

Figure 23 is a topographical map of the site. Locations plotted in red and green belong to 

the Extended Training Set; locations plotted in black belong to the Extended Test Set. 

2.17.4 The Second-Pass Training and Test Set 

Finally, the U.S. Army Corps of Engineers, Huntsville Center (CEHNC) used a 

two-pass method for training and testing [23, 24] that mimicked what could occur in a 

real-world scenario. In a real-world scenario, an excavation team must classify locations 

into two categories, those where “items must be recovered” and those where “items may 

remain in the ground.” In its first pass at classification, CEHNC trained and tested its 

classification algorithm using supervised learning and the Standard Training Set and 

Standard Test Set. Then, CEHNC requested the ground truth labels for all locations in the 

Standard Test Set that it had classified as “items must be recovered” in its first pass. Only 

some of these locations were true TOI; others were true non-TOI. Based on these 

additional ground truth labels, CEHNC revisited the classification of all locations in the 

Standard Test Set for which it did not yet know ground truth (those items classified as 

“items may be left in the ground” during their first pass). CEHNC reclassified some of 

these locations in the second pass, but it was not allowed to reclassify any of the locations 

for which ground truth was already known. These locations remained, rightly or wrongly, 

in the “items must be recovered” category. 
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Figure 23: A topographical map of the site with master locations in RML’s Extended 
Training Set and Extended Test Set for the EM61 ARRAY. The blue lines outline the 
demonstration area. Red and green dots mark true TOI and non-TOI locations in the 

Extended Training Set. Black dots mark locations in the Extended Test Set, regardless of 
ground truth label.  

Figure 24 shows a topographical map of the site. Red and green dots indicate all 

locations where ground truth was available on the second pass of classification. These 

include all locations in the Standard Training Set and all locations in the Standard Test 

Set classified as “items must be recovered” on the first pass. Black dots indicate those 

locations where the ground truth was not yet known, which CEHNC revisited in its 
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second pass at classification. Note, however, that although CEHNC revisited only these 

locations in the second classification pass, the second-pass classification performance 

was scored over all locations in the Standard Test Set. 

 

Figure 24: A topographical map of the site with master locations in CEHNC’s Second-Pass 
Training Set for the EM61 CART. The blue lines outline the demonstration area. Red and 

green dots and mark true TOI and non-TOI locations in the Second-Pass Training Set. 
Black dots mark the remaining locations whose classifications were revisited in the 

second classification pass.  

The five training sets differed in size and character, as shown in the table in 

Appendix A. For example, SIG’s active learning used the smallest training sets, with the 



53 

TEMTADS’ Active Learning Training Set consisting of the fewest true TOI locations. 

CEHNC’s Second-Pass Training Set was the largest training set—ground truth labels 

were available for all locations in the Standard Training Set and locations in the Standard 

Test Set labeled as “items must be recovered” during the first pass of classification. 

Finally, as can be seen from Figure 20–Figure 24, the locations in the Standard Training 

Set were clustered into six 30 m  30 m grids, but the locations in the other four training 

sets were distributed more evenly throughout the site.  

2.18 CLASSIFY PARAMETERS 

The classification demonstrators designed algorithms to process the feature 

vectors extracted from the collected data. Different demonstrators used different 

algorithms. While some demonstrators used simple, rule-based algorithms based on 

quantitative thresholds defined by expert knowledge, others used more complex 

algorithms based on statistical classifiers or template matchers. In either case, the 

demonstrators extracted a feature vector from the data collected at a location and input 

the feature vector into the classification algorithm. The algorithm then output the 

location’s estimated likelihood of containing TOI, or another similar decision statistic. 

The demonstrators used the decision statistics to construct a ranked anomaly list. A 

ranked anomaly list is an ordered list of all locations that were associated with a 

particular instrument and assigned to the applicable test set. Each demonstration team 

formed one ranked anomaly list for each combination of data-collection instrument and 

classification algorithm. Figure 25–Figure 27 show cartoons of a ranked anomaly list in 

various stages of construction. 

In the first stage of constructing a ranked anomaly list, the demonstrators ranked 

the test set locations that had been classified as “Can Analyze.” The ranks were based on 

the decision statistics estimated by the classification algorithm, from least likely to 

contain TOI to most likely, as shown in Figure 25. 

In the second stage of constructing a ranked anomaly list, the demonstrators 

further classified the “Can Analyze” test set locations. As shown in Figure 26, those 

locations with a low estimated likelihood of containing TOI were classified as “Likely to 

Contain Only Non-TOI” (green) and locations with a high estimated likelihood of 

containing TOI were classified as “Likely to Contain TOI” (red). Those locations with 

neither a high nor low estimated likelihood were classified as “Cannot Decide” (yellow).  
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Figure 25: A cartoon of a ranked anomaly list in its first stage of construction. “Can 
Analyze” locations in the test set are ranked in ascending order according to their 

estimated likelihoods of containing TOI, or a similar decision statistic. 

 

Figure 26: A cartoon of a ranked anomaly list in its second stage of construction. “Can 
Analyze” locations in the test set are further classified into three different subcategories 

based on their estimated likelihoods of containing TOI, or another similar decision 
statistic. Locations classified as “Likely to Contain Only Non-TOI,” “Cannot Decide,” or 

“Likely to Contain TOI” are shown in green, yellow, and red, respectively. A thick blue line 
indicates the “don’t dig threshold,” the boundary between the green and yellow locations. 
In a real-world scenario, the excavation team would begin recovering items from locations 

at the bottom of the list and work its way up until it reached the “don’t dig threshold.” 
Items buried in locations listed above the “don’t dig threshold” could remain in the 

ground.  

The demonstrators used different methods for selecting the boundaries between 

the different subcategories of a ranked anomaly list. SIG selected the boundaries by first 

assigning a quantitative cost to mistakenly classifying a true TOI location as “Likely to 

Contain Only Non-TOI” and a second cost to mistakenly classifying a true non-TOI 

location as “Likely to Contain TOI.” Then, SIG used information-theory metrics to 
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optimize the ratio of these two costs with respect to each other over the labeled locations 

in the training set [12]. Other demonstrators used similar, yet more subjective, methods, 

such as visually analyzing the spread in feature space between feature vectors extracted 

from the labeled locations in the training set. In any case, the boundary between the green 

“Likely To Contain Only Non-TOI” and the yellow “Cannot Decide” subcategories was 

the most important boundary because it constituted the “don’t dig threshold.”  

The “don’t dig threshold” instructs stakeholders about which locations must be 

excavated. In a real-world scenario, an excavation team must recover the most dangerous 

items first—those buried in locations classified as “Likely to Contain TOI.” The 

excavation team must also err on the side of caution and recover items that may or may 

not be dangerous, those buried in locations classified as “Cannot Decide.” However, 

stakeholders may instruct the excavation team to leave presumably innocuous items in 

the ground—those buried in locations classified as “Likely To Contain Only Non-TOI.” 

That is, in a real-world scenario, the excavation team would begin recovering items from 

locations listed at the bottom of the ranked anomaly list and work its way up. 

Stakeholders could instruct the excavation team to cease digging once they reached the 

“don’t dig threshold.” 

In the third and final stage of constructing a ranked anomaly list, the 

demonstrators focused on the test set locations classified as “Cannot Analyze.” In a real-

world scenario, the excavation team must err on the side of caution and recover all 

possibly dangerous items, including those buried in “Cannot Analyze” locations. This 

means that all “Cannot Analyze” locations must be inserted into the ranked anomaly list 

at a point below the “don’t dig threshold.” Demonstrators were instructed to append their 

“Cannot Analyze” locations at the very end of the ranked anomaly list, as shown in 

Figure 27. The “Cannot Analyze” locations are arranged in no particular order with 

respect to each other because, by definition, no further information could be learned 

about them, including their rank or likelihood of containing TOI. 
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Figure 27: A cartoon of a ranked anomaly list in its third and final stage of construction. 
“Cannot Analyze” locations in the test set have been appended to the end of the list in no 
particular order with respect to each other. All these “Cannot Analyze” locations share the 

rank of “Unknown.” 

2.19 SCORE CLASSIFICATION PERFORMANCE 

IDA scored the demonstrators’ classification performance by comparing the 

demonstrators’ ranked anomaly lists with ground truth, calculating both primary and 

secondary performance metrics for each ranked anomaly list. Primary performance 

metrics summarize an instrument-algorithm combination’s ability to correctly classify 

locations likely to contain only non-TOI and all other locations. Primary scoring did not 

consider the ground truth labels of the different types of TOI; locations truly containing 

60 mm mortars were considered no differently than locations truly containing 81 mm 

mortars, etc. Secondary scoring, however, did consider the ground truth types of TOI: 

locations truly containing 60 mm mortars were analyzed independently of locations truly 

containing 81 mm mortars, etc.  

2.19.1 Primary Scoring 

The primary classification scoring metrics were calculated for each ranked 

anomaly list by first counting the number of true positive (TP), false negative (FN), and 

false positive (FP) locations on the ranked anomaly list. (True negative [TN] locations 

were not counted because they were not needed to calculate the final summary statistics.) 

Figure 28 shows the results:  
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 A TP is a true TOI location that correctly fell below the “don’t dig 
threshold,” indicating that the demonstrators believed that the item buried at 
the location must be recovered.  

 An FN is a true TOI location that incorrectly rose above the “don’t dig 
threshold,” indicating that the demonstrators incorrectly believed that the 
item buried at the location could be left in the ground.  

 An FP is a true non-TOI location that incorrectly fell below the “don’t dig 
threshold,” indicating that the demonstrators incorrectly believed that the 
item buried at the location must be recovered.  

Once these counts were tallied, two summary statistics were calculated for each ranked 

anomaly list, the Percent of TOI Below Threshold and the Number of Non-TOI Below 

Threshold. 

 

Figure 28: Metrics used to score primary classification performance. The TOI types of the 
ground truth labels were not considered. 

The Percent of TOI Below Threshold is the most important classification 

performance metric to the UXO community because it is a measure of FNs. An FN could 

result in a true TOI being incorrectly left in the ground, with a potentially high cost to 

public safety. This metric is defined as the percent of true TOI locations that correctly fell 

below the “don’t dig threshold” and is calculated as [TP / (TP + FN)]  100. (This 

metric’s 95% confidence interval was also estimated, based on the binomial distribution.) 

Because this metric is a percentage, its value can range from 0% to 100%, with values 

near 0% indicating that almost all TOI were incorrectly left in the ground and values near 

100% indicating that almost all TOI were correctly recovered. Due to the potentially high 

cost to public safety associated with incorrectly leaving a TOI in the ground, the UXO 

community requires the Percent of TOI Below Threshold to be at or near 100%. 
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The Number of Non-TOI Below Threshold metric is a measure of FPs, rather than 

FNs. An FP could result in a true non-TOI being unnecessarily recovered from the 

ground, but such a situation does not present a cost to public safety. FPs do have other 

costs, however, such as the time and money required for their recovery. Therefore, the 

purpose of UXO classification technology is to reduce the Number of Non-TOI Below 

Threshold while still keeping the first metric, the Percent of TOI Below Threshold, as 

close as possible to 100%.  

The Number of Non-TOI Below Threshold is defined as the number of true non-

TOI locations that incorrectly fell below the “don’t dig threshold,” calculated as simply 

FP. Although many other classification problems use a summary metric similar to 

Percent of Non-TOI Below Threshold, we focused on the more straightforward Number 

of Non-TOI Below Threshold because the number count is more easily translatable to the 

dollar cost of clearing the site. A simple count, the Number of Non-TOI Below Threshold 

can range from zero to the total number of true non-TOI locations associated with the 

instrument of interest. Values near zero indicate correct identification of almost all true 

non-TOI locations; the demonstrators could safely recommend that items buried at these 

locations be left in the ground. In contrast, values near maximum indicate the inability to 

correctly identify most true non-TOI locations; this could lead to the unnecessary 

recovery of many non-TOI. Due to the time and money required to recover items from 

the ground, the UXO community desires low values for this metric. 

The Percent of TOI Below Threshold vs. the Number of non-TOI Below Threshold 

was plotted for each ranked anomaly list. Figure 29 shows a cartoon of this plot. The 

plotted point (large blue dot) illustrates the classification performance of the instrument-

algorithm combination when the demonstrator’s chosen “don’t dig threshold” was 

applied to the ranked anomaly list. The 95% confidence interval (gray bar) around the 

Percent of TOI Below Threshold metric is drawn through the point. 

