Electrochemical Technologies for Replacement of Hexavalent Chromium and Cadmium

Functional Cr Plating from a Trivalent Chemistry

NEED: Develop an environmentally benign coating for functional military and commercial applications with ≥ or equivalent properties

THREE APPROACHES:
- Change the process (plating) to eliminate hexavalent (Cr+6)
 - Such as Ni or Co plating
- Change the plated coating to eliminate hexavalent (Cr+6)
 - Such as HVOF WC-Co-Cr or DLC
- Change the plating bath from hexavalent (Cr+6) to trivalent (Cr+3)
 - Cr+3 used for decorative chrome coatings/not restricted
 - Maintain same chrome documentation

“Conventional Wisdom”: Thick functional chromium coatings cannot be plated from Cr+3 due to hydroxide formation at the cathode (alkaline interface)

Optimization Testing

- Thickness (AMS 2460, 3.4.1)
 - Microhardness via cross-section
 - As-plated and post 375°F (190°C)
- Current Efficiency
- Microhardness via cross-section
- Corrosion Resistance (ASTM B117)
- Roughness
- Plating Performance:
 - Current Density, Current Efficiency
 - Microhardness via cross-section
 - Hardness
 - Thickness (AMS 2460, 3.4.1)

- As-plated and post 375°F (190°C)

Trivalent Chromium: Grinding Adhesion

Trivalent Chromium: Baking Effect on Microstructure/Hardness (AMS 2460, 3.4.3)

Cracks with Cr Thickness

Application to Tri-Chrome Cracking

- Apply 1st plating condition to generate sufficient tensile stress to exceed yield stress in situ during plating
 - Cause crack formation in first layer
- Apply 2nd plating condition to cover cracks in first layer and generate sufficient tensile stress to exceed yield stress in situ during plating
 - Cause crack formation in second layer
- Loop or sequence between 1st and 2nd plating conditions
 - Generate coating with discontinuous micro-cracks

Boric-Acid Free Looping Study [As Plated]

Through cracks not minimized with thicker layers using initial protocols

WF1: 24 mins, 5.5 µm; WF2: 13 mins, 4.5 µm; Loop 5 times

Evidence of Discontinuous Cracking [As Plated]

in Boric-Acid Free Chemistry

Looping studies showing some discontinuous micro-cracks, in addition to through cracks

REACH Compliant Chemistry Preliminary Coatings Overview Property Comparison

Acknowledgements

- DOD Funding, Contract No. W911NF-11-2-0014
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOD.

Coventya
Electrochemical Technologies for Replacement of Hexavalent Chromium and Cadmium

Application of Pulse/Pulse Reverse Electrochemistry to Stripping and Coating Processes

- **Electrochemical Machining, Polishing, Stripping, Through-Mask Etching**
- **Electrodeposition/Plating**

Electrolyte Screening Summary

<table>
<thead>
<tr>
<th>Solution</th>
<th>pH</th>
<th>Electric Field Conditions</th>
<th>Cu²⁺ Formation</th>
<th>Cr³⁺ Formation</th>
<th>Steel Corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mil-spec solutions</td>
<td></td>
<td>DC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Mineral acid solutions</td>
<td></td>
<td>DC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Low concentrations</td>
<td></td>
<td>DC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Organic Acid solutions</td>
<td></td>
<td>DC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Organic acid solutions</td>
<td></td>
<td>PRC</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Cathodic Pulse Tuned to:
- **Control current distribution**
- **Enhance mass transfer**
- **Remove reaction products**

Anodic Pulse Tuned to:
- **Remover H⁺**
- **Acidify interface**
- **Transition Planning:**
 - Characterization Tests:
 - Composition and thickness with XRF (ASTM B568/AMS 2460)
 - Adhesion by Bend to Break (ASTM B571)
 - Visual examination (AMS 2460)
 - Hydrogen Embrittlement (ASTM F519)
 - Corrosion resistance (ASTM B117)
 - Transition Planning:
 - Economic analysis that compares FARADAYIC® Electrodeposition with conventional plating
 - Preliminary transition plan to outline implementation of this process at ALCAs, depots, and partners

Environmental Friendly Chrome Stripping Process

- **DC stripping (MIL-STD-871) of Cr plate:**
 - NaOH (68-82 g/L) or NaOH (45-60 g/L) + Na₂CO₃ (60-75 g/L)
 - Requires conversion of Cr⁶⁺ to Cr³⁺
 - Low Hydrogen Embrittlement
 - Fatigue resistance
 - Economically viable compared to the conventional process
 - Enables immobilization or recovery/recycle of the chrome

