Enhanced Trivalent Chromium Pretreatment Coatings for Light Metals

Introduction
- Current primer substrates for aluminum alloys contain hazardous chromium, a known carcinogen and environmental pollutant.
- Alteration to materials that are hazardous does not provide the obvious color change seen with hazardous chromium (silver to gold).
- This leads to difficulty identifying the presence of coating for quality control purposes (silver to aluminum appearance).
- **New enhanced trivalent chromium pretreatment coating (eTCP) provides obvious color change (silver to blue in purple) along with excellent corrosion resistance, low electrical resistance, and paint adhesion.**

What is conversion coating?
- Underlying and base for primer.
- Improves corrosion resistance and primer adhesion.
- Commercially available (COTs) color additions.
- Navy and industry goal of 90% on uniform/defect free MIL-DTL-81706 MIL-DTL-81706 MIL-DTL-81706 QPL Pass.
- Reduces/eliminates Cr6+ at Fleet Readiness Centers (FRCs).
- Savings: $3M in labor/materials for HM cleaning at FRCs/year.
- 12,000 gallons of Cr6+ solution representing 22% of all Cr6+ usage across all FRCs.
- Microscopic visual color changes are seen on various aluminum alloys (e.g., 2024-T3, 2024-T3, and eTCP-Violet as an anodized seal per MIL-A-8625F and eTCP-Blue).
- Wide application as a conversion coating on various light metals.

Technical Progress – FY18 (CRADA)
- Pre-activated TCP and dyes.
- 10+ new dyes tested in laboratory.
- 31 produced acceptable color.
- 2 produced unacceptable corrosion resistance.
- Poor corrosion resistance.
- Uneven color change.
- **Color Changes**
 - Color change with eTCP compared to bare metal.
- **Technical Progress – FY18 (CRADA)**
 - Testing TCP at NASL, April 2018.
 - Objective: Evaluate 8 primer colors with TCP-Melac.
 - Test: Exposure testing of painted panels.
- Paint Adhesion
 - Testing paint adhesion on eTCP-Blue per MIL-O-21366 and FED-STD-141D via external testing at Altair Testing Laboratories.

Performance Criteria
- Salt Fog Corrosion
 - Two colors: blue and violet.
 - 2 produced acceptable corrosion resistance.
- **Technical Progress – FY18 (CRADA)**
 - Paint adhesion risk.
- Color Change
 - Color change with eTCP compared to bare metal.
- Low Electrical Resistance (LER) results (In Progress)
 - Average before salt spray for TCP-Violet = 125 ± 3 5 µΩ/in.
 - Average before salt spray for TCP-Blue = 125 ± 3 2 µΩ/in.
 - ALU-2024, 5052 and 6061 Ti 17 cell open circuit potentials (OCP) - 1,200,000 µΩ.
 - Two orders of magnitude below specification limit.

Contact

© CHEMEON Surface Technology

Technical Overview
- **E TCP Anodized Aluminum Seal**
 - Type II and Type IIB anodized aluminum sealed with eTCP-Violet.
 - Requires MIL-A-84227 requirements of 328 hours.
 - Converts standard COTS color coatings to eTCP-Violet as an anodized seal per MIL-A-84227 and FED-STD-141D.

Background
- Chronic Pretreatments
 - Industry standard for over 60 years.
- Hazardous chromium, Cr6+ 90%.
- Non-hazardous chromium, Cr3+ 10%.
- **Trivalent Chromium Pretreatment**
 - Developed by NAVAIR in 2005.
 - **Background**
 - Multiple pass change (MPG).
 - **Enhanced Trivalent Chromium Pretreatment (eTCP)**
 - Goal: to provide obvious color change.
 - **Performance**
 - Color change with eTCP compared to bare metal.
 - **Technical Progress – FY18 (CRADA)**
 - Testing TCP at NASL, April 2018.
 - Objective: Evaluate 8 primer colors with TCP-Melac.
 - Test: Exposure testing of painted panels.
- **Technical Progress – FY18 (CRADA)**
 - Paint adhesion risk.
 - Color Change
 - Color change with eTCP compared to bare metal.
- Low Electrical Resistance (LER) results (In Progress)
 - Average before salt spray for TCP-Violet = 125 ± 3 5 µΩ/in.
 - Average before salt spray for TCP-Blue = 125 ± 3 2 µΩ/in.
 - ALU-2024, 5052 and 6061 Ti 17 cell open circuit potentials (OCP) - 1,200,000 µΩ.
 - Two orders of magnitude below specification limit.

Conclusions
- Enhanced TCP (eTCP) provides superior corrosion resistance (>1000hr) and paint adhesion.
- Other Aerospace Applications
 - Spray application to aircraft.
 - Post treatment for Cadmium.
 - Post treatment for Zinc-Nickel.
 - Post treatment for Class III IVD Aluminum.
 - Conversion coating on other light metals.
 - Magnesium, zinc.
 - Stainless galvanic anodes.

Enhanced Trivalent Chromium Pretreatment
- New formulation of eTCP
 - Two colors available and color.
 - eTCP-5052 (5052-T6) salt fog on AA2024 (ongoing external validation at Altair Testing Facility).
 - eTCP-Blue (5052-T6) salt fog on AA2024 (externally validated at Altair Testing Facility).

Performance Criteria
- Salt Fog Corrosion
 - Two colors: blue and violet.
 - 30 new dyes tested in laboratory.
 - Poor corrosion resistance.
 - Uneven color change.
 - **Color Changes**
 - Color change with eTCP compared to bare metal.
 - **Technical Progress – FY18 (CRADA)**
 - Testing TCP at NASL, April 2018.
 - Objective: Evaluate 8 primer colors with TCP-Melac.
 - Test: Exposure testing of painted panels.
 - Two orders of magnitude below specification limit.