The plot of summary metrics was used to revisit the choice of “don’t dig 

threshold.” The demonstrators had prospectively chosen one particular “don’t dig 

threshold” to apply to the ranked anomaly list. Other “don’t dig thresholds” could have 

been chosen instead. This was illustrated by retrospectively applying all possible “don’t 

dig thresholds” to the ranked anomaly list. For each possible “don’t dig threshold,” the 

number of TP, FN, and FP locations on the ranked anomaly list was re-tallied. Then, the 

Percent of TOI Below Threshold and the Number of Non-TOI Below Threshold were 

recalculated and plotted with respect to each other. Figure 30 shows a cartoon plot of the 

points from all possible “don’t dig thresholds” (black dots). Together, the points form a 
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classification performance curve. This curve is similar to the receiver-operating 

characteristic (ROC) curves often used in general classification problems. The 95% 

confidence intervals (vertical gray bars) around the Percent of TOI Below Threshold 

metrics are drawn through the points on the curve.1 

 

Figure 29: A cartoon plot, showing the performance results of the demonstrator’s “don’t 
dig threshold” applied to a ranked anomaly list. The large blue dot illustrates the Percent 

of TOI Below Threshold vs. the Number of Non-TOI Below Threshold that resulted from the 
demonstrator’s choice of “don’t dig threshold.” The vertical grey bar illustrates the 95% 

confidence interval around the Percent of TOI Below Threshold metric. 

Figure 30 shows a cartoon of a classification performance curve with one point 

for every possible “don’t dig threshold.” The point in the upper right corner of the plot 

corresponds to the extreme situation in which the “don’t dig threshold” is applied to the 

very top of the ranked anomaly list, such that all locations fall below; the Percent of TOI 

Below Threshold is 100%. However, since all true non-TOI locations also fall below this 

“don’t dig threshold,” the Number of Non-TOI Below Threshold reaches its maximum 

value. The point in the lower left corner of the plot illustrates another extreme situation. 

In this situation, the “don’t dig threshold” is applied to the very bottom of the ranked 

anomaly list, such that no locations fall below. Both the Percent of TOI Below Threshold 

and the Number of Non-TOI Below Threshold are zero. 

                                                 

1  Note that the 95% confidence intervals were calculated for each point independently, without any 
adjustments for multiple comparisons. As Macshassy and Provost explain [15], this means that one 
cannot infer that 95 times out of 100, every point on the curve will simultaneously lie within its own 
95% confidence interval. That is, one cannot infer that 95 times out of 100, the entire curve will lie 
within the band generated by “smearing” the individual 95% confidence intervals. 
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Figure 30: A cartoon of a classification performance curve, showing the performance 
results of all possible “don’t dig thresholds” applied to the ranked anomaly list. The point 

in the upper right corner represents the extreme situation in which the “don’t dig 
threshold” is placed at the very top of the list, such that all locations on the list fall below. 

The point in the lower left corner represents the other extreme situation in which the 
“don’t dig threshold” is placed at the very bottom of the list, such that no locations fall 

below. All points between the two extremes represent possible “don’t dig thresholds.” The 
gap between the lower left corner and the next closest point represents the locations in 

the test set that the demonstrators classified as “Cannot Analyze.” 

As with ROC curves, the points of a classification performance curve are not 

always equally spaced. All points on the curve lying between the two extreme corners 

represent possible “don’t dig thresholds,” with one possible “don’t dig threshold” per 

each unique rank on the ranked anomaly list. Some locations on the list may share the 

same rank if they are considered equally likely to contain TOI. Therefore, these locations 

must fall, together, either above or below any given “don’t dig threshold;” a “don’t dig 

threshold” cannot be placed between them. These groups of identically ranked locations 

lead to gaps between the points in the curve. This is particularly true of the test set 

locations classified as “Cannot Analyze” and appended to the bottom of the ranked 

anomaly list. By definition, the data collected at these locations could not be analyzed, 

and therefore the classification algorithm could not estimate the locations’ likelihoods of 

containing TOI nor any other similar decision statistic. Therefore, all “Cannot Analyze” 

test set locations share the rank of “unknown,” and a “don’t dig threshold” cannot be 

placed between them. This causes a gap between the point at the origin and the next 
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closest point, as shown in Figure 30. This next point corresponds to the situation where 

the “don’t dig threshold” is placed directly between the “Can Analyze” and “Cannot 

Analyze” locations on the ranked anomaly list. Only the “Can Analyze” locations rise 

above the “don’t dig threshold,” and only the “Cannot Analyze” locations fall below. In 

this situation, if Y% of all true TOI locations are classified as “Cannot Analyze” and 

therefore fall below the “don’t dig threshold,” then the Percent of TOI Below Threshold 

is equal to Y%. Similarly, if X of the true non-TOI locations are classified as “Cannot 

Analyze” and therefore fall below the “don’t dig threshold,” then the Number of Non-TOI 

Below Threshold is X. 

Figure 31 shows a similar plot of the cartoon curve, this time with the possible 

“don’t dig thresholds” colored according to the demonstrator-declared category into 

which they fell. The demonstrators classified each “Can Analyze” location on the ranked 

anomaly list into three subcategories: “Likely to Contain Only Non-TOI” (green), 

“Likely to Contain TOI” (red), and “Cannot Decide” (yellow). The colored points on the 

curve occur at the corresponding “don’t dig thresholds”. By definition, the 

demonstrator’s chosen “don’t dig threshold” (large blue dot) lies between the green and 

yellow points because this “don’t dig threshold” was defined as the boundary between the 

“Likely To Contain Only Non-TOI” and the “Cannot Decide” subcategories. 

Each ranked anomaly list’s classification performance curve was examined to 

identify what would have been the best possible choice of “don’t dig threshold” for that 

ranked anomaly list. Choosing the “don’t dig threshold” is a critical step in UXO 

classification. A “don’t dig threshold” placed near the top of the ranked anomaly list 

leads to a high Percent of TOI Below Threshold (a desirable outcome) but also a high 

Number of Non-TOI Below Threshold (an undesirable outcome). Conversely, placing the 

“don’t dig threshold” near the bottom of the ranked anomaly list leads to a low Percent of 

TOI Below Threshold (an undesirable outcome) but also a low Number of Non-TOI 

Below Threshold (a desirable outcome). The best possible “don’t dig threshold” lies 

somewhere in between.  
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Figure 31: A cartoon of a classification performance curve, noting in which categories the 
possible “don’t dig thresholds” fell on the ranked anomaly list. Points colored in green, 
yellow, and red correspond to “don’t dig thresholds” that fell in the “Likely to Contain 

Only Non-TOI,” “Cannot Decide,” and “Likely to Contain TOI” categories, respectively. By 
definition, the demonstrator’s “don’t dig threshold” lies between the green and yellow 

points. 

For this analysis, two possible definitions of the “best possible” “don’t dig 

threshold” were considered. According to one definition, this “don’t dig threshold” is that 

which would have resulted in the fewest Number of Non-TOI Below Threshold while the 

Percent of TOI Below Threshold was held at 100%. This “don’t dig threshold” could 

have minimized the cost of recovering items while leaving no true TOI in the ground. 

The large light-blue dot in Figure 32 corresponds to this “don’t dig threshold”. The 

second definition is more relaxed. This “don’t dig threshold” would have resulted in the 

fewest Number of Non-TOI Below Threshold while the Percent of TOI Below Threshold 

was held at 95%, minimizing the cost of recovering items while leaving only 5% of the 

true TOI (the most difficult to identify) in the ground. Figure 32 illustrates this “don’t dig 

threshold” with a large pink dot. 

The purpose of a classification performance curve is to illustrate the classification 

performance of an instrument-algorithm combination over the test set. However, the 

classification performance curve in Figure 32 does not take the amount of training data 

required into account. Curves like this can be compared to each other only if they are 

based on same-sized training and test sets. In this study, though, different demonstrators 
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used different training and test sets. Some demonstrators built their ranked anomaly lists 

from locations in the Standard Test Set, but others, such as SIG and RML, built some of 

their ranked anomaly lists from locations in the Active Learning Test Sets or the 

Extended Test Set [3, 12]. Test sets differed in both size and character, as shown in 

Figure 20–Figure 24. These differences in test sets led to inherent differences in the 

Number of Non-TOI Below Threshold calculated for each ranked anomaly list. An 

instrument-algorithm combination could have more easily achieved a low Number of 

Non-TOI Below Threshold with a test set that contained fewer true non-TOI locations to 

begin with.  

 

Figure 32: A cartoon of a classification performance curve, showing the retrospectively 
chosen best possible “don’t dig thresholds.” The large light-blue dot represents the “don’t 
dig threshold” that would have minimized the Number of Non-TOI Below Threshold while 
also keeping the Percent of TOI Below Threshold at 100%. The large pink dot represents 
the “don’t dig threshold” that would have also minimized the Number of non-TOI Below 

Threshold, while ensuring that the Percent of TOI Below Threshold was greater than 95%.  

The classification performance curves were altered so that they could be 

compared with each other even if based on different-sized training and test sets. In a real-

world situation, all locations in the training set must be excavated to obtain ground truth 

information that the demonstrators could use to optimize their classification algorithms. 

This is true regardless of which “don’t dig threshold” is eventually applied to the ranked 

anomaly list. Therefore, the training set locations were treated as though they were 

appended to the very bottom of the ranked anomaly list, below even the most extreme 
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“don’t dig threshold,” as shown in Figure 33. The summary classification performance 

statistics were then recalculated, incorporating the locations in the training set into the 

tallied TP, FN, and FP counts. 

 

Figure 33: A cartoon of a ranked anomaly list, altered to allow comparisons between 
different-sized training and test sets. Training set locations have been appended to the 

end of the list. The decision statistic, rank, and category of the training set locations are 
not applicable (N/A) because all training set locations are excavated. 

Training set locations were reflected in the recalculated counts of TP, FN, and FP. 

All locations in the training set that happened to be true TOI contributed to the TP count, 

the number of true TOI locations that correctly fell below the “don’t dig threshold.” 

Similarly, all locations in the training set that happened to be true non-TOI contributed to 

the FP count, the number of true non-TOI locations that incorrectly fell below the “don’t 

dig threshold.” These contributions led to a uniform shift of the classification 

performance curve away from the origin, as shown in Figure 34. (The shape of the curve 

was unaltered.) For example, if Y% of the true TOI locations were assigned to the 

training set, then these Y% must always fall below the “don’t dig threshold,” regardless 

of which “don’t dig threshold” is used. Therefore, the Percent of TOI Below Threshold 

can never be less than Y%. Similarly, if X of the true non-TOI locations were assigned to 

the training set, then these X locations must always fall below the “don’t dig threshold” 

as well. In this way, the Number of Non-TOI Below Threshold can never be less than X. 

Thus, the gap between the origin and the lower left end of the shifted classification 

performance curve represents the locations in the training set. The smaller the gap, the 
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smaller the training set. In either case, all curves based on the same instrument now have 

the same maximum value for the Number of Non-TOI Below Threshold. This allows an 

apples-to-apples comparison between instrument-algorithm combinations based on 

different training and test sets.  

 

Figure 34: A cartoon of a classification performance curve, where the locations in the 
training set have been included in the calculations of the plotted metrics. The gap between 
the origin and the black dot in the lower left corner represents the locations in the training 

set. 

The classification performance curves were further adjusted so that all curves 

could be plotted on the same horizontal scale, regardless of which instrument-algorithm 

combination was used to generate the ranked anomaly list. This adjustment was 

necessary because different instruments had different maximum values for the Number of 

Non-TOI Below Threshold. Figure 35 shows a cartoon of a curve with the horizontal axis 

ranging from zero to “Overall Max,” a value at least as large as the largest number of true 

non-TOI locations associated with any instrument used in this study. 

Finally, the primary classification performance of each instrument-algorithm 

combination was rescored for only those locations contained in the sub-areas of the site 

where the BUD collected data. Figure 14 shows these sub-areas in orange. The resulting 
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performance metrics and curves could be directly compared with the metrics and curves 

calculated for the BUD. In this way, the BUD’s performance could be directly compared 

with other instruments’ performances. 

 

Figure 35: A cartoon of a classification performance curve, with the horizontal axis 
adjusted to provide a consistent scaling across all instrument-algorithm combinations. 

2.19.2 Secondary Scoring 

The secondary classification scoring metrics were also calculated for each ranked 

anomaly list, this time considering the ground truth labels between different types of TOI. 

As was done with primary classification scoring, the number of FP locations on the 

ranked anomaly list were counted. In contrast to primary scoring, however, simple counts 

of TP and FN locations were not tallied. Instead, TP60 and FN60 locations, true 60 mm 

mortar locations that fell below and above threshold, respectively, were counted. Similar 

counts were tallied for each type of TOI, as shown in Figure 36.  

Several summary statistics were calculated for secondary classification scoring. 

