Development of MIL-STD for ZnNi Plating, Low Hydrogen Embrittlement Electrodeposition

ASETSD\nDefense Workshop 2018

David Frederick
417 SCMS/GUEA
E-mail – David.Frederick.1@us.af.mil

Craig Pessetto
ES3
Craig.Pessetto@es3inc.com

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Case No. 75ABW-2018-0051

21 August 2018

Parts on the Shelf and Contracts in Place
Agenda

- Timeline
- SBIR Phases
 - Feasibility
 - Qualification
 - Implementation
- Process Control
 - USAF Drawing
 - MIL-STD
Timeline

- SBIR (Small Business Innovation Research) Project
 - SBIR is a Three Phase Project
 - Phase I: Feasibility (2007)
 - Phase II: Qualification (2008 - 2010)
 - Phase III: Implementation (2010 - Present)
 - ESTCP – Environmental Security Technology Certification Program
 - CSAG – Consolidated Sustainment Activity Group (Landing Gear Funding)
 - GSD – General Support Division (Landing Gear Funding)
 - P2 – Pollution Prevention
 - DMAG – Overhaul Shop
Phase I: Feasibility (2007)

- Selected Coating to Replace Cadmium
 - Required to protect Steel
 - Galvanic Potential is close to steel and has good corrosion properties
 - Low Hydrogen Embrittlement for High Strength Steel
 - Used supplier developed technical data
 - Bench top tank (8 gal)

<table>
<thead>
<tr>
<th>Metal or Plating</th>
<th>Galvanic Series Measurements in 3.5% NaCl</th>
<th>Δ mV from Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>IZ-C17+ Zn-Ni with IZ-264 Tri-Cr CC</td>
<td></td>
<td>-30</td>
</tr>
<tr>
<td>IZ-C17+ Zn-Ni with No CC</td>
<td></td>
<td>-40</td>
</tr>
<tr>
<td>LHE Ti-Cd with No CC</td>
<td></td>
<td>-90</td>
</tr>
<tr>
<td>LHE Ti-Cd with Hex-Chrome CC</td>
<td></td>
<td>-80</td>
</tr>
<tr>
<td>LHE Cd with Hex-Chrome CC</td>
<td></td>
<td>-80</td>
</tr>
<tr>
<td>LHE Cd with No CC</td>
<td></td>
<td>-70</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td>-380</td>
</tr>
<tr>
<td>Zn-Ni (Low Ni)</td>
<td></td>
<td>-480</td>
</tr>
<tr>
<td>Hot Dip Zn</td>
<td></td>
<td>-525</td>
</tr>
</tbody>
</table>

- Identified Required Testing for Acceptance and Qualification
 - Based on testing required for other electroplating processes such as Cadmium
- Developed parameters for chemical maintenance, coating composition, etc.
- Scaled up prototype plating tank (325 gal)
Phase II: Qualification

- Testing performed to validate process/coating integrity
 - Corrosion (Salt Fog and Environmental)
 - Base Metal Adhesion
 - Paint Adhesion
 - Hydrogen Embrittlement
 - DeZincification
 - Reembrittlement
 - Fatigue

- Open Circuit Potential
- Galvanic Potential
- Repairability (Brush Plating)
- Compatibility on Other Metals
- Compatibility with Other Coatings
- Liquid Metal and Solid Metal Embrittlement
- Coating Removal
- Waste Treatment
- Chemical Controls/Maintenance
- Process Control
- Anode Development
Phase III: Implementation (2010 – Present)

- Reviewed AMS 2417 Specification for ZnNi plating – This spec was too broad (lessons learned from QQ-P-416 and Mil-Std-870)
- Developed USAF Drawing 201027456 for process control and Source Control Drawing 201027457
- Installation of Prototype Production Tank (3200 gal) – Converted to full production August 2013
- Development of Conformal Anodes for Component Plating
Conversion of USAF Drawing to MIL-STD (2016 – Present)

- Need for a MIL-STD was identified as landing gear spares procurement started requesting LHE ZnNi on landing gear. Job shops were not able or reluctant to convert without a more available standard.
- Initiated steps of publishing MIL-STD
- Developed format and verbiage for MIL-STD

- Completed internal USAF review of MIL-STD – Engineering, Plating Shop
- Collaborated with industry partners to maintain similar parameters
- Submitted MIL-STD draft to Hill AFB Data Acquisition & Defense Standardization Office
MIL-STD Publication (TBD)

- MIL-STD for LHE ZnNi Electrodeposition to be sent out to DOD offices for review, comment and approval
Questions?

LHE ZnNi

ASTM B117 4000 hours

LHE Cd

Parts on the Shelf and Contracts in Place