Dynamic Multivariate Accelerated Corrosion Test Protocol

Exposure Sites
- Daytona Beach, FL
- Wright Patterson AFB, OH
- Kirtland AFB, NM
- Tyndall AFB, FL
- Pt. Judith, RI
- Hickam AFB, HI
- University National Oceanographic Laboratory System (UNOLS) Ships
- University of Delaware
- University of Washington

Issues
- Multiple lab corrosion tests are used:
 - ASTM B117 for aluminum alloys
 - GM 9540P for steel
- Does not account for UV, O3, temp, %RH.
- Outdoor & laboratory corrosion testing vary:
 - Rank order
 - Failure mode

Technical Approach
- Panels of bare Al AA2024-T3, AA6061-T6, AA7075-T6, and 1010 steel, pure silver and pure copper were exposed to eight environments and two test chambers.
- Test chambers:
 - 5% NaCl salt fog (ASTM B117).
 - 5% NaCl salt fog, UV, O3.
- Mass loss determinations, corrosion morphology and elemental analysis were used to investigate correlations between outdoor and laboratory sites.
- Qualitative & quantitative (SEM-EDS, FTIR) rankings were made after 1 and 2 years.
- Weather data was recorded on deployed weather monitoring systems or from EPA.
- A proof of concept model for predicting atmospheric corrosion rates of 1010 steel was developed using a cumulative damage non-linear modeling and simulation approach.

Results
- Corrosion of field samples correlates more strongly to Temp and %RH than UV/O3.
- For field exposure time is the dominant factor in corrosion severity.
- Degradation of coatings in B117 with UV/O3 more pronounced than B117 alone.
- Full Cr coating system degradation in B117 more like field than B117 UV/O3.
- Mg-rich coating system degradation in B117 UV/O3 more like field than B117 alone.
- High UV/O3 levels in B117 more corrosive than field sites with high UV/O3.
- Surface chemistry & morphology different for chamber & field at similar mass loss.

Substrates / Coating Systems Deployed
- Land site-mounted coated and bare sample exposure rack
- Ship-mounted bare sample exposure rack
- Land site-mounted bare sample exposure rack
- Ship-mounted coated sample exposure rack

Smart Rack
- ENVIROMENTAL CHARACTERIZATION EQUIPMENT
 - Multi-Axis Weather Sensor
 - Anemometer & Quality Meter
- CORROSION TEST METHODOLOGY
 - Compact form factor ambient air quality monitoring system. Automatically measures 10x CO and NOx levels (ppm resolution). Equipment secure for compliance with EN reference methods.
- Specimen cards (paper right) or custom “failing test” specimen will be mounted on removable future UV/UVF specifications.
- Smart rack components have been ordered and may be mounted. The system is being assembled.

Accelerated Combined Effects Simulation (ACES) Chamber
- This work was conducted by the following:
 1. University of Dayton Research Institute
 2. Adirondack Analytics
 3. Air Force Research Laboratory
This work was supported by SERDP/ESTCP, Project # WP-1674.