First, the Number of Non-TOI Below Threshold was calculated as FP, as was done during 

primary scoring. During primary scoring, the Percent of TOI Below Threshold was also 

calculated, regardless of TOI type. In secondary scoring, however, more specific metrics 



67 

were calculated, taking note of each type of TOI. For example, the Percent of 60 mm 

Below Threshold is given as [TP60 / (TP60 + FP60)]  100, indicating the percentage of 

true 60 mm mortar locations that correctly fell below the “don’t dig threshold.” This 

metric ranges from 0% to 100%; the UXO community desires values near 100%. Similar 

metrics were calculated for all other types of TOI—81mm mortars, 4.2 in mortars, 2.36 in 

rockets, 5 in rockets, 3 in Stokes mortars, and 37 mm rounds.  

 

Figure 36: Metrics used to score secondary classification performance. The TOI types of 
the ground truth labels were considered. Each location on a ranked anomaly list was 

compared with its ground truth label and tallied toward a particular count. As in primary 
scoring, an FP location is a true non-TOI location that incorrectly fell below the “don’t dig 
threshold.” TN locations were not counted. The Number of Non-TOI Below Threshold is 
calculated as FP. In contrast to primary scoring, true TOI locations were tallied as either 

FPi or FNi, where i refers to the TOI type of the ground truth label. For example, a TP60 
location is a true 60 mm mortar location that correctly fell below threshold, and an FN60 

location is a true 60 mm mortar location that incorrectly rose above threshold. The Percent 
of 60 mm Below Threshold is a summary statistic specifying the percentage of true 60 mm 

mortar locations that correctly fell below threshold. Similar statistics are calculated for 
other TOI types. 

To summarize the secondary classification performance metrics, several 

additional curves were created for each ranked anomaly list. The first curve indicated 

how well the instrument-algorithm combination classified true 60 mm mortars vs. non-

TOI and was a plot of the Percent of 60 mm Below Threshold vs. the Number of Non-TOI 

Below Threshold. The other curves indicated how well other true TOI types were 

classified vs. non-TOI. These secondary curves shared many characteristics with the 
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single primary curve depicted in Figure 35. That is, the “Cannot Analyze” and training 

set locations were represented as gaps between the origin and the lower left end of the 

curve. Each point of the curve was also colored in based on the category in which it fell, 

and the retrospectively identified best possible “don’t dig thresholds” were included. 

However, the secondary curves did exhibit some differences from the primary curve. 

They had a coarser resolution because they were created from fewer locations, and 

therefore fewer possible “don’t dig thresholds”, than the primary curve. The secondary 

curves also showed longer 95% confidence intervals because each secondary curve was 

based on fewer true TOI locations than the primary curve. 

Finally, as was done in primary scoring, the secondary classification performance 

of each instrument-algorithm combination was rescored over only those locations 

contained in the sub-areas of the site over which the BUD collected data. This allowed 

for a direct comparison between the BUD and the other instruments. 
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3. RESULTS AND DISCUSSION 

After a brief discussion of detection performance, this chapter focuses on the 

results obtained by the various combinations of data-collection instruments and 

classification algorithms. The intent is to provide results and discussion that highlight the 

performance of commercial or commercial-like instruments based on the EM61-Mk2 and 

magnetometer sensors coupled with commercial software and contrast those results with 

results achieved by advanced instruments coupled with software programs specifically 

designed to capitalize on the richer data sets that the advanced instruments provide. 

3.1 DETECTION RESULTS 

Although the demonstration at Camp San Luis Obispo was designed principally 

as a classification demonstration, understanding TOI detection performance is 

particularly important because the detection thresholds were based on the signals 

expected from the TOI/depth combination giving the smallest signal for each given 

instrument. In general, that was a horizontal, cross-track 60 mm mortar at a depth of 

45 cm (the expected deepest depth of 30 cm plus a 50% margin). Note that in setting the 

detection threshold, predictions of the signature for complete 60 mm mortars were 

typically used, but many of the seed items were mortars that were missing the nose fuze 

and the tail boom, significantly reducing their signatures. 

As shown in Figure 37, Camp San Luis Obispo was not good site for the use of 

magnetometers because of the areas of high geologic background. Nevertheless, using a 

0.75 m detection halo, the MAG ARRAY detected all the emplaced seeds that it was able 

to survey, missing only one seed between two rocks where it was unable to maneuver. In 

a real clearance action, the missed area would have been covered by a hand-held 

instrument or cart. But as shown in the table in Appendix A, this detection performance 

was at the cost of over 5200 detected anomalies, compared with the 1464 unique 

anomalies that exceeded the detection threshold for the EM61 ARRAY, whose much 

cleaner anomaly map is shown in Figure 38. By the time the MSEMS magnetometer data 

collection was completed, the decision had been made to score only those magnetic 

anomalies that coincided with EMI anomalies. Therefore, no scoring of the MSEMS 

magnetometer anomalies against the emplaced seeds was done.  
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Figure 37: MAG ARRAY survey map of the demonstration area at Camp San Luis Obispo. 
The orange shaded area is the vehicular area that was not scored, and the black outlined 

area is the access path into the site. Taken from [6]. 

Using the same 0.75 m detection halo to associate anomalies with recovered 

items, the MSEMS EM61 detected all the emplaced seeds. The EM61 ARRAY missed 

the seed that was buried between two rocks. The EM61 CART missed calling detection 

on one seed item, a near-horizontal 60 mm mortar round missing the nose and tail boom 

and buried at 30 cm. The detection threshold for the EM61 CART, set based on a 

complete 60 mm mortar, was 11.3 mV. The partial round was just under the threshold, at 

10.7 mV. This result emphasizes that for an expected signal-based threshold, care must 

be taken to understand all possible TOI. The conclusion is further reinforced by the fact 

that the MetalMapper missed detecting four seeds in its survey. All were partial 60 mm 

rounds, three that were near horizontal and buried at 30 cm, and one that was vertical and 
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buried at 45 cm. One of the missed 60 mm mortars buried at 30 cm was the same seed 

missed by the EM61 CART. 

 

Figure 38: EM61 ARRAY survey map for the demonstration area at Camp San Luis Obispo. 
The orange shaded area is the vehicular area that was not scored, and the black outlined 

area is the access path into the site. Taken from [6]. 

The classification demonstrators analyzed only those anomalies that were 

detected by a given instrument. For a given instrument, the classification demonstrators 

arranged all test set anomalies detected by the instrument onto a ranked anomaly list. 

IDA appended the training set anomalies detected by the instrument to the bottom of the 

ranked anomaly list and then scored the list against ground truth. 
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3.2 CLASSIFICATION RESULTS 

The classification demonstrators submitted 62 separate ranked anomaly lists 

based on different combinations of data-collection instruments and classification 

algorithms. This section discusses a representative set of those combinations, with the 

primary scoring results of all ranked anomaly lists provided in Appendix B. Appendix C 

is a CD with the complete scoring results. 

Results are grouped by the type of instrument (conventional or advanced) and 

type of algorithm (commercial or custom) used to generate the ranked anomaly list. The 

commercial software algorithms available within Oasis montaj, UX-Process and UX-

Analyze, currently handle only data collected by conventional sensors (e.g., the EM61-

Mk2 and magnetometers). Classification efforts employing data from the advanced 

instruments used custom algorithms developed by the classification demonstrators 

themselves. 

Results are presented in a series of classification performance curves. Each curve 

plots the Percent of TOI Below Threshold vs. the Number of Non-TOI Below Threshold 

for every possible “don’t dig threshold” that could have been applied to the ranked 

anomaly list. The demonstrator’s prospectively chosen “don’t dig threshold” is shown as 

a dark-blue dot on each curve. The demonstrators classified all locations that rose above 

this “don’t dig threshold” as “Likely to Contain Only Non-TOI.” In a real-world scenario, 

items buried at these locations could be left in the ground, but those that fell below the 

“don’t dig threshold” would have to be dug. True TOI locations that rose above the 

demonstrator’s “don’t dig threshold” were incorrectly classified.  

On the curves, a light-blue dot marks the retrospective “100% don’t dig 

threshold.” This is the threshold that would have minimized the Number of Non-TOI 

Below Threshold while holding the Percent of TOI Below Threshold at 100%. By 

definition, no true TOI locations would have risen above the “100% don’t dig threshold.” 

Finally, a pink dot marks the retrospective “95% don’t dig threshold.” This is the value 

that would have minimized the Number of Non-TOI Below Threshold while the Percent 

of TOI Below Threshold was held greater than 95%. By definition, 5% (approximately 9 

to 11, depending upon the instrument) of the true TOI locations would have risen above 

this threshold. 

Each classification performance curve has an accompanying table. Listed in blue 

with an asterisk are any true TOI locations that rose above the demonstrator’s “don’t dig 

threshold.” Listed in pink without asterisks are those true TOI locations that fell between 
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the demonstrator’s prospective “don’t dig threshold” and the retrospective “95%” “don’t 

dig threshold.” In most cases, however, the demonstrator’s “don’t dig threshold” 

happened to be placed above the “95%” “don’t dig threshold” on the ranked anomaly list. 

But if the demonstrator’s “don’t dig threshold” was so poorly chosen that it was placed 

below the “95%” “don’t dig threshold,” then only those true TOI locations that rose 

above the “95%” “don’t dig threshold” are listed in the accompanying table. In all cases, 

the tables list the true TOI locations in the same order as they appeared on the ranked 

anomaly list, from least to greatest likelihood of containing TOI. The tables are included 

to provide a sense of what types of TOI proved troublesome to particular instrument-

algorithm combinations and to help understand whether certain types of TOI were 

problematic for all combinations.  

3.2.1 Conventional Instruments 

We define conventional instruments here as the instruments based on EM61-Mk2 

sensors or cesium vapor magnetometers. The EM61 CART, the EM61 ARRAY, the 

MAG ARRAY, and the MSEMS fall into this category. This section focuses on two 

classification approaches. The first applies the inversion and classification algorithms 

residing in Oasis montaj to the data collected by conventional instruments. These results 

illustrate capabilities that might be demonstrated by a commercial UXO clearance 

contractor employing readily available commercial equipment and software. The second 

approach uses data collected by the conventional instruments but with more advanced 

classification techniques. These results show the extent to which more sophisticated 

processing can make up for some of the shortcomings of the conventional instruments. 

3.2.1.1 Conventional Instruments with Commercial Classification Software 

To be successfully transitioned to the UXO community at large, classification 

processing will have to be applied by UXO contractors using widely available 

instruments and software. The NAEVA results shown here illustrate current capabilities 

at Camp San Luis Obispo, where NAEVA both collected and analyzed the EM61 CART 

data. 

All three of the EM61-Mk2 instruments at Camp San Luis Obispo were set up in 

the four-time-gate mode to collect logarithmically spaced time gates out to approximately 

1 ms [4, 6, 21]. Because of the single transmit and receive polarization, multiple spatially 

separated samples are required to ensure interrogation of all three target axes. UX-

Analyze, one of the Oasis montaj modules, allows inversion of spatial data to determine 

the principal polarizabilities (1, β2, β3) at each of the time gates. Because a TOI is 
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typically a body of revolution, with one large β value and two equal but smaller β values, 

the polarizabilities can be used to provide classification information. Polarizability decay 

rates () between gates can also be calculated.  

Figure 39 illustrates NAEVA’s results using a technique that looks only at the β 

values. In the figure, the large number of “Cannot Analyze” locations are represented by 

the large gap between the dot in the lower left corner of the plot and the red end of the 

curve. Because the β determination requires data from multiple spatial locations, it is 

vulnerable to position noise. Hence, a large number of inversions did not converge. For 

those that did converge, the classification algorithm was able to state with confidence that 

very few of them were “Likely to Contain TOI.” Instead, most were classified as “Cannot 

Decide.” Even then, five true TOI locations incorrectly rose above the demonstrator’s 

prospective “don’t dig threshold.” Three of the five contained relatively large items (4.2 

in mortars). Based on geophysical models, it is estimated that 4.2 in mortars at depths 

near 30 cm would exhibit signatures with a surface footprint wider than the 0.5 m lane 

spacing used by the EM61 CART. Thus, the signatures of these large items must have 

been recorded by more than one pass of the cart. The necessity to stitch together multiple 

passes for the inversion adds to the potential of relative position noise to degrade the 

solution for the β values. 

Contrast the results in Figure 39 with those in Figure 40, which use the same data 

set but employ an algorithm that uses the β and the  information to make a classification 

decision. The number of “Cannot Analyze” locations remains essentially the same, but 

the number of locations classified as “Likely to Contain Only Non-TOI,” those locations 

rising above the demonstrator’s “don’t dig threshold,” increases dramatically. Of the 

locations above the demonstrator’s “don’t dig threshold,” only two are true TOI.  

Figure 41 is a performance curve provided by NAEVA in a retrospective analysis. 