FARADAYIC® Stripping

- Inverse Chrome Plated Part in FARADAYIC® Stripping Electrolyte
- Apply FARADAYIC® Stripping Waveform to remove chrome
- Recycled Stripping Electrolyte
- YES: N (Cr⁶⁺) high enough for FARADAYIC® Electroplating?
- NO: Adjust FARADAYIC® Stripping parameters to favor Cr³⁺
- YES: N (Cr⁶⁺) < OSHA PEL?
- NO: Continue FARADAYIC® Stripping
- Chromite Recovery / Recyclce

FARADAYIC® Stripping of Cr Coated Panels

- Flat cell for initial testing of Cr stripping in small electrolyte volumes
- Larger cell for testing of masked panels with Cr and bare steel exposed

Stripping in Mil-Spec Solution – DC vs. PC/PRC

- DC Stripping: Run time = 180 minutes
 - Hatch test kit: 2600 ppm Cr⁴⁺
- PC/PRC Stripping: Run time = 840 minutes
 - Hatch test kit: 100 ppm Cr⁴⁺
 - 95% less Cr⁴⁺ compared with DC

Economic Impact

- Many DoD systems require Cadmium (Cd) plating for:
 - Corrosion Resistance, conductivity, EMI Shielding/electrical bonding (2.5 mtd)
 - Thermal, mechanical, or electrical shock resistance, etc.
- However, Cd plating processes are known carcinogens for plating personnel and are highly regulated
- Alkaline Zn-Ni plating is an environmental benign process for Cd replacement
 - Low Hydrogen Embrittlement
 - Excellent throwing power and adhesion
 - Economically preferred considering the less cost for the waste treatment and worker safety
 - Zinc-Nickel connector finish is electrically conductive

Objective

- Develop a LHE alkaline zinc nickel plating line for steel and aluminum electrical connectors, back-shells, and components on aircraft/propeller systems

Plating of Zn-Ni on Aluminum and Steel

- Kaufman solution
- Typically requires hydrogen scrubbing
- Typically requires chelating agents

Experimental Setup

- Aluminum and steel samples:
 - 1" x 4" Flats
 - 1a or 2a Hydrogen Embrittlement Bars
- Retrofitted plating line for Dipol 12-C17+ Alkaline ZnNi

Next Steps

- DOD Funding, Contract Nos. FA8723-14-M-0017, FA9501-16-P-0047
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOD.

Acknowledgements

- Program partners
 - The Boeing Company
 - Corrdesa
 - Dr. Bruce Popov

2008 Blum Award for Pulse Reverse Finishing

2016 R&D 100 Finalist for Nb Electroplating

Electrochemical Machining, Polishing, Stripping, Through-Mask Etching

Pulse Electrodeposition/Plating

Plating of Zn-Ni on Aluminum and Steel

Economic Impact

- Many DoD systems require Cadmium (Cd) plating for:
 - Corrosion Resistance, conductivity, EMI Shielding/electrical bonding (2.5 mtd), Thermal, mechanical, or electrical shock resistance, etc.
- However, Cd plating processes are known carcinogens for plating personnel and are highly regulated
- Alkaline Zn-Ni plating is an environmental benign process for Cd replacement
 - Low Hydrogen Embrittlement
 - Excellent throwing power and adhesion
 - Economically preferred considering the less cost for the waste treatment and worker safety
 - Zinc-Nickel connector finish is electrically conductive

Objective

- Develop a LHE alkaline zinc nickel plating line for steel and aluminum electrical connectors, back-shells, and components on aircraft/propeller systems

Plating of Zn-Ni on Aluminum and Steel

- Kaufman solution
- Typically requires hydrogen scrubbing
- Typically requires chelating agents

Experimental Setup

- Aluminum and steel samples:
 - 1" x 4" Flats
 - 1a or 2a Hydrogen Embrittlement Bars
- Retrofitted plating line for Dipol 12-C17+ Alkaline ZnNi

Next Steps

- DOD Funding, Contract Nos. FA8723-14-M-0017, FA9501-16-P-0047
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOD.

Acknowledgements

- Program partners
 - The Boeing Company
 - Corrdesa
 - Dr. Bruce Popov