For this case, the demonstrators used time-decay parameters that did not depend on the 

relative positions of data points [18]. Note that the number of “Cannot Analyze” locations 

was dramatically reduced. At the demonstrator’s “don’t dig threshold” (dark-blue dot), 

the Percent of TOI Below Threshold was 100% and the Number of Non-TOI Below 

Threshold was reduced from its maximum value by more than 500 (the horizontal 

distance between the dark-blue dot and the green end of the curve). This means that by 

applying the demonstrator’s “don’t dig threshold” to the ranked anomaly list, over 500 

unnecessary digs (44%) could have been avoided without leaving a single true TOI in the 

ground.  
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

326* 4.2* 

404* 4.2* 

365* 4.2* 

304* 60* 

188* 2.36* 

367 60 

66 60 

79 60 

290 60 

197 60 

249 60 
 

Figure 39: NAEVA’s primary scoring results for the EM61 CART and the “Rule Based Beta” 
classification algorithm. Five true TOI locations incorrectly rose above the prospective 

“don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

326* 4.2* 

404* 4.2* 

60 60 

1456 60 

59 60 

1108 60 

160 60 

275 60 

1483 60 

443 60 

19 60 
 

Figure 40: NAEVA’s primary scoring results for the EM61 CART and the “Rule Based Beta 
Tau” classification algorithm. Two true TOI locations incorrectly rose above the 

prospective “don’t dig threshold” (dark-blue dot). 

Parsons also employed target-decay parameters for its classification algorithm. 

While Parsons was significantly more conservative than NAEVA in setting the 

prospective “don’t dig threshold,” the shape of the curve (Figure 42) is very similar to 
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that of Figure 41. Furthermore, no true TOI locations rose above their “don’t dig 

threshold.” 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

60 60 

53 2.36 

188 2.36 

443 60 

90 60 

19 60 

59 60 

457 60 

149 60 

1615 60 

1444 60 
 

Figure 41: NAEVA’s primary scoring results for the EM61 CART and the “Rule Based Tau 
1234” classification algorithm in a retrospective analysis. No true TOI locations rose above 

the prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

19 60 

1372 2.36 

60 60 

512 60 

66 60 

1072 4.2 

1311 81 

517 81 

231 81 

626 4.2 

294 4.2 
 

Figure 42: Parson’s primary scoring results for the EM61 CART and the “Decay 
Constants” classification algorithm. No true TOI locations rose above the prospective 

“don’t dig threshold” (dark-blue dot). 

The Corps of Engineers, Huntsville Center (CEHNC) also applied the Oasis 

montaj commercial software to the EM61 CART data. For this case, the analysts used a 
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two-pass process for classification [23, 24]. In the first pass, they submitted a ranked 

anomaly list containing all locations assigned to the Standard Test Set. They requested 

ground truth information on all locations that fell below their prospective “don’t dig 

threshold,” because in a real-world scenario, this information would be available post-dig 

and could be used as a quality-control tool. In the second pass, they reassessed the 

position of their “don’t dig threshold” based on the new ground truth information. 

Specifically, they used the new information to adjust their classification rules regarding 

size, , and SNR. As a result, some of the remaining unlabeled locations in the test set 

were moved from the “Likely to Contain Only Non-TOI” to the “Likely To Contain TOI” 

categories. These locations were effectively moved below the revised “don’t dig 

threshold,” along with all other locations already placed there during the first pass of 

classification. The analysts considered conducting a third classification pass and 

requested the ground truth information of all new locations placed under the revised 

“don’t dig threshold.” Analysis of this information showed that a third pass was not 

needed. 

Figure 43 shows the results of their first classification pass. One 60 mm mortar 

incorrectly rose above the demonstrator’s initial “don’t dig threshold” (listed in blue with 

an asterisk in the table). Figure 44 is a photograph of this particular item. The TOI is 

missing its fuze and tail boom, giving rise to a significantly lower signal and resulting in 

a lower aspect ratio than a complete 60 mm mortar. This type of TOI challenged a 

number of the demonstrators, particularly when the items were relatively deep and 

exhibited a low SNR.  

In the second pass of classification, no true TOI rose above the demonstrator’s 

revised “don’t dig threshold,” as shown in Figure 45. The revised threshold (dark-blue 

dot) was near optimum, as it was very close to the retrospective “100%” “don’t dig 

threshold” (light-blue dot). The demonstrator’s revised “don’t dig threshold” would have 

left no true TOI in the ground while avoiding approximately 400 unnecessary digs. Note 

that in the second classification pass, all 11 items that rose above the retrospective “95%” 

“don’t dig threshold” were 60 mm mortar rounds missing their fuze and tail booms, a 

type of TOI that proved difficult to classify for many demonstrators. The ability to obtain 

the ground truth information from the first pass of classification clearly helped the 

analysts understand the characteristics of the items close to the initial “don’t dig 

threshold,” allowing successful adjustment of the threshold for the second pass. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1285* 60* 

1441 60 

682 60 

314 60 

79 60 

249 60 

90 60 

443 60 

149 60 

107 60 

659 60 
 

Figure 43: CEHNC’s primary scoring results for the EM61 CART and the UX-Process 
classification software, first pass. One true TOI location incorrectly rose above the 

demonstrator’s prospective “don’t dig threshold” (dark-blue dot). 

 

Figure 44: The TOI recovered from location #1285, a 60 mm mortar missing the fuze and 
tail boom. The TOI recovered from location #1444 was similar. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1285 60 

1441 60 

682 60 

314 60 

79 60 

249 60 

90 60 

443 60 

149 60 

107 60 

659 60 
 

Figure 45: CEHNC’s primary scoring results for the EM61 CART and the UX-Process 
classification software, second pass. The software was optimized over the Standard 

Training Set plus the subset of the Standard Test Set that had fallen below the 
demonstrator’s “don’t dig threshold” during the first classification pass. The optimized 
software was then re-applied to the entire Standard Test Set. No true TOI locations rose 

above the demonstrator’s revised “don’t dig threshold” in the second classification pass 
(dark-blue dot). 

A final example of commercial software combined with EM61 CART data was 

produced by SAIC, who did much of the work to implement classification algorithms into 

Oasis montaj and thus is likely the organization most familiar with that software and its 

use. Figure 46 shows the performance results obtained using a generalized likelihood 

ratio test (GLRT) classifier based on item size and decay characteristics. The one true 

TOI location just above the prospective “don’t dig threshold,” location #1444, contained 

a 60 mm partial round that looks identical to the one shown in Figure 44. In its 

demonstration report [9], SAIC notes that the true TOI recovered from location #1444 

met the size characteristic of “Likely to Contain TOI,” but its rapid decay moved it into 

the “Likely to Contain Only Non-TOI” category. Upon reexamining the EM61 CART 

data, it appears that a small object recovered near the true TOI and within the polygon of 

inverted data might have artificially reduced the apparent decay rate sufficiently to move 

the true TOI into the “Likely to Contain Only Non-TOI” region of feature space. 

Anomalies representing multiple closely spaced items challenged the demonstrators in 

the Camp San Luis Obispo study and are the subject of ongoing research. Comparing 

these SAIC results to the NAEVA results in Figure 41 shows very similar curves, but 

with SAIC choosing a somewhat more aggressive “don’t dig threshold.” 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444* 60* 

899 81 

1615 60 

441 60 

1483 60 

775 60 

160 60 

80 60 

296 81 

907 81 

1469 60 
 

Figure 46: SAIC’s primary scoring results for the EM61 CART (after slope correction) and 
the UX-Analyze classification software. One true TOI location incorrectly rose above the 

prospective “don’t dig threshold” (dark-blue dot). 

Because the survey instruments were tilted when collecting data on the side of the 

hill at Camp San Luis Obispo, the Program Office used slope-corrected data to determine 

anomaly locations and to correlate items among instruments to create the master anomaly 

list. As an analysis excursion, SAIC applied its UX-Analyze processing to both slope-

corrected and non-slope-corrected versions of the EM61 CART data, as shown in Figure 

46 and Figure 47. In this case, the slope correction made very little difference in the 

performance, with both ranked anomaly lists having the same 60 mm partial mortar round 

incorrectly rising above the demonstrator’s “don’t dig threshold.” Furthermore, the 

majority of the TOI between the demonstrator’s “don’t dig threshold” and the “95%” 

“don’t dig threshold” was common to both ranked anomaly lists. 

The results at Camp San Luis Obispo based on the use of the EM61-Mk2 data and 

commercial inversion and classification software are encouraging. Performance curves 

clearly indicate that this combination of commercial instruments and algorithms has 

significant classification capability against the TOI types encountered. While occasional 

problems were seen with larger TOI (4.2 in and 81 mm mortars), most problems involved 

the small 60 mm rounds that were missing the fuze and tail boom. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444* 60* 

899 81 

1615 60 

441 60 

160 60 

1483 60 

775 60 

231 81 

53 2.36 

1372 2.36 

301 60 
 

Figure 47: SAIC’s primary scoring results for the EM61 CART (before slope correction) and 
the UX-Analyze classification software. One true TOI location incorrectly rose above the 

prospective “don’t dig threshold” (dark-blue dot). 

3.2.1.1 Conventional Instruments with Custom Classification Software 

A number of the demonstrators also produced ranked anomaly lists based on the 

conventional instruments but using their own inversion and classification algorithms. 

Results were mixed. The best cases showed results significantly better than those 

obtained using UX-Process or UX-Analyze. In general, however, the results were no 

better than those obtained using commercial software and were often worse. Figure 48 

shows what is arguably the best performance curve produced from an EM61-Mk2 

instrument. SIG produced this list using the EM61 MSEMS data and a parameterized 

neighborhood-based classification (PNBC) algorithm for semi-supervised learning. As 

shown by the curve, this instrument-algorithm combination would have avoided over 800 

unnecessary digs (67%) while leaving no true TOI in the ground. Note that the last 11 

true TOI recovered (listed in the table) would have been 60 mm mortars, most of which 

were missing the fuze and tail boom. 

Only one demonstrator, Sky Research, performed cooperative inversions of the 

EM61 and MAG MSEMS data. Figure 49 shows the performance curve resulting from 

applying their decay-rate algorithm to features extracted from the MSEMS data using 

cooperative inversions. Sky’s “don’t dig threshold” would have avoided about 700 

unnecessary digs (55%) while leaving no true TOI in the ground. Note, though, that this 
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55% reduction is smaller than the 67% reduction shown in Figure 48, in which the EM61 

MSEMS data was inverted alone. 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

19 60 

66 60 

1444 60 

775 60 

160 60 

65 60 

1483 60 

1108 60 

1403 60 

122 60 

59 60 
 

Figure 48: SIG’s primary scoring results for the EM61 MSEMS and the PNBC semi-
supervised learning classification algorithm. No true TOI locations rose above the 

prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

775 60 

19 60 

585 81 

315 60 

160 60 

1483 60 

1444 60 

767 60 

500 60 

550 81 

59 60 
 

Figure 49: Sky’s primary scoring results for cooperative inversions of the EM61 MSEMS 
and MAG MSEMS sensors and the “Decay Rate” classification algorithm. No true TOI 

locations rose above the prospective “don’t dig threshold” (dark-blue dot). 

Sky Research also applied its time-decay algorithm to the EM61 CART data, 

leading to very good results. As Figure 50 shows, this algorithm-instrument combination 
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would have also avoided approximately 700 unnecessary digs (56%) while leaving no 

true TOI in the ground. Most of the last true TOI recovered (listed in the table) would 

have been 60 mm mortars. Four of these same TOI were also listed for Figure 48. 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444 60 

775 60 

1483 60 

441 60 

907 81 

275 60 

1455 60 

1615 60 

207 60 

418 60 

160 60 
 

Figure 50: Sky’s primary scoring results for the EM61 CART and the “Time Decay” 
classification algorithm. No true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

In general, the results for the EM61 ARRAY at Camp San Luis Obispo were 

somewhat poorer than those for the cart-based instruments, in spite of its larger transmit 

moment and better sensor-to-sensor relative position precision along a survey line. This is 

most likely due to motion noise from towing the ARRAY across terrain with potholes 

and rocks. For example, Sky Research applied the same algorithm to the ARRAY data 

(Figure 51) that it had applied to the CART data (Figure 50). One 60 mm partial round—

the same one as for the SAIC analysis of CART data—fell just above the prospective 

“don’t dig threshold.” According to Sky’s demonstration report [7], residual misfit (data 

minus model) plots of the true TOI recovered from location #1444 show a small area of 

high misfit to the right of the target in both the CART and ARRAY data. This bolsters 

SAIC’s contention that the inverted data included a small piece of scrap in addition to the 

60 mm partial round [9]. For Sky’s analysis of the ARRAY data, most of the items 

between the prospective “don’t dig threshold” and the retrospective “95%” “don’t dig 

threshold” were 81 mm mortars, rather than the 60 mm partial rounds in SAIC’s analysis. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444* 60* 

160 60 

775 60 

1388 81 

585 81 

1455 81 

1419 81 

312 81 

121 81 

550 81 

325 81 
 

Figure 51: Sky’s primary scoring results for the EM61 ARRAY and the “Time Decay” 
classification algorithm. One true TOI location rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

The final conventional instruments used at Camp San Luis Obispo were the MAG 

ARRAY and the magnetometer sensor on the MSEMS. Because of adverse geology and 

the very large number of magnetometer anomalies, the magnetometers were only scored 

against their threshold crossings that were common with EMI anomalies. Figure 52 

shows the results of a Sky analysis of the MAG ARRAY data, where only target size 

(magnetic moment) was used to rank the targets. Three of the smaller true TOI (60 mm 

mortars) incorrectly rose above the prospective “don’t dig threshold;” two of those were 

partial rounds employed as seed items. At the same time, fewer than 200 unnecessary 

digs (14%) could have been saved. This was the best of the magnetometer curves, 

demonstrating that more sophisticated algorithms were not the solution to poor 

magnetometer performance. Figure 53, the second-best curve, results from SIG applying 

its PNBC algorithm to magnetic parameters provided by Sky. One true TOI location rose 

above the demonstrator’s “don’t dig threshold” while only approximately 150 

unnecessary digs (13%) were saved. Appendix B shows the remaining performance 

curves based on magnetometer data. They are significantly worse than these two, with 

some approaching the chance diagonal. With size as the major feature available from 

magnetometer data, it is clear that for sites like Camp San Luis Obispo, with multiple 

types of TOI of various sizes, magnetometers do not make successful classification 

sensors. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

600* 60* 

1108* 60* 

776* 60* 

19 60 

732 60 

275 60 

249 60 

207 60 

103 60 
 

Figure 52: Sky’s primary scoring results for the MAG ARRAY and the “Moment” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

600* 60* 

1108 60 

776 60 

103 60 

732 60 

464 2.36 

19 60 

1189 81 

708 60 

15 60 

192 60 
 

Figure 53: SIG’s primary scoring results for the MAG ARRAY and the PNBC semi-
supervised learning classification algorithm. (Sky estimated the parameters input to the 

algorithm.) One true TOI location incorrectly rose above the prospective “don’t dig 
threshold” (dark-blue dot). 

An additional objective of this demonstration was to provide a second test of the 

active-learning concept. Active learning uses information-theoretic techniques to pick 

those training data that can provide the most information to a classifier. The objective of 
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active learning is to use a smaller set of training data to produce classification results that 

are as good as or better than those results obtained from the full set of training data [12]. 

The technique was applied in the Camp Sibert demonstration, but did not result in 

superior classification performance over standard training techniques [13]. Because 

Camp Sibert contained only one TOI type with size as an excellent discriminant, it 

perhaps did not provide enough opportunity for active learning to display an improved 

performance over standard training methods. Thus, SIG was tasked to test its active-

learning techniques against the more challenging data set at Camp San Luis Obispo. 

Figure 54 and Figure 55 show the performance curves for SIG’s analysis of EM61 

ARRAY data using a relevance vector machine (RVM) supervised learning classifier 

optimized over the Standard Training Set and the Active Learning Training Set, 

respectively. In this case, active learning fared much more poorly than standard training. 

Although active learning used fewer training data, that advantage was almost offset by an 

increased number of “Cannot Analyze” locations, as demonstrated by the red sections of 

both curves ending in approximately the same place. In addition, active learning resulted 

in 43 true TOI locations rising incorrectly above the prospective “don’t dig threshold” 

(only the first 11 are listed in the table). In contrast, only three true TOI rose above 

threshold for standard training. 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

314* 60* 

25* 60* 

79* 60* 

1372 2.36 

1285 60 

90 60 

60 60 

1441 60 

722 60 

1434 81 

72 60 
 

Figure 54: SIG’s primary scoring results for the EM61 ARRAY and the RVM supervised 
learning classification algorithm. The algorithm was optimized over the Standard Training 

Set and applied to the complementary Standard Test Set. Three true TOI locations 
incorrectly rose above the prospective “don’t dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

314* 60* 

25* 60* 

79* 60* 

1372* 2.36* 

60* 60* 

1441* 60* 

1285* 60* 

22* 60* 

241* 2.36* 

275* 60* 

722* 60* 
 

Figure 55: SIG’s primary scoring results for the EM61 ARRAY and the RVM supervised 
learning classification algorithm. The algorithm was optimized over the Active Learning 

Training Set and applied to the complementary Active Learning Test Set. Forty-three true 
TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot), the first 11 

of which are listed in the table. 

SIG also provided some ranked anomaly lists produced with its classification 

algorithms operating on inversion parameters provided by Sky, an organization with 

significantly more experience inverting geophysical data. Figure 56 is directly 

comparable to Figure 54. On the surface, there is not much difference between the shapes 

of the two performance curves or the threshold placement, although the Sky-inverted data 

does put one fewer  true TOI above the “don’t dig threshold.” However, the Sky 

inversions do result in almost 100 fewer “Cannot Analyze” locations, and the true TOI 

nearest the top of the ranked anomaly list is almost 200 ranks further down the list for the 

Sky inversions than for SIG’s own inversions. In addition, one of the true TOI above 

threshold was recovered from location #1285, the partial 60 mm mortar round shown in 

Figure 44; this location challenged many of the demonstrators and was considered 

particularly difficult to classify correctly. Thus, the choice of the polygon used to 

circumscribe the anomaly and the data-processing routine used to invert the 

circumscribed anomaly do affect the performance of this classification algorithm. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

275* 60* 

1285* 60* 

775 60 

365 4.2 

361 4.2 

626 4.2 

276 4.2 

175 4.2 

152 4.2 

865 81 

466 81 
 

Figure 56: SIG’s primary scoring results for the EM61 ARRAY and the RVM supervised 
learning classification algorithm. (Sky estimated the parameters input to the algorithm.) 

The algorithm was optimized over the Standard Training Set and applied to the 
complementary Standard Test Set. Two true TOI locations incorrectly rose above the 

prospective “don’t dig threshold” (dark-blue dot). 

3.2.2 Advanced Instruments 

Two advanced instruments, the TEMTADS and the MetalMapper, collected cued 

data over the entire demonstration area at Camp San Luis Obispo. The TEMTADS cued 

off the EM61 ARRAY anomalies; the MetalMapper was self-cued. As such, the cued 

data locations are not identical, but they are comparable, and it is useful to look at results 

employing the same classification algorithm applied to both cued data sets.  

Figure 57 and Figure 58 illustrate the results obtained by SAIC for the two 

instruments using its “2 Criteria” algorithm. The two criteria were the amplitude of the 

largest beta value (β1) as well as the ratio of β1 to the second largest value (β2). Both 

parameters were evaluated in all time gates. The classification procedure employed a 

library match algorithm [9]. The results for the two instruments are similar, and as is the 

case for most of the classification performance curves for these two instruments, both 

have a very steep initial slope. This indicates that most true TOI were easily distinguished 

from true non-TOI. However, for both instruments, the prospective “don’t dig threshold” 

was set too aggressively and would have incorrectly left some true TOI in the ground. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

444* 2.36* 

711* 60* 

103 60 

79 60 

90 60 

1450 81 

1285 60 

428 3 

976 60 

275 60 
 

Figure 57: SAIC’s primary scoring results for the TEMTADS and the “2 Criteria” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

775* 60* 

1285* 60* 

1372* 2.36* 

314* 60* 

1469* 60* 

1475 2.36 

1502 37 

428 3 

600 60 

1315 60 

500 60 
 

Figure 58: SAIC’s primary scoring results for the MetalMapper and the “2 Criteria” 
classification algorithm. Five true TOI locations incorrectly rose above the prospective 

“don’t dig threshold” (dark-blue dot). 

Failure analyses focused on the true TOIs that appeared near the very top of the 

ranked anomaly lists, well into the “Likely to Contain Only Non-TOI” category. Figure 

59 shows a photograph of the items recovered from location #241/1475. This location is 

labeled as a true 2.36 in rocket. As can be seen in the photograph, however, multiple 
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items were recovered from this location, including a 2.36 in rocket motor body, a handful 

of separate fins, and a 60 mm mortar tail boom. Multiple items were also recovered from 

location #444, including a 2.36 in rocket body. 

 

Figure 59: Items recovered from location #241/1475. This location challenged many 
instrument-algorithm combinations. 

Figure 60 and Figure 61 similarly compare TEMTADS and MetalMapper results 

from a Sky analysis. Results are based on the primary polarization amplitude and decay 

parameters input into a nonparametric statistical classifier [7]. Again, location #241/1475 

heads the list of true TOI that incorrectly rose above the prospective “don’t dig 

threshold,” with 60 mm partial rounds also causing problems. In the MetalMapper case, 

Sky also missed the 37 mm mortar, but in their demonstration report stated that the 

object’s slow decay would have allowed it to be correctly classified if Sky had expected 

items that small [7]. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

16* 60* 

103* 60* 

314 60 

365 4.2 

444 2.36 

443 60 

1285 60 

441 60 

60 60 

241 2.36 
 

Figure 60: Sky’s primary scoring results for the TEMTADS and the “Statistical Classifier” 
classification algorithm. Three true TOI locations incorrectly rose above the prospective 

“don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1475* 2.36* 

1502* 37* 

775 60 

1315 60 

1441 60 

675 60 

314 60 

1483 60 

  

  

  
 

Figure 61: Sky’s primary scoring results for the MetalMapper and the “Statistical 
Classifier” classification algorithm. Two true TOI locations incorrectly rose above the 

prospective “don’t dig threshold” (dark-blue dot). 

Geometrics, the developer of the MetalMapper, obtained similar results, as shown 

in Figure 62. The Geometrics classifier used a three-stage process. The first stage tested 

whether the SNR was sufficient and whether a reasonable inversion fit to the data was 

obtained. The second stage classified as “Likely to Contain Only Non-TOI” any locations 
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for which the inverted size parameter was significantly smaller than a 60 mm mortar (the 

smallest expected TOI on the site). This resulted in a missed classification of the one 

unexpected 37 mm mortar found on the site. The final stage of the classifier employed an 

artificial neural network and library matching routine, where the neural network was 

trained on a combination of the provided training data and additional data on TOIs 

measured in the test pit. In addition to the 37 mm mortar, location #241/1475 and a fuzed 

60 mm mortar with a portion of tail boom and piece of fuze also incorrectly rose above 

the prospective “don’t dig threshold.”  

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1502* 37* 

1475* 2.36* 

775* 60* 

302 60 

987 5 

314 60 

1285 60 

899 81 

1444 60 

428 3 

441 60 
 

Figure 62: Geometrics’ primary scoring results for the MetalMapper and the “ANN-TKLM” 
classification algorithm. Three true TOI locations incorrectly rose above the prospective 

“don’t dig threshold” (dark-blue dot). 

BUD was the final cued instrument used at Camp San Luis Obispo. Because of its 

limited mobility, BUD covered only a subset of the demonstration area. Its Standard Test 

Set consisted of only 473 locations, 59 of which contained true TOI. To compare, all 

other instruments used a Standard Test Set consisting of approximately 1300 locations, 

with approximately 200 containing true TOI. Hence, the error bars on the BUD 

performance curves are much longer than those for the other instruments. Sky produced 

the “best” results for the BUD data, using a probabilistic neural network (PNN) classifier 

applied to a feature space consisting of size and time-decay parameters from the 

polarizability inversions. The resulting performance curve is shown in Figure 63. The one 

true TOI above the prospective “don’t dig threshold” was recovered from location 

#241/1475, as it was for many other cases. The two true TOI locations just under the 
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prospective “don’t dig threshold” contained another 2.36 in rocket body accompanied by 

other munitions debris and a 60 mm partial round. This confirms that the same types of 

TOI challenged all advanced instruments.  

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID  
Ground 
Truth 

241* 2.36* 

444 2.36 

1444 60 
 

Figure 63: Sky’s primary scoring results for the BUD and the PNN classification algorithm 
in a retrospective analysis. Results were scored over only the sub-areas of the site over 

which the BUD collected data. One true TOI location incorrectly rose above the 
prospective “don’t dig threshold” (dark-blue dot). 
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4. FINDINGS AND CONCLUSIONS 

4.1 FINDINGS 

The results described in this document provide a second confirmation (to the 

results from Camp Sibert) that successful UXO classification is possible on a live site 

using currently available instruments and software. Specific findings from this 

demonstration are summarized below, grouped according to the stage of processing or the 

type of instrument or software to which they refer: 

4.1.1 Detection 

 EMI-based instruments detected all or almost all seeds. A 0.75 m radius halo 
was used to associate detected anomalies with seeds. The EM61 MSEMS 
sensor detected all the emplaced seeds. The EM61 ARRAY missed one seed 
buried between two rocks where it was unable to maneuver. The missed 
coverage was noted, and in a real clearance action, the missed area would 
have been covered by a hand-held instrument or cart. The EM61 CART 
missed one seed, a 60 mm mortar missing the nose and tail boom. The EM61 
CART’s detection threshold, set based on a complete 60 mm mortar, was 
11.3 mV, and the partial round was 10.7 mV, just under threshold. For 
detection thresholds based on the smallest signal expected from TOI, care 
must be taken to understand all possible TOIs. The conclusion is further 
reinforced by the fact that the MetalMapper missed detecting four of the 
seeds in its survey. All four were partial 60 mm rounds, three buried 30 cm 
below the surface and one buried 45 cm below the surface. 

 The MAG ARRAY also detected all the emplaced seeds that it was able to 
survey, missing the same seed as the EM61 ARRAY. But this complete 
detection was at the cost of over 5200 detected anomalies, compared with the 
1464 unique anomalies that exceeded the detection threshold for the EM61 
ARRAY. By the time the MSEMS magnetometer data collection was 
completed, the decision had been made to score only those magnetic 
anomalies that coincided with EMI anomalies. Therefore, the MSEMS 
magnetometer anomalies were not scored against the seeds to determine 
detection performance. 
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4.1.2 Classification 

4.1.2.1 Commercially Available Instruments and Software 

 Commercially available instruments and software often led to very good 
classification performance. The better performers using EM61-Mk2 data and 
UX-Analyze or UX-Process selected “don’t dig thresholds” that would have 
left no true TOI in the ground while reducing the unnecessary digs by 30% to 
50%. 

 In general, in spite of the EM61-Mk2’s limited decay-time coverage and 
having only four time gates, classification approaches based on principal 
polarizabilities and decay rate (size, shape, and wall thickness), or simply 
decay rate (wall thickness), provided better performance than approaches 
based on comparisons of principal polarizability values alone (size and 
shape). 

 In the one case where dig results were used to refine classification parameters 
and revise the “don’t dig threshold,” the final ranked anomaly list placed all 
true TOI locations below the revised “don’t dig threshold” and reduced 
unnecessary digs by more than 30%. 

4.1.2.2 Commercially Available Instruments and Custom Software 

 Some results using custom software and EM61-Mk2 data were better than 
those using commercial software, but some were worse. The best 
performance curve would have reduced unnecessary digs by 67% while 
digging all true TOI. 

 Cooperative inversion of the EM61 MSEMS and magnetometer data 
produced good results, reducing unnecessary digs by 56%. However, that 
result was not as good as the best result using EM61 MSEMS data alone, 
which provided the 67% reduction in unnecessary digs. 

 With correct placement of the “don’t dig threshold,” the best of the 
magnetometer-based ranked anomaly lists could have reduced unnecessary 
digs by only 14%. However, all the better performing of those lists had at 
least one true TOI location above the “don’t dig threshold.” Note also that 
only those magnetometer anomalies that corresponded to EMI anomalies 
were included on the ranked anomaly lists and scored. If all magnetometer 
anomalies were included in scoring, thousands more unnecessary digs would 
have resulted. 

4.1.2.3 Advanced Instruments and Software 

 While there were problems with a few specific true TOI locations rising well 
above the demonstrators’ “don’t dig thresholds,” many of the classification 
performance curves for the MetalMapper and TEMTADS had near-right-
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angle shapes, indicating a very clear separation in feature space between 
most true TOI and non-TOI. 

 The true TOI items that challenged the advanced instruments were generally 
portions of 2.36 in rocket bodies close to other munitions debris. For 
example, location #241/1475 rose above the demonstrator’s “don’t dig 
threshold” on 13 of the 14 TEMTADS ranked anomaly lists and 7 of the 10 
MetalMapper lists (and would have been the last true TOI recovered on 2 of 
the 3 ranked anomaly lists where it was below the “don’t dig threshold”). 
Other items causing problems were typically low SNR items, particularly 
partial 60 mm mortars buried deeply. 

 Active learning did not enhance performance in this demonstration. 

4.1.2.4 “Don’t dig threshold” 

 For the commercial EMI-based instruments, although demonstrators typically 
set the “don’t dig threshold” somewhat aggressively (18 out of 28 ranked 
anomaly lists would have left at least one true TOI in the ground), 21 of the 
lists would have recovered over 98% of the true TOI, and all but 2 of the lists 
would have recovered over 95% of the true TOI. The two lists that would 
have recovered fewer than 95% of the true TOI were based on a supervised 
learning algorithm, one optimized over the Standard Training Set and the 
other over the Active Learning Training Set. 

 For the advanced instruments, “don’t dig thresholds” were uniformly 
aggressive, with only 1 of the 29 ranked anomaly lists showing all true TOI 
placed correctly below the “don’t dig threshold.” However, only one of the 
ranked anomaly lists (based on active learning) would have recovered fewer 
than 95% of the true TOI. Nineteen of the 29 would have recovered more 
than 98% of the true TOI. 

 No clear metric indicated that either the MetalMapper or TEMTADS 
performed better than the other in this demonstration. Of the eight ranked 
anomaly lists for each instrument that were directly comparable, each proved 
superior on four (i.e., left fewer true TOI in the ground at the “don’t dig 
threshold”). Averaged over the eight ranked lists, the MetalMapper would 
have left 3.9 true TOI per list in the ground; the TEMTADS would have left 
3.6. 

 On the whole, the BUD performance curves did not show the near right-angle-
characteristics of many of the MetalMapper and TEMTADS curves, but the 
overall performance was still very good. At the demonstrators’ “don’t dig 
thresholds,” only one of the five BUD ranked anomaly lists would have 
recovered fewer than 98% of the true TOI, and that list would have recovered 
95%. Again, 2.36 in rocket bodies and partial 60 mm mortar rounds were the 
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problem, with location #241/1475 containing the only true TOI missed on two 
of the lists. 

4.1.2.5  “Cannot Analyze” and “Cannot Decide” Locations 

 Different classification demosntrators used different criteria for placing 
anomalies in the “Cannot Analyze” category. The number of “Cannot 
Analyze” locations varied widely from instrument to instrument and among 
demonstrators for the same instrument. However, some trends are evident: 

– The number of “Cannot Analyze” locations at Camp San Luis Obispo 
was generally lower than the number at Camp Sibert. 

– The number of “Cannot Analyze” locations was generally lower for 
the advanced instruments than for the commercial EMI-based 
instruments. 

– For the commercial EMI-based instruments, demonstrators who had 
participated in the Camp Sibert demonstration had fewer “Cannot 
Analyze” locations than the new demonstrators. 

– Comparing the MetalMapper and TEMTADS using the 8 ranked 
anomaly lists in common, we found that the MetalMapper had fewer 
“Cannot Analyze” locations (2) than the TEMTADS (33) when the 
number of “Cannot Analyze” locations from all lists were summed. 

 The number of “Cannot Decide” locations also varied among the locations, 
demonstrators, and algorithms, with some evident trends: 

– The advance instruments had fewer “Cannot Decide” locations than 
the commercial EMI-based instruments.  

– Comparing the eight lists common to the TEMTADS and 
MetalMapper, we found that MetalMapper typically had 50% to 75% 
the number of “Cannot Decide” locations than TEMTADS. However, 
except for the SAIC “2 Criteria” and “3 Criteria” ranked anomaly 
lists, where the MetalMapper “Cannot Decide” locations made up 
approximately 15% of the list and TEMTADS “Cannot Decide” 
locations made up approximately 25% of the list, the other six 
common lists typically had “Cannot Decide” locations as a few 
percent or less of the total number of locations.  

4.2 CONCLUSIONS 

This second classification demonstration dealt with a much more difficult site 

than Camp Sibert in terms of number and sizes of munitions types, topography, and 

geography. In spite of the significantly increased difficulty, very good classification 

performance was achieved using both commercial instruments and classification software 
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and with advanced instruments and advanced processing. For the advanced instruments, 

false-negative calls were limited to cases where multiple items were excavated from the 

same location, with a single TOI among them, or where the instrument provided 

insufficient SNR for a satisfactory inversion. In the next demonstration, on-site quality-

check procedures need to be established to ensure that satisfactory data have been 

collected. In addition, algorithms must be improved in post processing to identify when 

multiple targets are present. 
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APPENDIX A: NUMBER OF ANOMALIES PER INSTRUMENT 

This appendix lists the numbers of locations associated with each instrument. The 

EM61 CART, EM61 ARRAY, MAG ARRAY, and MSEMS collected survey data over 

the demonstration area. The data-collection teams detected anomalies in each 

instrument’s survey data. Most anomalies detected by the EMI-based sensors were 

associated with a master location. The magnetometers detected very large numbers of 

anomalies due to the magnetic geology of the site. Therefore, the MAG ARRAY was 

associated with only those master locations already associated with the EM61 ARRAY, 

and the MAG MSEMS sensor was associated with only those master locations already 

associated with the EM61 MSEMS sensor. The TEMTADS collected cued data at all 

master locations associated with the EM61 ARRAY, and the BUD collected cued data at 

a subset of these locations.  

This appendix also lists the number of locations assigned to different training and 

test sets. All master locations were assigned to either the Standard Training Set or 

Standard Test Set. The master locations associated with the EM61 ARRAY were also 

independently assigned to either an Active Learning Training Set or Active Learning Test 

Set, as well as to either the Extended Training Set or Extended Test Set. Similarly, the 

TEMTADS locations were also assigned to either an Active Learning Training Set or 

Active Learning Test Set. A large subset of the EM61 CART locations was assigned to a 

Second-Pass Training Set.  

In a separate but parallel demonstration, the MetalMapper surveyed the 

demonstration area. The data-collection team detected anomalies in the survey data and 

then returned to each anomaly to collect cued data. A small percentage of cued locations 

were not excavated in time for classification processing. All other cued locations (the 

majority) were assigned to either the Standard Training Set or Standard Test Set. 
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Table 1: Numbers of detected anomalies and associated master locations for each 
instrument. The numbers of associated master locations in four different training and test 
sets are shown. The numbers of true TOI and non-TOI locations are shown in red (left side 

of slash) and green (right side of slash), respectively. 

Instrument 
Number of 
Detected 

Anomalies 

Number of Associated Master Locations 

Overall 
Standard Active Learning Extended Second-Pass 

Training Test Training Test Training Test Training Test 

EM61 

CART 
1552 1479 

197 

28/169 

1282 

208/1074 
- - - - 

1042 

235/807 

437 

1/436 

EM61 

ARRAY 
1464 1464 

182 

28/154 

1282 

206/1076 

140 

36/104 

1324 

198/1126 

438 

107/331 

1026 

127/899 
- - 

MAG 

ARRAY 
5268 1464 

182 

28/154 

1282 

206/1076 
- - - - - - 

EM61 

MSEMS 
2316 1498 

195 

27/168 

1303 

205/1098 
- - - - - - 

MAG 

MSEMS 
3389 1498 

195 

27/168 

1303 

205/1098 
- - - - - - 

TEMTADS - 1464 
182 

28/154 

1282 

206/1076 

125 

20/105 

339 

214/1125 
- - - - 

BUD* - 539 
68 

9/59 

471 

59/412 
- - - - - - 

Instrument 
Number of 
Detected 

Anomalies 

Number of Cued Location 

Overall 
Standard Active Learning Extended Second-Pass 

Training Test Training Test Training Test Training Test 

Metal- 
Mapper 

1617 1561 
154 

26/128 

1407 

204/1203 
- - - - - - 

* BUD collected data over only a sub-area of the site. 
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APPENDIX B: PRIMARY SCORING RESULTS  

This appendix presents the primary scoring results for each of the 62 ranked 

anomaly lists submitted at Camp San Luis Obispo. Results are labeled by the 

demonstration team that created the ranked anomaly list, the instrument that collected the 

data, the classification algorithm that processed the data, and the test set to which the 

algorithm was applied.  

Results consist of the primary ROC-like classification performance curves, a list 

of all true TOI locations that incorrectly rose above the demonstrator’s prospectively 

chosen “don’t dig threshold” (the dark-blue dot on the performance curve), and a list of 

all true TOI locations that fell between the demonstrator’s “don’t dig threshold” and the 

retrospective “95% don’t dig threshold” (pink dot). (The “95% don’t dig threshold” is the 

threshold that would have minimized the Number of Non-TOI Below Threshold while the 

Percent of TOI Below Threshold was greater than 95%.) In the rare case that the 

demonstrators’ “don’t dig threshold” was placed further down the ranked anomaly list 

than the “95% don’t dig threshold,” then only those true TOI locations that rose above the 

“95% don’t dig threshold” are listed. In all cases, true TOI locations that rose above the 

demonstrators’ “don’t dig threshold” are listed in blue with an asterisk, and true TOI 

locations that fell between the two thresholds are listed in pink with no asterisk.  

Unless otherwise stated, (1) each demonstration team extracted its own 

parameters from the data to input into its classification algorithm, (2) each classification 

algorithm was optimized over the Standard Training Set and then applied to the Standard 

Test Set, and (3) all ranked anomaly lists were created before the demonstration teams 

received ground truth information on the Standard Test Set. 

SURVEY INSTRUMENTS 

This section presents results based on survey instruments: the EM61 CART, the 

EM61 ARRAY, the MAG ARRAY, and the EM61 MSEMS sensor. One set of results is 

based on cooperative inversions of the EM61 MSEMS and MAG MSEMS sensors. 
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EM61 CART 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1285* 60* 

1441 60 

682 60 

314 60 

79 60 

249 60 

90 60 

443 60 

149 60 

107 60 

659 60 
 

Figure 64: CEHNC’s primary scoring results for the EM61 CART and the UX-Process 
classification software, first iteration. One true TOI location rose above the demonstrator’s 

prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1285 60 

1441 60 

682 60 

314 60 

79 60 

249 60 

90 60 

443 60 

149 60 

107 60 

659 60 
 

Figure 65: CEHNC’s primary scoring results for the EM61 CART and the UX-Process 
classification software, second pass. The software was optimized over the Standard 

Training Set plus the subset of the Standard Test Set that had fallen below the 
demonstrator’s “don’t dig threshold” during the first classification pass. The software was 

then reapplied to the entire Standard Test Set. No true TOI locations rose above the 
demonstrator’s revised “don’t dig threshold” in the second classification pass (dark-blue 

dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

326* 4.2* 

404* 4.2* 

365* 4.2* 

304* 60* 

188* 2.36* 

367 60 

66 60 

79 60 

290 60 

197 60 

249 60 
 

Figure 66: NAEVA’s primary scoring results for the EM61 CART and the “Rule Based Beta” 
classification algorithm. Five true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

326* 4.2* 

404* 4.2* 

60 60 

1456 60 

59 60 

1108 60 

160 60 

275 60 

1483 60 

443 60 

19 60 
 

Figure 67: NAEVA’s primary scoring results for the EM61 CART and the “Rule Based Beta 
Tau” classification algorithm. Two true TOI locations rose above the prospective “don’t 

dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

60 60 

188 2.36 

59 60 

1615 60 

1444 60 

443 60 

53 2.36 

90 60 

19 60 

457 60 

149 60 
 

Figure 68: NAEVA’s primary scoring results for the EM61 CART and the “Rule Based Beta 
123” classification algorithm. No true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). (The ranked anomaly list was created after NAEVA received 
ground truth information for the Test Set.) 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

60 60 

53 2.36 

188 2.36 

443 60 

90 60 

19 60 

59 60 

457 60 

149 60 

1615 60 

1444 60 
 

Figure 69: NAEVA’s primary scoring results for the EM61 CART and the “Rule Based Tau 
1234” classification algorithm. No true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). (The ranked anomaly list was created after NAEVA received 
ground truth information for the Test Set.) 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

90 60 

19 60 

59 60 

457 60 

149 60 

1615 60 

1444 60 

443 60 

494 60 

441 60 

90 60 
 

Figure 70: NAEVA’s primary scoring results for the EM61 CART instrument and the 
“Amplitude” classification algorithm. No true TOI locations rose above the prospective 

“don’t dig threshold” (dark-blue dot). (The ranked anomaly list was created after NAEVA 
received ground truth for the Test Set.) 

 

True TOI Locations 
Above Threshold 

Master ID 
Ground 
Truth 

19 60 

1372 2.36 

60 60 

512 60 

66 60 

1072 4.2 

1311 81 

517 81 

231 81 

626 4.2 

294 4.2 
 

Figure 71: Parsons’ primary scoring results for the EM61 CART and the “Decay 
Constants” classification algorithm. No true TOI locations rose above the prospective 

“don’t dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444* 60* 

899 81 

1615 60 

441 60 

160 60 

1483 60 

775 60 

231 81 

53 2.36 

1372 2.36 

301 60 
 

Figure 72: SAIC’s primary scoring results for the EM61 CART (before slope correction) and 
the UX-Analyze classification software. One true TOI location rose above the prospective 

“don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444* 60* 

899 81 

1615 60 

441 60 

1483 60 

775 60 

160 60 

80 60 

296 81 

907 81 

1469 60 
 

Figure 73: SAIC’s primary scoring results for the EM61 CART (after slope correction) and 
the UX-Analyze classification software. One true TOI location rose above the prospective 

“don’t dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

15* 60* 

448* 2.36* 

1311* 81* 

304* 60* 

160* 60* 

188* 2.36* 

290 60 

342 60 

732 60 

675 60 

314 60 
 

Figure 74: SIG’s primary scoring results for the EM61 CART and the RVM supervised 
learning classification algorithm. (Sky estimated the parameters that were input into the 

algorithm.) Six true TOI locations rose above the prospective “don’t dig threshold” (dark-
blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

304* 60* 

1311* 81* 

314* 60* 

160* 60* 

290* 60* 

249 60 

66 60 

342 60 

1441 60 

500 60 

372 60 
 

Figure 75: SIG’s primary scoring results for the EM61 CART and the PNBC semi-
supervised classification algorithm. (Sky estimated the parameters that were input into the 
algorithm.) Five true TOI locations rose above the prospective “don’t dig threshold” (dark-

blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444 60 

775 60 

1483 60 

441 60 

907 81 

275 60 

1455 60 

1615 60 

207 60 

418 60 

160 60 
 

Figure 76: Sky’s primary scoring results for the EM61 CART and the “Time Decay” 
classification algorithm. No true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

EM61 ARRAY 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444* 60* 

16* 60* 

512* 60* 

149 60 

59 60 

103 60 

60 60 

444 2.36 

722 60 

65 60 

90 60 
 

Figure 77: RML’s primary scoring results for the EM61 ARRAY and the LGP classification 
algorithm. Three true TOI locations rose above the prospective “don’t dig threshold” 

(dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444* 60* 

16* 60* 

444* 2.36* 

775 60 

103 60 

59 60 

188 2.36 

512 60 

107 60 

25 60 

675 60 
 

Figure 78: RML’s primary scoring results for the EM61 ARRAY and the LGP classification 
algorithm. The algorithm was optimized over the Extended Training Set and then applied 

to the complementary “Extended” Test Set. Three true TOI locations rose above the 
prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1285 60 

899 81 

365 4.2 

444 2.36 

103 60 

109 60 

28 60 

1419 81 

585 81 

467 81 

533 60 
 

Figure 79: SAIC’s primary scoring results for the EM61 ARRAY and the UX-Analyze 
classification software. No true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

314* 60* 

25* 60* 

79* 60* 

1372 2.36 

1285 60 

90 60 

60 60 

1441 60 

722 60 

1434 81 

72 60 
 

Figure 80: SIG’s primary scoring results for the EM61 ARRAY and the RVM supervised 
learning classification algorithm. Three true TOI locations rose above the prospective 

“don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

25* 60* 

314* 60* 

79* 60* 

1372* 2.36* 

722 60 

1285 60 

1441 60 

90 60 

60 60 

72 81 

275 60 
 

Figure 81: SIG’s primary scoring results for the EM61 ARRAY and the PNBC semi-
supervised learning classification algorithm. Four true TOI locations rose above the 

prospective “don’t dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

314* 60* 

25* 60* 

79* 60* 

1372* 2.36* 

60* 60* 

1441* 60* 

1285* 60* 

22* 60* 

241* 2.36* 

275* 60* 

722* 60* 
 

Figure 82: SIG’s primary scoring results for the EM61 ARRAY and the RVM supervised 
learning classification algorithm. The algorithm was optimized over the Active Learning 

Training Set and applied to the complementary Active Learning Test Set. Forty-three true 
TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot), the first 11 

of which are listed in blue. 

 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

275* 60* 

1285* 60* 

775 60 

365 4.2 

361 4.2 

626 4.2 

276 4.2 

175 4.2 

152 4.2 

865 81 

466 81 
 

Figure 83: SIG’s primary scoring results for the EM61 ARRAY and the RVM supervised 
learning classification algorithm. (Sky estimated the parameters input to the algorithm.) 
Two true TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

275* 60* 

1285* 60* 

103 60 

90 60 

314 60 

160 60 

38 60 

249 2.36 

79 60 

241 60 
 

Figure 84: SIG’s primary scoring results for the EM61 ARRAY and the PNBC semi-
supervised learning classification algorithm (Sky estimated the parameters input to the 
algorithm.) Three true TOI locations rose above the prospective “don’t dig threshold” 

(dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1444* 60* 

160 60 

775 60 

1388 81 

585 81 

1455 81 

1419 81 

312 81 

121 81 

550 81 

325 81 
 

Figure 85: Sky’s primary scoring results for the EM61 ARRAY and the “Time Decay” 
classification algorithm. One true TOI location rose above the prospective “don’t dig 

threshold” (dark-blue dot). 
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EM61 MSEMS 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

444* 2.36* 

1444* 60* 

314* 60* 

675* 60* 

1441* 60* 

1285* 60* 

775* 60* 

899 81 

711 60 

441 60 

160 60 
 

Figure 86: SAIC’s primary scoring results for the EM61 MSEMS and the UX-Analyze 
classification software. Seven true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1441 60 

675 60 

290 60 

19 60 

514 60 

1403 60 

90 60 

437 60 

79 60 

65 60 

  
 

Figure 87: SIG’s primary scoring results for the EM61 MSEMS and the RVM supervised 
learning classification algorithm. No true TOI locations rose above the prospective “don’t 

dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

19 60 

66 60 

1444 60 

775 60 

160 60 

65 60 

1483 60 

1108 60 

1403 60 

122 60 

59 60 
 

Figure 88: SIG’s primary scoring results for the EM61 MSEMS and the PNBC semi-
supervised learning classification algorithm. No true TOI locations rose above the 

prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

418* 60* 

1615* 60* 

249* 60* 

722* 60* 

192* 60* 

194* 2.36* 

546* 60* 

500* 60* 

1502* 37* 

19* 60* 

38* 2.36* 
 

Figure 89: SIG’s primary scoring results for the EM61 MSEMS and the RVM supervised 
learning classification algorithm. (Sky estimated the parameters input to the algorithm.) 

Seventeen true TOI locations rose above the prospective “don’t dig threshold” (dark-blue 
dot), the first 11 of which are listed in blue. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

192* 60* 

194* 2.36* 

500* 60* 

418* 60* 

1615* 60* 

249 60 

722 60 

546 60 

1502 37 

38 2.36 

19 60 
 

Figure 90: SIG’s primary scoring results for the EM61 MSEMS and the PNBC semi-
supervised learning classification algorithm. (Sky estimated the parameters input to the 

algorithm.) Five true TOI locations rose above the prospective “don’t dig threshold” (dark-
blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

775 60 

19 60 

585 81 

315 60 

160 60 

1483 60 

1444 60 

767 60 

500 60 

550 81 

59 60 
 

Figure 91: Sky’s primary scoring results for cooperative inversions of the EM61 MSEMS 
and MAG MSEMS sensors and the “Decay Rate” classification algorithm. No true TOI 

locations rose above the prospective “don’t dig threshold” (dark-blue dot). 
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MAG ARRAY 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

25* 60* 

194* 2.36* 

249* 60* 

1108* 60* 

160 60 

600 60 

658 60 

987 5 

559 81 

19 60 

361 4.2 
 

Figure 92: SIG’s primary scoring results for the MAG ARRAY and the RVM supervised 
learning classification algorithm. Four true TOI locations rose above the prospective 

“don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

25* 60* 

194* 2.36* 

1108* 60* 

418* 60* 

600* 60* 

15* 60* 

19* 60* 

584 60 

732 60 

514 60 

494 60 
 

Figure 93: SIG’s primary scoring results for the MAG ARRAY and the PNBC semi-
supervised learning classification algorithm. Seven true TOI locations rose above the 

prospective “don’t dig threshold” (dark-blue dot). 



 

B-17 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1420* 2.36* 

241* 2.36* 

1032* 4.2* 

361* 4.2* 

505* 4.2* 

626 4.2 

591 4.2 

462 4.2 

1006 4.2 

326 4.2 

189 4.2 
 

Figure 94: SIG’s primary scoring results for the MAG ARRAY and the RVM supervised 
learning classification algorithm. (Sky estimated the parameters input to the algorithm.) 
Five true TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

600* 60* 

1108 60 

776 60 

103 60 

732 60 

464 2.36 

19 60 

1189 81 

708 60 

15 60 

192 60 
 

Figure 95: SIG’s primary scoring results for the MAG ARRAY and the PNBC semi-
supervised learning classification algorithm. (Sky estimated the parameters input to the 
algorithm.) One true TOI location rose above the prospective “don’t dig threshold” (dark-

blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

600* 60* 

1108* 60* 

776* 60* 

19 60 

732 60 

275 60 

249 60 

207 60 

103 60 

  

  
 

Figure 96: Sky’s primary scoring results for the MAG ARRAY and the “Moment” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

CUED INSTRUMENTS 

This section presents results based on cued instruments: the TEMTADS, the 

MetalMapper, and the BUD. The BUD results were scored on only the sub-area of the 

site over which the BUD collected data, resulting in coarser classification performance 

curves. 
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TEMTADS 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

16* 60* 

103* 60* 

241* 2.36* 

441* 60* 

444* 2.36* 

748* 60* 

1285* 60* 

555 4.2 

987 5 

  

  
 

Figure 97: Dartmouth’s primary scoring results for TEMTADS and the “Advanced Models” 
classification algorithm. (Sky estimated the parameters input to the algorithm.) Seven true 

TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

444* 2.36* 

711* 60* 

103 60 

79 60 

90 60 

1450 81 

1285 60 

428 3 

976 60 

275 60 
 

Figure 98: SAIC’s primary scoring results for the TEMTADS and the “2 Criteria” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

711* 60* 

444* 2.36* 

16* 60* 

249* 60* 

372* 60* 

65* 60* 

103 60 

90 60 

79 60 

1450 81 
 

Figure 99: SAIC’s primary scoring results for the TEMTADS and the “3 Criteria” 
classification algorithm. Seven true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

1415* 4.2* 

241* 2.36* 

775* 60* 

444* 2.36* 

441* 60* 

987* 5* 

90 60 

103 60 

79 60 

711 60 

722 60 
 

Figure 100: SAIC’s primary scoring results for the TEMTADS and the “Multisource - 3 
Criteria” classification algorithm. Six true TOI locations rose above the prospective “don’t 

dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

444* 2.36* 

1415* 4.2* 

241* 2.36* 

1450* 81* 

90* 60* 

722* 60* 

118* 4.2* 

152* 4.2* 

987* 5* 

249* 60* 

711* 60* 
 

Figure 101: SAIC’s primary scoring results for the TEMTADS and the “Multisource - SVM” 
classification algorithm. Nineteen true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot), the first 11 of which are listed above in blue. 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

444* 2.36* 

241* 2.36* 

555* 4.2* 

1450* 81* 

21* 4.2* 

850* 4.2* 

1285* 60* 

208* 4.2* 

1386 81 

711 60 

722 60 
 

Figure 102: SIG’s primary scoring results for the TEMTADS and the RVM supervised 
learning classification algorithm. Eight true TOI locations rose above the prospective 

“don’t dig threshold” (dark-blue dot). 



 

B-22 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

444* 2.36* 

1285* 60* 

722 60 

241 2.36 

1450 81 

1386 81 

21 4.2 

748 60 

16 60 

103 60 

55 60 
 

Figure 103: SIG’s primary scoring results for the TEMTADS and the PNBC semi-supervised 
learning classification algorithm. Two true TOI locations rose above the prospective “don’t 

dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

1450* 81* 

1285* 60* 

410* 60* 

107* 60* 

103* 60* 

444* 2.36* 

748* 60* 

122* 60* 

22* 60* 

275* 60* 
 

Figure 104: SIG’s primary scoring results for the TEMTADS and the RVM supervised 
learning classification algorithm. The algorithm was optimized over the Active Learning 
Training Set and then applied to the complementary Active Learning Test Set. Fifty-two 
true TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot), the 

first 11 of which are listed above in blue. 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

1450* 81* 

208 4.2 

987 5 

103 60 

55 60 

107 60 

444 2.36 

122 60 

1444 60 

109 60 
 

Figure 105: SIG’s primary scoring results for the TEMTADS and the RVM supervised 
learning classification algorithm. (Sky estimated the parameters input to the algorithms.) 
Two true TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

1450 81 

55 60 

444 2.36 

987 5 

208 4.2 

1444 60 

160 60 

60 60 

109 60 

775 60 
 

Figure 106: SIG’s primary scoring results for the TEMTADS and the PNBC semi-supervised 
learning classification algorithm. (Sky estimated the parameters input to the algorithms.) 
One true TOI location rose above the prospective “don’t dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

16* 60* 

103* 60* 

1285* 60* 

314 60 

365 4.2 

444 2.36 

441 60 

249 60 

711 60 

443 60 
 

Figure 107: Sky’s primary scoring results for the TEMTADS and the “Expert Opinion” 
classification algorithm. Four true TOI location rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

711* 60* 

314 60 

365 4.2 

444 2.36 

208 4.2 

452 81 

722 60 

372 60 

207 60 

103 60 
 

Figure 108: Sky’s primary scoring results for the TEMTADS and the “Library” 
classification algorithm. Two true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

103* 60* 

16* 60* 

314 60 

365 4.2 

444 2.36 

79 60 

90 60 

443 60 

60 60 

72 60 
 

Figure 109: Sky’s primary scoring results for the TEMTADS and the “Polarization Match” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID 
Ground 
Truth 

241* 2.36* 

16* 60* 

103* 60* 

314 60 

365 4.2 

444 2.36 

443 60 

1285 60 

441 60 

60 60 

241 2.36 
 

Figure 110: Sky’s primary scoring results for the TEMTADS and the “Statistical Classifier” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 
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MetalMapper 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

737* 60* 

254 60 

292 37 

852 60 

1604 81 

31 60 

40 60 

50 60 

  

  

  
 

Figure 111: Dartmouth’s primary scoring results for the MetalMapper and the “Advanced 
Models” classification algorithm. (Sky estimated the parameters input to the algorithm.) 
One true TOI location rose above the prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

1177* 60* 

292* 37* 

1718* 2.36* 

737 60 

493 60 

2195 2.36 

2149 60 

368 60 

852 60 

  

  
 

Figure 112: Geometrics’ primary scoring results for the MetalMapper and the “ANN-LM-A” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

292* 37* 

1718* 2.36* 

1177* 60* 

1771 60 

886 5 

493 60 

737 60 

988 81 

595 60 

1626 3 

2149 60 
 

Figure 113: Geometrics’ primary scoring results for the MetalMapper and the “ANN-TKLM” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

1177* 60* 

737* 60* 

680* 2.36* 

493* 60* 

852* 60* 

1718 2.36 

292 37 

1626 3 

2306 60 

781 60 

2410 60 
 

Figure 114: SAIC’s primary scoring results for the MetalMapper and the “2 Criteria” 
classification algorithm. Five true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

1177* 60* 

493* 60* 

852* 60* 

680* 2.36* 

1718 2.36 

292 37 

737 60 

1160 60 

2104 2.36 

163 2.36 

1177 60 
 

Figure 115: SAIC’s primary scoring results for the MetalMapper and the “3 Criteria” 
classification algorithm. Four true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

292* 37* 

2420* 81* 

1177* 60* 

1718* 2.36* 

746* 60* 

737* 60* 

771 81 

1626 3 

886 5 

781 60 

1754 81 
 

Figure 116: SIG’s primary scoring results for the MetalMapper and the RVM supervised 
learning classification algorithm. Six true TOI locations rose above the prospective “don’t 

dig threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

1718* 2.36* 

1177* 60* 

746* 60* 

781* 60* 

292* 37* 

2420* 81* 

529 60 

499 60 

  

  

  
 

Figure 117: SIG’s primary scoring results for the MetalMapper and the PNBC semi-
supervised learning classification algorithm. Six true TOI locations rose above the 

prospective “don’t dig threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

1718* 2.36* 

292* 37* 

1177* 60* 

737 60 

1771 60 

781 60 

746 60 

1915 60 

493 60 

731 60 

1718 2.36 
 

Figure 118: Sky’s primary scoring results for the MetalMapper and the “Expert Opinion” 
classification algorithm. Three true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 
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True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

1718* 2.36* 

1177* 60* 

1771* 60* 

2420* 81* 

371 60 

595 60 

564 2.36 

410 60 

  

  

  
 

Figure 119: Sky’s primary scoring results for the MetalMapper and the “Library” 
classification algorithm. Four true TOI locations rose above the prospective “don’t dig 

threshold” (dark-blue dot). 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

MM ID 
Ground 
Truth 

1718* 2.36* 

292* 37* 

1177 60 

781 60 

746 60 

1915 60 

493 60 

731 60 

  

  

  
 

Figure 120: Sky’s primary scoring results for the MetalMapper and the “Statistical 
Classifier” classification algorithm. Two true TOI locations rose above the prospective 

“don’t dig threshold” (dark-blue dot). 
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BUD 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID  
Ground 
Truth 

444* 2.36* 

1285 60 

1372 2.36 

  

  

  

  

  

  

  

  
 

Figure 121: LBNL’s primary scoring results for the BUD and the “Empirical Likelihood 
Ratio” classification algorithm. Results were scored over only the sub-areas of the site 

where the BUD collected data. One true TOI location rose above the prospective “don’t dig 
threshold” (dark-blue dot).  

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID  
Ground 
Truth 

241* 2.36* 

  

  

  

  

  

  

  

  

  

  
 

Figure 122: LBNL’s primary scoring results for the BUD and the “Template Match” 
classification algorithm. Results were scored over only the sub-areas of the site where the 
BUD collected data. Rather than ordering the BUD cued locations into a ranked anomaly 
list, LBNL simply classified them as either “Likely TOI” or “Likely Non-TOI.” One true TOI 

location was incorrectly classified as “Likely Non-TOI” (dark-blue dot). (The classifications 
were made after LBNL received ground truth for the Test Set.) 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID  
Ground 
Truth 

241* 2.36* 

1285* 60* 

1372* 2.36* 

  

  

  

  

  

  

  

  
 

Figure 123: SIG’s primary scoring results for the BUD and the RVM supervised learning 
classification algorithm. (LBNL estimated the parameters input to the algorithm.) Results 
were scored over only the sub-areas of the site where the BUD collected data. Three true 

TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot), all of which 
are listed in blue. (The ranked anomaly list was created after SIG received ground truth for 

the Test Set.) 

 

True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID  
Ground 
Truth 

241 2.36 

1372 2.36 

1285 60 

  

  

  

  

  

  

  

  
 

Figure 124: SIG’s primary scoring results for the BUD and the PNBC semi-supervised 
learning classification algorithm. (LBNL estimated the parameters input to the algorithm.) 
Results were scored over only the sub-areas of the site where the BUD collected data. No 
true TOI locations rose above the prospective “don’t dig threshold” (dark-blue dot). (The 

ranked anomaly list was created after SIG received ground truth for the Test Set.) 
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True TOI Locations 
Above Don’t Dig 

Threshold 

Master ID  
Ground 
Truth 

241* 2.36* 

444 2.36 

1444 60 

  

  

  

  

  

  

  

  
 

Figure 125: Sky’s primary scoring results for the BUD and the PNN classification 
algorithm. Results were scored over only the sub-areas of the site where the BUD 

collected data. One true TOI location rose above the prospective “don’t dig threshold” 
(dark-blue dot). (The ranked anomaly list was created after Sky received the ground truth 

for the Test Set.) 
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ACRONYMS 

 EMI polarizability 

 EMI polarizability decay rate 

BUD Berkeley UXO Discriminator 

CEHNC Corps of Engineers – Huntsville Center 

DGPS Differential Global Positioning System 

EMI Electromagnetic induction 

ESTCP Environmental Security Technology Certification Program 

FN False negative 

FP False positive 

GLRT Generalized likelihood ratio test 

GPS Global Positioning System 

IDA Institute for Defense Analyses 

IMU Inertial measurement unit 

IVS Instrument Verification Strip 

MSEMS Man-portable Simultaneous Magnetometer and 
Electromagnetic System 

MTADS Multi-sensor Towed Array Detection System 

N/A Not applicable 

Pd Probability of detection 

PNBC Parameterized neighborhood-based classification 

PNN Probabilistic neural network 

ROC Receiver operating characteristic 

RTK  Real time kinematic 

RVM Relevance Vector Machine 

SAIC Science Applications International Corporation 

SERDP Strategic Environmental Research and Development 
Program 

SIG Signals Innovations Group 

SLO San Luis Obispo 

SNR Signal-to-noise ratio 

TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array 
Detection System 

TOI Target of interest 
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TP True positive 

UXO Unexploded ordnance 
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